
Efficient Optimal Learning for Contextual Bandits

Miroslav Dudik
mdudik@yahoo-inc.com

Daniel Hsu
djhsu@rci.rutgers.edu

Satyen Kale
skale@yahoo-inc.com

Nikos Karampatziakis
nk@cs.cornell.edu

John Langford
jl@yahoo-inc.com

Lev Reyzin
lreyzin@cc.gatech.edu

Tong Zhang
tzhang@stat.rutgers.edu

Abstract

We address the problem of learning in an on-
line setting where the learner repeatedly ob-
serves features, selects among a set of actions,
and receives reward for the action taken. We
provide the first efficient algorithm with an
optimal regret. Our algorithm uses a cost
sensitive classification learner as an oracle
and has a running time polylog(N), where N
is the number of classification rules among
which the oracle might choose. This is expo-
nentially faster than all previous algorithms
that achieve optimal regret in this setting.
Our formulation also enables us to create an
algorithm with regret that is additive rather
than multiplicative in feedback delay as in all
previous work.

1 INTRODUCTION

The contextual bandit setting consists of the following
loop repeated indefinitely:

1. The world presents context information as fea-
tures x.

2. The learning algorithm chooses an action a from
K possible actions.

3. The world presents a reward r for the action.

The key difference between the contextual bandit set-
ting and standard supervised learning is that only the
reward of the chosen action is revealed. For example,
after always choosing the same action several times
in a row, the feedback given provides almost no ba-
sis to prefer the chosen action over another action.
In essence, the contextual bandit setting captures the
difficulty of exploration while avoiding the difficulty

of credit assignment as in more general reinforcement
learning settings.

The contextual bandit setting is a half-way point be-
tween standard supervised learning and full-scale re-
inforcement learning where it appears possible to con-
struct algorithms with convergence rate guarantees
similar to supervised learning. Many natural settings
satisfy this half-way point, motivating the investiga-
tion of contextual bandit learning. For example, the
problem of choosing interesting news articles or ads for
users by internet companies can be naturally modeled
as a contextual bandit setting. In the medical domain
where discrete treatments are tested before approval,
the process of deciding which patients are eligible for
a treatment takes contexts into account. More gener-
ally, we can imagine that in a future with personalized
medicine, new treatments are essentially equivalent to
new actions in a contextual bandit setting.

In the i.i.d. setting, the world draws a pair (x,~r) con-
sisting of a context and a reward vector from some
unknown distribution D, revealing x in Step 1, but
only the reward r(a) of the chosen action a in Step 3.
Given a set of policies Π = {π : X → A}, the goal
is to create an algorithm for Step 2 which competes
with the set of policies. We measure our success by
comparing the algorithm’s cumulative reward to the
expected cumulative reward of the best policy in the
set. The difference of the two is called regret.

All existing algorithms for this setting either achieve
a suboptimal regret (Langford and Zhang, 2007) or
require computation linear in the number of poli-
cies (Auer et al., 2002b; Beygelzimer et al., 2011). In
unstructured policy spaces, this computational com-
plexity is the best one can hope for. On the other
hand, in the case where the rewards of all actions are
revealed, the problem is equivalent to cost-sensitive
classification, and we know of algorithms to efficiently
search the space of policies (classification rules) such
as cost-sensitive logistic regression and support vec-
tor machines. In these cases, the space of classifica-

tion rules is exponential in the number of features, but
these problems can be efficiently solved using convex
optimization.

Our goal here is to efficiently solve the contextual ban-
dit problems for similarly large policy spaces. We
do this by reducing the contextual bandit problem
to cost-sensitive classification. Given a supervised
cost-sensitive learning algorithm as an oracle (Beygelz-
imer et al., 2009), our algorithm runs in time
only polylog(N) while achieving regret O(

√
TK lnN),

where N is the number of possible policies (classifica-
tion rules), K is the number of actions (classes), and T
is the number of time steps. This efficiency is achieved
in a modular way, so any future improvement in cost-
sensitive learning immediately applies here.

1.1 PREVIOUS WORK AND
MOTIVATION

All previous regret-optimal approaches are measure
based—they work by updating a measure over poli-
cies, an operation which is linear in the number of
policies. In contrast, regret guarantees scale only log-
arithmically in the number of policies. If not for the
computational bottleneck, these regret guarantees im-
ply that we could dramatically increase performance in
contextual bandit settings using more expressive poli-
cies. We overcome the computational bottleneck using
an algorithm which works by creating cost-sensitive
classification instances and calling an oracle to choose
optimal policies. Actions are chosen based on the
policies returned by the oracle rather than accord-
ing to a measure over all policies. This is reminiscent
of AdaBoost (Freund and Schapire, 1997), which cre-
ates weighted binary classification instances and calls
a “weak learner” oracle to obtain classification rules.
These classification rules are then combined into a fi-
nal classifier with boosted accuracy. Similarly as Ad-
aBoost converts a weak learner into a strong learner,
our approach converts a cost-sensitive classification
learner into an algorithm that solves the contextual
bandit problem.

In a more difficult version of contextual bandits, an ad-
versary chooses (x,~r) given knowledge of the learning
algorithm (but not any random numbers). All known
regret-optimal solutions in the adversarial setting are
variants of the EXP4 algorithm (Auer et al., 2002b).
EXP4 achieves the same regret rate as our algorithm:
O
(√

KT lnN
)
, where T is the number of time steps,

K is the number of actions available in each time step,
and N is the number of policies.

Why not use EXP4 in the i.i.d. setting? For exam-
ple, it is known that the algorithm can be modified
to succeed with high probability (Beygelzimer et al.,

2011), and also for VC classes when the adversary is
constrained to i.i.d. sampling. There are two central
benefits that we hope to realize by directly assuming
i.i.d. contexts and reward vectors.

1. Computational Tractability. Even when the re-
ward vector is fully known, adversarial regrets
scale as O

(√
lnN

)
while computation scales

as O(N) in general. One attempt to get
around this is the follow-the-perturbed-leader al-
gorithm (Kalai and Vempala, 2005) which pro-
vides a computationally tractable solution in cer-
tain special-case structures. This algorithm has
no mechanism for efficient application to arbitrary
policy spaces, even given an efficient cost-sensitive
classification oracle. An efficient cost-sensitive
classification oracle has been shown effective in
transductive settings (Kakade and Kalai, 2005).
Aside from the drawback of requiring a transduc-
tive setting, the regret achieved there is substan-
tially worse than for EXP4.

2. Improved Rates. When the world is not com-
pletely adversarial, it is possible to achieve sub-
stantially lower regrets than are possible with al-
gorithms optimized for the adversarial setting.
For example, in supervised learning, it is possible
to obtain regrets scaling as O(log(T)) with a prob-
lem dependent constant (Bartlett et al., 2007).
When the feedback is delayed by τ rounds, lower
bounds imply that the regret in the adversarial
setting increases by a multiplicative

√
τ while in

the i.i.d. setting, it is possible to achieve an addi-
tive regret of τ (Langford et al., 2009).

In a direct i.i.d. setting, the previous-best approach
using a cost-sensitive classification oracle was given by
ε-greedy and epoch greedy algorithms (Langford and
Zhang, 2007) which have a regret scaling as O(T 2/3)
in the worst case.

There have also been many special-case analyses. For
example, theory of context-free setting is well under-
stood (Lai and Robbins, 1985; Auer et al., 2002a;
Even-Dar et al., 2006). Similarly, good algorithms ex-
ist when rewards are linear functions of features (Auer,
2002) or actions lie in a continuous space with the re-
ward function sampled according to a Gaussian pro-
cess (Srinivas et al., 2010).

1.2 WHAT WE PROVE

In Section 3 we state the PolicyElimination algo-
rithm, and prove the following regret bound for it.
Theorem 4. For all distributions D over (x,~r) with
K actions, for all sets of N policies Π, with probabil-

ity at least 1 − δ, the regret of PolicyElimination
(Algorithm 1) over T rounds is at most

16

√
2TK ln

4T 2N

δ
.

This result can be extended to deal with VC classes,
as well as other special cases. It forms the simplest
method we have of exhibiting the new analysis.

The new key element of this algorithm is identifica-
tion of a distribution over actions which simultane-
ously achieves small expected regret and allows esti-
mating value of every policy with small variance. The
existence of such a distribution is shown nonconstruc-
tively by a minimax argument.

PolicyElimination is computationally intractable
and also requires exact knowledge of the context dis-
tribution (but not the reward distribution!). We show
how to address these issues in Section 4 using an algo-
rithm we call RandomizedUCB. Namely, we prove
the following theorem.
Theorem 5. For all distributions D over (x,~r) with
K actions, for all sets of N policies Π, with proba-
bility at least 1 − δ, the regret of RandomizedUCB
(Algorithm 2) over T rounds is at most

O
(√

TK log (TN/δ) +K log(NK/δ)
)
.

RandomizedUCB’s analysis is substantially more
complex, with a key subroutine being an ap-
plication of the ellipsoid algorithm with a cost-
sensitive classification oracle (described in Section 5).
RandomizedUCB does not assume knowledge of the
context distribution, and instead works with the his-
tory of contexts it has observed. Modifying the
proof for this empirical distribution requires a cov-
ering argument over the distributions over policies
which uses the probabilistic method. The net result
is an algorithm with a similar top-level analysis as
PolicyElimination, but with the running time only
poly-logarithmic in the number of policies given a cost-
sensitive classification oracle.
Theorem 11. In each time step t, RandomizedUCB
makes at most O(poly(t,K, log(1/δ), logN)) calls to
cost-sensitive classification oracle, and requires addi-
tional O(poly(t,K, logN)) processing time.

Apart from a tractable algorithm, our analysis can be
used to derive tighter regrets than would be possible in
adversarial setting. For example, in Section 6, we con-
sider a common setting where reward feedback is de-
layed by τ rounds. A straightforward modification of
PolicyElimination yields a regret with an additive
term proportional to τ compared with the delay-free
setting. Namely, we prove the following.

Theorem 12. For all distributions D over (x,~r) with
K actions, for all sets of N policies Π, and all delay
intervals τ , with probability at least 1 − δ, the regret
of DelayedPE (Algorithm 3) is at most

16

√
2K ln

4T 2N

δ

(
τ +
√
T
)
.

We start next with precise settings and definitions.

2 SETTING AND DEFINITIONS

2.1 THE SETTING

Let A be the set of K actions, let X be the domain of
contexts x, and let D be an arbitrary joint distribution
on (x,~r). We denote the marginal distribution of D
over X by DX .

