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ABSTRACT
Recent research advocates asymmetric multi-core architectures, where
cores in the same processor can have different performance. These
architectures support single-threaded performance and multithreaded
throughput at lower costs (e.g., die size and power). However, they
also pose unique challenges to operating systems, which tradition-
ally assume homogeneous hardware. This paper presents AMPS,
an operating system scheduler that efficiently supports both SMP-
and NUMA-style performance-asymmetric architectures. AMPS
contains three components: asymmetry-aware load balancing, faster-
core-first scheduling, and NUMA-aware migration. We have im-
plemented AMPS in Linux kernel 2.6.16 and used CPU clock mod-
ulation to emulate performance asymmetry on an SMP and NUMA
system. For various workloads, we show that AMPS achieves a
median speedup of 1.16 with a maximum of 1.44 over stock Linux
on the SMP, and a median of 1.07 with a maximum of 2.61 on the
NUMA system. Our results also show that AMPS improves fair-
ness and repeatability of application performance measurements.

1. INTRODUCTION
Multi-core architectures are becoming mainstream in both server

and desktop processors. Over the next decade, we expect to see
processors with tens and even hundreds of cores on a chip [6]. To
efficiently utilize chip real-estate, recent research [2, 3, 11, 13, 14,
15] advocates performance-asymmetric (or heterogeneous) archi-
tectures, where a processor contains multiple cores with the same
instruction set but different performance characteristics (e.g., clock
speed, issue width, in-order vs. out-of-order). These architectures
provide cost-effective platforms for both throughput-oriented ap-
plications and applications that demand single thread performance.
Prior research [2, 13, 15] demonstrated that, compared to homoge-
neous ones, asymmetric architectures deliver higher performance
at lower costs in terms of die area and power consumption. Be-
sides these architectures by design, performance asymmetry can
also arise in homogeneous multi-core systems when cores dynam-
ically switch power states or disable failing components for fault
tolerance. To effectively support these architectures, the operat-
ing system (OS) must take into account hardware asymmetry when
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making scheduling decisions. However, OS schedulers tradition-
ally assume homogeneous hardware and do not directly work well
on asymmetric architectures.

This paper presents AMPS, an asymmetric multiprocessor sched-
uler that efficiently supports both SMP- and NUMA-style performance-
asymmetric architectures. AMPS focuses on three metrics: perfor-
mance, fairness, and repeatability of application performance mea-
surements. There are three components in AMPS:

(1) Asymmetry-aware load balancing ensures that the load on each
core is proportional to its computing power.

(2) Faster-core-first scheduling ensures that threads run on faster
cores whenever they are under-utilized.

(3) NUMA-aware migration dynamically predicts thread migra-
tion overheads using memory resident sets and controls migra-
tion on NUMA-style architectures (e.g., due to cores connected
to different memory controllers).

We have implemented AMPS in the Linux 2.6.16 kernel. To
emulate future SMP- and NUMA-style asymmetric architectures,
we modulate core duty cycles on a four dual-core processor SMP
and a 32-processor NUMA system. We evaluate AMPS with SPEC
OMP*, SPECjbb2005*, Kernbench (parallel make), and Ogg Vor-
bis (audio encoding). Compared to stock Linux, AMPS achieves
a median speedup of 1.16 (average 1.15) on the SMP, and a me-
dian of 1.07 (average 1.18) on the NUMA system. Furthermore,
our results show that AMPS improves fairness and repeatability of
application performance measurements.

The remainder of this paper is organized as follows. In Section 2,
we describe the general design of AMPS. In Section 3, we discuss
our Linux implementation of AMPS. We present evaluation results
in Section 4, discuss related work in Section 5, and conclude in
Section 6.

2. SCHEDULING FOR PERFORMANCE-
ASYMMETRIC ARCHITECTURES

In this section, we discuss the design space of OS scheduling for
performance-asymmetric architectures, our focus, and the AMPS
design.

2.1 Design Space
We focus on designing a general-purpose scheduler that enables

good performance for most applications. Most existing multipro-
cessor OSes, such as Windows Server 2003*, Solaris 10*, Linux
2.6*, and FreeBSD 5.2*, use a distributed run-queue model, where
the scheduler maintains one run queue per core; periodically, it bal-
ances the load on every core. Compared to a centralized run-queue
model, the distributed model achieves higher scalability. Thus, we
designed AMPS based on this model.



We classify scheduling policies into thread-dependent policies,
which schedule threads based on their application types and re-
lations to other threads, and thread-independent policies, which
schedule threads independently regardless of application types and
dependencies. Each policy can also have different optimization
metrics, such as performance, fairness, and power efficiency.

Most general-purpose OSes use thread-independent policies and
favor threads to cores that are less loaded to facilitate load balance
or cache-warm to exploit cache affinity. Thread-dependent policies
mostly exist in research. Zheng and Nieh [25] dynamically de-
tect process dependencies to guide scheduling. Recent research [9,
20, 22] co-schedules threads with little contention on shared re-
sources, such as caches and functional units. On performance-
asymmetric architectures, the design space for thread-dependent
policies is even larger. For example, in a system with many in-
order cores and a few out-of-order cores, to maximize performance,
a scheduler may assign threads of a throughput-oriented application
to the in-order cores and single-threaded applications to the out-of-
order cores. To conserve power, however, the scheduler may favor
in-order cores, though potentially at the cost of performance.

Our design for AMPS focuses on thread-independent policies
and the following metrics:

• Performance: most applications should achieve good performance.
• Fairness: threads with the same priority should receive about the

same share of core processing power.
• Repeatability: different runs of an application under similar con-

ditions should have similar performance.

Our choices are similar to those of existing general-purpose OSes.
However, existing schedulers do not directly work well on asym-
metric hardware. For example, without considering hardware asym-
metry, they could dispatch a thread to a higher performance core
in one run, but to a lower performance core in another run, caus-
ing non-repeatable performance results. By having a similar set
of design principles, AMPS requires only simple changes to exist-
ing OSes, making it easy to deploy. We demonstrate this in Sec-
tion 3 by showing how to implement AMPS with simple changes
to Linux. Our future work will explore other areas of the design
space, e.g., policies that take into account cache contention. The
rest of this section discusses in detail the components of AMPS.

