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Abstract— The problem of optimal sensor placement for
FDI consists in determining the set of sensors that minimizes
a pre-defined cost function satisfying at the same time a
pre-established set of FDI specifications for a given set of
faults. Existing approaches are mainly based on formulating
an optimization problem once the sets of all possible ARRs
has been generated, considering all possible candidate sensors
installed. However, the associated computational complexity is
exponential with the number of possible sensors. The main goal
of this paper is to propose an incremental algorithm for FDI
sensor placement that tries to avoid the computational burden.
To show the effectiveness of this approach, an application based
on a fuel-cell system is proposed.

I. INTRODUCTION

Process faults, if undetected, have a serious impact on
process economy, product quality, safety, productivity and
pollution level. In order to detect, diagnose and correct these
abnormal process behaviors, efficient and advanced auto-
mated diagnostic systems are of great importance to modern
industries. Considerable research has gone into the develop-
ment of such diagnostic systems [1]. Most approaches for
fault detection and isolation (FDI) in some sense involve
the comparison of the observed behavior of the process to
a reference model. The process behavior is inferred using
sensors measuring the important variables in the process.
Hence, the efficiency of the diagnostic approach depends
critically on the location of sensors used for monitoring
process variables. The emphasis of most of the work on
model-based fault diagnosis has been more on procedures
to perform diagnosis given a set of sensors and less on
the actual location of sensors for efficient identification of
faults. The problem of sensor placement for FDI consists in
determining the optimal set of instruments such that a pre-
defined set of faults are detected and isolated. In many cases,
this set is defined in order to design some remedial actions
such that the control loop is able to continue operating
(fault-tolerant control). The usual objective to minimize in
the sensor placement problem is the sensor cost. There are
several articles devoted to the study of the design of sensor
networks using goals corresponding to normal monitoring
operation. Aside from cost, different other objective func-
tions such as precision, reliability, or simply observability
were used. Different techniques were also used, such as
graph theory, mathematical programming, genetic algorithms
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and multiobjective optimization, among others. The problem
has also been extended to incorporate upgrade considerations
and maintenance costs. In [2], Bagajewicz reviews all these
methods, but noticed that the problem of sensor placement
in the model-based FDI community is still an open problem.
However, some contributions have already been done in
this direction [3], [4], [5], [6], [7], [8], [9], among others.
In [6], the sensor placement problem is solved by the
analysis of a set of possible Analitical Redundacy Relations
(ARR) using algorithms of cycle generation in graphs. More
recent approaches consist in finding the set of all possible
ARRs under the assumption that all possible sensors are
installed [3]. For sensor placement it is required to use an
ARR generation algorithm that is complete. Otherwise, the
sensor placement could exclude from consideration some
sensor configurations just because some ARRs have not been
generated. The excluded configurations could provide better
FDI results that the ones that have been generated. Or, even
in some dramatic cases, the sensor placement could not find
solution because of this lack of completeness, when in fact
if all ARRS were generated the solution would have been
found. Just recently, several exhaustive methods have been
developed that claim that are able to generate the complete
set of ARRs [10], [11], [12].

In [13], optimal sensor placement for model-based FDI
require to find the set of all possible analytical redundancy
relations (ARRs), considering that all possible candidate
sensors are installed. Then, a set of sensors that minimizes
the total cost of the network is selected such that the
resulting ARRs satisfy that a pre-established set of faults
can be detected and isolated. However, the associated com-
putational complexity is exponential with the number of
possible sensors. The main goal of this paper is to propose an
efficient algorithm that tries to avoid the practical limitations
of the approach presented in [13]. This algorithm solves
incrementally the optimal sensor location problem, by adding
at each iteration one sensor and just generating the set of
ARRs that are required. The effectiveness of this approach is
illustrated through an application based on a fuel-cell system.

The structure of the paper is as follows. In Section
II, the sensor placement problem for FDI is presented.
Section III presents an incremental approach to optimal
sensor placement problem. Section IV presents the proposed
algorithm. Finally, in Section V, the effectiveness of the
proposed approach is demonstrated with an application on
a fuel-cell system.
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II. SENSOR PLACEMENT PROBLEM

A. Problem set-up

Model-based FDI is based on comparing the real system
behavior measured using a set of sensors with the estimated
behavior obtained using a set of analytical redundancy rela-
tions (ARRs). The difference between the real and estimated
behavior is known as residual. The ARRs comes from the
set of model equations M describing system behaviors and
the set of installed sensors J . They present a fault signature
matrix (FSM ) with respect to a pre-specified set of faults
F . In particular, this matrix stores the influence of the
considered faults on the residual set: an ij-element of the
matrix contains the pattern 1 if fault fj is expected to
affect ARRi, otherwise it is equal to 0. In this matrix, fault
signatures establish fault detection and isolation properties
of the considered set of faults F . Fault isolation using
FDI algorithms just consists on finding the observed fault
signature (vector of residuals) that is the closest to the fault
signature column stored in the fault signature matrix.

