
EFFICIENT OPTIMIZATION ALGORITHMS FOR LEARNING

by

Ruslan Salakhutdinov

A thesis submitted in conformity with the requirements

for the degree of Master’s Degree

Graduate Department of Computer Science

University of Toronto

Copyright c© 2003 by Ruslan Salakhutdinov

Abstract

Efficient Optimization Algorithms for Learning

Ruslan Salakhutdinov

Master’s Degree

Graduate Department of Computer Science

University of Toronto

2003

Many problems in machine learning and pattern recognition ultimately reduce to the op-

timization of a scalar valued function. A variety of general techniques exist for optimiz-

ing such objective functions. We study the general class of bound optimization algorithms

– including Expectation-Maximization, Iterative Scaling, Non-negative Matrix Factorization,

Concave-Convex Procedure – and their relationship to direct optimization algorithms such as

gradient-based methods for parameter learning. We also provide a theoretical analysis of the

convergence properties of bound optimization algorithms and identify analytic conditions un-

der which these optimizers exhibit quasi-Newton behavior, and conditions under which they

possess poor, first-order convergence. Motivated by these analyses, we interpret and analyze

their convergence properties and provide some recipes for preprocessing input to these algo-

rithms to yield faster convergence behavior. Our presented analysis also allows us to design

several algorithms for practical optimization, that possess superior convergence over standard

existing methods.

ii

Dedication

To my loving parents Nailya and Ravil

for inspiring, helping and letting me pursue my dreams

so far away from home

&

To my dear sister Olya and brother-in-law Steve

for their invaluable advice and support

&

To my adoring nephew Nathan.

iii

Acknowledgements

I would like to thank my supervisor Sam Roweis for his guidance, support and for pro-

viding me with a warm and outstanding intellectual environment over the last two years at the

University of Toronto.

I would also like to thank Zoubin Ghahramani for helping me in the accomplishment of

this research and for being my second reader. Many members of the Toronto Machine Learn-

ing group have also been an inspiration to me: Geoff Hinton, Rich Zemel, Radford Neal, Max

Welling, and Yee Whye Teh. Their discussions and presentations during weekly group meet-

ings have been one of my best learning experiences. Very special thanks to Yoshua Bengio for

nominating and helping me in getting Precarn scholarship.

My special gratitude goes to Morris Wray, the person who provided me with the great

opportunity to pursue my educational goals in one of the best and most exciting schools in the

United States – High Point University. I would also like to thank several professors: Roger

Shore, Rob Harger, and Jeff Butera, for introducing me into the area of computer science and

providing me with a great academic environment during my undergraduate years.

iv

Contents

1 Introduction 1

1.1 Optimization Algorithms . 1

1.2 Thesis Overview . 4

2 Convergence Analysis of Bound Optimization Methods 5

2.1 Introduction . 5

2.2 Linear Convergence of Bound Optimizers . 6

2.3 Gradient and Newton behaviors of bound optimization 7

3 Bound Optimization Methods 11

3.1 Generalized Iterative Scaling (GIS) Algorithm 11

3.2 Non-Negative Matrix Factorization (NMF) . 13

3.3 Concave-Convex Procedure . 14

3.4 Improving Convergence Rates . 16

3.5 Experimental Results . 19

3.6 Discussion . 21

4 EM and Expectation-Conjugate-Gradient Algorithms 23

4.1 Introduction . 23

4.2 Linear and Newton Convergence of EM . 25

4.3 Expectation Conjugate Gradient (ECG) Algorithm 28

v

4.4 Hybrid EM-ECG Algorithm . 29

4.5 Experimental Results . 30

4.5.1 Synthetic Data Sets . 31

4.5.2 Real World Data Sets . 33

4.6 Discussion . 35

5 Adaptive Overrelaxed Bound Optimization Methods 39

5.1 Overrelaxed Bound Optimization: BO(η) . 39

5.2 Convergence Properties of BO(1) and BO(η) 41

5.3 Adaptive Overrelaxed Bound Optimization 45

5.3.1 Reparameterization of Constrained Quantities 46

5.3.2 Adaptive Expectation Maximization 47

5.3.3 Adaptive Generalized Iterative Scaling Algorithm 48

5.3.4 Adaptive Non-Negative Matrix Factorization 49

5.4 Experimental Results . 50

5.4.1 Synthetic Data Sets . 51

5.4.2 Real World Data Sets . 53

5.5 Discussion . 56

6 Discussion and Future Work 58

Bibliography 60

A Relationship between gradient and EM 64

A.1 Introduction . 64

A.2 Connection between EM and gradient . 65

A.2.1 Factor Analysis . 65

A.2.2 Mixture of Factor Analyzers . 67

A.2.3 Hidden Markov Model . 68

vi

A.3 Exponential Family Models . 69

A.4 Discussion . 71

B ECG for Several Latent Variable Models 72

B.1 Continuous Latent Variable Models . 72

B.1.1 Factor Analysis and PPCA . 73

B.2 Mixture Models . 73

B.2.1 Mixture of Gaussians . 74

B.2.2 Mixture of FAs . 74

B.2.3 Mixture of PPCA . 75

B.2.4 Hidden Markov Model . 76

B.3 Unconstrained Optimization . 77

vii

Chapter 1

Introduction

1.1 Optimization Algorithms

Many problems in machine learning and pattern recognition ultimately reduce to the op-

timization of a scalar valued function L(Θ) of a free parameter vector Θ. For example, in

supervised and unsupervised probabilistic modeling the objective function may be the (condi-

tional) data likelihood or the posterior over parameters. In discriminative learning we may use

a classification or regression score; in reinforcement learning we may use average discounted

reward. Optimization may also arise during inference; for example we may want to reduce the

cross entropy between two distributions or minimize a function such as the Bethe and Kikuchi

free energy.

A variety of general techniques exist for optimizing such objective functions. Broadly, they

can be placed into one of two categories: direct optimization (DO) algorithms and what we

will refer to as bound optimization (BO) algorithms.

Direct optimization methods for the parameter learning work directly with the objective

function and its derivatives (or estimates thereof), trying to maximize or minimize it by ad-

justing the free parameters in a local search. This category of algorithms includes standard

gradient-based algorithms, line search methods such as popular conjugate gradient, and more

1

CHAPTER 1. INTRODUCTION 2

computationally intensive second-order methods, such as Newton-Raphson. An example of a

particular direct optimization method; the Fletcher-Reeves-Polak-Ribiere flavor of conjugate

gradient algorithm [21]; is given below:

Fletcher-Reeves-Polak-Ribiere flavor of Conjugate Gradient Algorithm

for optimizing L(Θ):

• Initialize: g0 = ∇L(Θ0), d0 = g0, k = 0

• Compute sequentially:

1. αk, the value of α that maximizes L(Θk + αdk) line search

2. Θk+1 = Θk + αkdk new parameter

3. gk+1 = ∇L(Θk+1) new gradient

4. βk =
gT

k+1
� (gk+1−gk)

gT
k

� gk
blending factor

5. dk+1 = gk+1 − βkdk, k = k + 1 new search direction

Direct optimization methods can be applied, in principle, to any deterministic function of

the parameters. These algorithms have been extensively studied and are rather well-understood.

Bound optimization (BO) algorithms, on the other hand, take advantage of the fact that

many objective functions arising in practice have a special structure. We can often exploit this

structure to obtain a bound on the objective function and proceed by optimizing this bound.

Ideally, we seek a bound that is valid everywhere in parameter space, easily optimized, and

equal to the true objective function at one (or more) point(s). A general form of a bound maxi-

mizer which iteratively lower bounds the objective function is given below:

General Bound Optimizer for maximizing L(Θ):

• Assume: ∃ G(Θ,Ψ) such that for any Θ′ and Ψ′:

1. G(Θ′,Θ′) = L(Θ′) & L(Θ) ≥ G(Θ,Ψ′) ∀ Ψ′ 6= Θ

2. arg maxΘG(Θ,Ψ′) can be found easily for any Ψ′.

• Iterate: Θt+1 = arg maxΘG(Θ,Θt)

• Guarantee: L(Θt+1) = G(Θt+1,Θt+1) ≥ G(Θt+1,Θt) ≥ G(Θt,Θt) = L(Θt)

CHAPTER 1. INTRODUCTION 3

A bound optimizer does nothing more than coordinate ascent in the functional G(Θ, Ψ),

alternating between maximizing G with respect to Ψ for fixed Θ and with respect to Θ for

fixed Ψ. These algorithms enjoy a strong guarantee; they never worsen the objective function.

This concept is graphically illustrated in figure 1.1.

t−1

L(Θ)t

L
t+1

G

G
t

L (Θ)

Θ

(Θ)

L(Θ) (Θ,Θ)

t−1(Θ,Θ)

Figure 1.1: Consider iteration of the bound optimizer with Ψ = Θt as the currect fit for the pa-

rameter vector Θ. Maximizing the bound function G(Θ,Θt) with respect to Θ yields Θt+1 =
arg maxΘG(Θ,Θt), which guarantees G(Θt+1,Θt) ≥ G(Θt,Θt) = L(Θt). On the other side,

since G(Θ,Θt) is a lower bound on the objective function, we have L(Θt+1) = G(Θt+1,Θt+1) ≥

G(Θt+1,Θt). Both inequalities immediately imply L(Θt+1) ≥ L(Θt).

Many popular iterative algorithms are bound optimizers, including the EM algorithm for

maximum likelihood learning in latent variable models[4], iterative scaling (IS) algorithms

for parameter estimation in maximum entropy models[3], non-negative matrix factorization

(NMF)[14] and the recent Concave-Convex Procedure (CCCP) algorithm for minimizing the

Bethe free energy in approximate inference problems[32].

We will study the general class of bound optimization algorithms and their relationship

to direct optimization algorithms to determine conditions under which one technique can be

expected to outperform another. Our general results apply to any model for which a bound

optimizer can be constructed.

CHAPTER 1. INTRODUCTION 4

1.2 Thesis Overview

We will begin by introducing and analyzing a class of bound optimization algorithms such as

EM, Iterative Scaling, Non-negative Matrix Factorization, CCCP and their relationship to the

gradient and second-order methods. In chapter 2 we will describe analytic conditions under

which bound optimization algorithms exhibit quasi-Newton behavior, and conditions under

which they possess poor, first-order convergence.

Based on this analysis, in chapter 3 we will consider several specific algorithms, interpret

and analyze their convergence properties and provide some recipes for preprocessing input to

these algorithms to yield faster convergence behavior.

In chapter 4 we will study a popular Expectation - Maximization (EM) algorithm for learn-

ing in latent variable models. We will also show a close relationship between the Expectation -

Maximization (EM) algorithm and direct optimization algorithms such as gradient-based meth-

ods for parameter learning. Based on our analysis, we will propose two novel algorithms for

maximum likelihood estimation of latent variable models. To support the robustness of our

conclusions, we will report empirical results showing that the proposed new algorithms can

substantially outperform standard EM in terms of speed of convergence.

In chapter 5 we will describe a class of overrelaxed bound optimization algorithms, that

we call BO(η) algorithms with η being the learning rate, and their relationship to standard

bound optimizers. We will provide a theoretical analysis of the convergence properties of these

optimizers and identify analytic conditions under which they are expected to outperform the

standard versions. Based on this analysis, we will propose a novel, simple adaptive overrelaxed

scheme for practical optimization, and report empirical results on several synthetic and real-

world data sets showing that these new adaptive methods exhibit much superior performance.

We will finish with general discussion section summarizing our main contributions and

describing future research directions.

Chapter 2

Convergence Analysis of Bound

Optimization Methods

In this chapter we study the general class of bound optimization algorithms – including

EM, Iterative Scaling, Non-negative Matrix Factorization, CCCP – and their relationship to

direct optimization algorithms such as gradient-based methods for parameter learning. We

derive a general relationship between the updates performed by bound optimization methods

and those of gradient and second-order methods and identify analytic conditions under which

bound optimization algorithms exhibit quasi-Newton behavior, and conditions under which

they possess poor, first-order convergence.

2.1 Introduction

In chapter 1 we defined a general form of bound optimization algorithms. In this chapter

we will explore two questions of theoretical and practical interest: when will bound optimiza-

tion be fast or slow relative to other standard approaches, and what can be done to improve

convergence rates of these algorithms when they are slow.

5

CHAPTER 2. CONVERGENCE ANALYSIS OF BOUND OPTIMIZATION METHODS 6

2.2 Linear Convergence of Bound Optimizers

Any bound optimizer implicitly defines a mapping: M : Θ → Θ′ from parameter space to

itself, so that Θt+1 = M(Θt). If iterates Θt converge to a fixed point Θ∗ then Θ∗ = M(Θ∗).

If M(Θ) is continuous and differentiable, we can Taylor expand it in the neighborhood of the

fixed point Θ∗:

Θt+1 − Θ∗ ≈ M ′(Θ∗)(Θt − Θ∗) (2.1)

where M ′(Θ∗) = ∂M
∂Θ

|Θ=Θ∗. Since M ′(Θ∗) is typically nonzero, a bound optimizer can es-

sentially be seen as a linear iteration algorithm with a “convergence rate matrix” M ′(Θ∗).

Intuitively, M ′(Θ∗) can be viewed as an operator that forms a contraction mapping around Θ∗.

In general, we would expect
∂2L(Θ)

∂Θ2 |Θ=Θ∗ to be negative semidefinite,1 or negative definite, and

thus the eigenvalues of M ′(Θ∗) all lie in [0, 1] or [0, 1) respectively [18]. Exceptions to the con-

vergence of the bound optimizer to a local optimum of L(Θ) occur if M ′(Θ∗) has eigenvalues

that exceed unity.

Near a local optimum, the convergence rate matrix M ′(Θ∗) is related to the curvature of

the functional G(Θ, Ψ) as follows:

Lemma 2.1: If bound optmizer’s iterates Θt converge to Θ∗ and M(Θ) is differentiable in

the parameter space Θ, then:

lim
Θt→Θ∗

M ′(Θt) = −
[

∇2
G(Θ∗, Ψ∗)

][

∇2
G(Θ∗)

]−1
(2.2)

where we define ∇2
G(Θ∗, Ψ∗) ≡

[

∂2G(Θ,Ψ)
∂Θ∂ΨT |

Θ = Θ∗

Ψ = Θ∗

]

; ∇2
G(Θ∗) ≡

[

∂2G(Θ,Ψ)
∂Θ∂ΘT |

Θ = Θ∗

Ψ = Θ∗

]

,

Proof sketch: By using Taylor series expansion of ∇G(Θ2, Θ1) = ∂G(Θ,Θ1)
∂Θ

|Θ=Θ2 around

(Θ∗, Θ∗), we have:

∇G(Θ2, Θ1) = ∇G(Θ∗, Θ∗) + (Θ2 − Θ∗)T∇2
G(Θ∗) + (Θ1 − Θ∗)T∇2

G(Θ∗, Ψ∗) + . . .

By noting that ∇G(Θ∗, Θ∗) = ∂L(Θ)
∂Θ

|Θ=Θ∗ = 0, and substituting Θ1 with Θt, and Θ2 with

1L(Θ) is the objective function

CHAPTER 2. CONVERGENCE ANALYSIS OF BOUND OPTIMIZATION METHODS 7

M(Θt) results:

0 = (M(Θt) − Θ∗)T∇2
G(Θ∗) + (Θt − Θ∗)T∇2

G(Θ∗, Ψ∗) + . . .

Assuming that higher order terms are negligible, in the limit, using Θ∗ = M(Θ∗), we have:

0 =

[

lim
Θt→Θ∗

M ′(Θt)

]

∇2
G(Θ∗) + ∇2

G(Θ∗, Ψ∗) (2.3)

We therefore get:

lim
Θt→Θ∗

M ′(Θt) = −
[

∇2
G(Θ∗, Ψ∗)

][

∇2
G(Θ∗)

]−1
(2.4)

In general, the bound function ∇2
G(Θ∗) is negative definite, or invertible. Indeed, let Θ∗ be

the local maximum of ∇2
G(Θ∗), and consider Θ

′

being some point that lies within some small

neighborhood of Θ∗. We can then use the following quadratic approximation:

G(Θ
′

) = G(Θ∗) + (Θ∗ − Θ
′

)T∇G(Θ∗) + (Θ∗ − Θ
′

)T∇2
G(Θ∗)(Θ∗ − Θ

′

) (2.5)

Since Θ∗ is the local maximum, we have:

(Θ∗ − Θ
′

)T∇2
G(Θ∗)(Θ∗ − Θ

′

) = G(Θ
′

) − G(Θ∗) ≤ 0 (2.6)

for any Θ
′

, which implies that ∇2
G(Θ∗) is negative definite. For many models, however, the

bound function ∇2
G(Θ∗) is concave, which immediately suggests that ∇2

G(Θ∗) is negative def-

inite, or invertible.