We denote Π to be a finite set of policies {π : X → A},
where each policy π, given a context xt in round t,
chooses the action π(xt). The cardinality of Π is de-
noted by N . Let ~rt ∈ [0, 1]K be the vector of rewards,
where rt(a) is the reward of action a on round t.

In the i.i.d. setting, on each round t = 1 . . . T , the
world chooses (xt, ~rt) i.i.d. according to D and reveals
xt to the learner. The learner, having access to Π,
chooses action at ∈ {1, . . . ,K}. Then the world reveals
reward rt(at) (which we call rt for short) to the learner,
and the interaction proceeds to the next round.

We consider two modes of accessing the set of policies
Π. The first option is through the enumeration of all
policies. This is impractical in general, but suffices
for the illustrative purpose of our first algorithm. The
second option is an oracle access, through an argmax
oracle, corresponding to a cost-sensitive learner:
Definition 1. For a set of policies Π, an argmax or-
acle (AMO for short), is an algorithm, which for any
sequence {(xt′ , ~rt′)}t′=1...t, xt′ ∈ X, ~rt′ ∈ RK , com-
putes

arg max
π∈Π

∑
t′=1...t

rt′(π(xt′)) .

The reason why the above can be viewed as a cost-
sensitive classification oracle is that vectors of rewards
~rt′ can be interpreted as negative costs and hence the
policy returned by AMO is the optimal cost-sensitive
classifier on the given data.

2.2 EXPECTED AND EMPIRICAL
REWARDS

Let the expected instantaneous reward of a policy π ∈
Π be denoted by

ηD(π)
.
= E

(x,~r)∼D
[r(π(x))] .

The best policy πmax ∈ Π is that which maximizes
ηD(π). More formally,

πmax
.
= argmax

π∈Π
ηD(π) .

We define ht to be the history at time t that the learner
has seen. Specifically

ht =
⋃

t′=1...t

(xt′ , at′ , rt′ , pt′) ,

where pt′ is the probability of the algorithm choosing
action at′ at time t′. Note that at′ and pt′ are produced
by the learner while xt′ , rt′ are produced by nature.
We write x ∼ h to denote choosing x uniformly at
random from the x’s in history h.

Using the history of past actions and probabilities with
which they were taken, we can form an unbiased esti-
mate of the policy value for any π ∈ Π:

ηt(π)
.
=

1

t

∑
(x,a,r,p)∈ht

rI(π(x) = a)

p
.

The unbiasedness follows, because Ea∼p rI(π(x)=a)
p(a) =∑

a p(a) rI(π(x)=a)
p(a) = r(π(x)). The empirically best

policy at time t is denoted

πt
.
= argmax

π∈Π
ηt(π).

2.3 REGRET

The goal of this work is to obtain a learner that has
small regret relative to the expected performance of
πmax over T rounds, which is∑

t=1...T

(ηD(πmax)− rt) . (2.1)

We say that the regret of the learner over T rounds is
bounded by ε with probability at least 1− δ, if

Pr

[∑
t=1...T

(ηD(πmax)− rt) ≤ ε

]
≥ 1− δ

where the probability is taken with respect to the ran-
dom pairs (xt, ~rt) ∼ D for t = 1 . . . T , as well as any
internal randomness used by the learner.

We can also define notions of regret and empirical re-
gret for policies π. For all π ∈ Π, let

∆D(π) = ηD(πmax)− ηD(π) ,

∆t(π) = ηt(πt)− ηt(π) .

Our algorithms work by choosing distributions over
policies, which in turn then induce distributions over

actions. For any distribution P over policies Π, let
WP (x, a) denote the induced conditional distribution
over actions a given the context x:

WP (x, a)
.
=

∑
π∈Π:π(x)=a

P (π) . (2.2)

In general, we shall use W , W ′ and Z as conditional
probability distributions over the actions A given con-
texts X, i.e., W : X×A→ [0, 1] such that W (x, ·) is a
probability distribution over A (and similarly for W ′
and Z). We shall think of W ′ as a smoothed version
of W with a minimum action probability of µ (to be
defined by the algorithm), such that

W ′(x, a) = (1−Kµ)W (x, a) + µ .

Conditional distributions such as W (and W ′, Z, etc.)
correspond to randomized policies. We define notions
true and empirical value and regret for them as follows:

ηD(W)
.
= E

(x,~r)∼D
[~r ·W (x)]

ηt(W)
.
=

1

t

∑
(x,a,r,p)∈ht

rW (x, a)

p

∆D(W)
.
= ηD(πmax)− ηD(W)

∆t(W)
.
= ηt(πt)− ηt(W) .

3 POLICY ELIMINATION

The basic ideas behind our approach are demonstrated
in our first algorithm: PolicyElimination (Algo-
rithm 1).

The key step is Step 1, which finds a distribution over
policies which induces low variance in the estimate of
the value of all policies. Below we use minimax the-
orem to show that such a distribution always exists.
How to find this distribution is not specified here, but
in Section 5 we develop a method based on the ellip-
soid algorithm. Step 2 then projects this distribution
onto a distribution over actions and applies smoothing.
Finally, Step 5 eliminates the policies that have been
determined to be suboptimal (with high probability).

ALGORITHM ANALYSIS

We analyze PolicyElimination in several steps.
First, we prove the existence of Pt in Step 1, provided
that Πt−1 is non-empty. We recast the feasibility prob-
lem in Step 1 as a game between two players: Prover,
who is trying to produce Pt, and Falsifier, who is try-
ing to find π violating the constraints. We give more
power to Falsifier and allow him to choose a distribu-
tion over π (i.e., a randomized policy) which would
violate the constraints.

Algorithm 1 PolicyElimination(Π,δ,K,DX)
Let Π0 = Π and history h0 = ∅
Define: δt

.
= δ / 4Nt2

Define: bt
.
= 2

√
2K ln(1/δt)

t

Define: µt
.
= min

{
1

2K
,

√
ln(1/δt)

2Kt

}
For each timestep t = 1 . . . T , observe xt and do:

1. Choose distribution Pt over Πt−1 s.t. ∀ π ∈ Πt−1:

E
x∼DX

[
1

(1−Kµt)WPt(x, π(x)) + µt

]
≤ 2K

2. LetW ′t (a) = (1−Kµt)WPt(xt, a)+µt for all a ∈ A

3. Choose at ∼W ′t

4. Observe reward rt

5. Let Πt =
{
π ∈ Πt−1 :

ηt(π) ≥
(

max
π′∈Πt−1

ηt(π
′)
)
− 2bt

}
6. Let ht = ht−1 ∪ (xt, at, rt,W

′
t (at))

Note that any policy π corresponds to a point in
the space of randomized policies (viewed as functions
X × A → [0, 1]), with π(x, a)

.
= I(π(x) = a). For

any distribution P over policies in Πt−1, the induced
randomized policy WP then corresponds to a point in
the convex hull of Πt−1. Denoting the convex hull of
Πt−1 by C, Prover’s choice by W and Falsifier’s choice
by Z, the feasibility of Step 1 follows by the following
lemma:
Lemma 1. Let C be a compact and convex set of ran-
domized policies. Let µ ∈ (0, 1/K] and for any W ∈ C,
W ′(x, a)

.
= (1−Kµ)W (x, a) + µ. Then for all distri-

butions D,

min
W∈C

max
Z∈C

E
x∼DX

E
a∼Z(x,·)

[
1

W ′(x, a)

]
≤ K

1−Kµ
.

Proof. Let f(W,Z)
.
= Ex∼DX Ea∼Z(x,·)[1/W

′(x, a)]
denote the inner expression of the minimax problem.
Note that f(W,Z) is:

• everywhere defined : Since W ′(x, a) ≥ µ, we ob-
tain that 1/W ′(x, a) ∈ [0, 1/µ], hence the expec-
tations are defined for all W and Z.

• linear in Z: Linearity follows from rewriting
f(W,Z) as

f(W,Z) = E
x∼DX

∑
a∈A

[
Z(x, a)

W ′(x, a)

]
.

• convex in W : Note that 1/W ′(x, a) is convex in
W (x, a) by convexity of 1/(c1w+c2) in w ≥ 0, for
c1 ≥ 0, c2 > 0. Convexity of f(W,Z) in W then
follows by taking expectations over x and a.

Hence, by Theorem 14 (in Appendix B), min and max
can be reversed without affecting the value:

min
W∈C

max
Z∈C

f(W,Z) = max
Z∈C

min
W∈C

f(W,Z) .

The right-hand side can be further upper-bounded by
maxZ∈C f(Z,Z), which is upper-bounded by

f(Z,Z) = E
x∼DX

∑
a∈A

[
Z(x, a)

Z ′(x, a)

]
≤ E
x∼DX

∑
a∈A:

Z(x,a)>0

[
Z(x, a)

(1−Kµ)Z(x, a)

]
=

K

1−Kµ
.

Corollary 2. The set of distributions satisfying con-
straints of Step 1 is non-empty.

Given the existence of Pt, we will see below that the
constraints in Step 1 ensure low variance of the policy
value estimator ηt(π) for all π ∈ Πt−1. The small vari-
ance is used to ensure accuracy of policy elimination
in Step 5 as quantified in the following lemma:

Lemma 3. With probability at least 1− δ, for all t:

1. πmax ∈ Πt (i.e., Πt is non-empty)

2. ηD(πmax)− ηD(π) ≤ 4bt for all π ∈ Πt

Proof. We will show that for any policy π ∈ Πt−1, the
probability that ηt(π) deviates from ηD(π) by more
that bt is at most 2δt. Taking the union bound over all
policies and all time steps we find that with probability
at least 1− δ,

|ηt(π)− ηD(π)| ≤ bt (3.1)

for all t and all π ∈ Πt−1. Then:

1. By the triangle inequality, in each time step,
ηt(π) ≤ ηt(πmax) + 2bt for all π ∈ Πt−1, yield-
ing the first part of the lemma.

2. Also by the triangle inequality, if ηD(π) <
ηD(πmax) − 4bt for π ∈ Πt−1, then ηt(π) <
ηt(πmax) − 2bt. Hence the policy π is eliminated
in Step 5, yielding the second part of the lemma.

It remains to show Eq. (3.1). We fix the policy π ∈ Π
and time t, and show that the deviation bound is vi-
olated with probability at most 2δt. Our argument

rests on Freedman’s inequality (see Theorem 13 in Ap-
pendix A). Let

yt =
rtI(π(xt) = at)

W ′t (at)
,

i.e., ηt(π) = (
∑t
t′=1 yt′)/t. Let Et denote the con-

ditional expectation E[· |ht−1]. To use Freedman’s
inequality, we need to bound the range of yt and its
conditional second moment Et[y2

t].