2.2 Asymmetry-Aware Load Balancing
Conventional OSes perform periodic load balancing to enable

threads to share cores fairly. AMPS extends this approach by main-
taining the load on each core proportional to its computing power.

Quantifying Core Computing Power. The traditional approach
to quantify computing power is to run benchmarks such as SPEC
INT* and FP*, and obtain metrics such as instructions-per-cycle
(IPC) or million-instructions-per-second (MIPS). The OS can use
this approach at boot time to obtain a computing power value for
each core. To account for events such as dynamic voltage scaling,
the OS can re-evaluate computing power whenever these events
occur. We define a core’s scaled computing power, P , to be its
computing power divided by the system’s minimum core comput-
ing power. For this paper, we have emulated asymmetric systems
in which cores differ in frequency. For such systems, we approx-
imate computing power using core frequencies instead of bench-
mark measurements. Nevertheless, our algorithms are applicable
to other types of asymmetric systems as well.

At boot time, AMPS sets the scaled computing power of the core
with the lowest frequency to one and any core with a F times higher
frequency to F × S, where S is a less-than-one scaling factor, re-
flecting the fact that an F times higher frequency often leads to
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Figure 1: Example for asymmetry-aware load balancing. P is
scaled computing power and L is scaled load.

less than F times higher application performance since the mem-
ory system remains non-scaled. The value of S is a function of
core frequency because the rate at which application performance
improves levels off as frequency increases. To determine S for dif-
ferent frequencies, AMPS could use empirical data or run bench-
marks similarly to what we described above. We have chosen a
simplified approach by setting S to be a constant and leave the in-
vestigation of more sophisticated approaches as future work.

Scaled Load and Load Balancing. Conventional OSes define the
load of a core to be the number of threads in its run queue, i.e., run
queue length (sometimes scaled by a constant factor). For any core
with scaled computing power P , we define its scaled load, L, to be
its run queue length divided by P . Let Lmax and Lmin be the max-
imum and minimum scaled load of a core in an asymmetric system.
We define that the system is load-balanced if Lmax − Lmin ≤ 1.
Figure 1 illustrates these definitions with one fast core (P = 2) and
three slow cores (P = 1). The fast core has four threads and each
slow core has two. Thus, the scaled load of each core is two and
the system is load-balanced. This design enables threads to share
cores fairly. In a homogeneous system, conventional load balanc-
ing enables threads of the same priority to receive about the same
share of CPU time. In our asymmetric model, one unit of time
on a core with P = x is equivalent to x units of time on a core
with P = 1. Thus, by balancing threads proportionately to core
computing power, AMPS facilitates fairness.

2.3 Faster-Core-First Scheduling
Faster-core-first scheduling enables threads to run on more pow-

erful cores whenever they are under-utilized (i.e., L < 1), which
load balancing alone cannot achieve in an asymmetric system.

2.3.1 Motivating Example
Figure 2(a) shows a system with one idle fast core (P = 4) and

three slow cores (P = 1) each running one thread. By definition,
the system is load-balanced. However, other balanced configura-
tions could lead to better performance. We consider two options:
(1) moving one thread to the fast core so that it runs 4 times faster,
and (2) moving all three threads to it so that each could run 4/3
times faster (assuming no cache contention). With the first option,
after the thread finishes on the fast core, the scheduler moves an-
other thread to it. Assuming zero migration overhead and that all
threads perform equal work, our analysis shows that it could lead
to 32% smaller total runtime than the second approach. However,
when threads have different amounts of work, a long running one
could monopolize the fast core and prevent others from sharing it,
causing lower system throughput.

To facilitate fairness, AMPS could periodically dispatch a dif-
ferent thread to the fast core based on thread priorities. This ap-
proach, however, is complicated and expensive (e.g., it would re-
quire a global ordering of all threads). Thus, AMPS adopts the
second option, i.e., threads move to and run on a faster core as
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(b) With faster-core-first scheduling.

Figure 2: Example for faster-core-first scheduling. P denotes
scaled computing power and L denotes scaled load.

long as the core is under-utilized. With this approach, a fast core
of scaled computing power P behaves like P slow cores; in effect,
we have transformed an asymmetric system into a symmetric one,
which greatly simplifies the fairness support.

2.3.2 Faster-Core-First Algorithm

Initial thread placement. For a newly created thread, schedulers
for homogeneous systems often start it on the least loaded core. In
AMPS, we compute the new scaled load for each core assuming
that the thread would run on it and choose the core with the min-
imum new scaled load to start the thread; if tied, we choose the
faster core. This design ensures that a new thread runs on a faster
core if the core is under-utilized. In Figure 2(b), assuming that all
cores are initially idle, AMPS dispatches each new thread to the
faster core until there are three on it. One more new thread goes to
a slow core because otherwise four threads would share the faster
core and each would perform similarly to running on a slow core.
By dispatching the fourth thread to a slow core, the existing three
threads can remain potentially 4/3 times faster. Furthermore, run-
ning three threads on the faster core, as opposed to one or two, al-
lows more threads to benefit from the faster core, leading to higher
system throughput.

Dynamic thread migration. AMPS’s asymmetry-aware load bal-
ancing naturally enables threads to migrate to faster cores when
they are under-utilized. We further extend it by allowing threads
to migrate to cores that have lower scaled load even if their origi-
nal cores can become idle, which conventional OSes such as Linux
perform only in special cases. The benefit of allowing such migra-
tions in the common case is that threads always run on faster cores
whenever they are under-utilized. AMPS does not allow a thread to
migrate if the scaled load on the destination core after the migration
can become greater than the scaled load on the original core before
the migration. This condition prevents a thread from migrating if
its performance is not likely to improve.

