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Efficient Optical Flow and Stereo Vision for Velocity Estimation and

Obstacle Avoidance on an Autonomous Pocket Drone

Kimberly McGuire1, Guido de Croon1, Christophe De Wagter1, Karl Tuyls2 and Hilbert Kappen3

Abstract—Micro Aerial Vehicles (MAVs) are very suitable for
flying in indoor environments, but autonomous navigation is
challenging due to their strict hardware limitations. This paper
presents a highly efficient computer vision algorithm called Edge-
FS for the determination of velocity and depth. It runs at 20 Hz on
a 4 g stereo camera with an embedded STM32F4 microprocessor
(168 MHz, 192 kB) and uses edge distributions to calculate optical
flow and stereo disparity. The stereo-based distance estimates are
used to scale the optical flow in order to retrieve the drone’s
velocity. The velocity and depth measurements are used for fully
autonomous flight of a 40 g pocket drone only relying on on-board
sensors. This method allows the MAV to control its velocity and
avoid obstacles.

Index Terms—Aerial Systems: Perception and Autonomy, Au-
tonomous Vehicle Navigation, Micro/Nano Robots, Visual-Based
Navigation

I. INTRODUCTION

D
EPLOYMENT of Micro Aerial Vehicles (MAVs) is

important for indoor tasks such as inspections, search-

and-rescue operations, green house observations and more.

Tiny MAVs, also called pocket drones (<50 g, as in Fig. 1),

are ideal for maneuvering through very narrow spaces, as

often occurs in indoor environments. In order for them to

autonomously navigate through a GPS-deprived area, there

are several on-board sensors to consider (laser rangers, motion

sensors, infrared rangers, sonar). The pocket drone’s sensor of

choice is a RGB camera. It is the most energy efficient and

versatile sensing option, as multiple variables can be observed

from the image stream: obstacles, motion, object recognition

and more.

Using cameras enables the Micro Aerial Vehicle (MAV) to

extract essential information for autonomous navigation. A

stereo vision setup with two cameras has been particularly

successful, for instance for obstacle avoidance [1]. Since

there are strict limitations on energy expenditure, sensing,

and processing capabilities on a pocket drone, even relatively

efficient stereo vision methods [2][3] are computationally too

heavy to run on-board a microprocessor. Therefore, an even

more efficient stereo vision algorithm was developed, which

is able to run at 10 Hz on a 20 g flapping wing MAV, the

DelFly Explorer [4]. It is still the lightest fully autonomous
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4 g stereo-camera

Fig. 1. Pocket drone with a lightweight forward looking 4g stereo camera.
A very efficient vision algorithm runs embedded on the STM32F4 processor
(168 MHz, 192 kB), to determine velocity and depth necessary for the pocket
drone’s visual navigation.

MAV to this date, which can fly through a room and avoid

obstacles with purely onboard sensing and processing [5].

Since tailed flapping wing MAVs such as the DelFly

Explorer are passively stable, there is no need to compute

their velocity to compensate for drift. However, for inherently

unstable platforms like a quadcopter, velocity estimation is

necessary for stabilization when navigating in constrained

areas. Optical flow is the way in which objects move in two

sequential images and is the most important visual cue for

velocity estimation. It can be calculated in a dense manner

(Horn-Schunck [6], Färneback [7]) or a sparse manner, e.g.,

by tracking features such as Shi-Tomasi [8] or FAST [9] over

time with a Lucas-Kanade tracker [10]. These types of tech-

niques have proven themselves on numerous occasions [11],

nonetheless do require a platform with a decent amount of

computing power. On a pocket drone such standard optical

flow methods either cannot be run in real-time or take consist

of an unpractically large part of the processing time, leaving

little to no room for other types of processing. Especially when

autonomous flight is the final goal, optical flow determination

will only constitute a part of what the MAV has to do, as much

more information can be retrieved from the image stream.

In order to design a computationally much more efficient

optical flow algorithm, we have drawn inspiration from the

study in [12], which proposed using spatial edge distributions

to track motion in the image. Specifically, in [13], we pre-

sented EdgeFlow, which improved upon the work in [12] by

introducing a variable time horizon for determining sub-pixel

flow. EdgeFlow ran embedded at 30 Hz on a lightweight stereo

camera positioned underneath a pocket drone. The stereo

camera was pointing down and was estimating optical flow

and a global height estimate, assuming that it was looking

at a flat ground surface. With these, the MAV determined

its own velocity and used this in a guided control, where

it autonomously matched externally-given velocity references.