Since rt ∈ [0, 1] and W ′t (at) ≥ µt, we have the bound

0 ≤ yt ≤ 1/µt
.
= Rt .

Next,

Et[y2
t] = E

(xt,~rt)∼D
E

at∼W ′t

[
y2
t

]
= E

(xt,~rt)∼D
E

at∼W ′t

[
r2
t I(π(xt) = at)

W ′t (at)
2

]
≤ E

(xt,~rt)∼D

[
W ′t (π(xt))

W ′t (π(xt))2

]
(3.2)

= E
xt∼D

[
1

W ′t (π(xt))

]
≤ 2K . (3.3)

where Eq. (3.2) follows by boundedness of rt and
Eq. (3.3) follows from the constraints in Step 1. Hence,∑

t′=1...t

Et′ [y2
t′] ≤ 2Kt

.
= Vt .

Since (ln t)/t is decreasing for t ≥ 3, we obtain that µt
is non-increasing (by separately analyzing t = 1, t = 2,
t ≥ 3). Let t0 be the first t such that µt < 1/2K.
Note that bt ≥ 4Kµt, so for t < t0, we have bt ≥ 2 and
Πt = Π. Hence, the deviation bound holds for t < t0.

Let t ≥ t0. For t′ ≤ t, by the monotonicity of µt

Rt′ = 1/µt′ ≤ 1/µt =

√
2Kt

ln(1/δt)
=

√
Vt

ln(1/δt)
.

Hence, the assumptions of Theorem 13 are satisfied,
and

Pr [|ηt(π)− ηD(π)| ≥ bt] ≤ 2δt .

The union bound over π and t yields Eq. (3.1).

This immediately implies that the cumulative regret is
bounded by

∑
t=1...T

(ηD(πmax)− rt) ≤ 8

√
2K ln

4NT 2

δ

T∑
t=1

1√
t

≤ 16

√
2TK ln

4T 2N

δ
(3.4)

and gives us the following theorem.

Algorithm 2 RandomizedUCB(Π,δ,K)
Let h0

.
= ∅ be the initial history.

Define the following quantities:

Ct
.
= 2 log

(
Nt

δ

)
and µt

.
= min

{
1

2K
,

√
Ct

2Kt

}
.

For each timestep t = 1 . . . T , observe xt and do:

1. Let Pt be a distribution over Π that approxi-
mately solves the optimization problem

min
P

∑
π∈Π

P (π)∆t−1(π)

s.t. for all distributions Q over Π :

E
π∼Q

[
1

t− 1

t−1∑
i=1

1

(1−Kµt)WP (xi, π(xi)) + µt

]

≤ max

{
4K,

(t− 1)∆t−1(WQ)2

180Ct−1

}
(4.1)

so that the objective value at Pt is within εopt,t =

O(
√
KCt/t) of the optimal value, and so that

each constraint is satisfied with slack ≤ K.

2. Let W ′t be the distribution over A given by

W ′t (a)
.
= (1−Kµt)WPt(xt, a) + µt

for all a ∈ A.

3. Choose at ∼W ′t .

4. Observe reward rt.

5. Let ht
.
= ht−1 ∪ (xt, at, rt,W

′
t (at)).

Theorem 4. For all distributions D over (x,~r) with
K actions, for all sets of N policies Π, with probabil-
ity at least 1 − δ, the regret of PolicyElimination
(Algorithm 1) over T rounds is at most

16

√
2TK ln

4T 2N

δ
.

4 THE RANDOMIZED UCB
ALGORITHM

PolicyElimination is the simplest exhibition of the
minimax argument, but it has some drawbacks:

1. The algorithm keeps explicit track of the space
of good policies (like a version space), which is
difficult to implement efficiently in general.

2. If the optimal policy is mistakenly eliminated by
chance, the algorithm can never recover.

3. The algorithm requires perfect knowledge of the
distribution DX over contexts.

These difficulties are addressed by RandomizedUCB
(or RUCB for short), an algorithm which we present
and analyze in this section. Our approach is reminis-
cent of the UCB algorithm (Auer et al., 2002a), devel-
oped for context-free setting, which keeps an upper-
confidence bound on the expected reward for each ac-
tion. However, instead of choosing the highest upper
confidence bound, we randomize over choices accord-
ing to the value of their empirical performance. The
algorithm has the following properties:

1. The optimization step required by the algorithm
always considers the full set of policies (i.e.,
explicit tracking of the set of good policies is
avoided), and thus it can be efficiently imple-
mented using an argmax oracle. We discuss this
further in Section 5.

2. Suboptimal policies are implicitly used with de-
creasing frequency by using a non-uniform vari-
ance constraint that depends on a policy’s esti-
mated regret. A consequence of this is a bound on
the value of the optimization, stated in Lemma 7
below.

3. Instead of DX , the algorithm uses the history of
previously seen contexts. The effect of this ap-
proximation is quantified in Theorem 6 below.

The regret of RandomizedUCB is the following:
Theorem 5. For all distributions D over (x,~r) with
K actions, for all sets of N policies Π, with proba-
bility at least 1 − δ, the regret of RandomizedUCB
(Algorithm 2) over T rounds is at most

O
(√

TK log (TN/δ) +K log(NK/δ)
)
.

The proof is given in Appendix D.4. Here, we present
an overview of the analysis.

4.1 EMPIRICAL VARIANCE ESTIMATES

A key technical prerequisite for the regret analysis is
the accuracy of the empirical variance estimates. For
a distribution P over policies Π and a particular policy
π ∈ Π, define

VP,π,t = E
x∼DX

[
1

(1−Kµt)WP (x, π(x)) + µt

]
V̂P,π,t =

1

t− 1

t−1∑
i=1

1

(1−Kµt)WP (xi, π(xi)) + µt
.

The first quantity VP,π,t is (a bound on) the vari-
ance incurred by an importance-weighted estimate of
reward in round t using the action distribution in-
duced by P , and the second quantity V̂P,π,t is an
empirical estimate of VP,π,t using the finite sample
{x1, . . . , xt−1} ⊆ X drawn from DX . We show that
for all distributions P and all π ∈ Π, V̂P,π,t is close to
VP,π,t with high probability.
Theorem 6. For any ε ∈ (0, 1), with probability at
least 1− δ,

VP,π,t ≤ (1 + ε) · V̂P,π,t +
7500

ε3
·K

for all distributions P over Π, all π ∈ Π, and all t ≥
16K log(8KN/δ).

The proof appears in Appendix C.

4.2 REGRET ANALYSIS

Central to the analysis is the following lemma that
bounds the value of the optimization in each round. It
is a direct corollary of Lemma 24 in Appendix D.4.
Lemma 7. If OPTt is the value of the optimization
problem (4.1) in round t, then

OPTt ≤ O

(√
KCt−1

t− 1

)
= O

(√
K log(Nt/δ)

t

)
.

This lemma implies that the algorithm is always able
to select a distribution over the policies that focuses
mostly on the policies with low estimated regret.
Moreover, the variance constraints ensure that good
policies never appear too bad, and that only bad poli-
cies are allowed to incur high variance in their reward
estimates. Hence, minimizing the objective in (4.1) is
an effective surrogate for minimizing regret.

The bulk of the analysis consists of analyzing the
variance of the importance-weighted reward estimates
ηt(π), and showing how they relate to their actual ex-
pected rewards ηD(π). The details are deferred to Ap-
pendix D.

5 USING AN ARGMAX ORACLE

In this section, we show how to solve the optimization
problem (4.1) using the argmax oracle (AMO) for our
set of policies. Namely, we describe an algorithm run-
ning in polynomial time independent1 of the number of
policies, which makes queries to AMO to compute a
distribution over policies suitable for the optimization
step of Algorithm 2.

1Or rather dependent only on logN , the representation
size of a policy.

This algorithm relies on the ellipsoid method. The el-
lipsoid method is a general technique for solving con-
vex programs equipped with a separation oracle. A
separation oracle is defined as follows:

Definition 2. Let S be a convex set in Rn. A sepa-
ration oracle for S is an algorithm that, given a point
x ∈ Rn, either declares correctly that x ∈ S, or pro-
duces a hyperplane H such that x and S are on oppo-
site sides of H.

We do not describe the ellipsoid algorithm here (since
it is standard), but only spell out its key properties in
the following lemma. For a point x ∈ Rn and r ≥ 0,
we use the notation B(x, r) to denote the `2 ball of
radius r centered at x.

Lemma 8. Suppose we are required to decide whether
a convex set S ⊆ Rn is empty or not. We are given
a separation oracle for S and two numbers R and r,
such that S ∈ B(0, R) and if S is non-empty, then
there is a point x? such that S ⊇ B(x?, r). The ellip-
soid algorithm decides correctly if S is empty or not,
by executing at most O(n2 log(Rr)) iterations, each in-
volving one call to the separation oracle and additional
O(n2) processing time.

We now write a convex program whose solution is the
required distribution, and show how to solve it using
the ellipsoid method by giving a separation oracle for
its feasible set using AMO.

Fix a time period t. Let Xt−1 be the set of all con-
texts seen so far, i.e. Xt−1 = {x1, x2, . . . , xt−1}. We
embed all policies π ∈ Π in R(t−1)K , with coordinates
identified with (x, a) ∈ Xt−1 × A. With abuse of no-
tation, a policy π is represented by the vector π with
coordinate π(x, a) = 1 if π(x) = a and 0 otherwise.
Let C be the convex hull of all policy vectors π. Re-
call that a distribution P over policies corresponds to
a point inside C, i.e., WP (x, a) =

∑
π:π(x)=a P (π), and

that W ′(x, a) = (1−µtK)W (x, a) +µt, where µt is as
defined in Algorithm 2. Also define βt = t−1

180Ct−1
. In

the following, we use the notation x ∼ ht−1 to denote
a context drawn uniformly at random from Xt−1.

Consider the following convex program:

min s s.t.
∆t−1(W) ≤ s (5.1)
W ∈ C (5.2)
∀Z ∈ C :

E
x∼ht−1

[∑
a

Z(x, a)

W ′(x, a)

]
≤ max{4K,βt∆t−1(Z)2} (5.3)

We claim that this program is equivalent to the RUCB
optimization problem (4.1), up to finding an explicit

distribution over policies which corresponds to the op-
timal solution. This can be seen as follows. Since we
require W ∈ C, it can be interpreted as being equal
to WP for some distribution over policies P . The con-
straints (5.3) are equivalent to (4.1) by substitution
Z = WQ.