2.3.3 Discussion
When a thread migrates to a new core, it incurs compulsory

cache misses. Thus, OS schedulers generally avoid migrations un-
less the system load is significantly unbalanced. AMPS employs
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Figure 3: A four-core NUMA system.

the same approach. However, compared to OSes such as Linux,
faster-core-first scheduling more frequently allows a running thread
to migrate, which can introduce extra overheads. First, it can cause
more thread migrations. Second, migration of a running thread
introduces higher costs than migration of a waiting thread (i.e., a
ready thread awaiting its turn to run). Our experience (Section 4.2)
shows that the overhead associated with a thread’s migration is neg-
ligible in SMP systems but can be significant in NUMA systems.
Thus, we extend AMPS with NUMA-aware migration policies.

2.4 NUMA-Aware Thread Migration
A multi-core NUMA system is similar to a traditional multipro-

cessor NUMA system except that some cores reside on the same
die or in the same package. In Figure 3, we show a conceptual dia-
gram of a four-core NUMA system. Following traditional NUMA
terminology, we say that cores connected to the same memory con-
troller are in the same node. Within the same node, every core is
equidistant to local memory.

2.4.1 Understanding Migration Overhead
To understand migration overhead, we consider a running thread

that migrates from core A to core B. The migration introduces both
software and hardware overhead. The software overhead includes
the time to move the thread from A to B, involving four steps: (1)
acquiring run queue locks for both cores, (2) dequeuing the thread
from core A’s run queue, (3) enqueuing it into core B’s run queue,
and finally (4) releasing the run queue locks. Among these steps,
step 1 is the only one potentially expensive. However, since con-
tention on these locks is typically low and the critical section (steps
2 and 3) is short, the overhead of these steps is mostly negligible.
Our evaluation in Section 4.2 confirms this observation in Linux.

The hardware overhead has two aspects: (1) the thread incurs ex-
tra compulsory misses in cache-type structures, including instruc-
tion and data caches and TLBs, after the migration, and (2) penal-
ties of missing in these structures can be higher after the migration
due to NUMA. Among these structures, cache misses often domi-
nate and thus we focus on them. In an SMP system, all cores are
equidistant to memory and have the same last-level cache (LLC)
miss penalty. Therefore, the cache miss overhead associated with
a migration primarily comes from compulsory misses on the des-
tination core. In our experience (Section 4.2), this overhead is far
smaller than the performance benefits of AMPS in SMP systems.
In a NUMA system, the LLC miss penalty can be different on cores
in different nodes. For example, suppose that a thread running on
core A accesses data in local memory. After it migrates to core B
in another node, each LLC miss requires a remote memory access.



In this case, not only do the extra compulsory misses introduce
overheads, but all cache misses that occur regardless of whether
the thread migrates or not might experience higher penalties after
the migration.

Qualitatively, a thread’s migration overhead is high if the follow-
ing conditions are both true:

(1) The thread incurs a high number of LLC misses after the mi-
gration.

(2) A large fraction of these LLC misses require remote memory
access.

These conditions are not necessary conditions for high migration
overhead, but they are sufficient conditions that enable us to detect
the common case.

2.4.2 Predicting Migration Overhead
When the OS chooses a thread to migrate, if it can predict the

migration overhead, then it can determine if the migration is likely
beneficial or not. It is possible to design a range of prediction algo-
rithms at different levels of accuracy. We leave the full exploration
of this design space as future work. As a starting point, this pa-
per focuses on a simple algorithm that predicts the overhead of a
migration to be either high or low.

Overview. Our algorithm uses thread working sets to help exam-
ine the two conditions in Section 2.4.1. The intuition is that before
a thread migrates, if its working set is larger than the LLC on the
destination core, then its number of LLC misses is likely high after
the migration (condition 1). To predict if these misses require many
remote memory accesses (condition 2), we define per-thread, per-
node working sets: the working set of thread T on node N is the
set of pages that belong to the working set of thread T and physi-
cally reside on node N . For two nodes N1 and N2, if thread T ’s
working set on N1 is larger than its working set on N2, then, prob-
abilistically, it is more likely to access pages backed by N1. Thus,
if a thread migrates to a node on which its working set is relatively
small, we predict that it will require a high number of remote mem-
ory accesses after the migration.

A key requirement of our algorithm is to keep track of the work-
ing set of each thread on each node. We consider two approaches
and their tradeoffs.

Working sets. The first approach leverages existing OS support
for process working sets. Microsoft Windows* keeps track of the
working set of each process. Unix systems, such as FreeBSD*,
Linux*, and Solaris*, maintain system-wide page Least Recently
Used (LRU) lists, which, in effect, approximate a global working
set for all processes. Figure 4 illustrates the differences between
process and thread working sets. In this example, a process creates
eight child threads, each accessing a different portion of a global
array. For each child thread, its working set is part of the sub-array
that it accesses, while the working set of the process can be the
entire array.

For systems that already support process working sets, we can
modify them to track per-thread, per-node working sets as well.
Whenever the OS adds a page to a thread’s working set, we check
from which node the page frame is allocated. In this way, we can
track per-node working sets for each thread. For systems that sup-
port only global working sets, we can first modify them to support
process working sets, and then use the above approach to track per-
thread, per-node working sets. Implementing this design, however,
can be complicated as it requires major changes to the OS memory
management code. To avoid this burden, AMPS adopts a resident-
set-based design that is less accurate but much easier to implement.

start = 0;
end = 16 * 1024 * 1024
for (i = start; i < end; i++)
     A[i] = i * 3;

main thread
char *A; // global array
A = malloc(128 * 1024 * 1024); // allocate 128 MB, but the OS does not allocate page frames here
create 8 threads

free(A); // the OS frees page frames from current process
// all children finished, main thread continues

fork

join

thread 1 thread 7thread 0

main thread

start = 112 * 1024 * 1024;
end = 128 * 1024 * 1024
for (i = start; i < end; i++)
     A[i] = i * 3;

start = 16 * 1024 * 1024;
end = 32 * 1024 * 1024
for (i = start; i < end; i++)
     A[i] = i * 3;

...