However, a 4 g stereo camera for a 40 g pocket drone is
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significant, so it is a waste to have this “heavy” sensor looking

downward and not using it to avoid obstacles in the flight

direction.

This paper presents a major extension of EdgeFlow, which

enables the stereo camera to face forward on a MAV, so it

can be used for navigation purposes. As the pocket drone will

now be facing hallways, rooms, doors etc., the assumption of

looking straight at a flat plane will not hold anymore. The same

matching paradigm used to determine EdgeFlow, will now be

used to not only calculate optical flow but also stereo depth

over the entire image. EdgeStereo, as called for convenience,

uses the so-determined distances to properly scale the locally

observed optical flow in order to retrieve a velocity estimate.

This combination of EdgeFlow and EdgeStereo will be called

Edge-FS.

Our main contribution is that the presented method provides

both velocity and distance estimates, while still being compu-

tationally efficient enough to run close to the frame rate on a

very limited embedded processor. As such, the method enables

unstable MAVs such as tiny quadcopters to perform fully

autonomous flights in unknown environments. The EdgeFlow

and EdgeStereo methods will be explained in more detail in

section II. Off-line results for velocity estimates with a set

of images is shown in section III. From here, the algorithm is

embedded on the lightweight stereo camera and placed on 40 g

pocket drone for velocity estimation (section IV-B). Finally,

the velocity estimate is used together with EdgeStereo-based

obstacle detection to perform fully autonomous navigation in

an environment with obstacles (section IV-C). This is followed

by some concluding remarks.

A. Related Work

In related research, several works have achieved optical flow

based control of a MAV, e.g., [14][15][16]. As mentioned

in the introduction, the standard optical flow methods are

computationally too heavy to run on a quadcopter of less than

50 g. For instance, Dunkley et al. have flown with a 25 g

quadcopter before, while computing optical flow for visual

odometry [17]. However, this was done on an external com-

puter. As miniaturization of hardware also poses a limitation

on communication bandwidth, this can result in a significant

delay in the controls. To obtain full autonomy, it would be

wise to uncouple a MAV of any external dependencies.

To design extremely lightweight MAVs for autonomous

flight, some researchers looked into EMD sensors [18] and

other 1D signal sensors [19]. Briod et al. [20] proposed the

design of a 45 g quadcopter for optical flow based control

with 1D flow sensors. They followed up with this research

on a heavier 278 g platform containing 8 of these sensors

pointing in all directions [21]. With this they could hover the

quadcopter in various cluttered environments. The results are

impressive, nevertheless they were achieved by using multiple

single purpose sensors. As they can only sense motion, it does

not leave much room to detect other variables necessary for

navigation.

More similar to our research, Moore et al. implemented

an efficient optic flow algorithm on a small lightweight (2 g)

omnidirectional camera system on a 30 g helicopter [22]. With

a ring of 8 low-resolution image chips (64 x 64 pixels), the

MAV could compute optical flow. It did this by computing the

edges, compressing the images and calculate the displacement

by block matching which resulted in translational optical flow.

The vision calculations where done on-board the helicopter

with 10 Hz, yet the flight controls where computed off-board.

Although the potential of a full on-board implementation is

there, the redundancy lies in the ratio of cameras to sensed

variables. One camera has the potential of detecting flow in 3

directions; they used 8 to only detect 2 (forward and sideways

velocity).

Optical flow can also be used to detect obstacles [23],

however the MAV needs to be constantly on the move. This

is not required if stereo vision is used for depth information.

With this, Oleynikova et al. developed a reactive avoidance

controller for a quadcopter (30 cm in diameter) [24]. From

the obtained stereo disparity map, they accumulated the values

along the columns to get a summed disparity factor. Assuming

that the obstacles are vertical and long, these can be detected

quickly. The stereo map was calculated over the entire image

first before accumulation to a vector. This significantly im-

pacts the amount of computation making it less suitable for

implementation on a smaller MAV.

II. VELOCITY AND DEPTH FROM EDGES

To achieve autonomous navigation with a camera on an un-

stable pocket drone, we need to obtain two variables: velocity

and depth. In the introduction we mentioned that many of the

mainstream computer vision will be computationally too heavy

to run on the pocket drone. In [13], we presented EdgeFlow,

which can detect optical flow within the image in a semi-

dense but computationally efficient manner, embedded on a 4 g

stereo board. During the experiments, the stereo camera looked

down to the ground, estimating the pocket drone’s forward and

sideways velocity. This section will explain the modifications

that are necessary to make the stereo camera point forward

and still be able to measure those variables. EdgeFlow will be

concisely recapped. Subsequently, we will present its extension

with EdgeStereo to Edge-FS, which will be used for obstacle

detection in the experiment part of this paper.