The above convex program can be solved by perform-
ing a binary search over s and testing feasibility of
the constraints. For a fixed value of s, the feasibility
problem defined by (5.1)–(5.3) is denoted by A.

We now give a sketch of how we construct a separa-
tion oracle for the feasible region of A. The details
of the algorithm are a bit complicated due to the fact
that we need to ensure that the feasible region, when
non-empty, has a non-negligible volume (recall the re-
quirements of Lemma 8). This necessitates having a
small error in satisfying the constraints of the program.
We leave the details to Appendix E. Modulo these de-
tails, the construction of the separation oracle essen-
tially implies that we can solve A.

Before giving the construction of the separation ora-
cle, we first show that AMO allows us to do linear
optimization over C efficiently:

Lemma 9. Given a vector w ∈ R(t−1)K , we can com-
pute arg maxZ∈C w ·Z using one invocation of AMO.

Proof. The sequence for AMO consists of xt′ ∈ Xt−1

and ~rt′(a) = w(xt′ , a). The lemma now follows since
w · π =

∑
x∈Xt−1

w(x, π(x)).

We need another simple technical lemma which ex-
plains how to get a separating hyperplane for viola-
tions of convex constraints:

Lemma 10. For x ∈ Rn, let f(x) be a convex function
of x, and consider the convex set K defined by K =
{x : f(x) ≤ 0}. Suppose we have a point y such that
f(y) > 0. Let ∇f(y) be a subgradient of f at y. Then
the hyperplane f(y) +∇f(y) · (x− y) = 0 separates y
from K.

Proof. Let g(x) = f(y) + ∇f(y) · (x − y). By the
convexity of f , we have f(x) ≥ g(x) for all x. Thus,
for any x ∈ K, we have g(x) ≤ f(x) ≤ 0. Since
g(y) = f(y) > 0, we conclude that g(x) = 0 separates
y from K.

Now given a candidate point W , a separation oracle
can be constructed as follows. We check whether W
satisfies the constraints of A. If any constraint is vi-
olated, then we find a hyperplane separating W from
all points satisfying the constraint.

1. First, for constraint (5.1), note that ηt−1(W) is
linear inW , and so we can compute maxπ ηt−1(π)
via AMO as in Lemma 9. We can then compute
ηt−1(W) and check if the constraint is satisfied. If
not, then the constraint, being linear, automati-
cally yields a separating hyperplane.

2. Next, we consider constraint (5.2). To check if
W ∈ C, we use the perceptron algorithm. We
shift the origin to W , and run the perceptron al-
gorithm with all points π ∈ Π being positive ex-
amples. The perceptron algorithm aims to find a
hyperplane putting all policies π ∈ Π on one side.
In each iteration of the perceptron algorithm, we
have a candidate hyperplane (specified by its nor-
mal vector), and then if there is a policy π that is
on the wrong side of the hyperplane, we can find
it by running a linear optimization over C in the
negative normal vector direction as in Lemma 9.
If W /∈ C, then in a bounded number of iterations
(depending on the distance of W from C, and the
maximum magnitude ‖π‖2) we obtain a separat-
ing hyperplane. In passing we also note that if
W ∈ C, the same technique allows us to explic-
itly compute an approximate convex combination
of policies in Π that yields W . This is done by
running the perceptron algorithm as before and
stopping after the bound on the number of iter-
ations has been reached. Then we collect all the
policies we have found in the run of the percep-
tron algorithm, and we are guaranteed that W is
close in distance to their convex hull. We can then
find the closest point in the convex hull of these
policies by solving a simple quadratic program.

3. Finally, we consider constraint (5.3). We rewrite
ηt−1(W) as ηt−1(W) = w ·W , where w(xt′ , a) =
rt′I(a = at′)/W

′
t′(at′). Thus, ∆t−1(Z) = v−w ·Z,

where v = maxπ′ ηt−1(π′) = maxπ′ w · π′, which
can be computed by using AMO once.
Next, using the candidate point W , compute the
vector u defined as u(x, a) = nx/t

W ′(x,a) , where nx
is the number of times x appears in ht−1, so that

Ex∼ht−1

[∑
a
Z(x,a)
W ′(x,a)

]
= u · Z. Now, the problem

reduces to finding a policy Z ∈ C which violates
the constraint

u · Z ≤ max{4K,βt(w · Z − v)2}.

Define f(Z) = max{4K,βt(w·Z−v)2}−u·Z. Note
that f is a convex function of Z. Finding a point
Z that violates the above constraint is equivalent
to solving the following (convex) program:

f(Z) ≤ 0 (5.4)
Z ∈ C (5.5)

To do this, we again apply the ellipsoid method.
For this, we need a separation oracle for the pro-
gram. A separation oracle for the constraints (5.5)
can be constructed as in Step 2 above. For the
constraints (5.4), if the candidate solution Z has
f(Z) > 0, then we can construct a separating hy-
perplane as in Lemma 10.

Suppose that after solving the program, we get
a point Z ∈ C such that f(Z) ≤ 0, i.e. W vio-
lates the constraint (5.3) for Z. Then since con-
straint (5.3) is convex in W , we can construct a
separating hyperplane as in Lemma 10. This com-
pletes the description of the separation oracle.

Working out the details carefully yields the following
theorem, proved in Appendix E:

Theorem 11. There is an iterative algorithm with
O(t5K4 log2(tKδ)) iterations, each involving one call to
AMO and O(t2K2) processing time, that either de-
clares correctly that A is infeasible or outputs a distri-
bution P over policies in Π such that WP satisfies

∀Z ∈ C :

E
x∼ht−1

[∑
a

Z(x, a)

W ′P (x, a)

]
≤ max{4K,βt∆t−1(Z)2}+ 5ε

∆t−1(W) ≤ s+ 2γ,

where ε = 8δ
µ2
t
and γ = δ

µt
.

6 DELAYED FEEDBACK

In a delayed feedback setting, we observe rewards with
a τ step delay according to:

1. The world presents features xt.

2. The learning algorithm chooses an action at ∈
{1, ...,K}.

3. The world presents a reward rt−τ for the action
at−τ given the features xt−τ .

We deal with delay by suitably modifying Algorithm 1
to incorporate the delay τ , giving Algorithm 3.

Now we can prove the following theorem, which shows
the delay has an additive effect on regret.

Theorem 12. For all distributions D over (x,~r) with
K actions, for all sets of N policies Π, and all delay
intervals τ , with probability at least 1− δ, the regret of
DelayedPE (Algorithm 3) is at most

16

√
2K ln

4T 2N

δ

(
τ +
√
T
)
.

Algorithm 3 DelayedPE(Π,δ,K,DX ,τ)
Let Π0 = Π and history h0 = ∅

Define: δt
.
= δ / 4Nt2 and bt

.
= 2

√
2K ln(1/δt)

t

Define: µt
.
= min

{
1

2K
,

√
ln(1/δt)

2Kt

}
For each timestep t = 1 . . . T , observe xt and do:

1. Let t′ = max(t− τ, 1).

2. Choose distribution Pt over Πt−1 s.t. ∀ π ∈ Πt−1:

E
x∼DX

[
1

(1−Kµt′)WPt(x, π(x)) + µt′

]
≤ 2K

3. ∀ a ∈ A, Let W ′t (a) = (1−Kµt′)WPt(xt, a) + µt′

4. Choose at ∼W ′t

5. Observe reward rt.

6. Let Πt =
{
π ∈ Πt−1 :

ηh(π) ≥
(

max
π′∈Πt−1

ηh(π′)
)
− 2bt′

}
7. Let ht = ht−1 ∪ (xt, at, rt,W

′
t (at))

Proof. Essentially as Theorem 4. The variance bound
is unchanged because it depends only on the context
distribution. Thus, it suffices to replace

∑T
t−1

1√
t
with

τ +
∑T+τ
t=τ+1

1√
t−τ = τ +

∑T
t=1

1√
t
in Eq. (3.4).

Acknowledgements

We thank Alina Beygelzimer, who helped in several
formative discussions.

References

Peter Auer. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning Re-
search, 3:397–422, 2002.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-
time analysis of the multiarmed bandit problem. Ma-
chine Learning, 47(2–3):235–256, 2002a.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and
Robert E. Schapire. The nonstochastic multiarmed ban-
dit problem. SIAM Journal of Computing, 32(1):48–77,
2002b.

P. L. Bartlett, E. Hazan, and A. Rakhlin. Adaptive online
gradient descent. In NIPS, 2007.

Alina Beygelzimer, John Langford, and Pradeep Raviku-
mar. Error correcting tournaments. In ALT, 2009.

Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin,
and Robert E. Schapire. Contextual bandit algorithms
with supervised learning guarantees. In AISTATS, 2011.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action
elimination and stopping conditions for the multi-armed
bandit and reinforcement learning problems. Journal of
Machine Learning Research, 7:1079–1105, 2006.

David A. Freedman. On tail probabilities for martingales.
Annals of Probability, 3(1):100–118, 1975.

Y. Freund and R. E. Schapire. A decision-theoretic gener-
alization of on-line learning and an application to boost-
ing. Journal of Computer and System Sciences, 55(1):
119–139, 1997.

Sham M. Kakade and Adam Kalai. From batch to trans-
ductive online learning. In NIPS, 2005.

Adam Tauman Kalai and Santosh Vempala. Efficient al-
gorithms for online decision problems. J. Comput. Syst.
Sci., 71(3):291–307, 2005.

Tze Leung Lai and Herbert Robbins. Asymptotically ef-
ficient adaptive allocation rules. Advances in Applied
Mathematics, 6:4–22, 1985.

J. Langford, A. Smola, and M. Zinkevich. Slow learners
are fast. In NIPS, 2009.

John Langford and Tong Zhang. The epoch-greedy al-
gorithm for contextual multi-armed bandits. In NIPS,
2007.

Maurice Sion. On general minimax theorems. Pacific J.
Math., 8(1):171–176, 1958.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and
Matthias Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. In
ICML, 2010.

A Concentration Inequality

The following is an immediate corollary of Theorem
1 of (Beygelzimer et al., 2011). It can be viewed as
a version of Freedman’s Inequality (Freedman, 1975).
Let y1, . . . , yT be a sequence of real-valued random
variables. Let Et denote the conditional expectation
E[· | y1, . . . , yt−1] and Vt conditional variance.
Theorem 13 (Freedman-style Inequality). Let V,R ∈
R such that

∑T
t=1 Vt[yt] ≤ V , and for all t, yt −

Et[yt] ≤ R. Then for any δ > 0 such that R ≤√
V/ ln(2/δ), with probability at least 1− δ,∣∣∣∣∣

T∑
t=1

yt −
T∑
t=1

Et[yt]

∣∣∣∣∣ ≤ 2
√
V ln(2/δ) .