Figure 4: An example multithreaded program.

Resident sets. Our design leverages existing OS support for track-
ing process resident sets. The resident set of a thread (or process)
includes its pages that are currently in memory, i.e., resident. Sim-
ilar to per-node working sets, we define the resident set of a thread
on node N to be the set of pages that belong to the resident set of
the thread and physically reside on node N . Since tracking resident
sets is much easier than working sets, AMPS tracks the resident set
of each thread on each node, which approximates per-thread, per-
node working sets.

Most existing OSes maintain the resident set size (RSS) for each
process. Typically, the OS maintains a per-process RSS counter.
Whenever the OS allocates (or deallocates) page frames to (or from)
a process, it increments (or decrements) the process’s RSS counter.
AMPS extends this mechanism to track per-thread, per-node resi-
dent sets. It maintains an array of RSS counters for each thread.
The size of the array equals the number of NUMA nodes in the
system. The ith entry keeps the number of pages that belong to
the thread’s resident set and physically reside on node i. When-
ever the OS allocates (or deallocates) a page frame to (or from) a
process, AMPS identifies the thread that triggered this action. For
example, if the allocation is due to a page fault, it identifies the
faulting thread. It also identifies the node to which the page frame
belongs. Finally, AMPS updates the RSS counter corresponding to
the thread and the node.

To illustrate a special scenario that we need to address, let us re-
visit the example in Figure 4. Initially, the main thread allocates a
128 MB global array A. With demand paging, no actual page allo-
cation occurs at this time. The thread then creates eight threads,
all with the same address space as the main thread. The child
threads each write to a different 16 MB portion of array A. These
writes trigger page faults and cause the OS to allocate page frames.
Hence, AMPS increments the child threads’ RSS counters. After
the child threads exit, the main thread frees array A, causing the OS
to deallocate A’s page frames from the main thread’s address space.
Consequently, AMPS decrements the main thread’s RSS counters
by large amounts, which is incorrect because these page frames in
fact belonged to the resident sets of the child threads.

To handle this scenario, we associate an owner list with each
page frame. Whenever the OS allocates a page frame to a process,
we add the triggering thread ID to the frame’s owner list. When the
OS deallocates a page frame from a thread, A, we scan the frame’s
owner list. For each owner thread, B, if it has already exited, we
remove it from the owner list; otherwise, we check if threads A and



B belong to the same process (i.e., share the same address space). If
so, we remove thread B from the owner list and decrement its RSS
counter by one for the corresponding node. Scanning an owner list
could be costly if the list is long. However, the list has multiple
entries only if multiple processes share the same page frame; in the
common case, it contains only one entry.

Prediction algorithm. When a thread T migrates from core A to
core B, our algorithm predicts the migration overhead to be high if
all of the following conditions are true:

(1) Core A and core B are in different nodes.
(2) Core A is in a node for which thread T has the maximum RSS

counter value compared to all other nodes.
(3) The RSS counter value of thread T for core A’s node is greater

than the LLC size of core B.

If these conditions are true and thread T migrates, it will likely
incur a large number of LLC misses and remote accesses to mem-
ory in core A’s node.

2.4.3 Running Thread Migration Policies
This section discusses three migration policies, including two

simple ones and one based on the above resident-set design. These
policies are not limited to asymmetric platforms; in fact, they are
applicable whenever an OS needs to decide whether or not to mi-
grate a thread. In this paper, we apply these policies only to con-
trol the migration of running threads on asymmetric architectures.
Whenever the faster-core-first algorithm in Section 2.3 chooses a
running thread to migrate, AMPS decides whether to allow the mi-
gration using one of the following policies:

• The Always policy: With this policy, AMPS always allows a run-
ning thread to migrate regardless of the potential overhead. This
is the default policy in AMPS for SMP systems. The following
two NUMA-specific policies behave equivalently to this policy
in SMP systems.

• The Same-Node policy: With this policy, AMPS allows a running
thread to migrate only within the same node. It is conservative in
that it prevents a thread from migrating to a remote, faster core
even when the actual migration overhead might be small.

• The RSS policy: This policy uses the resident-set-based predic-
tion algorithm. It disallows a running thread to migrate if either
it predicts the migration overhead to be high, or the thread is in
the memory allocation phase.

The latter condition in the RSS policy prevents a thread from mi-
grating before its resident set stabilizes. While allocating memory,
a thread’s resident set is small and its predicted migration overhead
is likely small. Thus, without this condition, a thread could migrate
to other nodes where it continues to allocate memory, causing its
resident set to spread across nodes. This would lead to unnecessary
migrations and off-node memory accesses.

To detect if a thread is in the memory allocation phase, we use the
following heuristic. At each timer interrupt, we check the current
RSS (aggregate over all nodes’ RSS counters) of the interrupted
thread. If it is greater than the thread’s previous RSS, we consider
the thread in the allocation phase; otherwise not. We then update
the thread’s previous RSS with the value of its current RSS. This
heuristic is effective for our workloads, but we plan to improve it
with more sophisticated designs in our future work.

2.4.4 Discussion
The key advantages of our resident-set-based design are ease of

implementation and low overhead. It requires only simple exten-
sions to existing OSes, but is effective as we see in Section 4.3. It

Table 1: System configurations.
Features SMP NUMA
Nodes 1 8
Processors/node 4 4
Cores/processor 2 1
Total cores 8 32
L1 D-cache/core 16 KB 16 KB
L2 cache/core 1 MB 1 MB
L3 cache/core none 8 MB
L4 cache/node none 256 MB (DDR2)
Memory/node 8 GB 8 GB
Total memory 8 GB 64 GB

Memory latency 79 ns
local: 68 ns
1-hop: 146 ns
2-hop: 176 ns

is also extensible to non-uniform cache access (NUCA) architec-
tures as they share some similar behavior to NUMA. On the other
hand, our design has limitations since a thread’s resident set only
approximates its actual working set. The following list explains the
potential inaccuracies in our design.