2.3 Gradient and Newton behaviors of bound optimization

What directions do bound optimizers move in parameter space? For most objective func-

tions, the BO step Θ(t+1) −Θ(t) in parameter space and true gradient can be trivially related by

transformation matrix P (Θt),2 that changes at each iteration:

Θ(t+1) − Θ(t) = P (Θt)∇L(Θt) (2.7)

2The transformation matrix P (Θt) is non-unique, i.e. many P (Θt) matrices exist for which 2.7 holds (see

appendix A).

CHAPTER 2. CONVERGENCE ANALYSIS OF BOUND OPTIMIZATION METHODS 8

where we define ∇L(Θt) = ∂L(Θ)
∂Θ

|Θ=Θt .

Proposition 2.1: Under certain conditions, the transformation matrix P (Θt) is guaranteed

to be positive definite with respect to the gradient. In particular, if

C1: G(Θ, Θt) is well-defined, and differentiable everywhere in Θ. and

C2: For any fixed Θt 6= Θ(t+1), along any direction that passes through Θt+1, G(Θ, Θt) has

only a single critical point, located at the maximum Θt+1; then

∇⊤

L(Θt)P (Θt)∇L(Θt) > 0 ∀Θt (2.8)

Proof sketch: For ∇⊤

G(Θt)(Θ(t+1) − Θt), we note that ∇⊤

G(Θt) = ∂G(Θ,Θt)
∂Θ

|Θ=Θt is the

directional derivative of function G(Θ, Θt) in the direction of Θ(t+1) −Θt. C1 and C2 together

imply that this quantity is positive, otherwise by the Mean Value Theorem (C1) G(Θ, Θt)

would have a critical point along some direction, located at a point other than Θt+1 (C2). By

using the the identity ∇L(Θt) = ∂G(Θ,Θt)
∂Θ

|Θ=Θt , we have:

∇⊤

L(Θt)P (Θt)∇L(Θt) = ∇⊤

G(Θt)(Θ(t+1) − Θt) > 0. (2.9)

The second condition may seem very strong, however, it is satisfied in many practical cases.

For example, for the EM algorithm, it is satisfied whenever the M-step has a single unique

solution (in particular, it holds for exponential family models due to concavity of G(Θ, Θt));

for GIS, NMF, CCCP, and many others, it is satisfied due to concavity of G(Θ, Θt) (although

C2 does not imply concavity).

The important consequence of the above analysis is that when the bound function has a

unique optimum, BO has the appealing quality of always taking a step Θ(t+1) − Θt having

positive projection onto the true gradient of the objective function L(Θt). This makes BO

similar to first order methods operating on the gradient of a locally reshaped cost function.

For maximum likelihood learning of a mixture of Gaussians model using the EM-algorithm,

this positive definite transformation matrix P (Θt) was first described by Xu and Jordan[31]. In

CHAPTER 2. CONVERGENCE ANALYSIS OF BOUND OPTIMIZATION METHODS 9

the appendix A we extend their results by deriving the explicit form of the transformation ma-

trix for several other latent variables models such as Factor Analysis (FA), Probabilistic Prin-

cipal Component Analysis (PPCA), mixture of PPCAs, mixture of FAs, and Hidden Markov

Models; we also derive the general form of P (Θt) matrix for exponential family models in

terms of natural parameters.

One can further study the structure of the transformation matrix P (Θt) and relate it to the

convergence rate matrix M ′.

Proposition 2.2: If BO algorithm converges to Θ∗ and P (Θ) and M(Θ) are well-defined,

differentiable functions in the neighborhoods of the iterates Θt in the parameter space Θ, then

under a weak assumption that the inverse of the Hessian of the objective function
[

−S(Θ∗)
]−1

exists (S(Θt) = ∂2L(Θ)
∂Θ2 |Θ=Θt), we have:

lim
Θt→Θ∗

P (Θt) =

[

I − M ′(Θ∗)

][

− S(Θ∗)

]−1

(2.10)

Proof sketch: Taking negative derivatives of (2.7) with respect to Θt yields

I − M ′(Θt) = −P ′(Θt)∇L(Θt) − P (Θt)S(Θt) (2.11)

where M ′
ij(Θ

t) = ∂Θt+1
i /∂Θt

j is the input-output derivative matrix for the BO mapping and

P ′(Θt) = ∂P (Θt)
∂Θ

|Θ=Θt is the tensor derivative of P (Θt) with respect to Θt. In the limit, near a

fixed point, the first term will vanish since the gradient is going to zero (assuming P ′(Θt) does

not become infinite). Therefore the equality (2.10) readily follows.

We conclude that if bound optimization algorithm iterates converge to a local optima at

Θ∗, then near this point (i.e. for sufficiently large t) BO may exhibit Quasi-Newton conver-

gence behavior. This is also true in “plateau” regions where the gradient is very small even if

they are not near a local optimum.

The nature of the Quasi-Newton behavior is controlled by the convergence matrix M ′(Θ∗).

We can now study the form or the properties of this matrix, for example by examining its

individual entries, its eigenvalues, or the ratio of its two top eigenvalues. In particular, if the

CHAPTER 2. CONVERGENCE ANALYSIS OF BOUND OPTIMIZATION METHODS 10

top eigenvalue of M ′(Θ∗) tends to zero, then BO becomes a true Newton method, rescaling the

gradient by exactly the negative inverse Hessian:

Θt+1 = Θt − S(Θt)−1∇L(Θt) (2.12)

As the eigenvalues increase and tend to unity, BO takes smaller and smaller stepsizes,

giving poor, first-order, convergence.

In the next section we will discuss some of the widely used bound optimization methods.3

We will show how one can obtain the convergence rate matrix of a particular BO algorithm and

thus identify conditions under which it is expected to have fast or slow convergence behavior.

3One of the popular bound optimization algorithms for maximum likelihood learning of parameters in the

presence of latent variables is the Expectation-Maximization. We will discuss in greater details the nature of this

algorithm in chapter 4 .

Chapter 3

Bound Optimization Methods

In this chapter, we consider several specific algorithms, including Iterative Scaling, Non-

negative Matrix Factorization, Concave-Convex Procedure; interpret and analyze their conver-

gence properties and provide some recipes for preprocessing input to these algorithms to yield

faster convergence behavior. We report empirical results supporting our analysis and show-

ing that simple data preprocessing can result in dramatically improved performance of bound

optimizers in practice.

3.1 Generalized Iterative Scaling (GIS) Algorithm

In this section we consider the Generalized Iterative Scaling algorithm [3], widely used for

the parameter estimation in maximum entropy models. Its goal is to determine the parameters

Θ∗ of an exponential family distribution:

p(x|Θ) =
1

Z(Θ)
exp (ΘT F (x)) (3.1)

such that certain generalized marginal constraints are preserved:
∑

x p(x|Θ∗)F (x) =
∑

x p̄(x)F (x),

where Z(Θ) is the normalizing factor, p̄(x) is a given empirical distribution and F (x) =

[f1(x), ..., fd(x)]T is a given feature vector on the input.

The GIS algorithm requires that fi(x) > 0 ∀i, but we will not require
∑

i fi(x) = 1[20].

11

CHAPTER 3. BOUND OPTIMIZATION METHODS 12

The log-likelihood is:

L(Θ) =
∑

x p̄(x) ln p(x|Θ) =
∑

x p̄(x)ΘT F (x) − ln Z(Θ) (3.2)

We note that ln Z(Θ) ≤ Z(Θ)/Z(Ψ) + ln Z(Ψ) − 1 for any Ψ, and exp
∑

i Θifi(x) ≤
∑

i fi(x) exp Θi + [1 − ∑

i fi(x)], with
∑

i fi(x) ≤ 1. Defining s = maxx

∑

i fi(x), we

can construct a lower bound on L(Θ):

L(Θ) ≥
∑

x

p̄(x)
∑

i

Θifi(x) − ln Z(Ψ) +
∑

i

fi(x)

s
−

∑

x

p(x|Ψ)
∑

i

fi(x)

s
exp

[

s(Θi − Ψi)
]

= G(Θ, Ψ) (3.3)

This lower bound has the useful property that its maximization is decoupled across the param-

eters Θi. The GIS algorithm is then given by:

Θt+1
i = Θt

i +
1

s
ln

∑

x p̄(x)fi(x)
∑

x p(x|Θt)fi(x)
(3.4)

Define F̄ (Θ∗) ≡ ∑

x p(x|Θ∗)F (x) to be the mean of the feature vectors, D(Θ∗) ≡ diag
[

F̄ (Θ∗)
]

to be the corresponding diagonal matrix, and Cov(Θ∗) to be covariance of the feature vectors

under model distribution p(x|Θ∗). We can compute second order statistics using (2.2):

∇2
G(Θ∗) = −s diag

[

F̄ (Θ∗)
]

= −sD(Θ∗) (3.5)

∇2
G(Θ∗, Ψ∗) = s diag

[

F̄ (Θ∗)
]

−
[

∑

x

p(x|Θ∗)F (x)F (x)T −
[

F̄ (Θ∗)
][

F̄ (Θ∗)
]T

]

= sD(Θ∗) − Cov(Θ∗) (3.6)

Due to the concavity of G(Θ, Ψ′) for any fixed Ψ′, the step a GIS algorithm takes in param-

eter space always has positive projection onto the true gradient of the objective function. From

equations 3.4-3.6, the convergence rate matrix M ′(Θ∗) can also be calculated:

∂M(Θ)

∂Θ
|Θ=Θ∗ = I − 1

s
Cov(Θ∗)D(Θ∗)−1 (3.7)

and depends on the covariance and the mean of the feature vectors.

CHAPTER 3. BOUND OPTIMIZATION METHODS 13

According to (2.10), in the neighborhood of a solution (for sufficiently large t), the step

GIS takes in parameter space and true gradient are related by the matrix:

P (Θt) ≈
[

1

s
Cov(Θt)D(Θt)−1

][

− S(Θt)

]−1

(3.8)

We can interpret this result as follows: when feature vectors become less correlated and

closer to the origin, GIS exhibits faster convergence in the neighborhood of Θ∗. If features are

highly dependent, then GIS will exhibit extremely slow convergence.

3.2 Non-Negative Matrix Factorization (NMF)

Given a non-negative matrix V, the NMF algorithm[14] tries to find matrices W and H,

such that V ≈ WH . Posed as an optimization problem, we are interested in minimizing a

divergence L(W, H) = D(V ||WH), subject to (W, H) ≥ 0 elementwise:

L(W, H) =
∑

ij

(

Vij ln
Vij

(WH)ij

− Vij + (WH)ij

)

(3.9)

We use the convexity of the log function:

− ln
∑

c

WicHcj ≤ −
∑

c

αij(c, c) ln
WicHcj

αij(c, c)
(3.10)

where αij(a, b) = W t
iaH

t
bj/

∑

r W t
irH

t
rj , so that αij(c, c) sum to one. Defining Θ = (W, H)

and Ψ = (W t, H t), we can construct the upper bound on the cost function:

L(Θ) ≤
∑

ij

Vij ln Vij − Vij +
∑

ijc

WicHcj −

∑

ijc

Vijαij(c, c)

[

ln
WicHcj

αij(c, c)

]

= G(Θ, Ψ) (3.11)

Maximizing this bound with respect to elements of W and H, while holding Ψ = (W t, H t)

fixed (i.e.elements of α), we obtain the update equations:

W t+1
ic = W t

ic

∑

j H t
cjVic/(WH)t

ic
∑

v H t
cv

(3.12)

H t+1
cj = H t

cj

∑

i W
t
icVic/(WH)t

ic
∑

w W t
wc

(3.13)

CHAPTER 3. BOUND OPTIMIZATION METHODS 14

Employing (2.2), we can compute the second order statistics to derive an explicit form of the

convergence rate M ′ matrix:

∇2
G(Θ∗)

∂W ∗
ic∂W ∗

kp

= δikδcp

∑

j

Vij

V̄ ∗
ij

H∗
cj

W ∗
ic

∇2
G(Θ∗)

∂W ∗
ic∂H∗

pl

= δcp

∇2
G(Θ∗)

∂H∗
cj∂H∗

pl

= δcpδjl

∑

i

Vij

V̄ ∗
ij

W ∗
ic

H∗
cj

∇2
G(Θ∗)

∂H∗
cj∂W ∗

kp

= δcp

∇2
G(Θ∗, Ψ∗)

∂W ∗
ic∂W ∗

kp

= −
[

δikδcp

∑

j

Vij

V̄ ∗
ij

H∗
cj

W ∗
ic

− δik

∑

j

Vij

V̄ ∗
ij

H∗
cj

W ∗
ic

αij(c, p)

]

∇2
G(Θ∗, Ψ∗)

∂H∗
cj∂H∗

pl

= −
[

δjlδcp

∑

i

Vij

V̄ ∗
ij

W ∗
ic

H∗
cj

− δjl

∑

i

Vij

V̄ ∗
ij

W ∗
ic

H∗
cj

αij(c, p))

]

∇2
G(Θ∗, Ψ∗)

∂W ∗
ic∂H∗

pl

= −Vij

V̄ ∗
ij

(δcp − αil(c, p))

∇2
G(Θ∗, Ψ∗)

∂H∗
cj∂W ∗

kp

= −Vkj

V̄ ∗
kj

(δcp − αkj(c, p))

where we define V̄ ∗
ij =

∑

c W ∗
icH

∗
cj , and δij = 1 if i = j; 0 – otherwise. The convergence rate

matrix M ′ is therefore of the form:

∂M(Θ)

∂Θ
|Θ=Θ∗ = −

[

∇2
G(Θ∗, Ψ∗)

][

∇2
G(Θ∗)

]−1
(3.14)

We note that the convergence matrix of NMF much resembles the convergence matrix of

GIS, since both algorithms make use of the bound that comes from Jensen’s inequality.

3.3 Concave-Convex Procedure

A CCCP [32] optimizer seeks to minimize an energy function E(Θ), which can be decom-

posed into a convex Evex(Θ) and a concave Ecave(Θ) function:

E(Θ) = Evex(Θ) + Ecave(Θ) (3.15)

CCCP algorithm is given by:

∇Evex(Θ
t+1) = −∇Ecave(Θ

t) (3.16)

CHAPTER 3. BOUND OPTIMIZATION METHODS 15

It is easy to see that CCCP belongs to the class of bound optimization algorithms, and therefore

can be analyzed as a first order iterative algorithm. Its bound function is of the form:

E(Θ) ≤ Evex(Θ) + Ecave(Ψ) + (Θ − Ψ)T∇Ecave(Ψ) = G(Θ, Ψ) (3.17)

Employing (2.2), we have:

∇2
G(Θ∗) =

∂2Evex(Θ)

∂Θ∂ΘT
|Θ=Θ∗ (3.18)

∇2
G(Θ∗, Ψ∗) =

∂2Ecave(Ψ)

∂Ψ∂ΨT
|Ψ=Θ∗ (3.19)

The convergence rate matrix is therefore given by:

M ′(Θ∗) = −
[

∂2Ecave(Ψ)

∂Ψ∂ΨT
|Ψ=Θ∗

][

∂2Evex(Θ)

∂Θ∂ΘT
|Θ=Θ∗

]−1

(3.20)

which can be interpreted as a ratio of concave curvature to convex curvature. According to

(2.10) in the neighborhood of a solution (for sufficiently large t) the gradient and step are

related:

P (Θt) ≈
[

I −
(

∂2Ecave(Ψ)

∂Ψ∂ΨT
|Ψ=Θt

)(

∂2Evex(Θ)

∂Θ∂ΘT
|Θ=Θt

)−1][

− S(Θt)

]−1

(3.21)

Of course, the step CCCP takes in parameter space has positive projection onto the true

gradient of the original energy function E(Θ). The above view of CCCP has an interesting in-

terpretation: If the concave energy function has small curvature compared to the convex energy

term in the neighborhood of Θ∗, CCCP will exhibit a quasi-Newton behavior and will possess

fast, typically superlinear convergence. As the fraction of concave-convex curvature infor-

mation approaches one, CCCP will exhibit extremely slow, first order convergence behavior.

Figure 3.2 illustrates exactly such an example.

As a confirmation of the above analysis we consider GIS as a reformulated CCCP algo-

rithm. We can express GIS as CCCP [32] by letting ri = exp Θi and minimizing the cost

function:

E(r) = ln Z(ln r) −
∑

x

p̄(x)(ln r)T F (x) (3.22)

CHAPTER 3. BOUND OPTIMIZATION METHODS 16

by defining Evex(r) = −∑

x p̄(x)(ln r)T F (x) and Ecave(r) = ln Z(ln r). One can easily

verify that CCCP update equation ∇Evex(r
t+1) = −∇Ecave(r

t) results in GIS update equation

(3.4). Differentiating convex and concave functions with respect to r twice, and substituting

back ri = exp Θi, we obtain the same exact equations for the convergence matrix as they are

given by (3.5) and (3.6). Identical analysis can be performed for the EM algorithm.