B Minimax Theorem

The following is a continuous version of Sion’s Mini-
max Theorem (Sion, 1958, Theorem 3.4).
Theorem 14. Let W and Z be compact and convex
sets, and f : W × Z → R a function which for all
Z ∈ Z is convex and continuous in W and for all
W ∈ W is concave and continuous in Z. Then

min
W∈W

max
Z∈Z

f(W,Z) = max
Z∈Z

min
W∈W

f(W,Z) .

C Empirical Variance Bounds

In this section we prove Theorem 6. We first show uni-
form convergence for a certain class of policy distribu-
tions (Lemma 15), and argue that each distribution P
is close to some distribution P̃ from this class, in the
sense that VP,π,t is close to VP̃ ,π,t and V̂P,π,t is close
to V̂P̃ ,π,t (Lemma 16). Together, they imply the main
uniform convergence result in Theorem 6.

For each positive integer m, let Sparse[m] be the set of
distributions P̃ over Π that can be written as

P̃ (π) =
1

m

m∑
i=1

I(π = πi)

(i.e., the average of m delta functions) for some
π1, . . . , πm ∈ Π. In our analysis, we approximate
an arbitrary distribution P over Π by a distribution
P̃ ∈ Sparse[m] chosen randomly by independently
drawing π1, . . . , πm ∼ P ; we denote this process by
P̃ ∼ Pm.
Lemma 15. Fix positive integers (m1,m2, . . .). With
probability at least 1 − δ over the random samples
(x1, x2, . . .) from DX ,

VP̃ ,π,t ≤ (1 + λ) · V̂P̃ ,π,t

+

(
5 +

1

2λ

)
·

(mt + 1) logN + log 2t2

δ

µt · (t− 1)

for all λ > 0, all t ≥ 1, all π ∈ Π, and all distributions
P̃ ∈ Sparse[mt].

Proof. Let

ZP̃ ,π,t(x)
.
=

1

(1−Kµt)WP̃ (x, π(x)) + µt

so VP̃ ,π,t = Ex∼DX [ZP̃ ,π,t(x)] and V̂P̃ ,π,t = (t −
1)−1

∑t−1
i=1 ZP̃ ,π,t(xi). Also let

εt
.
=

log(|Sparse[mt]|N2t2/δ)

µt · (t− 1)

=
((mt + 1) logN + log 2t2

δ)

µt · (t− 1)
.

We apply Bernstein’s inequality and union bounds
over P̃ ∈ Sparse[mt], π ∈ Π, and t ≥ 1 so that with
probability at least 1− δ,

VP̃ ,π,t ≤ V̂P̃ ,π,t +
√

2VP̃ ,π,tεt + (2/3)εt

all t ≥ 1, all π ∈ Π, and all distributions P ∈
Sparse[mt]. The conclusion follows by solving the
quadratic inequality for VP̃ ,π,t to get

VP̃ ,π,t ≤ V̂P̃ ,π,t +
√

2V̂P̃ ,π,tεt + 5εt

and then applying the AM/GM inequality.

Lemma 16. Fix any γ ∈ [0, 1], and any x ∈ X. For
any distribution P over Π and any π ∈ Π, if

m
.
=

⌈
6

γ2µt

⌉
,

then

E
P̃∼Pm

∣∣∣∣∣ 1

(1−Kµt)WP̃ (x, π(x)) + µt

− 1

(1−Kµt)WP (x, π(x)) + µt

∣∣∣∣∣
≤ γ

(1−Kµt)WP (x, π(x)) + µt
.

This implies that for all distributions P over Π and
any π ∈ Π, there exists P̃ ∈ Sparse[m] such that for
any λ > 0,

(
VP,π,t − VP̃ ,π,t

)
+ (1 + λ)

(
V̂P̃ ,π,t − V̂P,π,t

)
≤ γ(VP,π,t + (1 + λ)V̂P,π,t).

Proof. We randomly draw P̃ ∼ Pm, with P̃ (π′)
.
=

m−1
∑m
i=1 I(π′ = πi), and then define

z
.
=
∑
π′∈Π

P (π′) · I(π′(x) = π(x)) and

ẑ
.
=
∑
π′∈Π

P̃ (π′) · I(π′(x) = π(x)).

We have z = Eπ′∼P [I(π′(x) = π(x)] and ẑ =
m−1

∑m
i=1 I(πi(x) = π(x)). In other words, ẑ is the

average of m independent Bernoulli random variables,
each with mean z. Thus, EP̃∼Pm [(ẑ−z)2] = z(1−z)/m
and PrP̃∼Pm [ẑ ≤ z/2] ≤ exp(−mz/8) by a Chernoff

bound. We have

E
P̃∼Pm

∣∣∣∣ 1

(1−Kµt)ẑ + µt
− 1

(1−Kµt)z + µt

∣∣∣∣
≤ E
P̃∼Pm

(1−Kµt)|ẑ − z|
[(1−Kµt)ẑ + µt][(1−Kµt)z + µt]

≤ E
P̃∼Pm

(1−Kµt)|ẑ − z|I(ẑ ≥ 0.5z)

0.5[(1−Kµt)z + µt]2

+ E
P̃∼Pm

(1−Kµt)|ẑ − z|I(ẑ ≤ 0.5z)

µt[(1−Kµt)z + µt]

≤
(1−Kµt)

√
EP̃∼Pm |ẑ − z|2

0.5[(1−Kµt)z + µt]2

+
(1−Kµt)z PrP̃∼Pm(ẑ ≤ 0.5z)

µt[(1−Kµt)z + µt]

≤
(1−Kµt)

√
z/m

0.5[2
√

(1−Kµt)zµt][(1−Kµt)z + µt]

+
(1−Kµt)z exp(−mz/8)

µt[(1−Kµt)z + µt]

≤
γ
√

1−Kµt
√
z/m√

z(6/m)[(1−Kµt)z + µt]

+
(1−Kµt)γ2mz exp(−mz/8)

6[(1−Kµt)z + µt]
,

where the third inequality follows from Jensen’s in-
equality, and the fourth inequality uses the AM/GM
inequality in the denominator of the first term and
the previous observations in the numerators. The fi-
nal expression simplifies to the first desired displayed
inequality by observing that mz exp(−mz/8) ≤ 3 for
allmz ≥ 0 (the maximum is achieved atmz = 8). The
second displayed inequality follows from the following
facts:

E
P̃∼Pm

|VP,π,t − VP̃ ,π,t| ≤ γVP,π,t,

E
P̃∼Pm

(1 + λ)|V̂P,π,t − V̂P̃ ,π,t| ≤ γ(1 + λ)V̂P,π,t.

Both inequalities follow from the first displayed bound
of the lemma, by taking expectation with respect to
the true (and empirical) distributions over x. The de-
sired bound follows by adding the above two inequal-
ities, which implies that the bound holds in expecta-
tion, and hence the existence of P̃ for which the bound
holds.

Now, we can prove Theorem 6.

Proof of Theorem 6. Let

mt
.
=

⌈
6

λ2
· 1

µt

⌉

(for some λ ∈ (0, 1/5) to be determined) and condition
on the ≥ 1− δ probability event from Lemma 15 that

VP̃ ,π,t − (1 + λ)V̂P̃ ,π,t

≤ K ·
(

5 +
1

2λ

)
· (mt + 1) log(N) + log(2t2/δ)

Kµt · (t− 1)

≤ K · 5
(

1 +
1

λ

)
· (mt + 1) log(N) + log(2t2/δ)

Kµt · t

for all t ≥ 2, all P̃ ∈ Sparse[mt], and all π ∈ Π. Using
the definitions ofmt and µt, the second term is at most
(40/λ2) · (1+1/λ) ·K for all t ≥ 16K log(8KN/δ): the
key here is that for t ≥ 16K log(8KN/δ), we have
µt =

√
log(Nt/δ)/(Kt) ≤ 1/(2K) and therefore

mt log(N)

Kµtt
≤ 6

λ2
and

log(N) + log(2t2/δ)

Kµtt
≤ 2.

Now fix t ≥ 16K log(8KN/δ), π ∈ Π, and a distribu-
tion P over Π. Let P̃ ∈ Sparse[mt] be the distribution
guaranteed by Lemma 16 with γ = λ satisfying

VP,π,t ≤
VP̃ ,π,t − (1 + λ)V̂P̃ ,π,t + (1 + λ)2V̂P,π,t

1− λ
.

Substituting the previous bound for VP̃ ,π,t − (1 +

λ)V̂P̃ ,π,t gives

VP,π,t ≤
1

1− λ

(
40

λ2
(1 + 1/λ)K + (1 + λ)2V̂P,π,t

)
.

This can be bounded as (1 + ε) · V̂P,π,t + (7500/ε3) ·K
by setting λ = ε/5.

D Analysis of RandomizedUCB

D.1 Preliminaries

First, we define the following constants.

• ε ∈ (0, 1) is a fixed constant, and

• ρ .
= 7500

ε3 is the factor that appears in the bound
from Theorem 6.

• θ .
= (ρ + 1)/(1 − (1 + ε)/2) = 2

1−ε
(
1 + 7500

ε3

)
≥ 5

is a constant central to Lemma 21, which bounds
the variance of the optimal policy’s estimated re-
wards.

Recall the algorithm-specific quantities

Ct
.
= 2 log

(
Nt

δ

)
µt

.
= min

{
1

2K
,

√
Ct

2Kt

}
.

It can be checked that µt is non-increasing. We define
the following time indices:

• t0 is the first round t in which µt =
√
Ct/(2Kt).

Note that 8K ≤ t0 ≤ 8K log(NK/δ).

• t1 := d16K log(8KN/δ)e is the round given by
Theorem 6 such that, with probability at least
1− δ,

E
xt∼DX

[
1

W ′t (π(xt))

]
≤ (1 + ε) E

x∼ht−1

[
1

WPt,µt(x, π(x))

]
+ ρK (D.1)

for all π ∈ Π and all t ≥ t1, where WP,µ(x, ·) is
the distribution over A given by

WP,µ(x, a)
.
= (1−Kµ)WP (x, a) + µ,

and the notation Ex∼ht−1
denotes expectation

with respect to the empirical (uniform) distribu-
tion over x1, . . . , xt−1.

The following lemma shows the effect of allowing slack
in the optimization constraints.