A. From Camera to State

When looking orthogonally at a planar ground surface while

moving, the optical flow field is rather simple and allows

for easy determination of the forward and sideways velocities

with the help of a single height measurement. But to navigate

without bumping into anything, the MAV needs to see objects

in the direction of motion, which in this study is forward. Due

to the likely non-planar (3D structure) of the environment in

forward direction, the optical flow field will become more

complex. Moreover, the forward velocity now can only be

observed by means of the divergence of optical flow, which

is more difficult to determine, especially close to the focus

of expansion. Here we delve into how we determine the

velocities with the help of forward facing stereo images. In

principle, the unscaled velocities and the rotation rates can
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Fig. 2. The MAV’s body fixed coordinates with respects to the camera axis,
shown for the left camera (XYZ). The conventional aircraft coordinates of
east north up is used for the MAV as the camera. The image coordinates in
width and height are represented as u and v respectively.

be determined from the image alone, according to the paper

of [25]. Longuet-Higgins and Prazdny implied that measured

flow (ou) is the summation of a translational flow (oTu ) and

rotational component (oRu ). Before estimating the horizontal

planar velocity, we first have to determine o
R
u .

Although [25] assumes rotations in all directions, we can

make simpler assumptions for the pocket drone. Fig. 2 shows

the placement and axis definition of the drone and camera.

For obstacle avoidance it is essential to look in the direction

of motion, which in this case is the direction of the positive

x axis. Here, correctional pitch and roll motion for drift

compensation will be relatively small, but yaw rotations will

be more common. Assuming that the latter only has significant

effect on the optical flow, oRu can be approximated (assuming

small angles) using the gyroscopes on the on-board IMU of

the pocket drone:

oRu,i ≈ ωZ ·

w

αFOV
(1)

o
R
u = [oRu,1, . . . , o

R
u,w] (2)

where w is the width of the image, αFOV is the angle of the

Field of View (FOV) and ωZ is the yaw rotation measured

from the gyroscopes.

Now that oRu is known, we can isolate o
T
u to determine the

pocket drone’s forward (vx) and sideways velocity. With the

coordinate system we use in this paper (Fig. 2), Longuet’s

equation of oTu is expressed as:

o
T
u = (−vy + xvx)/dx (3)

dxo
T
u = −vy + xvx (4)

Where x is an array of indices of the image columns. Depth,

dx, scales the optical flow resulting in motion parallax, as

close objects appear to move faster than objects far away.

In [13], a global height estimate was used to scale the optical

flow back to velocities, which is sufficient if the camera is

looking at a flat floor or perpendicular to a straight wall. This

assumption will not hold when the MAV is flying towards a

wall at an angle or whenever obstacles at different distances

are in the field of view. This non-constant depth needs to

be accounted for when scaling the optical flow, therefore the

stereo depth is needed over the entire size of the image for

t=k

t=k-1

(a) Sobel Filter (c) SAD window matching
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Fig. 3. The matching algorithm for both EdgeFlow as EdgeStereo. The
images’ gradients (a) calculated by a Sobel filter, (b) summed up to an edge
distribution. These are (c) matched with other edge distribution. The gray
areas are excluded sections (equal to the range plus half SAD block size).
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Fig. 4. The temporal pixel disparities per column of EdgeFlow is (d) scaled
by EdgeStereo. Following (4), e) a line fit is done on this array of values,
from which the forward and sideways velocities can be extracted from the
slope and intercept, respectively.

a better velocity estimate. Local right-left image disparity

from a stereo camera can be transformed to actual depth in

meters by using the camera parameters, with the following

approximation:

dx ≈

w · r

αFOV · su
(5)

where r is the baseline between the two cameras, and the

stereo disparities in pixels along the image columns is su.

With depth dx and translational optical flow o
T
u , it is now

possible to calculate the MAV’s sideways and forward velocity

by fitting a linear model to (4). In the next section we will

explain how to obtain both optical flow and stereo depth from

a stream of low resolution stereo images.