3.4 Improving Convergence Rates

The above analyses helped to answer the question: when and why will bound optimizers

converge slowly? They can also help to answer the more practical question: what can we do to

speed up convergence?

One could use alternative optimization techniques in the regime where the convergence rate

matrix has large eigenvalues, and a bound optimizer is likely to perform very poorly. For exam-

ple, in chapter 4, we will see that for the case of EM, it is possible to estimate the key quantity

controlling convergence (fraction of missing information) and switch to direct (gradient-based)

optimization when we predict slow behavior of EM. For other bound optimizers, similar hybrid

algorithms may be possible.

But there is another, intriguing approach to improving convergence speed: modify the orig-

inal input to the algorithms based on our analysis of convergence rates. In the case of GIS

this involves transforming features, in the case of NMF, this requires translating data vectors,

and for CCCP this comes down to designing different convex-concave decompositions of the

objective.

Beginning with GIS, we can show the following:

Corollary 3.1 Homogeneously rescaling all feature vectors by a single constant does not

affect convergence.

Proof sketch: Consider setting Fnew(x) = σF (x) ∀x. Corollary 3.1 becomes obvious by

CHAPTER 3. BOUND OPTIMIZATION METHODS 17

analyzing ”scaled” convergence rate matrix M ′
new(Θ∗). Indeed:

M ′
new(Θ∗) = I − 1

σs
σ2Cov(Θ∗)(σD(Θ∗))−1

=
1

σ2s
σ2P (Θ∗) = M ′(Θ∗) (3.23)

Corollary 3.2 Translating feature vectors to bring them closer to the origin speed up the

convergence of GIS. the convergence of GIS. In particular, the optimal translation of features

is given by Fnew(x) = F (x) − V with a vector V containing elements Vi = minx fi(x) ∀i.

Proof sketch Consider setting Fnew(x) = F (x) − V ∀x as above. We have

M ′
new(Θ∗) = I − 1

snew
Cov(Θ∗)Dnew(Θ∗)−1 (3.24)

with Dnew(Θ∗) = D(Θ∗) − diag(V), and snew = s − ∑

i Vi. Let us denote Q(Θ∗) ≡

Cov(Θ∗)D(Θ∗)−1, Qnew(Θ∗) ≡ Cov(Θ∗)Dnew(Θ∗)−1, and λmax(A) ≡ the largest eigenvalue

of A. We can now show that this translation forces the top eigenvalue of M ′(Θ∗) to decrease:

λmax(M
′
new(Θ∗)) ≤ λmax(M

′(Θ∗)) (3.25)

where we derived (3.7): M ′(Θ∗) = I − 1
s
Q(Θ∗). Note that: λmax(M

′
new(Θ∗)) = 1 −

λmin

(

1
snew

Qnew(Θ∗)
)

. Hence, our task reduces to showing:

λmin

(1

snew

Qnew(Θ∗)
)

≥ λmin

(1

s
Q(Θ∗)

)

⇒ λmax

(

snewQ−1
new(Θ∗)

)

≤ λmax

(

sQ−1(Θ∗)
)

(3.26)

Taking into account that snew ≤ s, the above inequality is obvious by examining:

λmax

(

snewQ−1
new(Θ∗)

)

= snewλmax

([

D(Θ∗) − diag(V)
]

Cov−1(Θ∗)
)

≤ sλmax

(

D(Θ∗)Cov−1(Θ∗)
)

= sλmax

(

Q−1(Θ∗)
)

(3.27)

It is now clear that the optimal translation of features is given by Fnew(x) = F (x)−V ∀x with

Vi = minx fi(x) ∀i.

Corollary 3.3: Decorrelating (whitening) feature vectors speeds up convergence of GIS In

particular, the optimal linear transformation Fnew(x) = AF (x) is that which makes ACov(Θ∗)AT

equal to identity matrix.

CHAPTER 3. BOUND OPTIMIZATION METHODS 18

Proof sketch Consider spectral decomposition: Cov(Θ∗) = WHW T , with H being the

diagonal matrix of the eigenvalues, and W being the orthogonal matrix of the corresponding

eigenvectors. Let A = WH−1/2W T . The linear transformation becomes Fnew(x) = AF (x)1,

in which case ACov(Θ∗)AT = I . Then:

M ′
new(Θ∗) = I − 1

snew
ACov(Θ∗)AT Dnew(Θ∗)−1

= I − 1

snew
Dnew(Θ∗)−1 (3.28)

with snew = maxx

∑

i

[

AF (x)
]

i
, and Dnew(Θ∗) = diag

[

A
∑

x p(x|Θ∗)F (x)
]

= diag
[

AF̄ (Θ∗)
]

.

We now show that, in general, λmax(M
′
new(Θ∗)) ≤ λmax(M

′(Θ∗)). This task reduces to show-

ing (see eq (3.26)):

λmax

(

snewDnew(Θ∗)
)

≤ λmax

(

sQ−1(Θ∗)
)

(3.29)

First note that:

λmax

(

sQ−1(Θ∗)
)

= sλmax

(

D(Θ∗)Cov−1(Θ∗)
)

= sλmax

(

D(Θ∗)A
[

ACov(Θ∗)AT
]−1

AT
)

= sλmax

(

D(Θ∗)AAT
)

(3.30)

On the other side:

snewλmax

(

Dnew(Θ∗)
)

= snew ‖ AF̄ (Θ∗) ‖∞

≤ snew ‖ D(Θ∗)A ‖∞ (3.31)

with F̄ (Θ∗) =
∑

x p(x|Θ∗)F (x) and D(Θ∗) = diag
[

F̄ (Θ∗)
]

. It can further be shown that

snew ≤ sλmax(A) = s ‖ A ‖2. By using above facts, slightly more relaxed bound holds:

‖ D(Θ∗)A · snew ‖2≤‖ D(Θ∗)A · sA ‖2 (3.32)

Therefore in general, ”whitening” feature vectors, pushes down the top eigenvalue of the con-

vergence rate matrix, which according to our analysis, results in its faster rate of convergence.

1Here we are assuming that the new feature vector AF(x) has only positive entries. If AF(x) has negative

entries it might be necessary to decorrelate and add a translation, which trades off the advantage of Corollary 3.2

and Corollary 3.3

CHAPTER 3. BOUND OPTIMIZATION METHODS 19

Of course, the covariance Cov(Θ∗) cannot be evaluated until the optimal parameters are

known, but it can be approximated by using the sample covariance of features on the training

set.

For NMF, similar to GIS, translating data vectors to bring them closer to the origin speeds

up convergence, whereas homogeneously rescaling all data by a single constant does not affect

convergence.

For CCCP, it is well-known that any energy function with bounded curvature has many

convex-concave decompositions but no clear principle for finding a good one has been known.

Our analysis provides guidance in this regard: we should minimize the ratio of curvatures

between the convex and concave parts of the energy.

In the next section we illustrate that appropriate preprocessing of the input to these various

bound optimization algorithms does result in significantly faster rate of convergence.

3.5 Experimental Results

We now present empirical results to support the validity of our analysis for several bound

optimization algorithms. We first analyze and apply Generalized Iterative Scaling (GIS) to

a logistic regression model. We then show the effect of data translation on the convergence

properties of NMF. Finally, we finish by describing and analyzing the effect of various energy

function decompositions on the convergence behavior of the CCCP algorithm. Though not

shown, we confirmed that the convergence results presented below do not vary significantly for

different random initial starting points in the parameter space.

To confirm our analysis of GIS, we applied iterative scaling algorithm to a simple 2-class

logistic regression model: p(y = ±1|x, w) = 1/(1 + exp (−ywTx)) [20]. In our first ex-

periment, N feature vectors of dimensionality d were drawn from normal: x ∼ N (0, 2Id),

with the true parameter vector w∗ being randomly chosen on the surface of the d-dimensional

sphere with radius
√

2. To make features positive, the data set was modified by adding 20 to all

CHAPTER 3. BOUND OPTIMIZATION METHODS 20

0 500 1000 1500 2000 2500 3000

−570

−565

−560

−555

−550

−545

−540

Iteration Number

C
o

n
d

it
io

n
a

l
L

o
g

−
L

ik
e

li
h

o
o

d
 +

 C
o

n
s

t Logistic Regression

A

B, C

0 5 10 15 20 25
0

5

10

15

20

25

Feature 1

F
e

a
tu

re
 2

A

B

0 5 10 15 20 25
0

5

10

15

20

25

Feature 1

F
e

a
tu

re
 2

B

C

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

−445

−440

−435

−430

−425

−420

−415

−410

Interation Number

C
o

n
d

it
io

n
a

l
L

o
g

−
L

ik
e

li
h

o
o

d
 +

 C
o

n
s

t Logistic Regression

X

Y

Z

0 5 10 15 20 25
0

5

10

15

20

25

Feature 1

F
e

a
tu

re
 2

X

Y

0 5 10 15 20 25
0

5

10

15

20

25

Feature 1

F
e

a
tu

re
 2

X

Z

Figure 3.1: Learning curves (left panels) of Iterative Scaling algorithm for logistic regression model,

showing the effect that translation and whitening of the feature vectors have on the IS convergence

behavior, with letters corresponding to the respective data sets. Top panels show an experiment with

2,000 2-dimensional feature vectors drawn from standard normal, bottom panels display an identical

experiment with 2,000 feature vectors drawn from normal with oriented covariance. Top, right panel

shows that scaling feature vectors by constant does not affect the convergence of IS.

feature values. Figure 3.1 shows that for N = 2000 and d = 2, naive IS, that runs on the origi-

nal unpreprocessed features, takes over 2500 iterations to converge. When feature vectors are

translated closer to the origin, IS converges to exactly the same maximum likelihood solution,

but beats naive IS by a factor of almost twelve.

Our second experiment was similar, but feature vectors of dimensionality d were drawn

from a Gaussian with oriented covariance. Figure 3.1 shows that for N=2,000 and d=2, trans-

lating features improves the convergence of IS by a factor of over 4, whereas translating and

whitening feature vectors results in speedup by factor of over twenty. Similar results are ob-

tained if dimensionality of the data is increased.

Next, we experimented with the NMF algorithm. Data vectors were drawn from standard

normal: x ∼ N (0, I16). To make features positive, the data set was modified by adding 20

to all data values, forming non-negative matrix V . We then applied NMF to perform non-

negative factorization: V ≈ WH . Figure 3.2 reveals that naive NMF, that runs on the original

CHAPTER 3. BOUND OPTIMIZATION METHODS 21

0 200 400 600 800 1000 1200 1400
2

4

6

8

10

12

14

16

18

20

D
iv

e
rg

e
n

c
e

A

B

NMF

A B

Iteration Number
0 20 40 60 80 100 120 140

−2

−1.99

−1.98

−1.97

−1.96

−1.95

E
n

e
rg

y
 F

u
n

c
ti

o
n

 E
(x

)

0 40 80 120
−5

15

35

55
CCCP

Vex3 +
Cave3

Vex1 +
Cave1

Vex2 +
Cave2 Iteration Number

−4 −3 −2 −1 0 1 2 3 4
−60

−40

−20

0

20

40

60

E(x)

E
cave1

(x)

E
cave2

(x)
E

cave3
(x)

E
vex1

(x)

E
vex3

(x)

E
vex2

(x)

Figure 3.2: Learning curves of NMF and CCCP algorithms. For NMF, we show the effect that data

translation has on the convergence behavior of NMF (in our case black pixels correspond to 0, white to

30). Applying CCCP to minimize a simple energy function E(x) = x4 − 3x2 + 2x− 2, we display the

effect that different energy decompositions (left panel) have on the convergence. behavior of CCCP.

unpreprocessed data (data set A), takes over 1,300 iterations to converge. Once data vectors

are translated closer to the origin (data set B), NMF converges to exactly the same value of the

cost function in about 230 iterations, outperforming naive NMF by a factor of over five.

Finally, we experimented with the CCCP algorithm. We considered a simple energy func-

tion E(x)=x4-3x2+2x-2, which has many decompositions (fig.3.2). A decomposition which

minimizes the ratio of concave-convex curvature is: Ecave1(x)=-3x2-2 and Evex1(x)=x4+2x.

Other decompositions: Ecave2(x)=-13x2-2 and Evex2(x)=x4+10x2+2x; Ecave3(x)=-9x4-3x2-2

and Evex3(x)=10x4+2x; clearly increase the proportion of concave-convex curvature. In our

experiment, all runs of CCCP were started from the same initial point in the parameter space.

Figure 3.2 reveals that as the proportion of the local concave-convex curvature increases, the

convergence rate of CCCP significantly slows down, by several orders of magnitude.

3.6 Discussion

In this chapter we have analyzed a large class of bound optimization algorithms and their

relationship to direct optimization algorithms such as gradient-based methods. We have also

analyzed and determined conditions under which BO algorithms exhibit local-gradient and fast

quasi-Newton convergence behaviors. Based on this analysis and interpretation, we have also

provided some recommendations for how the input to these algorithms can be preprocessed to

CHAPTER 3. BOUND OPTIMIZATION METHODS 22

yield faster convergence.

The analysis and experiments motivate the use of alternative optimization techniques in

the regime where the convergence rate matrix has large eigenvalues, and a bound optimizer is

likely to perform poorly. In particular, slow convergence is expected when missing information

is high while learning with EM; when feature vectors are highly dependent while estimating

parameters with GIS or NMF; or when the ratio of concave-convex curvature is large when

minimizing energy function with CCCP. As we will see in the next chapter, in these cases, direct

optimization algorithms such as conjugate-gradient are likely to have far superior performance.

Either such alternatives should be employed or else the input should be preprocessed to speed

convergence.

Chapter 4

EM and Expectation-Conjugate-Gradient

Algorithms

In this chapter we show a close relationship between the Expectation - Maximization (EM)

algorithm and direct optimization algorithms such as gradient-based methods for parameter

learning. We identify analytic conditions under which EM exhibits Quasi-Newton behavior,

and conditions under which it possesses poor, first-order convergence. Based on this analysis,

we propose two novel algorithms for maximum likelihood estimation of latent variable models,

and report empirical results showing that, as predicted by the theory, the proposed new algo-

rithms can substantially outperform standard EM in terms of speed of convergence in certain

cases.

4.1 Introduction

The problem of Maximum Likelihood (ML) parameter estimation for latent variable models

is an important problem in the area of machine learning and pattern recognition. ML learning

with unobserved quantities arises in many probabilistic models such as density estimation,

where one seeks to find a descriptive model of data; dimensionality reduction, where one tries

23

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 24

to discover a compact representation of data, or classification, and generally reduces to a rela-

tively hard optimization problem in terms of the model parameters after the hidden quantities

have been integrated out.

A common technique for ML estimation of model parameters in the presence of latent vari-

ables is Expectation-Maximization (EM) algorithm [4]. The EM algorithm alternates between

estimating the unobserved variables given the current model and refitting the model given the

estimated, complete data. As such it takes discrete steps in parameter space similar to first

order method operating on the gradient of a locally reshaped likelihood function.

In spite of tremendous success of the EM algorithm in practice due to its simplicity and

fast initial progress, some authors [23] have argued that the speed of EM convergence can be

extremely slow, and that more complicated second-order methods should generally be favored

to EM. Many methods have been proposed to enhance the convergence speed of the EM al-

gorithm, mostly based on conventional optimization theory [10, 12]. Louis[16] proposed an

approximate Newton’s method, known as Turbo EM, that first produces Θt+1
EM using the EM

iteration with Θt as the current fit for Θ, and then uses Θt+1
EM in the conventional Aitken’s

acceleration method to yield the final iterate Θt+1. Jamshidian and Jennrich[9] proposed ac-

celerating the EM algorithm by applying generalized conjugate gradient algorithm. where

generalized gradient is computed by the change in Θ after performing each EM iterate. Several

authors [23, 1] have also proposed hybrid approaches for ML learning, advocating switching

to a Newton or Quasi-Newton method after performing several EM iterations. All of these

approaches, although sometimes successful in terms of convergence, are much more complex

than EM, and difficult to analyze; thus they have not been popular in practice.

The goal of this chapter is to contrast the EM algorithm with a direct gradient-based opti-

mization approach. As a concrete alternative, we present an Expectation-Conjugate-Gradient

(ECG) algorithm for maximum likelihood estimation in latent variable models, and show that

it can outperform EM in terms of convergence in certain cases. However, in other cases the

performance of EM is superior. To understand these behaviors, we study the convergence prop-

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 25

erties of the EM algorithm and identify analytic conditions under which EM algorithm exhibits

Quasi-Newton convergence behavior, and conditions under which it possesses extremely poor,

first-order convergence. Based on this analysis, we introduce a simple hybrid EM-ECG al-

gorithm that switches between EM and ECG based on estimated quantities suggested by our

analysis. We report empirical results on synthetic as well as real-world data sets, showing that,

as predicted by the theory, this simple algorithm almost never performs worse than standard

EM and can substantially outperform EM’s convergence.