Lemma 17. If P satisfies the constraints of the opti-
mization problem (4.1) with slack K for each distribu-
tion Q over Π, i.e.,

E
π∼Q

E
x∼ht−1

[
1

(1−Kµt)WP (x, π(x)) + µt

]
≤ max

{
4K,

(t− 1)∆t−1(WQ)2

180Ct−1

}
+K

for all Q, then P satisfies

E
π∼Q

E
x∼ht−1

[
1

(1−Kµt)WP (x, π(x)) + µt

]
≤ max

{
5K,

(t− 1)∆t−1(WQ)2

144Ct−1

}
for all Q.

Proof. Let b .
= max

{
4K, (t−1)∆t−1(π)2

180Ct−1

}
. Note that

b
4 ≥ K. Hence b + K ≤ 5b

4 which gives the stated
bound.

Note that the allowance of slack K is somewhat arbi-
trary; any O(K) slack is tolerable provided that other
constants are adjusted appropriately.

D.2 Deviation Bound for ηt(π)

For any policy π ∈ Π, define, for 1 ≤ t ≤ t0,

V̄t(π)
.
= K,

and for t > t0,

V̄t(π)
.
= K + E

xt∼DX

[
1

W ′t (π(xt))

]
.

The V̄t(π) bounds the variances of the terms in ηt(π).
Lemma 18. Assume the bound in (D.1) holds for all
π ∈ Π and t ≥ t1. For all π ∈ Π:

1. If t ≤ t1, then

K ≤ V̄t(π) ≤ 4K.

2. If t > t1, then

V̄t(π)

≤ (1 + ε) E
x∼ht−1

[
1

(1−Kµt)WPt(x, π(x)) + µt

]
+ (ρ+ 1)K.

Proof. For the first claim, note that if t < t0, then
V̄t(π) = K, and if t0 ≤ t < t1, then

µt =

√
log(Nt/δ)

Kt
≥

√
log(Nt0/δ)

16K2 log(8KN/δ)
≥ 1

4K
;

so W ′t (a) ≥ µt ≥ 1/(4K).

For the second claim, pick any t > t1, and note that
by definition of t1, for any π ∈ Π we have

E
xt∼DX

[
1

W ′t (π(xt))

]
≤ (1 + ε) E

x∼ht−1

[
1

(1−Kµt)WPt(x, π(x)) + µt

]
+ ρK.

The stated bound on V̄t(π) now follows from its defi-
nition.

Let

V̄max,t(π)
.
= max{V̄τ (π), τ = 1, 2, . . . , t}

The following lemma gives a deviation bound for ηt(π)
in terms of these quantities.
Lemma 19. Pick any δ ∈ (0, 1). With probability at
least 1− δ, for all pairs π, π′ ∈ Π and t ≥ t0, we have∣∣∣(ηt(π)− ηt(π′))− (ηD(π)− ηD(π′))

∣∣∣
≤ 2

√
(V̄max,t(π) + V̄max,t(π′)) · Ct

t
. (D.2)

Proof. Fix any t ≥ t0 and π, π′ ∈ Π. Let δt :=
exp(−Ct). Pick any τ ≤ t. Let

Zτ (π)
.
=
rτ (aτ)I(π(xτ) = aτ)

W ′τ (aτ)

so ηt(π) = t−1
∑t
τ=1 Zτ (π). It is easy to see that

E
(xτ ,~rτ)∼D,
aτ∼W ′τ

[Zτ (π)− Zτ (π′)] = ηD(π)− ηD(π′)

and

t∑
τ=1

E
(xτ ,~r(τ))∼D,
aτ∼W ′τ

[
(Zτ (π)− Zτ (π′))2

]

≤
t∑

τ=1

E
xτ∼DX

[
1

W ′τ (π(xτ))
+

1

W ′τ (π′(xτ))

]
≤ t · (V̄max,t(π) + V̄max,t(π

′)).

Moreover, with probability 1,

|Zτ (π)− Zτ (π′)| ≤ 1

µτ
.

Now, note that since t ≥ t0, µt =
√

Ct
2Kt , so that

t = Ct
2Kµ2

t
. Further, both V̄max,t(π) and V̄max,t(π

′) are
at least K. Using these bounds we get√

1

log(1/δt)
· t · (V̄max,t(π) + V̄max,t(π′))

≥

√
1

Ct
· Ct

2Kµ2
t

· 2K =
1

µt
≥ 1

µτ
,

for all τ ≤ t, since the µτ ’s are non-increasing. There-
fore, by Freedman’s inequality (Theorem 13), we have

Pr

[∣∣∣(ηt(π)− ηt(π′))− (ηD(π)− ηD(π′))
∣∣∣

> 2

√
(V̄max,t(π) + V̄max,t(π′)) · log(1/δt)

t

]
≤ 2δt.

The conclusion follows by taking a union bound over
t0 < t ≤ T and all pairs π, π′ ∈ Π.

D.3 Variance Analysis

We define the following condition, which will be as-
sumed by most of the subsequent lemmas in this sec-
tion.

Condition 1. The deviation bound (D.1) holds for
all π ∈ Π and t ≥ t1, and the deviation bound (D.2)
holds for all pairs π, π′ ∈ Π and t ≥ t0.

The next two lemmas relate the V̄t(π) to the ∆t(π).

Lemma 20. Assume Condition 1. For any t ≥ t1 and
π ∈ Π, if V̄t(π) > θK, then

∆t−1(π) ≥

√
72V̄t(π)Ct−1

t− 1
.

Proof. By Lemma 18, the fact V̄t(π) > θK implies
that

E
x∼ht−1

[
1

(1−Kµt)WPt(x, π(x)) + µt

]
>

1

1 + ε

(
1− ρ+ 1

θ

)
V̄t(π) ≥ 1

2
V̄t(π).

Since V̄t(π) > θK ≥ 5K, Lemma 17 implies that in or-
der for Pt to satisfy the optimization constraint in (4.1)
corresponding to π (with slack ≤ K), it must be the
case that

∆t−1(π)

≥

√
144Ct−1

t− 1
· E
x∼ht−1

[
1

(1−Kµt)WPt(x, π(x)) + µt

]
.

Combining with the above, we obtain

∆t−1(π) ≥

√
72V̄t(π)Ct−1

t− 1
.

Lemma 21. Assume Condition 1. For all t ≥ 1,
V̄max,t(πmax) ≤ θK and V̄max,t(πt) ≤ θK.

Proof. By induction on t. The claim for all t ≤ t1 fol-
lows from Lemma 18. So take t > t1, and assume as
the (strong) inductive hypothesis that V̄max,τ (πmax) ≤
θK and V̄max,τ (πτ) ≤ θK for τ ∈ {1, . . . , t− 1}. Sup-
pose for sake of contradiction that V̄t(πmax) > θK. By
Lemma 20,

∆t−1(πmax) ≥

√
72V̄t(πmax)Ct−1

t− 1
.

However, by the deviation bounds, we have

∆t−1(πmax) + ∆D(πt−1)

≤ 2

√
(V̄max,t−1(πt−1) + V̄max,t−1(πmax))Ct−1

t− 1

≤ 2

√
2V̄t(πmax)Ct−1

t− 1
<

√
72V̄t(πmax)Ct−1

t− 1
.

The second inequality follows from our assumption and
the induction hypothesis:

V̄t(πmax) > θK ≥ V̄max,t−1(πt−1), V̄max,t−1(πmax).

Since ∆D(πt−1) ≥ 0, we have a contradiction, so
it must be that V̄t(πmax) ≤ θK. This proves that
V̄max,t(πmax) ≤ θK.

It remains to show that V̄max,t(πt) ≤ θK. So sup-
pose for sake of contradiction that the inequality fails,
and let t1 < τ ≤ t be any round for which V̄τ (πt) =
V̄max,t(πt) > θK. By Lemma 20,

∆τ−1(πt) ≥

√
72V̄τ (πt)Cτ−1

τ − 1
. (D.3)

On the other hand,

∆τ−1(πt) ≤ ∆D(πτ−1) + ∆τ−1(πt) + ∆t(πmax)

=
(

∆D(πτ−1) + ∆τ−1(πmax)
)

+
(
ητ−1(πmax)− ητ−1(πt)−∆D(πt)

)
+
(

∆D(πt) + ∆t(πmax)
)
.

The parenthesized terms can be bounded using the
deviation bounds, so we have

∆τ−1(πt)

≤2

√
(V̄max,τ−1(πτ−1) + V̄max,τ−1(πmax))Cτ−1

τ − 1

+ 2

√
(V̄max,τ−1(πt) + V̄max,τ−1(πmax))Cτ−1

τ − 1

+ 2

√
(V̄max,t(πt) + V̄max,t(πmax))Ct

t

≤2

√
2V̄τ (πt)Cτ−1

τ − 1
+ 2

√
2V̄τ (πt)Cτ−1

τ − 1

+ 2

√
2V̄τ (πt)Ct

t

<

√
72V̄τ (πt)Cτ−1

τ − 1

where the second inequality follows from the following
facts:

1. By induction hypothesis, we have
V̄max,τ−1(πτ−1), V̄max,τ−1(πmax), V̄max,t(πmax) ≤
θK, and V̄τ (πt) > θK,

2. V̄τ (πt) ≥ V̄max,t(πt), and
3. since τ is a round that achieves V̄max,t(πt), we

have V̄τ (πt) ≥ V̄τ−1(πt).

This contradicts the inequality in (D.3), so it must be
that V̄max,t(πt) ≤ θK.

Corollary 22. Under the assumptions of Lemma 21,

∆D(πt) + ∆t(πmax) ≤ 2

√
2θKCt

t

for all t ≥ t0.

Proof. Immediate from Lemma 21 and the deviation
bounds from (D.2).

The following lemma shows that if a policy π has large
∆τ (π) in some round τ , then ∆t(π) remains large in
later rounds t > τ .

Lemma 23. Assume Condition 1. Pick any π ∈ Π
and t ≥ t1. If V̄max,t(π) > θK, then

∆t(π) > 2

√
2V̄max,t(π)Ct

t
.