B. Procedure for Edge-FS

The matching principle of EdgeFlow is shown in Fig. 3. The

images A and B are first filtered with a Sobel filter to get the

horizontal gradients (Fig. 3(a)). These gradients are summed

along the rows (compressed) to a (spatial) edge distribution
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(Fig. 3(b)). From image A and B, the edge distributions are

compared with Sum of Absolute Differences (SAD) block

matching (Fig. 3(c)). This locates the similar patches of the

edge distributions within a certain distance from each other,

to obtain the pixel displacement between the two.

If image A and B from Fig. 3 are two temporal sequential

images (t with t−1) in time, this will result in the pixel flow,

thus EdgeFlow as presented in [13]. Based on the previous

flow value, EdgeFlow adaptively chooses how far in time

(t − n) it will compare the current edge distribution to. On

top of that, the flow shift predicted by a yaw rotation (oRu ,

as calculated in (2) will shift the start of the block matching

scheme. This and the adaptive time horizon will be present

for the experiments in this paper. Note that in [13], also the

direction along the image height was used to estimate the

forward velocity (as the camera was looking down). In this

paper, it will not be used as the forward velocity (vx) will

now be subtracted from the divergence of Edge-FS.

Previously in [13], the entire edge distribution of the left and

right image were matched to obtain a global depth estimate.

To get a better velocity estimate with a forward camera, we

need to use pixel disparity per column. To calculate both

column-wise optical flow and stereo vision and keep the

algorithm computationally efficient, the exact same matching

principle of EdgeFlow (Fig. 3) is used, resulting in EdgeStereo.

Disparity to depth in meters is calculated with the known

camera parameters and (5) from the last section. Sequentially,

EdgeStereo scales EdgeFlow to compensate for the motion

parallax (see Fig. 4(d)), which results in the left side of (4).

These values will then be fitted to a linear model (Fig. 4(e)),

which gives us the slope and intercept of the line. With the

camera parameters, the forward and sideways velocities are

estimated (Fig. 4(f)).

III. OFF-LINE VISION EXPERIMENTS

Before implementing the algorithm on the actual stereo

board, EdgeFlow was run on a set of stereo-images in MAT-

LAB (version R2015b on a Dell Latitude E7450, i7-5600U

CPU @ 2.60GHz processor). Fig. 5(a) shows screen shots of

the data set used in this section, where the camera moves

towards obstacles at different distances. In Fig. 5(b), EdgeFlow

scaled by EdgeStereo, now dubbed as Edge-FS, results in the

velocity estimates.

Edge-FS is contrasted against the well-known optical flow

method developed by Färneback [7], a dense optical flow

method (Fig. 5). Although less used than a more conventional

KLT-tracker [10], preliminary analyses indicated it to be more

suited for the low-resolution images used here. With its default

parameters set as in MATLAB R2015b, the sparse magenta

line illustrates that the KLT-tracker indeed has difficulties with

the low-quality, low-resolution images (128 x 96 pixels).

For Färneback, depth is determined by matching the stereo-

images with each other and converting the resulting pixel

disparity to a distance. To get velocity, the same line-fit is

used as for EdgeFlow1, but here the whole image is considered

1The EdgeFlow code as embedded on the stereo camera has a mean
computation time for EdgeFlow is 0.00134 seconds (compiled for Linux)
and for Färneback is 0.00466 seconds on the same stereo-image data set.
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Fig. 5. (a) Several screen shots of the set of images used for off-line estimation
of the velocity. Here the diversity in amount of texture can be seen. (b) Off-
line velocity estimate calculated by Edge-FS and Färneback, held against the
ground truth for the forward moving camera’s data set.

rather than the compressed form like the edge distributions.

After comparison of the methods with different parameters,

both Edge-FS and Färneback are set up with a window size

of 11 pixels and a search range of 15 pixels (Färneback’s

pyramid level at 1). Both forward (x) and sideways (y) velocity

measurements, shown in Fig. 5, are compared against the

“ground truth” as obtained with an OptiTrack motion capture

system2, with 24 infrared cameras. The plots also include

several values to determine the quality of the velocity esti-

mates: Mean Squared Error (MSE), Variance (VAR) and Nor-

malized Maximum Cross-Correlation Magnitude (NMXM).

A low MSE indicates greater similarity and low VAR is a

smaller spread of the measurement from the ground truth. A

high NMXM stands for a better shape correlation between

the two. All these metrics indicate Edge-FS to obtain more

accurate results on this data set than the computationally more

expensive Färneback method.