• Stale pages: the resident set of a thread can include stale pages
that are not in its current working set. For example, a thread may
access some pages briefly and not touch them any more until
finally freeing them. Such stale pages cause the RSS counters in
our design to be larger than the actual working set sizes.

• Shared pages: when multiple threads in a process share data,
their working sets overlap. However, their resident sets do not
overlap because, for any shared page frame, only one thread in
the process can trigger its allocation and account for it in the
thread’s RSS counters. Thus, some threads may have RSS coun-
ters smaller than their actual working set sizes.

• Small memory: a thread’s resident set can be smaller than its
working set due to limited physical memory.

The first two scenarios could cause AMPS to make migration de-
cisions that negatively affect performance. The last one, however,
has negligible impact because, in this case, page faults dominate
performance, regardless of what migration decisions AMPS makes.
Barring these limitations, evaluation in Section 4.3 shows that our
design is effective in all but one of our tests.

3. IMPLEMENTATION
We have implemented AMPS in the Linux 2.6.16 kernel. In this

section, we describe how we emulate performance-asymmetric sys-
tems and implement the three components of AMPS.

Emulating Performance Asymmetry. To emulate future multi-
core architectures, we use an SMP system with four dual-core Intel®

XeonTM 7020 processors and an IBM* x460 NUMA eServer* with
32 Intel® XeonTM 3.3 GHz processors. The NUMA system consists
of eight nodes (chassis) that collectively form a 32-processor sys-
tem. Both systems have no shared caches between cores and hyper-
threading disabled. Table 1 shows our system details. The mem-
ory latency row shows average latencies on an unloaded system,
which we obtained via a microbenchmark. One of the primary dif-
ferences between our systems and future multi-core systems is that
future systems will have better memory subsystems due to shared
caches and lower memory latencies. Nevertheless, we believe that
our evaluation results are applicable to future systems and provide
insights on the effectiveness of AMPS.



To emulate performance asymmetry, we use clock modulation
to adjust core duty cycles, which logically adjusts core frequen-
cies. We enable Linux’s clock modulation support for 64-bit pro-
cessors by modifying a kernel configuration file and extending the
pentium4_get_frequency() function to support our spe-
cific processor types. We use this approach for emulation, but, for
actual systems, a more general approach would be to have hardware
expose the asymmetry attributes, e.g., via the cpuid instruction.

Asymmetry-Aware Load Balancing. As we discussed in Sec-
tion 2.2, one of the parameters that determines the scaled comput-
ing power of a core is the scaling function S. For simplicity, we
choose S to be a constant of 0.85. Wherever Linux computes or
refers to the load of a core, we change it to use the scaled load as
discussed in Section 2.2. In this way, simply using Linux’s existing
load_balance() and load_balance_newidle() functions
enables us to achieve asymmetry-aware load balancing.

Faster-Core-First Scheduling. When a thread calls the fork or
exec system call, Linux uses find_idlest_group() to find
the least loaded scheduler group, from which it chooses the core
to start the child thread (fork) or the caller thread (exec). In
AMPS, we modify find_idlest_group() to implement the
algorithm in Section 2.3. At each timer interrupt, Linux checks if
load balancing is necessary. If so, it invokes load_balance().
Similarly, it invokes load_balance_newidle() when a core
is becoming idle. Both functions call find_busiest_group()
to find the most loaded scheduler group, from which other groups
pull threads. We modify find_busiest_group() in two ways.
First, we consider a slower core to be more loaded when two cores
have the same scaled load. Second, as we discuss next, we allow a
running thread to migrate even if its original core can become idle.

The common path of Linux load balancing considers migration
of non-running, ready threads. Such a migration simply moves a
thread from its current run queue to a different one. However, for a
running thread to migrate, it needs to save its execution state, move
to a different core, restore the state, and finally resume execution.
Fortunately, Linux already provides a mechanism to achieve these
requirements. On each core, it runs a migration thread, which al-
lows the kernel to force a thread to migrate (e.g., when changing a
thread’s affinity mask).

In our implementation, when core A pulls a thread T running
on core B, it records core A as the migration target and calls the
wake_up_process() function in Linux to awaken the migra-
tion thread on core B. This function enqueues the migration thread
into core B’s run queue and sends an Inter-Processor Interrupt (IPI)
to core B such that it immediately switches thread T out and the
migration thread in. While running, the migration thread simply
moves thread T from the run queue of core B to that of core A.

One complication arises when multiple cores pull a thread at the
same time. In this case, we want only one core to succeed. Thus,
we associate a flag with each core. Initially, this flag is zero. When
core A needs to pull a running thread on core B, it does an atomic
compare-and-exchange (cmpxchg) on core B’s flag: if the flag is
zero, it sets it to one; otherwise, the flag remains unchanged. When
multiple cores perform this operation at the same time, only one
succeeds and awakens the migration thread on core B. When the
migration thread completes, it resets core B’s flag to zero.

NUMA-Aware Thread Migration. For each process, Linux keeps
two counters for the pages in its resident set: file_rss and
anon_rss. The former counts file-backed pages, such as those
in a file’s memory mappings; the latter counts anonymous pages
that have no image on disk, such as those of a user-mode heap or
stack. To track per-thread, per-node RSS, we add two RSS counter

arrays, file_rss_per_node and anon_rss_per_node, to
each thread’s task_struct. Wherever Linux updates file_rss
or anon_rss, we perform the same update in the corresponding
RSS array. Linux conveniently provides the page_to_nid()
function that returns for each page the ID of the node where the
corresponding page frame resides. Using this function, we can eas-
ily identify the right node counter in the RSS array to update.