In [4], the set of ARRs are generated using algebraic
methods and transformations of the primary set of equations
that comes directly from elementary model equations. On
the other hand, in [1], they are generated using structural
analysis and perfect matching algorithms on directed graphs.
In order to present the sensor placement problem for FDI, a
set of preliminary definitions are introduced.

Definition 1 (Configuration Sensor ARR set): Given a
system modeled by a set of equations M and a set of
installed sensors J , then ARR(J), is the set of all analytical
redundancy relations that exclusively use the whole set of
sensors J .

Note that ARR(J) does not include ARRs which use a
proper subset of J .

Let 2J be the set of all subsets of J and J ⊆ 2J be
a set of sensor sets. Then, ARR(J ) will denote the set of
all analytical redundancy relations that are a function of any
element of J . This set can be incrementally built in the
following way:

ARR(J ) ∆=
⋃

J∈J
ARR(J) (1)

The sensor placement problem for FDI can be formulated in
the following way:

Definition 2 (Sensor placement for Model-Based FDI):
Given a system described by a set of model equations M ,
a set of candidate sensors I , and a set of FDI specifications
S, the problem of sensor placement for FDI consists on
finding a subset of sensors J ⊆ I such that the set of FDI
specifications S is fulfilled.
For each particular sensor configuration J , a function (al-
gorithm) P can be defined such that it verifies whether the
corresponding fault signature matrix FSM satisfies the set
of FDI specifications according to:

P (M,J, S) =
{

1 if FDI specifications S are fulfilled
0 otherwise

(2)

The specifications S can be any set of required properties
of FSM to design a diagnosis system. Fault detectability
and isolability are examples of FDI specifications that can
be assessed by inspection of FSM , according with the
following definitions:
• Fault Detectability: A set of faults are detectable if their

effects on the system can be observed on the available
set of ARRs.

• Fault Isolability: A set of faults are (fully) isolable if
their effects on the system can be discriminated one of
each other considering the available set of ARRs.

These specifications can be easily verified by examining
the fault signature matrix FSM . A fault fj is detectable if
there is, at least, a 1 present in the jth-column of FSM .
Two faults fj and fk are isolable if the jth-column and the
kth-column of FSM are different.

Function P computes the matrix FSM , that results from
the set of all possible ARRs for the considered sensor con-
figuration J , ARR(2J). So, an ARR generation algorithm to
generate such set of ARRs with the completeness property,
is required.

Let I be the set of candidate sensors. Function P intro-
duced in (2) induces a two-class partition in the set 2I .Let
[2I ]+ be the set of all the subsets of sensors that are feasible
solutions of the sensor placement problem for FDI. If each
J ∈ [2I ]+ has associated a cost, we can get a J∗ ∈ [2I ]+

such that it corresponds to the optimal solution. An easy
way to associate a cost to a given configuration of sensors J
is accomplished by associating a cost to each single sensor.
This cost can be related to price, reliability, etc.

Definition 3 (Sensor Cost): Let i ∈ I be any sensor.
Then, this sensor has associated a cost, C(i) > 0.

Definition 4 (Configuration Sensor Cost): Let J ⊆ I be
a subset of sensors. Then, the cost of J is defined by:

C(J) ∆=
∑
j∈J

C(j) (3)

These definitions lead to introduce the following defini-
tion:

Definition 5 (Optimal sensor placement problem): Given
a system described by a set of model equations M , a set
of candidate sensors I , their cost function C(i) and a set
of specifications for FDI S, the optimal sensor placement
problem can be formulated as:

min
J⊆I

C(J)

subject to :
P (M,J, S) = 1

(4)

where P has been introduced in (2).