Proof. Let τ ≤ t be any round in which V̄τ (π) =
V̄max,t(π) > θK. We have

∆t(π) ≥ ∆t(π)−∆t(πmax)−∆D(πτ−1)

= ∆τ−1(π) +
(
ηt(πmax)− ηt(π)−∆D(π)

)
+
(
ηD(πτ−1)− ηD(π)−∆τ−1(π)

)
≥

√
72V̄τ (π)Cτ−1

τ − 1

− 2

√
(V̄max,t(π) + V̄max,t(πmax))Ct

t

− 2

√
(V̄max,τ−1(π) + V̄max,τ−1(πτ−1))Cτ−1

τ − 1

>

√
72V̄max,t(π)Cτ−1

τ − 1
− 2

√
2V̄max,t(π)Ct

t

− 2

√
2V̄max,t(π)Cτ−1

τ − 1

≥ 2

√
2V̄max,t(π)Cτ−1

τ − 1
≥ 2

√
2V̄max,t(π)Ct

t

where the second inequality follows from Lemma 20
and the deviation bounds, and the third inequality
follows from Lemma 21 and the facts that V̄τ (π) =
V̄max,t(π) > θK ≥ V̄max,t(πmax), V̄max,τ−1(πτ−1), and
V̄max,t(π) ≥ V̄max,τ−1(π).

D.4 Regret Analysis

We now bound the value of the optimization prob-
lem (4.1), which then leads to our regret bound. The
next lemma shows the existence of a feasible solution
with a certain structure based on the non-uniform con-
straints. Recall from Section 5, that solving the opti-
mization problem A, i.e. constraints (5.1, 5.2, 5.3), for
the smallest feasible value of s is equivalent to solving
the RUCB optimization problem (4.1). Recall that
βt = t−1

180Ct−1
.

Lemma 24. There is a point W ∈ R(t−1)K such that

∆t−1(W) ≤ 4

√
K

βt

W ∈ C

∀Z ∈ C : E
x∼ht−1

[∑
a

Z(x, a)

W ′(x, a)

]
≤ max{4K,βt∆t−1(Z)2}

In particular, the value of the optimization prob-
lem (4.1), OPTt, is bounded by 8

√
K
βt
≤ 110

√
KCt−1

t−1 .

Proof. Define the sets {Ci : i = 1, 2, . . .} such that

Ci := {Z ∈ C : 2i+1κ ≤ ∆t−1(Z) ≤ 2i+2κ},

where κ =
√

K
βt
. Note that since ∆t−1(Z) is a linear

function of Z, each Ci is a closed, convex, compact
set. Also, define C0 = {Z ∈ C : ∆t−1(Z) ≤ 4κ}.
This is also a closed, convex, compact set. Note that
C =

⋃∞
i=0 Ci.

Let I = {i : Ci 6= ∅}.For i ∈ I \ {0}, define wi = 4−i,
and let w0 = 1−

∑
i∈I\{0} wi. Note that w0 ≥ 2/3.

By Lemma 1, for each i ∈ I, there is a point Wi ∈ Ci
such that for all Z ∈ Ci, we have

E
x∼ht−1

[∑
a

Z(x, a)

W ′i (x, a)

]
≤ 2K.

Here we use the fact that Kµt ≤ 1/2 to upper
bound K

1−Kµt by 2K. Now consider the point W =∑
i∈I wiWi. Since C is convex, W ∈ C.

Now fix any i ∈ I. For any (x, a), we have W ′(x, a) ≥
wiW

′
i (x, a), so that for all Z ∈ Ci, we have

E
x∼ht−1

[∑
a

Z(x, a)

W ′(x, a)

]
≤ 1

wi
2K

≤ 4i+1K

≤ max{4K,βt∆t−1(Z)2},

so the constraint for Z is satisfied.

Finally, since for all i ∈ I, we have wi ≤ 4−i and
∆t−1(Wi) ≤ 2i+2κ, we get

∆t−1(W) =
∑
i∈I

wi∆t−1(Wi) ≤
∞∑
i=0

4−i · 2i+2κ ≤ 8κ.

The value of the optimization problem (4.1) can be
related to the expected instantaneous regret of policy
drawn randomly from the distribution Pt.
Lemma 25. Assume Condition 1. Then∑
π∈Π

Pt(π)∆D(π) ≤
(

220 + 4
√

2θ
)
·
√
KCt−1

t− 1
+ 2εopt,t

for all t > t1.

Proof. Fix any π ∈ Π and t > t1. By the deviation
bounds, we have(
ηD(πt−1)− ηD(π)

)
≤ ∆t−1(π) + 2

√
(V̄max,t−1(π) + V̄max,t−1(πt−1))Ct−1

t− 1

≤ ∆t−1(π) + 2

√(
V̄max,t−1(π) + θK

)
Ct−1

t− 1
,

by Lemma 21. By Corollary 22 we have

∆D(πt−1) ≤ 2

√
2θKCt−1

t− 1

Thus, we get

∆D(π) ≤
(
ηD(πt−1)− ηD(π)

)
+ ∆D(πt−1)

≤ ∆t−1(π) + 2

√(
V̄max,t−1(π) + θK

)
Ct−1

t− 1

+ 2

√
2θKCt−1

t− 1
.

If V̄max,t−1(π) ≤ θK, then we have

∆D(π) ≤ ∆t−1(π) + 4

√
2θKCt−1

t− 1
.

Otherwise, Lemma 23 implies that

V̄max,t−1(π) ≤ (t− 1) ·∆t−1(π)2

8Ct−1
,

so

∆D(π) ≤ ∆t−1(π) + 2

√
∆t−1(π)2

8
+
θKCt−1

t− 1

+ 2

√
2θKCt−1

t− 1

≤ 2∆t−1(π) + 4

√
2θKCt−1

t− 1
.

Therefore∑
π∈Π

Pt(π)∆D(π)

≤ 2
∑
π∈Π

Pt(π)∆t−1(π) + 4

√
2θKCt−1

t− 1

≤ 2 (OPTt +εopt,t) + 4

√
2θKCt−1

t− 1

where OPTt is the value of the optimization prob-
lem (4.1). The conclusion follows from Lemma 24.

We can now finally prove the main regret bound for
RUCB.

Proof of Theorem 5. The regret through the first t1
rounds is trivially bounded by t1. In the event that
Condition 1 holds, we have for all t ≥ t1,∑

a∈A
Wt(a)rt(a) ≥

∑
a∈A

(1−Kµt)WPt(xt, a)rt(a)

≥
∑
a∈A

WPt(xt, a)rt(a)−Kµt

=
∑
π∈Π

Pt(π)rt(π(xt))−Kµt,

and therefore

E
(xt,~r(t))∼D
at∼W ′t

[rt(at)]

= E
(xt,~r(t))∼D

[∑
a∈A

W ′t (a)rt(a)

]
≥
∑
π∈Π

Pt(π)ηD(π)−Kµt

≥ ηD(πmax)−O

(√
KCt−1

t− 1
+ εopt,t

)

where the last inequality follows from Lemma 25.
Summing the bound from t = t1 + 1, . . . , T gives

T∑
t=1

E
(xt,~r(t))∼D
at∼W ′t

[ηD(πmax)− rt(at)]

≤ t1 +O
(√

TK log (NT/δ)
)
.

By Azuma’s inequality, the probability that∑T
t=1 rt(at) deviates from its mean by more than

O(
√
T log(1/δ)) is at most δ. Finally, the probability

that Condition 1 does not hold is at most 2δ by
Lemma 19, Theorem 6, and a union bound. The
conclusion follows by a final union bound.

E Details of Oracle-based Algorithm

We show how to (approximately) solve A using the
ellipsoid algorithm with AMO. Fix a time period t.
To avoid clutter, (only) in this section we drop the
subscript t− 1 from ηt−1(·), ∆t−1(·), and ht−1 so that
they becomes η(·), ∆(·), and h respectively.

In order to use the ellipsoid algorithm, we need to
relax the program a little bit in order to ensure that
the feasible region has a non-negligible volume. To do
this, we need to obtain some perturbation bounds for
the constraints of A. The following lemma gives such
bounds. For any δ > 0, we define Cδ to be the set of
all points within a distance of δ from C.
Lemma 26. Let δ ≤ b/4 be a parameter. Let U,W ∈
C2δ be points such that ‖U −W‖ ≤ δ. Then we have

|∆(U)−∆(W)| ≤ γ (E.1)
∀Z ∈ C1 :∣∣∣∣∣ Ex∼h

[∑
a

Z(x, a)

U ′(x, a)

]
− E
x∼h

[∑
a

Z(x, a)

W ′(x, a)

]∣∣∣∣∣ ≤ ε
(E.2)

where ε = 8δ
µ2
t
and γ = δ

µt
.

Proof. First, we have

|η(U)− η(W)| ≤ 1

t− 1

∑
(x,a,r,q)∈h

r

p
|U(x, a)−W (x, a)|

≤ δ

µt
= γ,

which implies (E.1).

Next, for any Z ∈ C1, we have∣∣∣∣∣∑
a

Z(x, a)

U ′(x, a)
−
∑
a

Z(x, a)

W ′(x, a)

∣∣∣∣∣
≤
∑
a

|Z(x, a)| |U
′(x, a)−W ′(x, a)|
U ′(x, a)W ′(x, a)

≤ 8δ

µ2
t

= ε.

In the last inequality, we use the Cauchy-Schwarz in-
equality, and use the following facts (here, Z(x, ·) de-
notes the vector 〈Z(x, a)〉a, etc.):

1. ‖Z(x, ·)‖ ≤ 2 since Z ∈ C1,
2. ‖U ′(x, ·) − W ′(x, ·)‖ ≤ ‖U(x, ·) − W (x, ·)‖ ≤ δ,

and
3. U ′(x, a) ≥ (1− bK) · (−2δ) + b ≥ b/2, for δ ≤ b/4,

and similarly W ′(x, a) ≥ b/2.

This implies (E.2).

We now consider the following relaxed form of A.
Here, δ ∈ (0, b/4) is a parameter. We want to find
a point W ∈ R(t−1)K such that

∆(W) ≤ s+ γ (E.3)
W ∈ Cδ (E.4)
∀Z ∈ C2δ :

E
x∼h

[∑
a

Z(x, a)

W ′(x, a)

]
≤ max{4K,βt∆(Z)2}+ ε,

(E.5)

where ε and γ are as defined in Lemma 26. Call this
relaxed program A′.

We apply the ellipsoid method to A′ rather than A.
Recall the requirements of Lemma 8: we need an en-
closing ball of bounded radius for the feasible region,
and the radius of an enclosed ball in the feasible region.
The following lemma gives this.
Lemma 27. The feasible region for A′ is contained in
B(0,

√
t + δ), and if A is feasible, then it contains a

ball of radius δ.

Proof. Note that for any W ∈ Cδ, we have ‖W‖ ≤√
t+ δ, so the feasible region lies in B(0,

√
t+ δ).