4. EVALUATION
This section discusses our evaluation methodology and results.

4.1 Methodology
For both our SMP and NUMA systems described in Section 3,

we modulate three fourths of the total cores to run at 50% of their
full duty cycles, logically making their frequencies 50% lower than
the rest of the cores. We believe that this configuration is rep-
resentative of future platforms, where the number of fast cores
is typically fewer than the number of slow cores. Table 2 de-
scribes our benchmarks. For SPEC OMP* and Kernbench, we run
each benchmark three times and report the average runtime. For
SPECjbb2005*, we run it once and report the official metric—the
average throughput from N to 2 ∗N warehouses. To evaluate fair-
ness, we run 32 Ogg Vorbis encoder processes on the SMP system
and, whenever a process exits, we start another to keep the sys-
tem over-subscribed with more threads than cores. Our metric is
the time for the first 32 processes to finish. For Kernbench and Ogg
Vorbis, we also use the memory-based tmpfs file system to reduce
performance variability due to disk I/O.

4.2 SMP Evaluation
In this section, we present results that show AMPS improves per-

formance, fairness, and repeatability. We also evaluate the migra-
tion overheads that AMPS introduces. For all experiments, we set
six cores of our SMP system to run at 50% of their full duty cycles.

Performance. Figure 5 shows our results for each benchmark.
Compared to stock Linux, AMPS achieves a median speedup of
1.16 and a maximum of 1.44. Both SPEC OMP* and Kernbench
spend most time in parallel phases and a small fraction in sequential
phases. In the sequential phases, only one thread runs and AMPS
enables it to always run on a fast core. In the parallel phases, when-
ever a thread finishes on a fast core, AMPS moves another to it from
a slow core. Thus, for SPEC OMP* and Kernbench, faster-core-
first scheduling enables higher performance. Both SPECjbb2005*

and Ogg Vorbis over-subscribe the system with more threads than
cores. Since all cores are constantly busy, AMPS does not improve
performance noticeably. Nonetheless, we find that AMPS improves
fairness and repeatability for these benchmarks.

Fairness. In an over-subscribed system, asymmetry-aware load
balancing in AMPS enables threads to share cores fairly. We run
Ogg Vorbis and measure the runtimes of the 32 processes that com-
plete first. We repeat this experiment for both stock Linux and
Linux extended with AMPS. Figure 6 shows the distribution of the
32 processes’ runtimes, i.e., the fraction of processes whose run-
time is within a given interval on the x-axis. With stock Linux,
25% of the processes finish in 120 to 130 seconds and 72% be-
tween 240 and 250. If each process belongs to a different client,
these data indicate that clients who run the same application can
receive significantly different performance. Thus, Linux fails to
achieve fair sharing of core computing power for clients with equal
priority. With AMPS, 88% of the processes have a runtime between
180 and 210 seconds. Different processes now have much smaller
differences in performance, indicating that clients share the cores



Table 2: Benchmarks.

SPEC OMP* V3.1: We use the medium versions of the 11 benchmarks with the reference inputs. We compile them using
Intel® compilers 9.0 with flags “-fast -openmp" for Fortran programs and “-fast -openmp -ansi_alias" for C. We set the
number of OpenMP threads equal to the number of cores in the system.
SPECjbb2005*: We use SPECjbb2005* V1.06 and BEA* JRockit* 5.0 JVM. Each run starts with one warehouse (thread)
and continues up to 2 ∗N warehouses, where N is the number of cores in the system.
Kernbench: We use the parallel make benchmark, Kernbench v0.30, to compile the Linux 2.6.15.1 kernel source. We use
4 ∗N make threads, where N is the number of cores in the system.
Ogg Vorbis: We use the Ogg Vorbis audio encoder OggEnc v1.0.1. The encoder is single-threaded. To obtain a multi-
threaded workload, we run 4∗N copies (processes) of OggEnc, where N is the number of cores in the system, and provide
each encoder with its own copy of a 60 MB wav input file.

Table 3: Software overhead results.

Benchmark Migrations Overhead
Linux AMPS

Ammp 97 14,146 0.006%
Applu 150 263,846 0.4%
Apsi 63 17,404 0.03%
Art 11 22 0.00002%

Equake 108 124,256 0.4%
Fma3d 139 64,078 0.09%
Gafort 50 25,124 0.02%
Galgel 82 394,817 0.2%
Mgrid 213 317,424 0.2%
Swim 63 59,766 0.06%

Wupwise 73 75,359 0.1%

more fairly with AMPS.

Repeatability. AMPS improves repeatability of application perfor-
mance across different runs because it schedules threads to faster
cores whenever possible. However, with stock Linux, a thread may
execute on a faster core in one run but on a slow core in another,
causing large variations in application performance between dif-
ferent runs. Figure 7 shows our results for SPECjbb2005*. With
stock Linux, throughput drops from four warehouses (i.e., threads)
to five. We ran this benchmark three times and observed the same
behavior in two runs; in the third run, throughput at five ware-
houses became higher than that at four. This variability is due to
that stock Linux dispatched all of the five SPECjbb2005* threads to
slow cores in the first two runs, while, in the third run, it dispatched
two threads to the fast cores and the remaining three to the slow
cores. In contrast, the results with AMPS are more deterministic
and consistent across different runs.

Migration Overhead. We use SPEC OMP* to evaluate the mi-
gration overhead that AMPS introduces. For each benchmark, we
ran it once and show the profiling results. As we discussed in Sec-
tion 2.4.1, the migration overhead includes both software and hard-
ware overhead. For software overhead, we instrumented Linux to
measure the number of thread migrations and the time each mi-
gration takes to complete the four steps in Section 2.4.1. For the
entire execution of each benchmark, we calculate its total increase
in migration time that AMPS introduces over stock Linux. Table 3
shows our results. The overhead column shows the percentage of
the extra migration time with AMPS to the total runtime of each
benchmark on stock Linux. We see that AMPS introduces a large
number of extra migrations; however, they only result in negligible

amounts of overhead in terms of runtime. Besides the four steps we
measured, a running thread’s migration has two extra steps: awak-
ening a migration thread and context-switching it and the running
thread (Section 3). These steps are very efficient in Linux. Thus,
we believe that they do not impact our results.