It is important to note that because of the nonlinear relation

between pixel disparity and depth in stereo vision, far dis-

tances are measured less accurately. The disparities for further

distances will become sub-pixel and hard to determine. This

is especially relevant to the small stereo board used in this

study, which we set up to use 128 x 96 pixel images for the

57.4 x 44.5 deg FOV. Also, the translational optical flow of

objects is harder to measure when they are further away, since

it becomes sub-pixel as well. Hence, both terms on the left in

(4), su and dx become less accurate at far distances. This

correlation between distance and accuracy can be seen in the

box plot of Fig. 6.

Besides the difficulty with larger distances, which is fun-

damental to stereo vision, Edge-FS also has a bit difficulty

determining the forward flow when there is a large lateral

2www.optitrack.com

www.optitrack.com
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Fig. 6. Boxplot of the absolute velocity estimate error of Edge-FS, compared
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motion. Sideways velocity has a 0th order effect on the

flow, while forward velocity information is captured by the

divergence of the flow field, which is a 1st order effect.

Therefore, the forward velocity is more subject to noise and

harder to estimate (this can be observed in Fig. 6 as the errors

are generally higher for the x-direction than the y-direction).

In this work, the MAV will mostly fly forward. In this situation

lateral flow is kept very small while the divergence is larger

and more observable. A larger SAD window size and filtering

are used to correct for the remaining noise. While further

analysis of the noise is beyond the scope of this article, the

reader is encouraged to look at it in more detail by using our

MATLAB code for Edge-FS including a large diverse image

data-set3.

IV. EXPERIMENTS ON THE POCKET DRONE

In this section, we explain the implementation of Edge-FS

on-board a pocket drone and how it is used in an autonomous

obstacle avoidance task. We will first present the velocity

estimates by Edge-FS during flight on the stereo board.

Subsequently, a closed loop flight is shown, where the drone

autonomously navigates through a room, while maintaining its

velocity and avoiding obstacles.

A. Hardware specifics

Edge-FS local runs embedded on the stereo camera (as

introduced in [4]). Fig. 7 displays two cameras with 1/6 inch

image sensors, with a baseline of 6 cm and a Field of View

(FOV) of 57.5o x 44.5o. The stereo camera has an embedded

microprocessor, an STM32F4 with a speed of 168 MHz and

196 kB of memory in which the largest consecutive memory

block spans 128 kB. The cameras are configured to output

stereo-images with a size of 128 x 96 pixels to fit within

memory and processing constraints. The maximum reachable

frame rate of the stereo camera is 30 Hz, which is not much

affected by the computation of Edge-FS (approx. 0.0175 sec).

For the experiments, a pocket drone is equipped with a

single front-facing stereo camera. A frame of a Walkera QR

LadyBug4 is adopted as a base. An adapted smaller variant of

the Lisa-MX5 will be used the auto-pilot. The Lisa-MXs also

carries an STM32F4 microprocessor, with a speed of 168 Hz

3https://github.com/knmcguire/EdgeFlow_matlab
4http://www.walkera.com/
5http://wiki.paparazziuav.org/wiki/Lisa/MX

StereoboardESP-09 WiFI

Lisa-MXs

Walkera

LadyBird

frame

Fig. 7. The 4 g stereo camera mounted on the pocket drone.

and 1 MB of flash memory. With an ESP-09 WiFi module,

telemetry can be broadcasted to the computer to receive all

the measured variables required for validation. The entire

assembly, including stereo camera and battery, weighs exactly

41.9 g.

The auto-pilot program flashed on the Lisa-MXs is Pa-

parazzi6. The software runs entirely on-board the micro-

processor which governs all the basic flight controls. An

adaptive Incremental Nonlinear Dynamic Inversion (INDI)

controller [26] is used for the attitude stabilization of the MAV.

The guidance controller resides on top of the stabilization

control, to calculate the desired pitch and roll angle, to achieve

a desired altitude position or airspeed. In this paper, it will

be applied to maintain a desired velocity. It will need the

measurements from the stereo camera, operating in parallel

with the Lisa-MXs.

B. Velocity Estimate

We have shown in section III that EdgeFlow can measure

the camera velocity based on a collection of images. Now

implemented in the 4 g stereoboard and fixed on a pocket

drone, the question remains if it can still retain its quality

with all the additional effects caused by motion and vibrations

during flight.