B. Drawbacks of existing algorithms

One possible way to solve the optimal sensor placement
problem (5) consists in generating the set ARR(2I) for
all possible candidate sensors I [13]. This approach will
be called in the following absolute approach, in order to
differentiate it from the approach proposed in the present
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paper, that will be called incremental. From this set of ARRs,
the associated fault signature matrix can be obtained. Then,
a binary discrete optimization problem can be formulated
introducing a binary vector q, that denotes which candidate
sensors are installed or not (i.e, means that i-sensor in
the candidate sensor set I is installed, otherwise it is not
installed). Moreover, the set of FDI specifications that the
resulting fault signature matrix, obtained from the selected
candidate sensors, should fulfil can be easily expressed as
linear constraints relating the elements of vector q. Then,
using mixed integer optimization algorithms based on branch
and bound methods can be solved. Alternatively, this problem
can be formulated to be solved using genetic algorithms [3].
However, this approach suffers from the curse of dimension-
ality since the number of ARRs grows exponentially with
the number of possible sensors. This fact has led to imagine
a more efficient way of solving the optimal sensor placement
problem that avoids the generation of the set of all possible
ARRs considering all possible sensor candidates.

III. INCREMENTAL APPROACH

A. The basic idea

The goal of the incremental approach to sensor placement
is the same as the absolute algorithm presented in the
previous section. That is, to solve the problem presented
in (4). However, the basic difference of the incremental
approach proposed here is on how the implementation of
function P is done. In particular, the incremental approach
does not require generating beforehand the complete set of all
possible ARRs (ARR(2I)) in order to solve the optimization
problem (4). But instead, the optimization problem (4) is
solved in such a way that at each iteration, only the subset
of necessary ARRs, ARR(2J), to test the subset of sensors
J ⊆ I is generated online, re-using previously generated
ARRs.

Let us consider that at a given iteration of the incremental
algorithm a subset of sensors J ⊆ Iare considered as
possible candidates to be installed. Then, only the set of
ARRs given by ARR(2J) are needed to test if J is a
solution. The solution that the absolute approach would have
produced would be the same but at a higher computational
cost. This is because it finds the subset of necessary ARRs
by removing all unnecessary ARRs, ARR(2I\2J), from the
complete set of ARRs,

ARR(2J) = ARR(2I)\ARR(2I\2J) (5)

whereas the incremental algorithm finds the subset of neces-
sary ARRs directly without having to generate the complete
set of ARRs.

B. Incremental computation of ARR

Moreover, generating the set of for each subset
ARR(2Jk), at each iteration k of the incremental algorithm,
is not the most efficient way to work, since several ARR
are generated several times. This leads to incrementally
generate the set of required ARR as well as re-using the
ones previously computed.

Let Jk, Jl ⊆ I be two subsets of sensors such that Jl ⊆ Jk,
then, it can be easily seen that:

ARR(2Jl) ⊆ ARR(2Jk) (6)

and, moreover, the set ARR(2Jk) can be expressed as:

ARR(2Jk) = ARR(2Jl) ∪ARR(2Jk\2Jl) (7)

Thus, if subset ARR(2Jl)is ensured to have been previously
computed, the only subset needed to be generated will
be ARR(2Jk\2Jl). Following this guideline, no ARR is
computed more than once. So, this methodology is more
efficient than computing ARR(2Jk) for each subset Jk ⊆ I .

C. Optimal subset of sensors

From Definitions 3 and 4, given two subsets of sensors
Jk, Jl ⊆ I , the following holds:

Jl ⊂ Jk ⇒ C(Jl) < C(Jk) (8)

The incremental algorithm, in the kth-iteration, chooses a
subset of sensors Jk:

Jk = arg min
J∈Jk

C(J) (9)

where Jk = 2I\
k−1
∪

l=1
{Jl}.

According to (9), the subset of sensors Jk is the subset
with minimal cost of all subsets not chosen in previous
iterations.

Notice that if P (M/Jk) = 1 (see (2)), then Jk is an
optimal solution to the optimal sensor placement problem
stated in (4) and the algorithm finishes.

D. Computation of new ARRs

Computing ARR(2Jk) implies to know which subsets of
ARR(2Jk) have been generated in previous iterations (see
III-B). Moreover, the choice of a subset of sensors, in the
incremental algorithm, is based on the cost computed as
indicated above. Therefore, according to (8) all the subsets
J ∈ 2Jk\{Jk} have a subset sensor cost C(J) such that
C(J) < C(Jk). So, according to (9) all J ∈ 2Jk\{Jk} have
been tested before. Two conclusions can be drawn:
• No subset J ∈ 2Jk\{Jk} is a solution.
• ARR(2Jk\{Jk}) has been generated previously.
Next, according to (7):

ARR(2Jk) = ARR(2Jk\{Jk}) ∪ARR(Jk) (10)

Now, just ARR(Jk) needs to be generated in the kth-
iteration to compute ARR(2Jk).