For the hardware overheads associated with migrations, we use
processor performance counters to measure a set of hardware events
for both stock Linux and AMPS. For each event, we count its occur-
rences in the entire execution of each SPEC OMP* benchmark and
aggregate per-core counters to obtain whole-system event counts.
For each SPEC OMP* benchmark, our results show that miss ra-
tios of the instruction TLB, data TLB, and trace cache with stock
Linux and AMPS are nearly identical to each other (all ratios less
than 5%). Thus, the extra migrations that AMPS introduces have
negligible impact in terms of TLB and trace cache performance.

Figure 8 compares the total L1 data and L2 unified cache misses
for SPEC OMP* on stock Linux and AMPS. The value above each
AMPS bar shows its percentage increase in cache misses relative to
stock Linux. For all benchmarks, the differences in L1 misses be-
tween stock Linux and AMPS are at most 4%; for all but Mgrid,
the L2 differences are at most 6%. Thus, for most benchmarks, the
hardware overhead with AMPS is negligible. In repeated measure-
ments, however, Mgrid with AMPS shows 13% fewer L2 misses
than with stock Linux, which is counter-intuitive since one would
expect more L2 misses with AMPS due to its extra migrations. The
rest of this section focuses on understanding this result.

Our investigation has revealed that this result is due to hard-
ware prefetching being more effective with AMPS, thus reducing
the number of L2 misses. Disabling hardware prefetching and re-
running Mgrid shows that Linux and AMPS now generate almost
the same number of L2 misses. With prefetching enabled, OProfile
reveals that 40% of the L2 misses occur in the resid() function
in Mgrid. To isolate the problem, we wrote a microbenchmark
to mimic the code in resid(). Our microbenchmark creates N
threads and assigns each thread an equal-sized portion of a 256 MB
global array. The N threads simultaneously read through its por-
tion in fixed strides. Such memory accesses are similar to those in
resid() and are particularly suitable for hardware prefetching.

We first ran the microbenchmark on stock Linux with all eight
fast cores and no hardware prefetching. We varied the number
of threads from one to eight and observed that the number of L2
misses stayed almost constant. We then enabled prefetching and
re-ran the tests. Figure 9(a) shows our L2 miss results, which in-
dicates that prefetching is less effective as the number of threads
increases. Figure 9(b) explains these results by plotting the av-
erage latency per prefetch and data read request as a function of
the number of threads. As the number of simultaneously running
threads increases, the amount of memory traffic increases, caus-
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Figure 5: AMPS vs. Linux speedups on an eight-core SMP with
two fast and six slow cores.
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Figure 6: Ogg Vorbis SMP results showing better fairness with
AMPS than stock Linux.

ing each core’s internal bus queuing delay to increase and, conse-
quently, prefetch latencies to increase. Therefore, when there are
more threads, prefetching becomes less effective and overall L2
misses increase.

On an asymmetric system, both our microbenchmark and Mgrid
initially have eight threads running. When the two threads on the
faster cores finish, AMPS moves two other threads to them. Thus,
the number of simultaneously running threads decreases over time
from eight to six, four, and finally two. With stock Linux, threads
cannot migrate to the faster cores when they are idle. Therefore, for
a larger fraction of time, six threads on the slow cores simultane-
ously access memory. The higher bus traffic causes prefetching to
be less effective in stock Linux and, consequently, more L2 misses.

The effects of prefetching can change if the system’s asymmetry
configuration changes. We varied the number of fast cores from
zero (all slow) to eight (all fast) with prefetching enabled and mea-
sured L2 misses for both stock Linux and AMPS. Figure 10 shows
our results. We see that with two fast cores, AMPS has the mini-
mum number of L2 misses. With four fast cores, prefetching be-
comes less effective due to increased bus traffic, causing AMPS
to have more L2 misses than stock Linux. Beyond four, both de-
signs generate similar amounts of bus traffic and thus incur a similar
number of L2 misses.

4.3 NUMA Evaluation
In this section, we evaluate AMPS for two NUMA configura-
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Figure 7: SPECjbb2005* SMP results showing better repeatability
with AMPS than stock Linux.

tions. In NUMA-1, we keep the eight cores in the first two nodes of
our system at their full duty cycles and set the remaining 24 cores
to run at 50% of their full duty cycles. In NUMA-2, we spread the
faster cores such that each of the eight nodes contains one faster
core. These configurations represent two design points in future
architectures: one that has system-wide asymmetry and one that
constrains asymmetry within a socket. For both configurations, we
run SPEC OMP* and evaluate the Always, Same-Node, and RSS
policies described in Section 2.4.3. Figure 11 shows our results.

For NUMA-1, the Always policy performs much worse than
stock Linux for most benchmarks due to significant migration over-
heads. However, Ammp and Galgel obtain good speedups be-
cause they have small per-thread working sets and frequent migra-
tions have little impact. Surprisingly, Galgel running on stock
Linux causes our OpenMP runtime to trigger a rare Linux prob-
lem that leads to heavy contention on a kernel spinlock [17]. With
AMPS, the contention is much lower because often fewer threads
are running simultaneously, as we discussed in the cache analysis of
Mgrid. The Same-Node policy brings performance close to stock
Linux, as it constrains migrations within the same node. However,
since the faster cores concentrate only in the first two nodes, threads
on other nodes cannot benefit from them. The RSS policy solves
this problem and leads AMPS to outperform stock Linux for every
benchmark with speedups ranging from 1.02 to 2.61.

For NUMA-2, the Always and Same-Node policies perform much
better than in NUMA-1 because many migrations to faster cores
occur within the same node. For these migrations, cache misses
are often resolved in local memory, especially since our system
maintains a per-node L4 cache. Among the three policies, the RSS
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Figure 8: SPEC OMP* cache miss results on the SMP system.
Above each AMPS bar is its percentage increase in cache misses
relative to stock Linux.

policy performs the best with speedups ranging from 1.02 to 1.49
over stock Linux. One exception is Applu, whose performance
degrades slightly compared to stock Linux, which we believe is
due to the inaccuracies in our overhead prediction algorithm, as
discussed in Section 2.4.4.