Fig. 8(a), presents the velocity estimates of Edge-FS, during

a manually controlled flight in front of a textured screen

(screen shot in Fig. 8(b) and position in Fig. 8(c) ). The

same OptiTrack system used for the image data set (Fig. 5(a)),

is monitoring its real velocity. The raw unfiltered velocity

measurements of Edge-FS are contrasted with this ground truth

with NMXM, VAR and MSE. Noticeable is that the forward

velocity shows more noise peaks than the sideways velocity

as expected (see Section III). However, in both directions,

Edge-FS matches the ground truth adequately, which should

be sufficient for the closed-loop flight.

To use the actual raw measurements in flight is undesirable.

The most common way is to fuse these vision-based velocity

estimates with the accelerometers. On a larger MAV than

the pocket drone, this would be possible because of the

damping. However, many vibrations are generated by the small

propellers, which are in close proximity with the autopilot, the

accelerometers readings contain too much noise. Therefore, in

this paper, we only use a vision-only approach applying a

median filter to the 5 last velocity measurements, to keep the

delay to a minimum.

6http://wiki.paparazziuav.org/

https://github.com/knmcguire/EdgeFlow_matlab
http://www.walkera.com/
http://wiki.paparazziuav.org/wiki/Lisa/MX
http://wiki.paparazziuav.org/
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Fig. 8. (a) Velocity estimation by Edge-FS on the pocket drone, (b) a screen
shot from the flight in front of a wall and (c) the position during a remote
controlled maneuver. Dotted line is the unfiltered velocity estimate by Edge-
FS.
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Fig. 9. (a) Velocity control on pocket drone with a wall force field and (b)
the control scheme used, explaining the hierarchy of the on-board sensors and
controllers.

C. Autonomous Obstacle Avoidance

In the previous subsection, we showed validation of the

velocity estimate as calculated by Edge-FS. Now we will

present a closed-loop flight, where the pocket drone avoids

obstacles identified by means of its stereo vision, while guided

by its velocity estimates. The main goal of this experiment

is to show the potential of the proposed algorithms for full

autonomous navigation. In this section, the vertical position as

measured by OptiTrack is exclusively used for height control,

as no position measurement is used in the horizontal plane

(solely for validation afterwards). This is where the MAV uses

its velocity estimates by Edge-FS.

Fig. 9(b) displays the basic control scheme for the naviga-

tion task. It determines a desired velocity to avoid collisions.

The error between the estimate and the desired velocity is the

input to the velocity guidance controller, which sets an attitude

set-point for the stabilization. Subsequently, EdgeStereo deter-

mines the nearest object to camera. If too close, it will produce

a backward velocity reference to the guidance controller (a
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Fig. 10. (a) A position plot of 3 flights, from which the first lasted 91 seconds,
the second 101 seconds and the third 122 seconds. (b) shows screen shots of
the experiments in the flight arena (left) and in a real-world office (right).
Some posters were added to the latter to provide extra texture.

force field), therefore preventing the pocket drone from hitting

the wall face-on. Fig. 9(a) shows the readings from a short

flight of a simple hover with the obstacle force field.

When encountering a wall/obstacle, the pocket drone will

need to move away from the situation. The avoidance scheme

is a simple finite state machine (FSM) with 4 behavioral states

(see Fig. 10(b)). It starts in check mode, where the pocket

drone will check if there is a detected obstacle within 1 meter

by EdgeStereo. If the way is clear, the pocket drone moves

forward with a constant speed (set now to 0.3 m/s), guided

by the velocity estimate from Edge-FS. If it detects an object

on its path, the MAV will first hover for 1 second actively

controlling the forward velocity to zero. Then it will turn

quickly with a constant angle relative to the heading (here

∆ψ = 60o). Immediately thereafter, the MAV will evaluate

the situation in the check mode and proceeds from there.

We conducted multiple autonomous flights with the pocket

drone. Fig 10(a) shows the result of 3 representative flights

of the pocket drone with the forward looking stereo camera.

The pocket drone has to navigate in a small room of 4 x 4

meter with varying textured surfaces (screen shot of camera

footage). All the flights lasted longer than 90 seconds, from

which the longest duration was 122 seconds (flight 3). When

the pocket drone brushed against the wall, the safety pilot took

over the flight with a remote control for a safe landing. The

most common failure case during the test flights, is that the

MAV will approach the wall with a small angle. After the

turn with constant angle, the drone will fly almost parallel to

the wall which it can not detect due to its limited FOV. This

is the case for flight 2 and 3, except for flight 1, in which

case the pocket drone was facing the observer after a turn.