Next, if A is feasible, let W ? ∈ C be any feasible solu-
tion to A. Consider the ball B(W ?, δ). Let U be any
point in B(W ?, δ). Clearly U ∈ Cδ. By Lemma 26,
assuming δ ≤ 1/2, we have for all Z ∈ C2δ,

E
x∼h

[∑
a

Z(x, a)

U ′(x, a)

]
≤ E
x∼h

[∑
a

Z(x, a)

U ′(x, a)

]
+ ε

≤ max{4K,βt∆(Z)2}+ ε.

Also
∆(U) ≤ ∆(W ?) + γ ≤ s+ γ.

Thus, U is feasible for A′, and hence the entire ball
B(W ?, δ) is feasible for A′.

We now give the construction of a separation oracle for
the feasible region of A′ by checking for violations of
the constraints. In the following, we use the word “iter-
ation” to indicate one step of either the ellipsoid algo-
rithm or the perceptron algorithm. Each such iteration
involves one call to AMO, and additional O(t2K2)
processing time.

LetW ∈ R(t−1)K be a candidate point that we want to
check for feasibility for A′. We can check for violation
of the constraint (E.3) easily, and since it is a linear
constraint in W , it automatically yields a separating
hyperplane if it is violated.

The harder constraints are (E.4) and (E.5). Recall
that Lemma 9 shows that that AMO allows us to do

linear optimization over C efficiently. This immedi-
ately gives us the following useful corollary:

Corollary 28. Given a vector w ∈ R(t−1)K and δ > 0,
we can compute arg maxZ∈Cδ w · Z using one invoca-
tion of AMO.

Proof. This follows directly from the following fact:

arg max
Z∈Cδ

w · Z =
δ

‖w‖
w + arg max

Z∈C
w · Z.

Now we show how to use AMO to check for constraint
(E.4):

Lemma 29. Suppose we are given a point W . Then
in O(t

δ2) iterations, if W /∈ C2δ, we can construct a
hyperplane separating W from Cδ. Otherwise, we de-
clare correctly that W ∈ C2δ. In the latter case, we can
find an explicit distribution P over policies in Π such
that WP satisfies ‖WP −W‖ ≤ 2δ.

Proof. We run the perceptron algorithm with the ori-
gin at W and all points in Cδ being positive exam-
ples. The goal of the perceptron algorithm then is to
find a hyperplane going through W that puts all of Cδ
(strictly) on one side. In each iteration of the percep-
tron algorithm, we have a weight vector w that is the
normal to a candidate hyperplane, and we need to find
a point Z ∈ Cδ such that w · (Z −W) ≤ 0 (note that
we have shifted the origin to W). To do this, we use
AMO as in Lemma 9 to find Z? = arg maxZ∈Cδ −w·Z.
If w · (Z? −W) ≤ 0, we use Z? to update w using the
perceptron update rule, w ← w + (Z? −W). Other-
wise, we have w · (Z −W) > 0 for all W ∈ Cδ, and
hence we have found our separating hyperplane.

Now suppose that W /∈ C2δ, i.e. the distance of W
from Cδ is more than δ. Since ‖Z − W‖ ≤ 2

√
t +

3δ = O(
√
t) for all W ∈ Cδ (assuming δ = O(

√
t)),

the perceptron convergence guarantee implies that in
O(t

δ2) iterations we find a separating hyperplane.

If in k = O(t
δ2) iterations we haven’t found a separat-

ing hyperplane, then W ∈ C2δ. In fact the perceptron
algorithm gives a stronger guarantee: if the k poli-
cies found in the run of the perceptron algorithm are
π1, π2, . . . , πk ∈ Π, then W is within a distance of 2δ
from their convex hull, C′ = conv(π1, π2, . . . , πk). This
is because a run of the perceptron algorithm on C′2δ
would be identical to that on C2δ for k steps. We can
then compute the explicit distribution over policies P
by computing the Euclidean projection of W on C′ in

poly(k) time using a convex quadratic program:

min ‖W−
∑k
i=1Piπi‖2∑

i

Pi = 1

∀i : Pi ≥ 0

Solving this quadratic program, we get a distribution
P over the policies {π1, π2, . . . , πk} such that ‖WP −
W‖ ≤ 2δ.

Finally, we show how to check constraint (E.5):

Lemma 30. Suppose we are given a point W . In
O(t

3K2

δ2 · log(tδ)) iterations, we can either find a point
Z ∈ C2δ such that

E
x∼h

[∑
a

Z(x, a)

W ′(x, a)

]
≥ max{4K,βt∆(Z)2}+ 2ε,

or else we conclude correctly that for all Z ∈ C, we
have

E
x∼h

[∑
a

Z(x, a)

W ′(x, a)

]
≤ max{4K,βt∆(Z)2}+ 3ε.

Proof. We first rewrite η(W) as η(W) = w · π, where
w is a vector defined as

w(x, a) =
1

t− 1

∑
(x′,a′,r,p)∈h: x′=x,a′=a

r

p
.

Thus, ∆(Z) = v − w · Z, where v = maxπ′ η(π′) =
maxπ′ w · π′ which can be computed by using AMO
once.

Next, using the candidate point W , compute the
vector u defined as u(x, a) = nx/t

W ′(x,a) , where nx
is the number of times x appears in h, so that
Ex∼h

[∑
a
Z(x,a)
W ′(x,a)

]
= u ·Z. Now, the problem reduces

to finding a point R ∈ C which violates the constraint

u · Z ≤ max{4K,βt(w · Z − v)2}+ 3ε.

Define

f(Z) = max{4K,βt(w · Z − v)2}+ 3ε− u · Z.

Note that f is convex function of Z. Checking for vi-
olation of the above constraint is equivalent to solving
the following (convex) program:

f(Z) ≤ 0 (E.6)
Z ∈ C (E.7)

To do this, we again apply the ellipsoid method, but
on the relaxed program

f(Z) ≤ ε (E.8)
Z ∈ Cδ (E.9)

To run the ellipsoid algorithm, we need a separation
oracle for the program. Given a candidate solution Z,
we run the algorithm of Lemma 29, and if Z /∈ C2δ, we
construct a hyperplane separating Z from Cδ.

Now suppose we conclude that Z ∈ C2δ. Then we
construct a separation oracle for (E.6) as follows. If
f(Z) > ε, then since f is a convex function of Z, we
can construct a separating hyperplane as in Lemma 10.

Now we can run the ellipsoid algorithm with the
starting ellipsoid being B(0,

√
t). If there is a point

Z? ∈ C such that f(Z?) ≤ 0, then consider the ball
B(Z?, 4δ

5
√
tKβt

). For any Y ∈ B(Z?, 4δ
5
√
tKβt

), we have

|(u · Z?)− (u · Y)| ≤ ‖u‖‖Z? − Y ‖ ≤ ε

2

since ‖u‖ ≤
√
K
µt

. Also,

βt|(w · Z? − v)2 − (w · Y − v)2|
= βt|(w · Z? − w · Y)(w · Z? + w · Y − 2v)|

≤ βt‖w‖‖Z? − Y ‖(‖w‖(‖Z?‖+ ‖Y ‖) + 2|v|) ≤ ε

2
,

since ‖w‖ ≤ 1
µt
, ‖Z?‖ ≤

√
t, ‖Y ‖ ≤

√
t+δ ≤ 2

√
t, and

|v| ≤ ‖w‖ ·
√
t ≤

√
t

µt
.

Thus, f(Y) ≤ f(Z?) + ε ≤ ε, so the entire ball
B(Z?, 4δ

5
√
tKβt

) is feasible for the relaxed program.

By Lemma 8, in O(t2K2 · log(tKδ)) iterations of the
ellipsoid algorithm, we obtain one of the following:

1. we either find a point Z ∈ C2δ such that f(Z) ≤ ε,
i.e.

E
x∼h

[∑
a

Z(x, a)

W ′(x, a)

]
≥ max{4K,βt∆(Z)2}+ 2ε,

2. or else we conclude that the original convex pro-
gram (E.6,E.7) is infeasible, i.e. for all Z ∈ C, we
have

E
x∼h

[∑
a

Z(x, a)

W ′(x, a)

]
≤ max{4K,βt∆(Z)2}+ 3ε.

The total number of invocations of iterations is
bounded by O(t2K2 · log(tKδ)) · O(t

δ2) = O(t
3K2

δ2 ·
log(tKδ)).

Lemma 31. Suppose we are given a point Z ∈ C2δ
such that

E
x∼h

[∑
a

Z(x, a)

W ′(x, a)

]
≥ max{4K,βt∆(Z)2}+ 2ε.

Then we can construct a hyperplane separating W
from all feasible points for A′.

Proof. For notational convenience, define the function

fZ(W) := E
x∼h

[∑
a

Z(x, a)

W ′(x, a)

]
−max{4K,βt∆(Z)2}−2ε.

Note that it is a convex function of W . Note that for
any point U that is feasible for A′, we have fZ(U) ≤
−ε, whereas fZ(W) ≥ 0. Thus, by Lemma 10, we can
construct the desired separating hyperplane.

We can finally prove Theorem 11:

Proof. [Theorem 11.] We run the ellipsoid algorithm
starting with the ball B(0,

√
t + δ). At each point,

we are given a candidate solution W for program A′.
We check for violation of constraint (E.3) first. If
it is violated, the constraint, being linear, gives us
a separating hyperplane. Else, we use Lemma 29 to
check for violation of constraint (E.4). If W /∈ C2δ,
then we can construct a separating hyperplane. Else,
we use Lemmas 30 and 31 to check for violation of
constraint (E.5). If there is a Z ∈ C such that

Ex∼h
[∑

a
Z(x,a)
W ′(x,a)

]
≥ max{4K,βt∆(Z)2} + 3ε, then

we can find a separating hyperplane. Else, we con-
clude that the current point W satisfies the following
constraints:

∆(W) ≤ s+ γ

∀Z ∈ C : E
x∼h

[∑
a

Z(x, a)

W ′(x, a)

]
≤ max{4K,βt∆(Z)2}+ 3ε

W ∈ C2δ

We can then use the perceptron-based algorithm of
Lemma 29 to “round” W to an explicit distribution P
over policies in Π such that WP satisfies ‖WP −W‖ ≤
2δ. Then Lemma 26 implies the stated bounds forWP .

By Lemma 8, in O(t2K2 log(tδ)) iterations of the el-
lipsoid algorithm, we find the point W satisfying the
constraints given above, or declare correctly that A is
infeasible. In the worst case, we might have to run the
algorithm of Lemma 30 in every iteration, leading to an
upper bound of O(t2K2 log(tδ))×O(t

3K2

δ2 · log(tKδ)) =

O(t5K4 log2(tKδ)) on the number of iterations.