IV. INCREMENTAL ALGORITHM IMPLEMENTATION

A. Model representation

A real system without faults can be expressed as a set of
equations:

f(X) = 0 (11)

where X is the set of unknown internal variables. In this pa-
per, system faults are only considered as unknown variables
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that affect the normal system behavior [10]. Thus, a system
model with faults is represented as:

Msystem :
{
f(X,F ) = 0

F = 0 (12)

Using this representation, as soon as a system fault (fi)
occurs, equation efi

: fi = 0 becomes inconsistent. However,
the system equations f(X,F ) = 0 remain consistent.

The subset of sensors J has to be modeled by a set of
equations. This leads to next definition:

Definition 6 (Sensor Equation): Let j ∈ J be a sensor
that measures the value of internal variable xj , then a sensor
equation for sensor j can be defined as:

ej : yj = xj (13)
Variable yj represents a known system variable. Equation

ej becomes inconsistent whenever sensor j is faulty. In those
cases where a sensor measures a function of more than one
unknown variable, just include an extra equation in the model
[9] and the corresponding sensor equation xnew = h(x).

Let J be a set of sensors, then the corresponding set of
sensor equations is:

MJ =
⋃
j∈J

{ej} (14)

To generate the set ARR(Jk), the system model has to be
reconfigured at each iteration, adding the set of sensor equa-
tions associated to the sensors in Jk. Thus, a reconfigured
model M∗Jk

for a subset of sensors Jk can be expressed from
(12) and (14) as:

M∗Jk
= Msystem ∪MJk

(15)

B. Optimal Incremental Algorithm

Algorithm 1 solves incrementally the optimal sensor place-
ment problem described in Definition 5, This is achieved
using the ideas presented in previous sections.

Algorithm 1 J∗ = SensorP lacement(M, I,C(i), S)
1: repeat
2: Search the optimal subset of sensors Jk ⊆ I , according to (9).
3: Build the corresponding set of sensor equations MJk

,according to
(14).

4: Reconfigure the model M∗
Jk

, according to (15).
5: Generate the subset ARR(Jk)
6: Store ARR(Jk).
7: Obtain ARR(2Jk ) by retrieving the set of previously computed

ARRs:
ARR(2Jk ) =

⋃
j⊆Jk

ARR(j)

8: Generate the fault signature matrix FSMJk
from ARR(2Jk ).

9: if FSMJk
satisfies the FDI specifications then

10: P (M, Jk, S)⇐ 1
11: else
12: P (M, Jk, S)⇐ 0
13: end if
14: until P (M, Jk, S) = 1 or Jk = I
15: if P (M, Jk, S) = 0 then
16: There is no solution
17: else
18: J∗ ⇐ Jk

19: end if

TABLE I
STRUCTURAL MODEL Msystem

x1 x2 x3 x4 f1 f2

e1 1 0 1 0 1 0
e2 0 1 1 1 0 1
e3 1 1 0 1 1 0
e4 0 0 0 0 1 0
e5 0 0 0 0 0 1

TABLE II
STRUCTURAL SENSOR EQUATION, Mj1

x1 x2 x3 x4 f1 f2

ej1 1 0 0 0 0 0

Step 2 of Algorithm 1 deals with the minimal configuration
sensor cost search in (9) whereas steps 4-13 implement and
evaluate P (M,J, S) presented in (2), that assesses whether
the current sensor configuration satisfies the set of FDI
specifications. In step 5, an adaptation of the algorithm
proposed in [11] has been used.

C. Academic example

Now, an academic example is presented to show how
Algorithm 1 works. This is useful to view the structural
reconfiguration of the model and the generation of the fault
signature matrix FSM . Nevertheless, the optimal search of
a subset of sensors (Step 2) is not presented in this section.

Assume the following linear static system:

Msystem :


e1 : x1 + x3 + f1 = 0
e2 : x2 + x3 + x4 + f2 = 0
e3 : x1 + x2 + x4 + f1 = 0
e4 : f1 = 0
e5 : f2 = 0

(16)

This system model has four internal variables that can
be measured X = {x1, x2, x3, x4} and two system faults
F = {f1, f2}, included in the system model as in (12). Table
I shows the structural model that corresponds to (16).