4.2 Linear and Newton Convergence of EM

We now turn to Expectation-Maximization (EM) algorithm and bring the analysis for mod-

els which use EM to adjust their parameters. Consider a probabilistic model of observed data

x which uses latent variables y. The log-likelihood (objective function) can be written as:

L(Θ) = ln p(x|Θ) =

∫

p(y|x, Θ) ln p(x|Θ)dy (4.1)

For any value of Ψ, we can construct a lower bound on the objective function L(Θ):

L(Θ) = ln p(x|Θ) =

∫

ln p(x,y|Θ)dy

≥
∫

p(y|x, Ψ) ln
p(x,y|Θ)

p(y|x, Ψ)
dy

=

∫

p(y|x, Ψ) ln p(x,y|Θ)dy −
∫

p(y|x, Ψ) ln p(y|x, Ψ)dy

= Q(Θ, Ψ) − H(Ψ, Ψ) = G(Θ, Ψ) (4.2)

The EM algorithm is nothing more than coordinate ascent in the functional G(Θ, Ψ), alter-

nating between maximizing G with respect to Ψ for fixed Θ (E-step) and with respect to Θ for

fixed Ψ (M-step).

As discussed in chapter 2, EM algorithm implicitly defines a mapping: M : Θ → Θ from

parameter space to itself, such that Θt+1 = M(Θt). If iterates Θt converge to Θ∗ and M(Θ) is

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 26

continuous, then Θ∗ = M(Θ∗), and in the neighborhood of Θ∗, by Taylor series expansion:

Θt+1 − Θ∗ = M ′(Θ∗)(Θt − Θ∗) (4.3)

where M ′(Θ∗) = ∂M
∂Θ

|Θ=Θ∗. Since M ′(Θ∗) is typically nonzero, then EM is essentially a linear

iteration algorithm with a convergence rate matrix M ′(Θ∗).

Employing Lemma 2.1, if EM iterates converge to Θ∗, then we can easily establish:

∇2
G(Θ∗) =

∂2G(Θ, Ψ)

∂Θ∂ΘT
|

Θ = Θ∗

Ψ = Θ∗

=
∂2Q(Θ, Θ∗)

∂Θ2
|Θ=Θ∗ (4.4)

∇2
G(Θ∗, Ψ∗) =

[

∂2G(Θ, Ψ)

∂Θ∂ΨT
|

Θ = Θ∗

Ψ = Θ∗

= −∂2H(Θ, Θ∗)

∂Θ2
|Θ=Θ∗ (4.5)

And therefore we have:

∂M(Θ)

∂Θ
|Θ=Θ∗ = −

[

∇2
G(Θ∗, Ψ∗)

][

∇2
G(Θ∗)

]−1

=

[

∂2H(Θ, Θ∗)

∂Θ2
|Θ=Θ∗

][

∂2Q(Θ, Θ∗)

∂Θ2
|Θ=Θ∗

]−1

(4.6)

This can be interpreted as the ratio of missing information to complete information near

the local optimum [4]. According to Proposition 2.2, in the neighborhood of a solution (for

sufficiently large t):

P (Θt) ≈
[

I − M ′(Θt)

][

− S(Θt)

]−1

=

[

I −
(

∂2H

∂Θ2

)(

∂2Q

∂Θ2

)−1

|Θ=Θt

][

− S(Θt)

]−1

(4.7)

where S(Θt) = ∂2L(Θ)
∂Θ2 |Θ=Θt is the Hessian of the objective function.

This formulation of the EM algorithm has a very interesting interpretation which is appli-

cable to any latent variable model: When the missing information is small compared to the

complete information, EM exhibits Quasi-Newton behavior and enjoys fast, typically super-

linear convergence in the neighborhood of Θ∗. If fraction of missing information approaches

unity, the eigenvalues of the first term (4.7) approach zero and EM will exhibit extremely slow

convergence.

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 27

−9 −6 −3 0 3 6 9

µ
1

µ
2

−10 −5 0 5 10
−10

−5

0

5

10
GRADIENT

EM

NEWTON

9.1

8.4

8.0

8.0

7.7

−6 −5 −4 −3 −2 −1 0

0

1

2

3

4

5

6

−6 −3 0 3 6

µ
1

µ
2

−10 −5 0 5 10
−10

−5

0

5

10
GRADIENT

EM

NEWTON

9.1

8.7

8.3

8.5

9.0

8.0

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4.1: Contour plots of the likelihood function L(Θ) for MoG examples using well-

separated (upper panels) and not-well-separated (lower panels) one-dimensional datasets. Axes

correspond to the two means. The dashdot line shows the direction of the true gradient ∇L(Θ),
the solid line shows the direction of P (Θ)∇L(Θ) and the dashed line shows the direction of

(−S)−1∇L(Θ). Right panels are blowups of dashed regions on the left. The numbers indicate

the log of the l2 norm of the gradient. Note that for the ”well-separated” case, in the vicinity of

the maximum, vectors P (Θ)∇L(Θ) and (−S)−1∇L(Θ) become identical.

Figure 4.1 illustrates the above results in the simple case of fitting a mixture of Gaussians

model to well-clustered data – for which EM exhibits Quasi-Newton convergence – and not-

well-clustered data, for which EM is slow. As we will see from the empirical results of the

later sections, many other models also show this same effect. For example, when Hidden

Markov Models or Aggregate Markov Models [26] are trained on very structured sequences,

EM exhibits Quasi-Newton behavior, in particular when the state transition matrix is sparse

and the output distributions are almost deterministic at each state.

The above analysis and experiments motivates the use of alternative optimization tech-

niques in the regime where missing information is high and EM is likely to perform poorly.

In the following section, we analyze exactly such an alternative, the Expectation-Conjugate

Gradient (ECG) algorithm, a simple direct optimization method for learning the parameters of

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 28

latent variables models.

4.3 Expectation Conjugate Gradient (ECG) Algorithm

The key idea of the ECG algorithm is to note that if we can easily compute the derivative

∂
∂Θ

ln p(x,y|Θ) of the complete log likelihood, then knowing the posterior p(y|x, Θ) we can

compute the exact gradient ∇L(Θ). In particular:

∇L(Θ) =

∫

y

p(y|x, Θ)
∂

∂Θ
log p(x,y|Θ)dy (4.8)

This exact gradient can then be utilized in any standard manner, for example to do gradient

(as)descent or to control a line search technique. (Note that if one can derive exact EM for a

latent variable model, then one can always derive ECG by computing the above integral over

hidden variables.) As an example, we describe a conjugate gradient algorithm:

Expectation-Conjugate-Gradient algorithm:

Apply a conjugate gradient optimizer to L(Θ), performing an “EG” step whenever

the value or gradient of L(Θ) is requested (e.g. during a line search).

The gradient computation is given by

• E-Step: Compute posterior p(y|x, Θt) and log-likelihood L(Θ) as normal.

• G-Step: ∇L(Θt) =
∫

p(y|x, Θt) ∂
∂Θ

log p(x,y|Θ)dy

When certain parameters must obey positivity or linear constraints, we can either modify

our optimizer to respect the constraints, or we can reparameterize to allow unconstrained op-

timization. In our experiments, we use simple reparameterizations of model parameters that

allow our optimizers to work with arbitrary values. For example, in the MoG model we use

a “softmax” parameterization of the mixing coefficients πi = exp (γi)� M
j=1 exp (γj)

, for covariance ma-

trices to be symmetric positive definite, we use the Choleski decomposition (or log variances

for diagonal covariance matrices). In HMMs, we reparameterize probabilities via softmax

functions as well. In the appendix B we derive and describe ECG algorithm for several latent

variable models.

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 29

Of course, the choice of initial conditions is very important for the EM algorithm or for

ECG. Since EM is based on optimizing a convex lower bound on the likelihood, once EM is

trapped in a poor basin of attraction, it can never find a better local optimum. Algorithms such

as split and merge EM [29] were developed to escape from such configurations. It turns out that

direct optimization methods such as ECG may also avoid this problem because of the nonlocal

nature of the line search. In many of our experiments, ECG actually converges to a better local

optimum than EM; figure 4.2 illustrates exactly such case.

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Θ
1

Θ
2

EM

Line Search

Θ*

EM

Θ*

ECG

0 200 400 600 800 1000

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

E−Steps

L
o
g
−

L
ik

e
lih

o
o
d
 +

 C
o
n
s
t

Gene Sequence:
 ATGCCGGAGGCCC ...

EM

ECG

Figure 4.2: Left panel pictorially illustrates why ECG may converge to a better local optimum.

Right panel displays the learning curves for EM and ECG algorithms of training fully con-

nected 7-state HMM to model human DNA sequences. Both algorithms started from the same

initial parameter values, but converged to the different local optimum.

4.4 Hybrid EM-ECG Algorithm

As we have seen, the relative performance of EM versus direct optimization depends on the

missing information ratio for the given model and data set. The key to practical speedups is

the ability to design a hybrid algorithm that can estimate the local missing information ratio

M ′(Θt) to detect whether to use EM or a direct approach such as ECG. Some authors have

attacked this problem by finding the top eigenvector of
∂M(Θ)

∂Θ
|Θ=Θt as Θt approaches Θ∗ using

conventional numerical methods, such as finite-difference approximations, or power methods

[5]. These approaches are computationally intensive and difficult to implement, and thus they

have not been popular in practice.

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 30

Here, we propose using the entropy of the posterior over hidden variables, which can be

computed after performing an E-step, as a crude estimate of the local missing information

ratio. This entropy has a natural interpretation as the uncertainty about missing information,

and thus can serve as a guide between switching regimes of EM and ECG. For many models

with discrete hidden variables this quantity is quite easy to compute. In particular, we define

the Normalized Entropy term:

H̄t = −1
N ln M

∑N
n

∑M
i p(y = i|xn, Θ

t) ln p(y = i|xn, Θt) (4.9)

with y being discrete hidden variable taking on M values, and N observed data vectors xn. We

now simply switch between EM and ECG based on thresholding this quantity:

Hybrid EM-ECG algorithm:

• Perform EM iterations, evaluating H̄t after each E-step

• If H̄t ≥ τ Thena Switch to ECG

• Perform ECG, evaluating H̄t at the end of each line search

• If H̄t < τ Then Switch back to EM

• Exit at either phase IF:

1. (L(Θt) − L(Θt−1))/abs(L(Θt)) < tol OR

2. t > Tmax

aWe are near the optimum or in plateau region with high entropy

As we will see from the experimental results, this simple hybrid EM-ECG algorithm per-

forms no worse, and often far better than either EM or ECG.

4.5 Experimental Results

We now present empirical results comparing the performance of EM, ECG, and hybrid EM-

ECG for learning the parameters of three latent variable models: Mixtures of Gaussians (MoG),

Hidden Markov Models (HMM), and Aggregate Markov Models. In many latent variable

models, performing inference (E-step) is significantly more expensive compared to either the

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 31

parameter updates (M-step) or the line search overhead in the CG step of ECG. To compare

the performance of the algorithms, we therefore simply compare the number of E-steps each

algorithm executes until its convergence.

We first show results on synthetic data sets, whose properties we can control to verify cer-

tain aspects of our theoretical analysis. We also report empirical results on several real world

data sets, showing that our algorithms do work well in practice. Though we show examples of

single runs, we have confirmed that the convergence results presented in all our experiments

do not vary significantly for different initial parameter conditions. For all of the reported ex-

periments, we used tol = 10−8 and τ = 0.5.

4.5.1 Synthetic Data Sets

First, consider a mixture of Gaussians (MoG) model. We considered two types of data

sets, one in which the data is “well-separated” into distinct clusters and another “not-well-

separated” case in which the data overlaps in one contiguous region. Figure 4.3 shows that

ECG and Hybrid EM-ECG outperform standard EM in the poorly separated cases. For the

well-separated case, the hybrid EM-ECG algorithm never switches to ECG due to the small

normalized entropy term, and EM converges very quickly. This is predicted by our analysis: in

the vicinity of the local optima Θ∗ the directions of the vectors P (Θ)∇L(Θ) and (−S)−1∇L(Θ)

become identical (fig. 4.1), suggesting that EM will have Quasi-Newton convergence behavior.

We then applied our algorithms to the training of Hidden Markov Models (HMMs). Miss-

ing information in this model is high when the observed data do not well determine the un-

derlying state sequence (given the parameters). We therefore generated two data sets from a

5-state HMM, with an alphabet size of 5 characters. The first data set (“aliased” sequences)

was generated from a HMM where output parameters were set to uniform values plus some

small noise. The second data set (“very structured sequences”) was generated from a HMM

with sparse transition and output matrices. For the ambiguous or aliased data, ECG and hybrid

EM-ECG outperform EM substantially. For the very structured data, EM performs well and

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 32

0 100 200 300 400 500 600
−20

−15

−10

−5

0

x 10
−3

−5 −3 −1 1
0

2

4

6

EM−ECG

ECG

EM

0 50 100 150 200 250 300

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

EM−ECG

ECG EM

Unstructured
 Sequence: CEDBCEDDAC ...

0 20 40 60 80 100 120 140 160 180
−0.025

−0.02

−0.015

−0.01

−0.005

0 EM−ECG

ECG
EM

0 10 20 30 40 50
−35

−30

−25

−20

−15

−10

−5

0

−2 0 2

−2

0

2

ECG

EM−ECG / EM

0 5 10 15 20 25 30 35

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Structured
 Sequence: AEABCDEAEABCDE...

ECG

EM−ECG / EM

0 10 20 30 40 50
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

L
o

g
−

L
ik

e
li
h

o
o

d
 +

 C
o

n
s
t

EM−ECG / EM

ECG

E−Steps

Figure 4.3: Learning curves for ECG, EM-ECG, and EM algorithms, showing superior (upper

panels) and inferior (lower panels) performance of ECG under different conditions for three

models: MoG (left), HMM (middle), and Aggregate Markov Models (right). The number

of E-steps taken by either algorithm is shown on the horizontal axis, and log likelihood is

shown on the vertical axis. For ECG and EM-ECG, diamonds indicate the maximum of each

line search, and the zero-level likelihood corresponds to the converging point of the EM algo-

rithm. The bottom panels use “well-separated”, or “structured” data for which EM possesses

Quasi-Newton convergence behavior. All models in this case converge in 10-15 iterations with

stopping criterion: [L(Θt+1)−L(Θt)]/abs(L(Θt+1)) < 10−15. The upper panels use “overlap-

ping”, “aliased”, or “unstructured” data for which proposed algorithms performs much better.

exhibits second order convergence in the vicinity of the local optimum.1

Finally, we experimented with Aggregate Markov Models (AMMs) [26]. AMMs model

define a discrete conditional probability table pij = p(y = j|x = i) using a low rank ap-

proximation. In the context of n-gram models for word sequences, AMMs are class-based

bigram models in which the mapping from words to classes is probabilistic. In particular,

the class-based bigram model predicts that word w1 is followed by word w2 with probability:

P (w2|w1) =
∑C

c=1 P (w2|c)P (c|w1) with C being the total number of classes. Here, the con-

cept of missing information corresponds to how well or poor a set of words determine the class

1ECG performs better on hard cases, whereas EM does better on easy cases. One does not seem to loose much

by just applying ECG instead of EM.

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 33

labels C based on the observation words that follow them. We therefore generated two data sets

for 50-state AMM model. For the first data set (“ambiguous”, “aliased”) the transition matrix

was set to uniform values plus some small noise. In this case words do not well determine class

labels. For the second data set (“structured”) the transition matrix was set to be very sparse, in

which case the proportion of missing information is very small. The right panels of figure 4.3

show training of a 2-class 50-state AMM model on ambiguous data, and on more structured

data. ECG and hybrid EM-ECG are superior to EM by at least a factor of two for ambiguous

data; for structured data EM shows the expected Quasi-Newton convergence behavior.

4.5.2 Real World Data Sets

In our first experiment, we cluster a set of 50,000 8×8 grayscale pixel image patches2 using

a mixture of Gaussians model. The patches were extracted from 768 × 512 natural images,

described in [30] (see fig 4.4 for an example of a natural image, and sample patches). To

speed-up the experiments, the patch data was projected with PCA down to a 10-dimensional

linear subspace and the mixing proportions and covariances of the model were held fixed. The

means were initialized by performing K-means. We experimented with mixtures having M=2

up to M=65 clusters.

Figure 4.4: An example of a natural image and some samples of 8×8 gray pixel image patches,

used in the clustering experiment.