For NUMA-1 and NUMA-2, the RSS policy achieves an overall
median speedup of 1.07 and 1.18 on average over stock Linux. For
some benchmarks, the NUMA speedups are lower than the SMP
ones because, on the SMP, AMPS enables threads to migrate to
faster cores whenever they are under-utilized, thus fully exploit-
ing their performance advantages. However, their advantages on
NUMA are not always fully exploited because threads sometimes
cannot migrate to a faster core due to high migration overhead.

To see how the migration policies affect thread migrations, we
measure the number of migrations in each benchmark with stock
Linux and AMPS using each of the three policies. Due to space
constraints, we show only the results for NUMA-1 in Table 4. For
NUMA-2, our results show that each benchmark has more migra-
tions and the gaps between the Always and Same-Node policies
are much smaller. From Table 4, we see that the RSS policy con-
strains migrations for benchmarks with large working sets, but al-
lows more migrations for Ammp and Galgel, whose working sets
are relatively small. Such adaptability enables the RSS policy to
achieve the best performance among the three policies.

5. RELATED WORK
Research on conventional multiprocessors [1, 18] showed that

performance-asymmetric (or heterogeneous) architectures achieve
higher performance than cost-equivalent homogeneous ones. To
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Figure 9: Microbenchmark results for stock Linux.

efficiently schedule tasks, prior research [4, 21, 23] used graph
modeling of heterogeneous hardware and task properties. How-
ever, these algorithms have limited use in practice due to simplified
and often unrealistic assumptions, such as a priori knowledge of
task runtime and dependencies. Figueiredo and Fortes [10] studied
heterogeneous distributed shared-memory (DSM) multiprocessors
and proposed a static scheduling policy that uses processor perfor-
mance ratios. This policy is similar to our asymmetry-aware load
balancing algorithm, but different in that it performs only static as-
signments, whereas our algorithm performs dynamic load balanc-
ing. Bender and Rabin [5] proposed a high utilization scheduler
for heterogeneous processors. They proved that this scheduler is
almost optimal for typical parallel programs and has bounded mi-
gration overhead. This design is similar to our faster-core-first al-
gorithm. Our work differs in that we apply the algorithm to the OS
scheduler, as opposed to a language runtime.

With the advances in VLSI technology, recent research advo-
cates heterogeneous multi-core architectures. Kumar et al. [13, 15]
proposed sampling-based OS scheduling. DeVuyst et al. [8] stud-
ied sampling and electron policies that adapt to thread execution
phases. Different from us, all of this research used simulation and
did not study tradeoffs of an actual OS implementation. Prior re-
search [2, 3, 11] also used clock modulation to emulate asymmetric
architectures. Balakrishnan et al. [3] used a scheduling policy sim-
ilar to our faster-core-first algorithm and obtained similar results
on performance repeatability. Our work differs in that we seek
to improve performance and fairness for both SMP and NUMA
architectures. Ghiasi et al. [11] described a scheduling algorithm
that uses performance counters to predict thread performance at a
given core frequency. Their algorithm attempts to reduce power
consumption with minimum performance loss and incurs higher
overhead than ours. Annavaram et al. [2] studied how to maximize
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Figure 10: Effects of asymmetry on L2 misses.

Table 4: NUMA-1 number of migrations.

Benchmark Stock AMPS
Linux Always Same-Node RSS

Ammp 62 8,947 180 7,968
Applu 116 95,942 417 328
Apsi 211 47,177 433 261
Art 27 86 25 28

Equake 66 174,265 5,716 206
Fma3d 272 91,520 697 522
Gafort 179 46,621 443 361
Galgel 108 80,178 10,246 36,944
Mgrid 94 457,378 1,307 503
Swim 217 79,278 1,783 1,226

Wupwise 238 102,744 482 376

performance with a fixed power budget. Their scheduling policy
assumes hardware support for detecting application sequential and
parallel phases, while AMPS makes no such assumption.

The CELL* processor [19] is an extreme form of asymmetric
architecture where cores of different functionalities and ISAs co-
exist. Hankins et al. [12] proposed ISA extensions that enable ap-
plications to explicitly manage functionally asymmetric cores. Uh-
lig et al. [24] also studied asymmetry-aware scheduling for virtual
machines. In contrast, we focus on performance-asymmetric plat-
forms and OS scheduling.

There is a large body of work on NUMA scheduling and memory
management (see [7, 16] for detailed treatment of related work).
Most of previous work studied dynamic page migration, whereas
we focus on thread migration. Existing OSes, such as Linux, con-
sider a thread cache-hot if the time since its last execution on the
local processor is less than some threshold and migrate it only if
non-cache-hot. Our RSS policy takes into account threads’ mem-
ory usage and thus more accurately predicts migration overhead.

6. CONCLUSION
As the industry moves toward large-scale multi-core processors,

it is increasingly important to investigate architectures that scale up
both single-threaded performance and multithreaded throughput.
Performance-asymmetric architectures provide a cost-effective so-
lution. However, traditional OSes assume homogeneous hardware
and cannot efficiently manage hardware in an asymmetric archi-
tecture. To bridge this gap, we proposed the AMPS OS scheduler
that efficiently manages both SMP- and NUMA-style performance-
asymmetric architectures.

AMPS contains three components: (1) asymmetry-aware load
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Figure 11: SPEC OMP* NUMA results.

balancing, which balances threads to cores proportionately to their
computing power, (2) faster-core-first scheduling, which schedules
threads to faster cores whenever they are under-utilized, and (3)
NUMA-aware migration, which controls thread migrations based
on predictions of their overheads. These components complement
one another, collectively providing efficient support for asymmetric
architectures. AMPS is easy to deploy as it requires simple modifi-
cations to existing OSes and no changes in applications. Our evalu-
ation demonstrated that AMPS improves stock Linux for asymmet-
ric systems in three aspects: performance, fairness, and repeatabil-
ity of performance measurements.

Our future research will explore the scheduler design space. We
plan to extend AMPS to optimize for both performance and power
consumption, and study thread-dependent scheduling policies that
dynamically monitor and adapt to application runtime behavior.
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