In this case, the set of possible sensors is considered to
be the whole set of internal variables X , I = {j1, j2, j3, j4},
where it is assumed that sensor ji is used to measure internal
variable xi.

The sensor placement problem in Definition 2 also requires
the FDI specifications S to be formulated. In this example,
the required FDI specifications are that system faults F and
installed sensors faults are detectable and isolable, according
to the definitions introduced in section II-A.

Assume that the first optimal subset of sensors is J1 =
{j1}, where j1 denotes a sensor that measures internal
variable x1. The reconfigured model M∗J1

(Step 4) is obtained
adding row ei1 in Table II to Table I.

Once the model is reconfigured, ARR(J1) can be gen-
erated (Step 5). In this specific case, ARR(J1) = ∅ which
clearly does not satisfies the FDI specifications. That would
conclude first iteration of Algorithm 1. After 8 iterations,
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TABLE III
ARR GENERATED AFTER 8 ITERATIONS

k Jk e1 e2 e3 e4 e5 ej1 ej2 ej3 ej4

1 {j1} - - - - - - - - -

2 {j2} - - - - - - - - -

3 {j3} - - - - - - - - -

4 {j4} - - - - - - - - -

5 {j1, j2} 1 1 1 1 1 1 1 0 0

6 {j1, j4} 1 1 1 1 1 1 0 0 1

7 {j2, j4} 1 1 1 1 1 0 1 0 1

0 0 1 1 0 1 1 0 1
8 {j1, j2, j4} 1 1 0 1 1 1 1 0 1

1 1 1 0 1 1 1 0 1

TABLE IV
FAULT SIGNATURE MATRIX FOR J8

f1 f2 fj1 fj2 fj4

ARR1 1 1 1 1 0
ARR2 1 1 1 0 1
ARR3 1 1 0 1 1
ARR4 1 0 1 1 1
ARR5 1 1 1 1 1
ARR6 0 1 1 1 1

Table III is obtained. In this table an ij-element is 1 if
equation in column j is needed to compute ARR in row
i, and 0 otherwise.

Proceeding with the algorithm execution, at iteration k =
8, the set ARR(2J8) is computed as (Step 7):

ARR(2J8) = ARR(J1) ∪ARR(J2) ∪ARR(J4)
∪ARR(J5) ∪ARR(J6) ∪ARR(J7) ∪ARR(J8)

(17)

The fault signature matrix (Step 8) can be easily generated
by taking into account the inconsistent equations for each
fault. In this case, f1 → e4, f2 → e5 and fji

→ eji
. Table

IV shows the resulting FSMJ8 .
Finally, the possible solution J8 is verified to fulfill FDI

specifications (Step 9). Looking at Table IV, all considered
faults are detectable and isolable, so J8 is a solution, and
Algorithm 1 finishes.

V. APPLICATION EXAMPLE: A FUEL CELL SYSTEM

A. Fuel-cell based system description

A PEM Fuel Cell System model is used to test the
proposed algorithm. A model for a PEM Fuel Cell was
proposed in [14]. This model is widely accepted nowadays
in the control community as a good representation of the
behavior of an actual fuel cell for control purposes.

The structural relations between model equations and
system variables are presented in Appendix section. Variables
are classified into the following categories:
• Control variables: measured variables required for con-

trol purposes.
• Unmeasurable variables: since sensors are not available,

sensor installation is not possible or too expensive, etc.

TABLE V
SENSOR COST ASSOCIATED TO EACH VARIABLE

xi ωcp psm Wsm,out pca Wca,out pan Wan,in Wrm,out

C(ji) 50 10 25 70 35 60 90 40

TABLE VI
EFFICIENCY OF ALGORITHM 1

generated ARRs relative efficiency a

Absolute approach 9029 0,41%
Algorithm 1 335 11,05%

arelative efficiency = 100× card(ARR(2J∗ ))/generated ARRs

• Measurable variables: define possible sensor locations.
• Faults.
Each measurable variable has an associated sensor which

together constitute the set of candidate sensors I . Solving
the optimal sensor placement problem requires a cost to be
associated to each candidate sensor (see Table V). Changing
these cost values, different solutions would be produced by
Algorithm 1.