Figure 4.5 displays the convergence of EM, ECG, and Hybrid EM-EC algorithms for M=5,

M=50 and M=65. The experimental results show that with fewer mixture components EM

2The data set used was the imlog data set publicly available at ftp://hlab.phys.rug.nl/pub/samples/imlog

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 34

0 50 100 150 200 250
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

EM−ECG / EM

ECG

5−Component MOG

0 200 400 600 800 1000
−5

−4

−3

−2

−1

0

1

x 10
−4

EM−ECG

ECG EM

50−Component MOG

0 100 200 300 400 500 600
−0.01

−0.006

−0.002

0.002

0.006

0.01

EM−ECG

ECG

EM

65−Component MOG

0 200 400 600 800 1000
−8

−6

−4

−2

0

2

4

x 10
−3

DNA Sequence:
 ATGCCGGAGGCCC ...

ECG

EM−ECG

EM

5−State HMM

0 200 400 600 800 1000
−0.03

−0.02

−0.01

0

0.01

ECG

EM−ECG

EM

DNA Sequence:
 ATGCCGGAGGCCC ...

8−State HMM

0 200 400 600 800 1000
−0.03

−0.02

−0.01

0

0.01

0.02

DNA Sequence:
 ATGCCGGAGGCCC ...

EM−ECG

ECG

EM

10−State HMM

0 200 400 600 800 1000
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

EM−ECG

ECG

EM

3−Class AMM

0 200 400 600 800 1000

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

EM−ECG
EM

ECG

6−Class AMM

0 200 400 600 800 1000
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

L
o

g
−

L
ik

e
li
h

o
o

d
 +

 C
o

n
s
t EM−ECG

ECG

EM

E−Steps

9−Class AMM

Figure 4.5: Learning curves for ECG, EM-ECG, and EM algorithms, displaying convergence

performance under different conditions for three models: MoG (upper), HMM (middle), and

Aggregate Markov Models (bottom). The number of E-steps taken by either algorithm is shown

on the horizontal axis, and log likelihood is shown on the vertical axis. For ECG and EM-ECG,

diamonds indicate the maximum of each line search, and the zero-level likelihood corresponds

to the converging point of the EM algorithm. The number of learned clusters for MoG model

were 5 (left), 50 (middle), and 65 (right). For HMM model, the number of states were 5 (left),

8 (middle), and 10 (right). The number of learned themes for the AMM model were 3 (left), 6

(middle), and 9 (right).

outperforms ECG, since the components generally model the data with fairly distinct, non-

contiguous clusters. As the number of mixtures components increases, clusters overlap in con-

tiguous regions and the normalized entropy term grows, suggesting a relatively high proportion

of the missing information. In this case ECG outperforms EM by several times.

Our second experiment consisted of training a fully connected HMM to model DNA se-

quences. For the training, we used publicly available ”GENIE gene finding data set”, provided

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 35

by UCSC and LBNL [6], that contains 793 unrelated human genomic DNA sequences. We

applied our different algorithms on 66 DNA sequences with length varying anywhere between

200 to 3000 multiple exon and single exon genes per sequence. The number of states ranged

from M=5 to M=10 and all the parameter values were randomly initialized. Figure 4.5 shows

the convergence of EM, ECG, and Hybrid EM-ECG algorithms for M=5,8,10. This data set

contains very complex structure which is not easily modeled by HMMs, resulting in a very

high proportion of missing information. As a result, hybrid EM-ECG and ECG substantially

outperform EM in terms of convergence.

In our last experiment, we applied Aggregate Markov Models to the data set consisting of

2,037 NIPS authors and corresponding counts of the top 1,000 most frequently used words of

the NIPS conference proceedings, volumes 1 to 12.3 The goal was to model the probability

that an author A will use word W using a small number of “soft” classes (t): P (W |A) =

∑T
t=1 P (W |t)P (t|A). Once again, we observe that for this simple model, this data set has a

large fraction of missing information. Figure 4.5 displays the convergence of EM, ECG, and

EM-ECG algorithms for T=3,6,9. with hybrid EM-ECG and ECG having superior convergence

over EM.

4.6 Discussion

Although we have focused here on discrete latent variables, the ECG and hybrid algorithms

can also be derived for latent variable models with continuous hidden variables. As an example

figure 4.6 illustrates convergence behavior of the Probabilistic Principal Component Analysis

(PPCA) latent variable model[24, 28], which has continuous rather than discrete hidden vari-

ables. Here the concept of missing information is related to the ratios of the leading eigen-

values of the sample covariance, which corresponds to the ellipticity of the distribution. For

“low-rank” data with a large ratio EM performs well; for nearly circular data ECG converges

3NIPS corpus used in the experiments is publicly available at http://www.cs.toronto.edu/∼roweis/data.html

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 36

0 50 100 150 200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

−10 −5 0 5 10
−10

−5

0

5

10

Probabilistic PCA

ECG EM

0 50 100 150 200
−25

−20

−15

−10

−5

0

−2 0 2
−3

−2

−1

0

1

2

3

Probabilistic PCA

ECG

EM

0 50,000 100,000 150,000 200,000 250,000
−10

−8

−6

−4

−2

0

2
x 10

−4

L
o

g
−

L
ik

e
li
h

o
o

d
 +

 C
o

n
s
t EM−ECG /

ECG

E−Steps

EM

5−State HMM

Figure 4.6: Learning curves for ECG (dots) and EM (solid lines) algorithms, showing superior

(left) and inferior (middle) performance of ECG. The left panel uses ”ill-conditioned” data for

which ECG converges quickly; the middle panel uses “low-rank” data for which EM performs

better. Right panel displays ”non-converging” case of the EM. Very unstructured data (30

sequences, each of length 50) was generated from a full 5-state HMM with alphabet size of

5. Parameter values were set to be uniform plus some small uniform noise. ECG and EM-

ECG converge in about 7,000 iterations, whereas after even 250,000 iterations, EM is only

approaching to the ML estimate.

faster.

As a confirmation that this behavior is in accordance with our analysis, in figure 4.7 we

show the evolution of the eigenvalues of the matrix
(

∂2H
∂Θ2

)(

∂2Q
∂Θ2

)−1
during learning of the shown

datasets, generated from known parameters for which we can compute this missing informa-

tion matrix exactly. For the well-separated MoG case the eigenvalues of the matrix approach

zero, and the ratio of missing information to the complete information becomes very small,

driving P (Θ) toward the negative of the inverse Hessian. Interestingly, in the case of PPCA,

even though the determinant of the matrix approaches zero, one of its eigenvalues remains

nonzero even in the low-rank data case (fig. 4.7). This suggests that the convergence of the

EM algorithm for PPCA can still be slow very close to the optimum in certain directions in

parameter space, even for “nice” data.

The slow convergence of EM in PPCA is also true for FA and especially for linear dynamic

systems. In these models, there is large amount of missing information due to the fact that

latent variables are continuous and they can be rotated without affecting the likelihood as long

as the parameters are rotated accordingly.

In some degenerate cases, where the proportion of missing information is very high, i.e.

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 37

1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

Number of passes

E
ig

e
n
v
a
lu

e
s

−9 −6 −3 0 3 6 9

1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

Number of passes

E
ig

e
n
v
a
lu

e
s

−2 0 2

−2

0

2

0 0.4 0.8
0

0.4

0.8

0 50 100 150 200

0

0.5

1

1.5

2

2.5

3

Number of passes

E
ig

e
n

v
a

lu
e

s

−2 0 2

−2

0

2

0 20 40 60 80

0

0.5

1

1.5

2

2.5

3

Number of passes

E
ig

e
n
v
a
lu

e
s

−9 −6 −3 0 3

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2

2.5

3

Number of passes

E
ig

e
n

v
a

lu
e

s

0 0.4 0.8
0

0.4

0.8

0.4 0.8
0

0.4

0.8

0 50 100 150 200

0

0.5

1

1.5

2

2.5

3

Number of passes

E
ig

e
n

v
a

lu
e

s

−5 0 5

−5

0

5

Figure 4.7: Eigenvalues of matrix in eq.(4.6) for MoG (left, centre) and PPCA (right) using

well-separated or low-rank (top) and not-well-separated or circular (bottom) datasets of 3000

points. Insets show data and initial/final conditions: initial conditions are shown as dashed

circles at the one-σ contour of each model; final converged model is shown by solid circles.

M ′(Θ∗) approaches identity, EM convergence can be exponentially slow. Figure 4.6 (right

panel) illustrates such example for the case of HMM training using almost random sequences.

It takes about 7,000 iterations for ECG and EM-ECG to converge to the ML estimate, whereas

even after 250,000 iterations EM is still only approaching the local optimum.

In this chapter we have presented comparative analysis of EM and direct optimization al-

gorithms for latent variable models, and developed a theoretical connection between these two

approaches. We have also analyzed and determined conditions under which EM algorithm

can demonstrate local-gradient and Quasi-Newton convergence behaviors. Our results extend

those of Xu and Jordan[31] who analyzed the convergence properties of the EM algorithm in

the special case of Gaussian mixtures, and apply to any exponential family model.

Motivated by these analyses, we have proposed an alternative hybrid optimization method

that can significantly outperform EM in many cases and is almost never inferior. We tested

the proposed algorithms by training several basic latent variable models on several synthetic

as well as real world data sets, reporting convergence behavior and explaining the results with

CHAPTER 4. EM AND EXPECTATION-CONJUGATE-GRADIENT ALGORITHMS 38

reference to our analysis.

Chapter 5

Adaptive Overrelaxed Bound

Optimization Methods

In this chapter we study a class of overrelaxed bound optimization algorithms, and their

relationship to standard bound optimizers, such as Expectation-Maximization, Iterative Scal-

ing, CCCP and Non-Negative Matrix Factorization. We provide a theoretical analysis of the

convergence properties of these optimizers and identify analytic conditions under which they

are expected to outperform the standard versions. Based on this analysis, we propose a novel,

simple adaptive overrelaxed scheme for practical optimization and report empirical results on

several synthetic and real-world data sets showing that these new adaptive methods exhibit

superior performance (in certain cases by several times) compared to their traditional counter-

parts. Our “drop-in” extensions are simple to implement, apply to a wide variety of algorithms,

almost always give a substantial speedup, and do not require any theoretical analysis of the un-

derlying algorithm.

5.1 Overrelaxed Bound Optimization: BO(η)

In chapter 1 we described a general form of a bound maximizer which iteratively lower

bounds the objective function. These standard algorithms enjoy a strong guarantee: they never

39

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 40

worsen the objective function. However, to guarantee an increase in the objective function at

each iteration, BO methods must sometimes construct very conservative bounds, resulting in

extremely slow convergence behavior. Below, we analyze a family of overrelaxed BO algo-

rithms called BO(η) algorithms with η denoting the overrelaxation learning rate. The basic idea

that lies behind overrelaxed bound optimization algorithms is very simple: produce a new pa-

rameter vector Θt+1 by performing standard bound optimization with Θt and go a little further

in the direction of Θt+1 − Θt.

Naive Overrelaxed BO(η) algorithm for maximizing L(Θ):

• Assume: ∃ function G(Θ, Ψ) such that for

any given Θ′ and Ψ′:

1. G(Θ′, Θ′) = L(Θ′) & L(Θ) ≥ G(Θ, Ψ′) ∀ Θ 6= Ψ′

2. arg maxΘG(Θ, Ψ′) can be found easily.

• Iterate: Θt+1 = Θt + η
(

arg maxΘG(Θ, Θt) − Θt
)

• No convergence guarantee.

• Difficult to set η in practice.

Clearly, for η = 1 BO(η) algorithms become just regular bound optimizers. Several authors

have studied a particular variant of this idea as applied to Expectation Maximization. In partic-

ular, Helmbold et al. (1995) [8] investigated the problem of estimating the component priors

for a mixture of given densities, and discovered that an EM(η) update rule can be viewed as a

first order approximation to the exponentiated gradient EG(η) update. Following this, Bauer et

al. (1997) [2] presented an analysis of EM(η) similar to [8] and derived the update rules for

parameter estimation in discrete Bayesian networks. However, more general BO(η) methods

have not been widely used for several reasons. First, only one particular variant of BO(η) is

well studied: EM(η), and update rules have been published only in the special case of discrete

Bayesian networks. Second, if a learning rate larger than optimal is used, BO(η) algorithms

cannot guarantee convergence to even a local optimum of their objective function, in contrast

to standard bound optimizers. Finally, it is computationally very difficult to obtain the optimal

learning rate η∗.

In this chapter, we analyze a broad class of BO(η) algorithms beyond EM(η) and show

how one can design a simple adaptive algorithm that, in general, will possess superior con-

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 41

vergence rates over standard BO(1) methods while at the same time guaranteeing convergence

and avoiding the need to calculate an optimal learning rate η∗.

5.2 Convergence Properties of BO(1) and BO(η)

In chapter 2, we showed that standard bound optimization methods implicitly define a map-

ping: M : Θ → Θ′ from parameter space to itself, such that Θt+1 = M(Θt). In particular,

if the iterates Θt converge to Θ∗ and M(Θ) is continuous, then Θ∗ = M(Θ∗), and in the

neighborhood of Θ∗, by Taylor series expansion:

Θt+1 − Θ∗ = M ′(Θ∗)(Θt − Θ∗) (5.1)

where M ′(Θ∗) = ∂M
∂Θ

|Θ=Θ∗. Since M ′(Θ∗) is typically nonzero, then any bound optimizer is

essentially a linear iteration algorithm with a convergence rate matrix M ′(Θ∗).

For multidimensional vector Θ, a measure of the actual observed convergence rate is the

“global” rate, defined as:

r = limt→∞
‖Θt+1−Θ∗‖
‖Θt−Θ∗‖

(5.2)

with ‖ � ‖ being Euclidean norm[19]. Intuitively, the “global” rate of convergence measures

by how much the new fit Θt+1 of the parameter vector Θ is getting closer to the local optimum

compared to the previous fit Θt. It is also well-known that under some regularity conditions

r = λmax(M
′) ≡ the largest eigenvalue of M ′(Θ∗). All of the eigenvalues of the convergence

rate matrix M ′(Θ∗) lie in the interval [0, 1). Larger values of λmax (as they approach unity)

imply slower convergence.

BO(η) methods, just as standard bound optimizers, implicitly define a mapping: Φ : Θ →

Θ from parameter space to itself, such that Θt+1 = Φ(Θt). In particular,

Φ(Θt) = Θt + η(Θt+1
BO − Θt) = Θt + η(M(Θt) − Θt) (5.3)

We can now analyze convergence behavior of the BO(η) methods as well as their relationship

to the standard BO(1) algorithms.

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 42

Lemma 4.1 If BO(η) iterates converge to Θ∗, then for any value of η, Φ(Θ∗) = Θ∗.

Proof: This follows from (5.3) due to the necessity of a fixpoint of the mapping M :

M(Θ∗) = Θ∗.

Lemma 4.2 If BO(η) iterates converge to Θ∗ and Φ(Θ) and M(Θ) are differentiable in the

parameter space Θ, then:

Φ′(Θt) = I − η(I − M ′(Θt)) (5.4)

with I being identity matrix and Φ′
ij(Θ

t) =
∂Θt+1

i

∂Θt
j

is the input-output derivative matrix for the

BO(η) mapping.

Proof: The derivatives of both sides of (5.3) with respect to Θ are well-defined, and there-

fore we have:

Φ′(Θt) = I + η(M ′(Θt) − I) = I − η(I − M ′(Θt)) (5.5)

Equation (5.4) shows a very interesting relationship between convergence properties of

BO(η) and its standard BO(1) counterparts. If the eigenvalues of M ′(Θt) approach unity in

the neighborhood of Θ∗, BO(1) algorithm will exhibit extremely slow convergence. In this

case, larger values of η will in fact force the eigenvalues of Φ′(Θt) to decrease, and thus result

in faster global rate of convergence of the BO(η) algorithm.

Proposition 4.1 If BO(1) iterates converge to Θ∗, then within some neighborhood of Θ∗,

BO(η) algorithm will converge to the local maximum of the objective function for any

0 < η < 2.

Proof:1 First, by using Taylor series expansion of Φ(Θt) around Θ∗, we have:

Φ(Θt) = Φ(Θ∗) + Φ′(Θ∗)(Θt − Θ∗) + ... (5.6)

For sufficiently large t, we have the following linear approximation:

Θt+1 − Θ∗ = Φ(Θt) − Φ(Θ∗) ≈ Φ′(Θ∗)(Θt − Θ∗) (5.7)

1Our proof is similar in spirit to [2]. Nevertheless, we feel that it is worth going through the details since it

will play an important role in our further analysis.

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 43

For a fixed η, consider γ1, ..., γk being the non-zero eigenvalues of Φ′(Θ∗). The corresponding

eigenvectors v1, ..., vk form an orthonormal basis for the real k-subspace Ω.2 Assume that for

sufficiently large t, (Θt − Θ∗) ∈ Ω, in which case a vector (Θt − Θ∗) can be represented

uniquely as (Θt − Θ∗) =
∑k

i=1 civi. Moreover

Φ′(Θ∗)(Θt − Θ∗) =

k
∑

i=1

γicivi (5.8)

The application of Φ′(Θ∗) to (Θt − Θ∗) results in linear coefficients ci to be scaled by γi.