Several flights of the pocket drone have been done within a

real-world environment (Fig. 10(c)), which can be observed
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with the accompanying video and YouTube list7 in Fig. 10(c).

The mentioned failure case for the autonomous flights is

difficult to overcome. If the MAV would turn and face a large

open space, the distance for EdgeStereo could be far enough

to compromise the quality for the velocity estimate due to the

small base line of the stereo camera. As we already observed

in Fig. 6, this would cause the pocket drone to drift, which

is problematic when near a wall/obstacle after the turn. If an

obstacle is not in its FOV, the chances of collision significantly

increases. This could be solved by merging the check and turn

node of the FSM, so it will only stop turning at a significant

clear path. Another solution is to add a lightweight short range

sensor on the sides of the pocket drone, so it will detect

immediately if the drone is flying close and aside an obstacle.

The obstacle avoidance logic will need some additional

work, however the experiments show that Edge-FS can be used

in navigation overall. During the autonomous flight, the pocket

drone was stabilizing itself using the velocity estimates of its

forward camera alone.

V. CONCLUSION

A computationally efficient optical flow and stereo algo-

rithm is presented in this paper, called Edge-FS. It runs

embedded on a very lightweight stereo camera and can be

carried by a 40 g pocket drone for determining velocity and

depth. The presented algorithm allows the stereo camera to

face forward, a direction in which a complex 3D structure can

be expected.

We presented experiments where the pocket drone with the

stereo camera autonomously navigated and avoided obstacles

in an area of 4 x 4 meters. A simple finite state machine

controller showed that the velocity estimates and the depth

measurement can be used for fully autonomous flight. The

current work lays the basis for stabilization and collision

avoidance on pocket drones with a single, small stereo vision

system.

ACKNOWLEDGMENTS

We would like to show our gratitude to Kirk Scheper from

the MAVlab, Delft University of Technology, for assistance

in the development of the guided flight mode and the finite

state machine. These results greatly improved the quality of

the paper.

REFERENCES

[1] X. Hu and P. Mordohai, “Evaluation of stereo confidence indoors and
outdoors,” in Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on. IEEE, 2010, pp. 1466–1473.
[2] H. Hirschmuller, “Stereo processing by semiglobal matching and mu-

tual information,” IEEE Transactions on pattern analysis and machine

intelligence, vol. 30, no. 2, pp. 328–341, 2008.
[3] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruc-

tion in real-time,” in Intelligent Vehicles Symposium (IV), 2011 IEEE.
IEEE, 2011, pp. 963–968.

[4] C. De Wagter, S. Tijmons, B. Remes, and G. de Croon, “Autonomous
flight of a 20-gram flapping wing mav with a 4-gram onboard stereo
vision system,” in Robotics and Automation (ICRA), 2014 IEEE Inter-

national Conference on. IEEE, 2014, pp. 4982–4987.

7https://www.youtube.com/playlist?list=PL_KSX9GOn2P812tmddfrTlURHNieRe6YY

[5] S. Tijmons, G. de Croon, B. Remes, C. De Wagter, and M. Mulder,
“Obstacle avoidance strategy using onboard stereo vision on a flapping
wing mav,” arXiv preprint arXiv:1604.00833, 2016.

[6] B. K. Horn and B. G. Schunck, “Determining optical flow,” pp. 185–203,
1981.

[7] G. Farnebäck, “Two-frame motion estimation based on polynomial
expansion,” in Scandinavian conference on Image analysis. Springer,
2003, pp. 363–370.

[8] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision

and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE

Computer Society Conference on. IEEE, 1994, pp. 593–600.
[9] E. Rosten and T. Drummond, “Fusing points and lines for high perfor-

mance tracking,” in Computer Vision, 2005. ICCV 2005. Tenth IEEE

International Conference on, vol. 2. IEEE, 2005, pp. 1508–1515.
[10] J.-Y. Bouguet, “Pyramidal implementation of the affine lucas kanade

feature tracker description of the algorithm,” Intel Corporation, vol. 5,
no. 1-10, p. 4, 2001.