The FDI specifications which have to be fulfilled in this
application are that system faults and installed sensors faults
must be detectable and isolable, as defined in section II-A.

B. Optimal Sensor Placement Solution for the Fuel Cell
System

Algorithm 1 has been applied to the Fuel Cell System
and an optimal solution has been found that satisfies the
fault detectability and isolability specifications for FDI. The
optimal solution consists in adding two sensors, to the
set of already installed sensors for control purposes (see
Appendix), that measure the following two internal variables:
cathode output flow (Wca,out) and anode pressure (pan).

The cost of this solution is 95. Using these two additional
sensors and the four control sensors, a set of 37 ARRs can
be generated (i.e. card(ARR(2J∗)) = 37), that satisfies the
FDI specifications.

To assess the effectiveness of the incremental approach
proposed in this paper over the absolute approach, the
number of ARRs generated by both approaches will be
compared. On the one hand, the absolute approach would
require to generate all ARRs considering a fully sensored
system, that amounts to a total of 9029. On the other hand,
the incremental algorithm finds the solution in 27 iterations
and the total number of ARRs generated during these it-
erations is 335. Table VI compare the relative efficiency
in both approaches, which proves that ARRs generation
using incremental algorithm is more efficient than using the
absolute approach.

VI. CONCLUSIONS

This paper presents an efficient algorithm for solving the
problem of optimal sensor placement for FDI. It allows
determining the set of sensors that minimizes a pre-defined
cost function satisfying at the same time a pre-established
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set of FDI specifications for a given set of faults. Existing
algorithms are mainly based on formulating an optimization
problem once the sets of all possible ARRs have been gen-
erated, considering all possible candidate sensors installed,
following the so-called absolute approach. However, the
associated computational complexity is exponential with the
number of possible sensors. The main goal of this paper
is to propose an incremental algorithm that tries to avoid
the computational burden. To show the effectiveness of the
approach proposed an application based on a fuel-cell system
has been proposed.

Nevertheless, there are still some open issues which could
be considered as a further research. Firstly, the causality
constraints involved in the structural modeling of dynamic
equations are not taken into account. Secondly, faults that
change the structure of the model are not considered, only
additive faults on measurable variables are handled. Lastly,
sensor redundancy is not concerned, but could be easily
included as in [9].

APPENDIX

In this appendix, the structural relations between model
equations and system variables are showed. Model equations
are derived from [14] and they are classified according to the
system component that they describe:
• Air Supply Compressor:
e1 : f(ωcp, τcm, τcp) = 0
e2 : f(τcm, Vcm, ωcp) = 0
e3 : f(τcp, ωcp, psm,Wcp, fpsm

) = 0
e4 : f(Wcp, psm, ωcp, fpsm

) = 0
• Air Supply Manifold:
e5 : f(Wsm,out, psm, pca, fpsm , fWsm,out) = 0
e6 : f(Wcp,Wsm,out, fWsm,out) = 0

• Fuel Cell Stack:
e7 : f(Wca,out,Wv,inj , Ist,Wsm,out, fWsm,out

,
fIst

, fn) = 0
e8 : f(Wan,in, Ist, fIst , fn) = 0

• Anode Manifold:
e10 : f(Wan,in, pan) = 0

• Return Manifold:
e11 : f(Wca,out,Wrm,out, fWrm,out

) = 0
e12 : f(pca,Wca,out,Wrm,out, fWrm,out) = 0

• Fault equations:
e13 : fpsm

= 0
e14 : fWsm,out

= 0
e15 : fn = 0
e16 : fIst = 0
e17 : fWrm,out = 0

Next, main system variables are described:
• Control Variables:
Vcm: Compressor voltage
Wcp: Air flow through the compressor
Ist: Stack current
Vst: Stack voltage

• Unmeasurable variables:
τcm: Compressor motor torque
τcp: Load torque
Wv,inj : Humidifier injector flow

• Measurable variables:
ωcp: RPM compressor
psm: Supply manifold pressure
Wsm,out: Supply manifold exit flow
pca: Cathode pressure
Wca,out: Cathode output flow
pan: Anode pressure
Wan,in: Anode input flow
Wrm,out: Return manifold exit flow

• Fault variables
fpsm : Compressor fault
fWsm,out

: Supply manifold fault
fn: Cell fault
fIst

: Fuel Cell Stack fault
fWrm,out

: Return manifold fault
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