Therefore the rate at which different components of (Θt − Θ∗) shrink or stretch depends on

the size of the eigenvalues γi. To guarantee the shrinkage of each component of (Θt −Θ∗), we

require |γi| < 1 for i=1,...k. In this case:

‖ Φ′(Θ∗)(Θt − Θ∗) ‖ = ‖
k

∑

i=1

γicivi ‖ < ‖
k

∑

i=1

civi ‖=‖ Θt − Θ∗ ‖ (5.9)

with ‖ · ‖ denoting Euclidean norm.3 Indeed:

‖ Φ′(Θ∗)(Θt − Θ∗) ‖ =

√

√

√

√

k
∑

i=1

γ2
i c

2
i v

T
i vi ≤ ρη

√

√

√

√

k
∑

i=1

c2
i v

T
i vi = ρη ‖ Θt − Θ∗ ‖ (5.10)

with ρη being the spectral radius of Φ′(Θ∗): ρη=max|λ|. Clearly, the spectral radius of Φ′(Θ∗)

is defined as:

ρη = max{|1 − η(1 − λmax)|, |1 − η(1 − λmin)|}

with λmax and λmin being the largest and smallest eigenvalues of M ′(Θ∗). And thus for any

0 < η < 2 we have ρη < 1. We can now analyze the global rate of convergence of Φ′(Θt) in

the neighborhood of Θ∗. In particular, for sufficiently large t and any 0 < η < 2:

r =
‖ Θt+1 − Θ∗ ‖
‖ Θt − Θ∗ ‖ =

‖ Φ′(Θ∗)(Θt − Θ∗) ‖
‖ Θt − Θ∗ ‖ ≤ ρη ‖ Θt − Θ∗ ‖

‖ Θt − Θ∗ ‖ = ρη < 1 (5.11)

2We note that M ′(Θ∗) has exactly the same eigenvectors with eigenvalues defined as λi = 1− (1− γi)/η for

i = 1, ..., k.
3This argument is valid for any norm defined on the k-dimensional Euclidean space. However, for the sake of

simplicity of the proof, we reserve to the Euclidean norm.

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 44

Therefore within some neighborhood of Θ∗ for any 0 < η < 2, BO(η) algorithm is guaran-

teed to converge to the local optimum of the objective function.4 This concept is graphically

illustrated in figure 5.1.

BO(1)

BO(2)

L

Θ

(Θ)

Figure 5.1: In the vicinity of local optimum we have quadratic approximation of the objective function

L(Θ). In this case going twice as far as a standard bound optimization algorithm guarantees not to

decrease L(Θ).

Corollary 4.1 The optimal learning rate η∗ is:

η∗ = 2/(2 − λmax − λmin) (5.12)

with λmax and λmin being the largest and smallest eigenvalues of M ′(Θ∗). Moreover, η∗ ≥ 1.

Proof: We have established that the global rate of convergence of the BO(η) algorithms is:

r = max{|1 − η(1 − λmax)|, |1 − η(1 − λmin)|}

Clearly, the fastest uniform global rate of convergence is obtained when |1 − η(1 − λmax)|

= |1 − η(1 − λmin)|. We can now easily derive that η∗ = 2/(2 − λmax − λmin). Since

0 ≤ λmin ≤ λmax < 1, we have

η∗ = 2/(2 − λmax − λmin) ≥ 1 (5.13)

The important consequence of the above analysis is that for the typical real problems with

λmax > 0, the optimal learning rate is η∗ > 1. This implies that, within some neighborhood

4The above analysis is only valid in the vicinity of Θ∗ as opposed to standard bound optimizers BO(1), that

guarantee to converge to some local optimum Θ∗ from any point in the parameter space.

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 45

of Θ∗, BO(η) methods can significantly outperform standard BO(1) algorithms in terms of

convergence. Indeed, after M iterations BO(η) will shrink the distance ‖ Θ − Θ∗ ‖ by a factor

of ρM
η , whereas standard BO(1) will shrink it by ρM

1 . This clearly constitutes exponential gain

of (ρη/ρ1)
M in the vicinity of the local optimum.

5.3 Adaptive Overrelaxed Bound Optimization

Computing the optimal learning rate may be very expensive, since it requires knowledge of

the minimum and maximum eigenvalues λmin and λmax of a particular mapping matrix that

depends on the algorithm details, data set, and current parameters. Furthermore, this calcu-

lation is only valid in a very small neighborhood around a local optimum. Ideally, we would

like to find the optimal learning rate in an adaptive fashion that is computationally inexpensive

and valid everywhere. It is possible to perform a line search at each step to determine η∗ [9];

however, this is quite expensive. We now describe a very simple adaptive overrelaxed bound

optimization (ABO) algorithm that is guaranteed not to decrease the objective function at each

iteration and requires only a very slight overhead in computation over regular BO(1) methods

yet can often be many times faster.

Adaptive Overrelaxed Bound Optimization (ABO) for maximizing L(Θ):

• Assume: ∃ function G(Θ, Ψ) such that for

any given Θ′ and Ψ′:

1. G(Θ′, Θ′) = L(Θ′) & L(Θ) > G(Θ, Ψ′) ∀ Θ 6= Ψ′

2. arg maxΘG(Θ, Ψ′) can be found easily.

• Iterate starting with η = 1:

1. Θt+1
BO = arg maxΘG(Θ, Θt)

2. Θt+1 = Θt + η(Θt+1
BO − Θt)

3. If L(Θt+1) > L(Θt) Then Increase η
Else Θt+1 = Θt+1

BO and Decrease η

• Guarantee: L(Θt+1) = G(Θt+1,Θt+1) ≥ G(Θt+1,Θt) ≥ G(Θt,Θt) = L(Θt)

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 46

Note that for many objective functions, computing arg maxΘ G(Θ, Θt) also evaluates the

function L(Θt) “for free”, so that step 3 above can be efficiently interleaved between steps 1

and 2 with essentially no extra computation (except when the optimizer oversteps).

5.3.1 Reparameterization of Constrained Quantities

The description of the adaptive algorithm above assumes that the parameters being opti-

mized are unconstrained. In many cases, parameters must remain non-negative (or positive

definite), sum to unity, respect symmetries or other parameter tying constraints. In these sit-

uations, the appropriate update rules can be derived by first reparameterizing the optimization

using unconstrained variables which are related to the original variables through a fixed (pos-

sibly nonlinear) mapping. As examples, we develop several cases that arise often in practice.

If parameter values Θj must be positive (e.g. variances), the overrelaxation step can be

derived from the reparameterization Θj = exp(βj) and results in:

Θt+1
j = Θt

j

(

Θt+1
jBO

Θt
j

)η

(5.14)

For parameter values vecΘj that represent a discrete distribution (e.g. mixing proportions in

a mixture model, conditional probability tables for discrete quantities, or state transition proba-

bilities in dynamic models), we reparameterize vecΘj via softmax function vecΘji =
exp (βji)�

i=1 exp (βji)
,

and perform overrelaxation in the unconstrained vecβ space. In the constrained space this cor-

responds to the update:

vecΘt+1
j =

1

Z
vecΘt

j

(

vecΘt+1
jBO

vecΘt
j

)η

(5.15)

using elementwise multiplication and division operations and with Z being an appropriate

normalizing constant.

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 47

5.3.2 Adaptive Expectation Maximization

We now consider a particular bound optimizer, the popular Expectation-Maximization (EM)

algorithm and present its adaptive overrelaxed version. In chapter 4 we considered a proba-

bilistic model of continuous observed data x which uses continuous latent variables y. For any

value of Ψ, we showed that that the following difference of two terms is a lower bound on the

likelihood:

G(Θ, Ψ) = Q(Θ, Ψ) − H(Ψ, Ψ)

=

∫

p(y|x, Ψ) ln p(x,y|Θ)dy −
∫

p(y|x, Ψ) ln p(y|x, Ψ)dy

The log likelihood function can be written as:

L(Θ) = ln p(x|Θ) =
∫

p(y|x, Θ) ln p(x|Θ)dy

= G(Θ, Θ) ≥ G(Θ, Ψ) ∀Ψ

The EM algorithm is nothing more than coordinate ascent in the functional G(Θ, Ψ), alternat-

ing between maximizing G with respect to Ψ for fixed Θ (E-step) and with respect to Θ for

fixed Ψ (M-step). Our new adaptive overrelaxed version of EM is given below:

Adaptive Overrelaxed EM (AEM) algorithm:

• η=1; L(Θ0) = -∞; δ=tol;

• While (δ ≥tol and t<Tmax)

– Perform E-step with Θt and get L(Θt)

– δ = (L(Θt) − L(Θt−1))/abs(L(Θt))

– If δ <tol /* We have gone too far */

∗ η = 1; Perform E-step with Θt
EM

∗ Get L(Θt
EM) and compute new δ;

∗ /* Count this as an additional step */

Else η = α ∗ η; α > 1 EndIf

– Perform M-step to get Θt+1
EM

– Θt+1 = Θt+η(Θt+1
EM − Θt)

• EndWhile

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 48

In chapter 4, we established (refer to eq. 4.6):

∂M(Θ)

∂Θ
|Θ=Θ∗ =

[

∂2H(Θ, Θ∗)

∂Θ2
|Θ=Θ∗

][

∂2Q(Θ, Θ∗)

∂Θ2
|Θ=Θ∗

]−1

(5.16)

which can be interpreted as the ratio of missing information to the complete information near

the local optimum. According to Lemma 4.2, the convergence rate matrix of EM(η) algorithm

can be represented as follows: In the neighborhood of a solution (for sufficiently large t):

Φ′(Θt) = I − η

[

I −
(

∂2H

∂Θ2

)(

∂2Q

∂Θ2

)−1

|Θ=Θt

]

(5.17)

This view of the EM(η) algorithm has a very interesting interpretation: An increase in

the proportion of missing information corresponds to higher values of the learning rate η. If

the fraction of missing information approaches unity, standard EM will be forced to take very

small, conservative steps in parameter space, therefore higher and more aggressive values of

η will result in much faster convergence. When the missing information is small compared to

the complete information, the potential advantage of EM(η) over EM(1) becomes much less.

5.3.3 Adaptive Generalized Iterative Scaling Algorithm

In chapter 3 we studied the Generalized Iterative Scaling algorithm, that is widely used for

parameter estimation in maximum entropy models [3]. We also derived a convex lower bound

on L(Θ) for GIS algorithm (eq. 3.3):

L(Θ) ≥
∑

x

p̄(x)
∑

i

Θifi(x) − ln Z(Ψ) +
∑

i

fi(x)

s
−

∑

x

p(x|Ψ)
∑

i

fi(x)

s
exp

[

s(Θi − Ψi)
]

= G(Θ, Ψ) (5.18)

We can now derive an adaptive overrelaxed version of GIS:

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 49

Adaptive Overrelaxed GIS (AGIS) algorithm:

• η=1; L(Θ0) = -∞; δ=tol;

• While (δ ≥tol and t<Tmax)

– Θt
iGIS

= Θt−1
i + 1

s
ln

�
x p̄(x)fi(x)

�
x p(x|Θt)fi(x)

– Θt = Θt−1+η(Θt
GIS − Θt−1) and get L(Θt)

– δ = (L(Θt) − L(Θt−1))/abs(L(Θt))

– If δ <tol /* We have gone too far */

∗ η = 1; Θt = Θt
GIS

∗ Get L(Θt
GIS) and compute new δ;

∗ /* Count this as an additional step */

Else η = α ∗ η; α > 1 EndIf

• EndWhile

In chapter 3 we also derived the explicit form of the convergence rate matrix (eq. 3.7):

∂M(Θ)

∂Θ
|Θ=Θ∗ = I − 1

s
Cov(Θ∗)D(Θ∗)−1 (5.19)

which depends on the covariance and the mean of the feature vectors. According to Lemma

4.2, the convergence rate matrix of GIS(η) algorithm can be represented as follows: In the

neighborhood of a solution (for sufficiently large t):

Φ′(Θt) = I − η

[

1

s
Cov(Θt)D(Θt)−1

]

(5.20)

This view of the GIS(η) algorithm has a very interesting interpretation: An increase in the

feature dependence corresponds to higher values of the learning rate η. If feature vectors are

highly dependent, GIS will take very small conservative steps in the parameter space. Thus

higher and more aggressive values of η will result in much faster convergence.

5.3.4 Adaptive Non-Negative Matrix Factorization

In chapter 3 we also introduced Non-Negative Matrix Factorization algorithm. Given non-

negative matrix V, we are interested in finding matrices W and H, such that V ≈ WH [15].

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 50

Posed as an optimization problem, we are interested in minimizing a divergence L(W, H) =

D(V ||WH), subject to (W, H) ≥ 0 elementwise. Defining Θ = (W, H) and Ψ = (W t, H t),

we derived the upper bound on the cost function (eq. 3.11):

L(Θ) ≤
∑

ij

Vij ln Vij − Vij +
∑

ijc

WicHcj −

∑

ijc

Vijαij(c, c)

[

ln
WicHcj

αij(c, c)

]

= G(Θ, Ψ) (5.21)

Adaptive overrelaxed NMF algorithm is then given as:

Adaptive Overrelaxed NMF (ANMF) algorithm:

• η=1; L(Θ0) = -∞; δ=tol;

• While (δ ≥tol and t<Tmax)

– W t
icNMF = W t−1

ic

[�
j HcjVic/(WH)ic

�
v Hcv

]η

H t
cjNMF = H t−1

cj

[

�
i WicVic/(WH)ic�

w Wwc

]η

– Θt = Θt−1+η(Θt
NMF − Θt−1); and get L(Θt)

– δ = (L(Θt) − L(Θt−1))/abs(L(Θt))

– If δ <tol /* We have gone too far */

∗ η = 1; Update W t and H t; get L(Θt
NMF)

∗ Compute new δ;

∗ /* Count this as an additional step */

Else η = α ∗ η; α > 1 EndIf

• EndWhile

For many models overrelaxation is straightforward to implement and does not require sig-

nificant computational overhead. As we will see in the next section, it can substantially outper-

form standard bound optimization algorithms.

5.4 Experimental Results

We now present empirical results comparing the performance of adaptive overrelaxed bound

optimizers to standard BO(1) algorithms for learning the model parameters. We begin by show-

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 51

0 100 200 300 400 500 600 700 800 900 1000
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

L
o

g
−

L
ik

e
li

h
o

o
d

 +
 C

o
n

s
t

−4 −2 0 2 4
−4

−2

0

2

4

EM AEM

Mixture of Gaussians

0 100 200 300 400 500 600 700

−0.6

−0.4

−0.2

0

L
o

g
−

L
ik

e
li

h
o

o
d

 +
 C

o
n

s
t

−6 −3 0 3 6

−6

−3

0

3

6

EM

AEM

Probabilistic PCA

0 50 100 150 200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

L
o

g
−

L
ik

e
li

h
o

o
d

 +
 C

o
n

s
t

−15 −10 −5 0 5 10
−20

−10

0

10

20

30

40

EM AEM

Mixture of Factor Analyzers

0 50 100 150 200 250 300

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

L
o

g
−

L
ik

e
li

h
o

o
d

 +
 C

o
n

s
t

Sequence:
 HISTORY OF THE...

EM AEM

Hidden Markov Model

0 200 400 600 800 1000 1200 1400
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

C
o

n
d

 L
o

g
−

L
ik

e
li

h
o

o
d

 +
 C

o
n

s
t

6 8 10 12 14
6

8

10

12

14

IS

AIS

Logistic Regression

0 100 200 300 400 500 600 700
−2

−1.5

−1

−0.5

0

0.5

D
iv

e
rg

e
n

c
e
 +

 C
o

n
s
t NMF

ANMF

Iterations

Non−Negative Matrix Factorization

=

Figure 5.2: Learning curves for adaptive overrelaxed and standard bound optimization algo-

rithms, showing convergence performance for different models. To present fair comparison,

learning curves of adaptive bound optimizers include discarded steps (these curves contain flat

regions). Upper panel displays MoG (left), PPCA (middle), MFA (right); and bottom panel

displays HMM (left), logistic regression (middle), NMF (right). The iteration numbers are

shown on the horizontal axis, and the value of the cost function is shown on the vertical axis,

with zero-level corresponding to the converging point of the BO(1) algorithm.

ing convergence results on synthetic data sets, since it makes it easier to interpret, display and

analyze. We then proceed to reporting similar empirical results on the real world data sets, sup-

porting our presented analysis. Though not reported, we confirmed that the convergence results

presented below do not vary significantly for different initial starting points in the parameter

space. For all of the experiments reported below, we used tol = 10−8 and α = 1.1.