[11] D. Honegger, L. Meier, P. Tanskanen, and M. Pollefeys, “An open source
and open hardware embedded metric optical flow cmos camera for
indoor and outdoor applications,” in Robotics and Automation (ICRA),

2013 IEEE International Conference on. IEEE, 2013, pp. 1736–1741.
[12] D.-J. Lee, R. W. Beard, P. C. Merrell, and P. Zhan, “See and avoidance

behaviors for autonomous navigation,” Proceedings of SPIE - The

International Society for Optical Engineering, vol. 5609, pp. 23–34,
2004.

[13] K. McGuire, G. de Croon, C. de Wagter, B. Remes, K. Tuyls, and
H. Kappen, “Local histogram matching for efficient optical flow com-
putation applied to velocity estimation on pocket drones,” in 2016 IEEE

International Conference on Robotics and Automation (ICRA), May
2016, pp. 3255–3260.

[14] V. Grabe, H. H. Bulthoff, D. Scaramuzza, and P. R. Giordano, “Nonlinear
ego-motion estimation from optical flow for online control of a quadrotor
UAV,” The International Journal of Robotics Research, vol. 34, no. 8,
pp. 1114–1135, 2015.

[15] H. Romero, S. Salazar, and R. Lozano, “Real-time stabilization of an
eight-rotor UAV using optical flow,” IEEE Transactions on Robotics,
vol. 25, no. 4, pp. 809–817, 2009.

[16] F. Kendoul, I. Fantoni, and K. Nonami, “Optic flow-based vision system
for autonomous 3d localization and control of small aerial vehicles,”
Robotics and Autonomous Systems, vol. 57, no. 6, pp. 591–602, 2009.

[17] O. Dunkley, J. Engel, J. Sturm, and D. Cremers, “Visual-inertial navi-
gation for a camera-equipped 25g nano-quadrotor,” in IROS2014 aerial

open source robotics workshop, 2014, p. 2.
[18] F. Ruffier, S. Viollet, S. Amic, and N. Franceschini, “Bio-inspired optical

flow circuits for the visual guidance of micro air vehicles,” Proceedings

of the 2003 International Symposium on Circuits and Systems, 2003.

ISCAS ’03., vol. 3, pp. 846–849, 2003.
[19] W. E. Green and P. Y. Oh, “Optic-flow-based collision avoidance,” IEEE

Robotics & Automation Magazine, vol. 15, no. 1, pp. 96–103, 2008.
[20] A. Briod, J.-c. Zufferey, and D. Floreano, “Optic-Flow Based Control

of a 46g Quadrotor,” IEEE/RSJ International Conference on Robotics

and Automation, 2013.
[21] A. Briod, J.-C. Zufferey, and D. Floreano, “A method for ego-motion

estimation in micro-hovering platforms flying in very cluttered environ-
ments,” Autonomous Robots, vol. 40, no. 5, pp. 789–803, 2016.

[22] R. J. Moore, K. Dantu, G. L. Barrows, and R. Nagpal, “Autonomous mav
guidance with a lightweight omnidirectional vision sensor,” in Robotics

and Automation (ICRA), 2014 IEEE International Conference on. IEEE,
2014, pp. 3856–3861.

[23] T. Mori and S. Scherer, “First results in detecting and avoiding frontal
obstacles from a monocular camera for micro unmanned aerial vehicles,”
in Robotics and Automation (ICRA), 2013 IEEE International Confer-

ence on. IEEE, 2013, pp. 1750–1757.
[24] H. Oleynikova, D. Honegger, and M. Pollefeys, “Reactive avoidance

using embedded stereo vision for mav flight,” in 2015 IEEE Interna-

tional Conference on Robotics and Automation (ICRA). IEEE, 2015,
pp. 50–56.

[25] H. C. Longuet-Higgins and K. Prazdny, “The interpretation of a moving
retinal image,” Proceedings of the Royal Society of London B: Biological

Sciences, vol. 208, no. 1173, pp. 385–397, 1980.
[26] E. J. Smeur, Q. Chu, and G. C. de Croon, “Adaptive incremental

nonlinear dynamic inversion for attitude control of micro air vehicles,”
Journal of Guidance, Control, and Dynamics, vol. 38, no. 12, pp. 450–
461, 2015.

https://www.youtube.com/playlist?list=PL_KSX9GOn2P812tmddfrTlURHNieRe6YY

	Introduction
	Related Work

	Velocity and Depth from Edges
	From Camera to State
	Procedure for Edge-FS

	Off-line Vision Experiments
	Experiments on the Pocket Drone
	Hardware specifics
	Velocity Estimate
	Autonomous Obstacle Avoidance

	Conclusion
	References