5.4.1 Synthetic Data Sets

To compare AEM and EM algorithms, we considered several latent variable models: mix-

ture of Gaussians (MoG), Hidden Markov Model (HMM), Probabilistic PCA (PPCA), and

mixture of Factor Analyzers (MFA) models. As predicted by theory, high proportion of missing

information in these models will result in slow convergence of EM, more aggressive learning

rates η and thus superior performance of AEM.

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 52

First, consider a mixture of Gaussians (MoG) model. The data was generated from 5 Gaus-

sian mixture components (see fig 5.2). In this model the proportion of missing information

corresponds to how “well” or “not-well” data is separated into distinct clusters. Note that in the

considered data set, mixture components overlap in one contiguous region, which constitutes

the large proportion of missing information. Figure 5.2 shows that AEM outperforms standard

EM algorithm by almost a factor of three.

We then applied our algorithm to the training of Hidden Markov Model. Missing informa-

tion in this model is high when the observed data do not well determine the underlying state

sequence (given the parameters). A simple 5-state fully-connected model was trained on 41

character sequences from the book ”Decline and Fall of the Roman Empire” by Gibbon, with

an alphabet size of 30 characters (parameters were randomly initialized). We observe that even

for the real, structured data AEM is superior to EM.

We also experimented with the Probabilistic Principal Component Analysis (PPCA) latent

variable model[24, 28], which has continuous rather than discrete hidden variables. Here the

concept of missing information is related to the ratios of the leading eigenvalues of the sample

covariance, which corresponds to the ellipticity of the distribution. We observe that even for

“nice” data, AEM outperforms EM by almost a factor of four. Similar results are displayed in

figure 5.2 for the MFA [7] model.

As a confirmation to our analysis, in figure 5.3 we show the evolution of the adaptive

learning rate η and the optimal learning rate η∗ during fitting the means of the four mixture

components in the MoG model, holding the mixing proportions and covariances fixed. The

optimal learning rate was obtained by calculating λmin and λmax eigenvalues of M ′(Θ∗) matrix

and applying equation 5.12.

To compare IS and adaptive IS algorithms, we applied both methods to the simple 2-class

logistic regression model: p(y = ±1|x, w) = 1/(1 + exp (−ywTx)) [20]. Feature vectors of

dimensionality d were drawn from standard normal: x ∼ N (0, Id), with true parameter vector

w∗ being randomly chosen on surface of the d-dimensional sphere with radius
√

2. To make

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 53

0 10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

Iteration Number

η*

2η*

Adaptive Rate η

0 10 20 30 40 50 60 70 80 90

0

0.5

1

1.5

2

2.5

3

Iteration Number

E
ig

e
n

v
a

lu
e

s
 o

f
M

’(
Θ

*)

0 0.4 0.8
0

0.4

0.8

0 50 100
−1

−0.6

−0.2

0.2

Iteration Number

L
o

g
−

L
ik

e
li

h
o

o
d

 +
 C

o
n

s
t

EM

AEM

Figure 5.3: Left panel pictorially illustrates the adaptive learning rate η, the optimal rate η∗,

and the approximate upper bound on the learning rate 2η∗. The right panel shows the evolution

of the eigenvalues of the convergence rate matrix M ′(Θ∗) in eq.(5.1).

features positive, the data set was modified by adding 10 to all feature values. This in tern

introduces significant correlation, and thus results in slow convergence of IS. To insure that

wtx is unchanged, an extra feature was added. Figure 5.2 reveals that for d=2, AIS is superior

to standard IS by at least a factor of three. Similar results are obtained if dimensionality of the

data is increased.

At last, to compare ANMF and NMF, we randomly initialized the non-negative matrix

V16×24, and applied both algorithms to perform non-negative factorization: V16×24 ≈ W16×5H5×24.

Once again, results confirm the fact that overrelaxed methods can give speedup over conven-

tional bound optimizers by several times.

5.4.2 Real World Data Sets

To compare AEM and EM, our first experiment consisted of training Aggregate Markov

models AMM [26] on the ARPA North American Business News (NAB) corpus. AMMs

are class-based bigram models in which the mapping from words to classes is probabilistic.

The task of AMMs is to discover ”soft” word classes. The experiment used a vocabulary of

sixty-thousand words, including tokens for punctuation, sentence boundaries, etc. The training

data consisting of approximately 78 million words (three million sentences), with all sentences

drawn without replacement from the NAB corpus. The number of classes was set C=2,4,6

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 54

0 10 20 30 40 50 60

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

L
o

g
−

L
ik

e
li

h
o

o
d

 +
 C

o
n

s
t

20 30 40 50

−15

−10

−5

0

x 10
−3

EM
AEM

2−Class AMM

0 10 20 30 40 50 60

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

L
o

g
−

L
ik

e
li

h
o

o
d

 +
 C

o
n

s
t

20 30 40 50

−0.03

−0.02

−0.01

0

0.01

AEM
EM

4−Class AMM

0 10 20 30 40 50 60
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

L
o

g
−

L
ik

e
li

h
o

o
d

 +
 C

o
n

s
t

20 30 40 50

−0.04

−0.03

−0.02

−0.01

0

0.01

AEM EM

6−Class AMM

0 200 400 600 800 1000
−6

−5

−4

−3

−2

−1

0

1

x 10
−3

DNA Sequence:
 ATGCCGGAGGCCCCGC ...

L
o

g
−

L
ik

e
li

h
o

o
d

 +
 C

o
n

s
t

EM AEM

5−State HMM

0 200 400 600 800 1000

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

L
o

g
−

L
ik

e
li
h

o
o

d
 +

 C
o

n
s
t

DNA Sequence:
 ATGCCGGAGGCCCCGC ...

AEM

EM

7−State HMM

0 200 400 600 800 1000
−0.03

−0.02

−0.01

0

0.01

L
o

g
−

L
ik

e
li
h

o
o

d
 +

 C
o

n
s
t

DNA Sequence:
 ATGCCGGAGGCCCCGC ...

EM

AEM

10−State HMM

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

L
o

g
−

L
ik

e
li

h
o

o
d

 +
 C

o
n

s
t

EM

AEM

MFA

0 50 100 150
−3

−2.5

−2

−1.5

−1

−0.5

0

x 10
4

D
iv

e
rg

e
n

c
e

 +
 C

o
n

s
t

NMF

ANMF

0 200 400 600 800 1000
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

C
o

n
d

 L
o

g
−

L
ik

e
li

h
o

o
d

 +
 C

o
n

s
t

MEMM

AGIS

GIS

Iterations

<header> Newsgroups: comp.unix.bsd.netbsd...
<question> How to add your pet answer to the FAQ.
<answer> This is the trickiest part of this section
 of the FAQ. There are ...
<tail> *bsd FAQ Maintainer / SysAdmin for the...

FAQ Data Set

Figure 5.4: Learning curves for adaptive overrelaxed and standard bound optimization algo-

rithms, showing convergence performance for different models. Upper panel displays AMM

model with number of learned classes being: 2 (left), 4 (middle), and 6 (left). Middle panel

shows HMM model with number of states being: 5 (left), 7 (middle), and 10 (right). Lower

panel displays MFA (left), NMF (middle), and MEMM (right). The iteration numbers are

shown on the horizontal axis, and the value of the cost function is shown on the vertical axis,

with zero-level corresponding to the converging point of the BO(1) algorithm.

and all parameter values were randomly initialized.5 Figure 5.4 (upper panels) reveals that

AEM outperforms EM by at least a factor of 1.5. The considered data sets contains rather

structured real data, suggesting relatively small fraction of the missing information. Neverthe-

less, to perform fair comparison, we have run both algorithms until the convergence criterion:

(L(Θt+1) − L(Θt))/abs(L(Θt+1)) ≤ 10−8 is met. Setting the number of classes to 2, EM has

converged in 164 iterations, whereas AEM has converged to exactly the same likelihood only

5For the details of the model and the data set, refer to [26].

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 55

after 72 iterations. This clearly constitutes a gain of a factor of over two.

Our second experiment consisted of training a fully connected HMM to model DNA se-

quences. For the training, we used publicly available ”GENIE gene finding data set”, provided

by UCSC and LBNL [6], that contains 793 unrelated human genomic DNA sequences. We

applied our AEM algorithm to 66 DNA sequences with length varying anywhere between 200

to 3000 multiple exon and single exon genes per sequence. The number of states were set to

5,7, and 10 and all the parameter values were randomly initialized. Figure 5.4 shows superior

convergence of AEM over EM algorithm. In this case the considered data set contains very

little overall structure, which constitutes high proportion of the missing information.

We have also applied the MFA model to the block transform image coding problem. A

data set of 360×496 pixel images (see fig 5.4 bottom left panel) were subdivided into nonover-

lapping blocks of size 8×8 pixels. Each block was regarded as a d=8×8 dimensional vector.

The blocks (total of 2,790) were then compressed down to five dimensions using 10 mixture

components.6 Once again, AEM beats EM by a factor of over two, converging to the better

likelihood.

To present the comparison between GIS and AGIS, we trained Maximum Entropy Markov

Model [17] on the Frequently Asked Questions (FAQ) data set. The data set consisted of 38

files belonging to 7 Usenet groups. Each file contains header, followed by a series of one or

more question/answer pairs, and ends with tail. The goal is to automatically label each line

according to whether it is header, question, answer, or tail by using 24 boolean features of

lines, like begin-with-number, contains-http, etc.7 We observe that AGIS outperforms GIS by

several times. We have also obtained analogous results training Conditional Random Fields

[13].

In our last experiment, we trained NMF and adaptive NMF on the data set of facial im-

ages to learn part-based representation of faces [14]. The data set consisted of m=2,429 facial

6This experiment is similar to the one described in [29].
7See [17] for the description of the model and the data set.

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 56

images, each consisting of n=19×19 gray pixels, thus forming an n × m matrix V. In this ex-

periment, the number of learned basis images were set to 49.8 Once again, figure 5.4 reveals

that ANMF substantially outperforms standard NMF algorithm. In particular, ANMF has con-

verged in only about 3,500 iterations until the convergence criterion is met, whereas NMF

converged in approximately 13,500 iterations to exactly the same value of the cost function,

losing to ANMF by a factor of almost four.

5.5 Discussion

In this chapter we have analyzed the convergence properties of a large family of overrelaxed

bound optimization BO(η) algorithms. Based on this analysis, we introduced a novel class

of simple, adaptive overrelaxed bound optimization (ABO) methods and provided empirical

results on several synthetic as well as real-world data sets showing superior convergence of the

ABO methods over standard bound optimizers.

We have also experimented with models where parameter values Θ represent symmetric

positive definite matrices (e.g. covariance matrices in the MoG model). Here we could use

the fact that the map SPD(n) → exp S(n) is a bijection with SPD(n) and S(n) being n × n

symmetric positive definite and symmetric matrices. We then can use the matrix exponential

Θ = exp Λ to perform overrelaxation in the unconstrained Λ space. In particular, we use a

spectral decomposition: Θ = V DV T , with D being the diagonal matrix of the eigenvalues,

and V being the orthogonal matrix of the corresponding eigenvectors. The matrix functions ln

and exp are then defined: ln Θ = V ln (D)V T , and exp Θ = V exp (D)V T . When the matrix

is diagonal, the overrelaxation corresponds to equation (5.14).

In all of our experiments with adaptive algorithms we found that the value of objective

function at any iterate was better than the value at the same iterate of the standard bound

optimizer: L(Θt
ABO) > L(Θt

BO) : ∀t. In other words, we have never found a disadvantage to

8See [14] for the detailed description of the experiment.

CHAPTER 5. ADAPTIVE OVERRELAXED BOUND OPTIMIZATION METHODS 57

using adaptive methods; and often there is a large advantage, particularly for complex models

with large training data sets, where due to the time constraints one could only afford to perform

a few number of the BO iterations.

Chapter 6

Discussion and Future Work

In this thesis we have analyzed a large class of bound optimization algorithms and have

studied an exciting question: What is the relationship between bound optimization algorithms

and direct optimization algorithms such as gradient-based methods?

We have analyzed and determined conditions under which BO algorithms exhibit local-

gradient and fast quasi-Newton convergence behaviors. Based on this analysis and interpreta-

tion, we considered several popular bound optimization algorithms and were able to provide

some recommendations for how the input to these algorithms can be preprocessed to yield

faster convergence.

We have also presented comparative analysis of Expectation-Maximization and direct opti-

mization algorithms for learning parameters in latent variable models, and developed a theoret-

ical connection between these two approaches. Motivated by these analyses, we have proposed

an alternative hybrid optimization method that can significantly outperform EM in many cases

and is almost never inferior in practice.

We have also studied and analyzed the convergence properties of a large family of over-

relaxed bound optimization BO(η) algorithms, and proposed a novel, simple adaptive over-

relaxed scheme for practical optimization. We showed that a novel class of simple, adaptive

overrelaxed bound optimization (ABO) methods that possess superior performance (in certain

58

CHAPTER 6. DISCUSSION AND FUTURE WORK 59

cases by several orders of magnitude) to standard bound optimization algorithms.

Our results are also applicable to other bound optimization algorithms, for example Sha

et. al. [27] recently introduced a multiplicative algorithm for training SVMs and provided a

convergence analysis based on margins.

The overall analysis and interpretation of bound optimization algorithms, presented in the

thesis, helped up to gain deeper understanding of the nature of these algorithms and conditions

under which certain optimization techniques are expected to outperform others.

Many directions for future research in this area remain open. Currently, using our derivation

of an explicit form of the convergence rate matrix, we are working on identifying analytic

conditions under which CCCP possesses fast or extremely slow convergence in minimizing

Bethe and Kikuchi free energies in approximate inference problems. We are also deriving a

more compact representation and identifying a more intuitive interpretation of the convergence

rate matrix for non-negative matrix factorization algorithm.

In chapter 4 we proposed to use the entropy of the posterior over hidden variables as a

crude estimate of the local missing information ratio. Nevertheless, deriving an explicit math-

ematical connection between the entropy term and the fraction of missing information remains

a challenge.

We are also working on identifying an intriguing relation between overrelaxed bound opti-

mization algorithms and exponentiated gradient techniques [11] that have been very popular in

the machine learning community.

Bibliography

[1] S.E. Atkinson. The performance of standard and hybrid EM algorithms for ML estimates

of the normal mixture model with censoring. J. of Stat. Computation and Simulation, 44,

1992.

[2] Eric Bauer, Daphne Koller, and Yoram Singer. Update rules for parameter estimation in

bayesian networks. In Proceedings of the 13th Conference on Uncertainty in Artificial

Intelligence (UAI-97), pages 3–13, August 1–3 1997.

[3] Stephen Della Pietra, Vincent J. Della Pietra, and John D. Lafferty. Inducing features

of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence,

19(4):380–393, 1997.

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. J. of the RS Society series B, 39:1–38, 1977.

[5] Chris Fraley. On computing the largest fraction of missing information for the EM algo-

rithm and the worst linear function for data augmentation. Technical report, University

of Washington.

[6] GENIE gene data set. LBNL and UC Santa Cruz,

http://www.fruitfly.org/sequence.

[7] Zoubin Ghahramani and Geoffrey Hinton. The EM algorithm for mixtures of factor ana-

lyzers. Technical Report CRG-TR-96-1, University of Toronto, May 1996.

60

BIBLIOGRAPHY 61

[8] D. Helmbold, R. E. Schapire, Y. Singer, and M. K. Warmuth. A comparison of new and

old algorithms for a mixture estimation problem. Machine Learning, pages 97–119, 1997.

[9] Mortaza Jamshidian and Robert I. Jennrich. Conjugate gradient acceleration of the EM

algorithm. Journal of the American Statistical Association, 88(421):221–228, March

1993.

[10] Mortaza Jamshidian and Robert I. Jennrich. Acceleration of the EM algorithm by using

quasi-newton methods. J. of the RS Society series B, 49, 1997.

[11] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent

for linear predictors. Information and Computation, 132(1):1–63, 10 January 1997.

[12] Meng X. L. and van Dyk D. Fast EM-type implementations for mixed effects models. J.

of the Royal Statistical Society series B, 60:559–578, 1998.

[13] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In Proc. 18th Interna-

tional Conf. on Machine Learning, pages 282–289, 2001.

[14] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative

matrix factorization. Letters to Nature, 401:788–791, 1999.

[15] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization.

In Advances in neural information processing systems, 2001.

[16] T. A. Louis. Finding the observed information matrix when using the EM algorithm.

Journal of the Royal Statistical Society series B, 44:226–233, 1982.

[17] Andrew McCallum, Dayne Freitag, and Fernando Pereira. Maximum entropy Markov

models for information extraction and segmentation. In Proc. 17th International Conf.

on Machine Learning, pages 591–598, 2000.

BIBLIOGRAPHY 62

[18] G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley, 1997.

[19] X. L. Meng and D. B. Rubin. On the global and componentwise rates of convergence of

the EM algorithm. Linear Algebra and Its Applications, 199:413–425, 1994.

[20] Tom Minka. Algorithms for maximum-likelihood logistic regression. Technical Report

758, Dept. of Statistics, Carnegie Melon University, 2001.

[21] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Nu-

merical Recipes in C : The Art of Scientific Computing. Cambridge University Press,

1993. ISBN: 0521431085.

[22] Lawrence Rabiner. A tutorial on hidden Markov models and selected applications in

speech recognition. In Proceedings of IEEE, 77(2):257–286, February 1989.

[23] Richard A. Redner and Homer F. Walker. Mixture densities, maximum likelihood and the

EM algorithm. SIAM Review, 26(2):195–239, April 1984.

[24] S. T. Roweis. EM algorthms for PCA and SPCA. In Advances in neural information

processing systems, volume 10, pages 626–632, Cambridge, MA, 1998. MIT Press.

[25] Sam Roweis and Zoubin Ghahramani. A unifying review of linear Gaussian models.

Neural Computation, 11(2), 1999.

[26] Lawrence Saul and Fernando Pereira. Aggregate and mixed-order Markov models for

statistical language processing. In Proceedings of the Second Conference on Empirical

Methods in Natural Language Processing, pages 81–89. 1997.

[27] Fei Sha, Lawrence Saul, and Daniel Lee. Multiplicative updates for nonnegative quadratic

programming in support vector machines. In Advances in NIPS, volume 15, 2003.

[28] M. E. Tipping and C. M. Bishop. Mixtures of probabilistic principal component analysers.

Neural Computation, 11(2):443–482, 1999.

BIBLIOGRAPHY 63

[29] Naonori Ueda, Ryohei Nakano, Zoubin Ghabramani, and Geoffrey E. Hinton. SMEM

algorithm for mixture models. Neural Computation, 12(9):2109–2128, 2000.

[30] J. H. van Hateren and A. van der Schaaf. Independent component filters of natural images

compared with simple cells in primary visual cortex. In Proceedings of the Royal Society

of London, pages 359–366, 1998.

[31] L. Xu and M. I. Jordan. On convergence properties of the EM algorithm for Gaussian

mixtures. Neural Computation, 8(1):129–151, 1996.

[32] Alan Yuille and Anand Rangarajan. The convex-concave computational procedure

(CCCP). In Advances in NIPS, volume 13, 2001.

Appendix A

Relationship between gradient and EM

In this appendix we present a close relationship between Expectation - Maximization algo-

rithm and direct optimization approaches such as gradient-based methods for parameter learn-

ing. We show that the step EM takes in the parameter space and true gradient are related by

the symmetric positive definite P matrix, and provide an explicit form of this matrix for several

widely used latent variable models. We then go on deriving a general form of the P matrix for

the regular exponential family in terms of its natural parameters.

A.1 Introduction

The problem of Maximum Livelihood (ML) learning is known to be an important problem

in the area of machine learning and pattern recognition. ML learning is generally hard problem

and arises in many probabilistic models with unobserved or latent variables such as density

estimation, where one seeks to find a descriptive model of data, or dimensionality reduction,

where one tries to discover a compact representation of data.

A variety of methods exist for ML learning of the model parameters in the presence of

latent variables. A very popular technique for ML estimation is Expectation-Maximization

(EM) algorithm. The EM algorithm alternates between estimating the unobserved variables

given the current model and refitting the model given the estimated, complete data. As such

64

APPENDIX A. RELATIONSHIP BETWEEN GRADIENT AND EM 65

it takes discrete steps in parameter space similar to to first order method operating on the

gradient of a locally reshaped likelihood function. Direct optimization methods for the param-

eter learning can be viewed as alternative to the Expectation-Maximization. These algorithms

work directly with the likelihood function and its derivatives (or estimates thereof), trying to

maximize or minimize it by adjusting the free parameters in a local search. This category of

algorithms includes random search, standard gradient-based algorithms, line search methods

such as conjugate gradient, and more computationally intensive second-order methods, such as

Newton-Raphson.

In this appendix we establish mathematical connection between Expectation-Maximization

algorithm and direct optimization algorithms. In particular, we show that the step EM takes

in the parameter space and true gradient are related by the symmetric positive definite matrix

P (Θ), which is a function of the model parameters Θ. For a finite Gaussian mixture model this

P (Θ) matrix was first described by Xu and Jordan[31]. We extend their results by deriving the

explicit form of the symmetric positive definite matrix for several widely used latent variable

models: Factor Analysis (FA), Probabilistic Principal Component Analysis (PPCA), mixture

of FAs, mixture of PPCAs, and Hidden Markov Models (HMM). We then provide a general

form of the P (Θ) matrix for the regular exponential family in terms of its natural parameters.

A.2 Connection between EM and gradient

A.2.1 Factor Analysis

Maximum likelihood Factor Analysis (FA) model seeks to specify probabilistically how a d-

dimensional observed variable x is related to a p-dimensional latent variable z, where generally

p < d. This can be viewed as a form of dimensionality reduction. The generative model is:

x = Λz + ǫ (A.1)

APPENDIX A. RELATIONSHIP BETWEEN GRADIENT AND EM 66

with Λ being d× p factor loading matrix, z ∼ N (0, 1), and ǫ ∼ N (0, Ψ), where Ψ is diagonal

matrix. In this model, the p-factors represent informative projections of the data, similar to the

principal components in PCA.

The log-likelihood function for the FA model with parameters {Λ, Ψ} is

L(Θ) = −N

2

(

d ln 2π + ln |C| + tr(C−1S)

)

(A.2)

where C is the model covariance C = ΛΛT + Ψ, and S is a sample covariance matrix S =

1
N

∑

n(xn − µ)(xn − µ)T .

At each iteration of EM algorithm we have

vec[Λ(t+1)] − vec[Λ(t)] = P
(t)
Λ

∂L(Θ)

∂vec[Λ]
|Λ=Λ(t) (A.3)

vec[Ψ(t+1)] − vec[Ψ(t)] = P
(t)
Ψ

∂L(Θ)

∂vec[Ψ]
|Ψ=Ψ(t) (A.4)

where vec(A) denotes the stacked columns of A, and

P
(t)
Λ =

(

∑

n

E(t)(xn)

)−1

⊗ Ψ(t)

P
(t)
Ψ =

2

N
diag∗

[

(

Λ(t)(Λ(t))T + Ψ(t)
)

⊗ Ψ(t)

]

where E(xn) ≡ I−βΛ+β(xn−µ)(xn−µ)T βT with β ≡ ΛT (ΛΛT +Ψ), diag∗(A) sets all the

rows of A to zero except for rows j(d + 1)− d, j = 1, 2, ..., d, and ”⊗” denotes the Kronecker

product.

Using the notation Θ =
[

vec[Λ]T , vec[Ψ]T
]T

, and P (Θ) = diag[PΛ, PΨ] we can write

Θ(t+1) = Θ(t) + P (Θt)
∂L(Θ)

∂Θ
|Θ=Θ(t) (A.5)

The validity of this symmetric positive definite matrix can be easily verified by multiplying it

by the gradient of the log-likelihood function.

Restricting the covariance matrix Ψ to be spherical Ψ = σ2I , we arrive to so-called Proba-

bilistic Principal Component Analysis (PPCA) [24, 28]. Here Λ spans p-dimensional principal

subspace of the observed data. The P matrix for PPCA model can be easily derived in the

similar way.

APPENDIX A. RELATIONSHIP BETWEEN GRADIENT AND EM 67

A.2.2 Mixture of Factor Analyzers

Mixture of Factor Analyzers (MFA) can be interpreted as a combination of two basic mod-

els: the standard mixture of Gaussians model together with Factor Analysis model.1 As a

result, this hybrid model simultaneously performs two tasks: clustering and local dimensional-

ity reduction within each cluster [7].

The log-likelihood function for MFA model with parameters {πi, µi, Λi, Ψi}M
i=1 is

L(Θ) =
∑

n

ln
M

∑

i=1

πiN (xn|µi, ΛiΛ
T
i + Ψi) (A.6)

with M denoting the number of clusters, and πi, i = 1, ..., M representing the mixing coeffi-

cients. At each iteration of EM algorithm we have

Π(t+1) − Π(t) = P
(t)
Π

∂L(Θ)

∂Π
|Π=Π(t) (A.7)

µ
(t+1)
i − µ

(t)
i = P (t)

µi

∂L(Θ)

∂µi
|
µi=µ

(t)
i

(A.8)

vec[Λ
(t+1)
i] − vec[Λ

(t)
i] = P

(t)
Λi

∂L(Θ)

∂vec[Λi]
|
Λi=Λ

(t)
i

(A.9)

vec[Ψ
(t+1)
i] − vec[Ψ

(t)
i] = P

(t)
Ψi

∂L(Θ)

∂vec[Ψi]
|
Ψi=Ψ

(t)
i

(A.10)

where Π denotes mixing coefficients, Π = [π1, ..., πM]T and

P
(t)
Π =

1

N

[

diag[π
(t)
1 , ..., π

(t)
M] − Π(t)(Π(t))T

]

P (t)
µi

=
Ψ

(t)
i

∑

n h
(t)
i (xn)

P
(t)
Λi

=

(

∑

n

h
(t)
i (xn)E

(t)
i (xn)

)−1

⊗ Ψ
(t)
i

P
(t)
Ψi

=
2

∑

n h
(t)
i (xn)

diag∗

[

(

Λ
(t)
i (Λ

(t)
i)T + Ψ

(t)
i

)

⊗ Ψ
(t)
i

]

where Ei(xn) ≡ I − βiΛi + βi(xn − µi)(xn − µi)
T βT

i with βi ≡ ΛT
i (ΛiΛ

T
i + Ψi), hi(xn)

are the responsibilities, diag∗(A) sets all the rows of A to zero except for rows j(d + 1) − d,

j = 1, 2, ..., d, where d is the dimensionality of data, and ”⊗” denotes the Kronecker product.

1In regular Mixture of Factor Analyzers model, the the isotropic noise covariance Ψ is fixed across all compo-

nent densities. In our derivation we have different noise models across different component densities.

APPENDIX A. RELATIONSHIP BETWEEN GRADIENT AND EM 68

Using the notation Θ =
[

ΠT , µT
1 , ..., µT

M , vec[Λ1]
T , ..., vec[ΛM]T , vec[Ψ1]

T , ..., vec[ΨM]T
]T

,

and P (Θ) = diag[PΠ, Pµ1, ..., PµM
, PΛ1, ..., PΛM

, PΨ1 , ..., PΨM
] we can write

Θ(t+1) = Θ(t) + P (Θt)
∂L(Θ)

∂Θ
|Θ=Θ(t) (A.11)

One can easily verify the validity of this symmetric positive definite matrix by multiplying

it by the gradient of the log-likelihood function.

The symmetric positive definite matrix for Mixture of Probabilistic Principal Component

Analyzers model [28] can be easily derived in the analogous way.

A.2.3 Hidden Markov Model

Hidden Markov Model (HMM) can be interpreted as a dynamical mixture model, or a mix-

ture model evolving over time [22].

The log-likelihood of observing the data under this model with parameters Θ = {π, A, H}:

L(Θ) = log
∑

s1

∑

s2

...
∑

sT

πs1

T−1
∏

t=1

ast,st+1

T
∏

t=1

hst,xt
(A.12)

where

• πi is the probability of state si at time t=1.

• A is M × M matrix with its elements aij denoting the transition probability from state

si to state sj, and M denoting the number of states.

• H is M × R matrix with its elements hij denoting the probability of state si to generate

observation xj , and R denoting the alphabet size.

At each iteration of EM algorithm we have

Π(t+1) − Π(t) = P
(t)
Π

∂L(Θ)

∂Π
|Π=Π(t) (A.13)

vec[A(t+1)] − vec[A(t)] = P
(t)
A

∂L(Θ)

∂vec[A]
|A=A(t) (A.14)

vec[H (t+1)] − vec[H (t)] = P
(t)
H

∂L(Θ)

∂vec[H]
|H=H(t) (A.15)

APPENDIX A. RELATIONSHIP BETWEEN GRADIENT AND EM 69

where Π denotes initial state priors, Π = [π1, ..., πM]T , and

P
(t)
Π = diag[Π(t)] − Π(t)(Π(t))T

P
(t)
A = diag

[

diag(vec(E(t)))vec(A(t))
]

− 1

M
vec(A(t))vec(A(t))T diag(vec(E(t)))

P
(t)
H = diag

[

diag(vec(F (t)))vec(H (t))
]

− 1

M
vec(H (t))vec(H (t))T diag(vec(F (t)))

where we have defined the following:

• E(t) is M × M matrix with elements eij = 1/
∑T−1

t=1 γt(i), where γt(i) denotes the

probability of being in state si at time t. (Note that ei1 = ei2 = ... = eiM .)

• F (t) is M × R matrix with elements fij = 1/
∑T

t=1 γt(i).

Using the notation Θ =
[

ΠT , vec[A]T , vec[H]T]T , and P (Θ) = diag[PΠ, PA, PH] we can

rewrite:

Θ(t+1) = Θ(t) + P (Θt)
∂L(Θ)

∂Θ
|Θ=Θ(t) (A.16)

Once again, the reader can easily verify the validity of this symmetric positive definite

matrix by multiplying it by the gradient of the log-likelihood function.

A.3 Exponential Family Models

Let us assume that the exponential family takes the following form:

p(x, z|Θ) = f(x, z) exp {ΘTT (x, z)}/g(Θ) (A.17)

where x are the observed variables, z are the latent variables, Θ is the vector of natural pa-

rameters and T is the vector of sufficient statistics. We are seeking the general form of the

transformation matrix P (Θ), as a function of Θ:

Θt+1 − Θt = P (Θt)
∂L(Θ)

∂Θ
|Θ=Θt (A.18)

APPENDIX A. RELATIONSHIP BETWEEN GRADIENT AND EM 70

where L(Θ) is the log-likelihood function, and Θt+1 − Θt represents the step EM performs in

the parameter space. We also define the expected complete log-likelihood term as:

Q(Θ|Θt) =

∫

p(z|x, Θt) log p(x, z|Θ)dz (A.19)

For exponential family models we get from (A.17) that

∂L(Θ)

∂Θ
|Θ=Θt =

∂Q(Θ|Θt)

∂Θ
|Θ=Θt

=

∫

p(z|x, Θt)T (x, z)dz −
∫

p(z, x|Θt)T (x, z)dx dz (A.20)

which can be interpreted as the difference in the expected sufficient statistic vector when the

observed data is clamped and unclamped. Define the following vector-valued functions:

T̄ (Θ) =

∫

p(z, x|Θ)T (x, z)dx dz (A.21)

T̄z(Θ) =

∫

p(z|x, Θ)T (x, z)dz (A.22)

The M step of the EM algorithm for the exponential family models then solves:

∂Q(Θ|Θt)

∂Θ
|Θt+1 = T̄z(Θ

t) − T̄ (Θt+1) = 0 (A.23)

Since T̄ (Θ) is an invertible function, we can write Θt+1 = T̄−1(T̄z(Θ
t)). We now have all the

ingredients to re-write (A.18) as:

T̄−1(T̄z(Θ
t)) − Θt = P (Θt)

[

T̄z(Θ
t) − T̄ (Θt)

]

(A.24)

One way, out of many, to write the general form of the transformation matrix P (Θt) that

satisfies equation (A.24) is the following:

P (Θt) =
v(Θt)v(Θt)T

v(Θt)T u(Θt)
(A.25)

where v(Θt) = T̄−1(T̄z(Θ
t))−Θt, and u(Θt) = T̄z(Θ

t)− T̄ (Θt). Note that this transformation

matrix P (Θt) is symmetric positive definite. Indeed, the denominator of (A.25) is written as:

u(Θt)T v(Θt) =
∂Q(Θ|Θt)

∂Θ
|Θt(Θt+1 − Θ) > 0 Θt+1 6= Θt (A.26)

APPENDIX A. RELATIONSHIP BETWEEN GRADIENT AND EM 71

The above term can be regarded as a directional derivative of function Q(Θ|Θt) in the

direction of Θt+1 − Θt. This quantity is always positive because the expected complete log-

likelihood function Q(Θ|Θt) for exponential family models is well-defined and concave, at-

taining its maximum at the point Θt+1.

A.4 Discussion

In this appendix we have built up the link between EM algorithm and gradient based meth-

ods for ML learning by showing that the EM step in the parameter space can be obtained from

the gradient via the transformation symmetric positive definite P matrix. The important con-

sequence of the above analysis is that EM has the appealing quality of always taking a step

Θ(t+1) − Θt having positive projection onto the true gradient of the likelihood function L(Θt).

This makes EM similar to the first order methods operating on the gradient of a locally reshaped

likelihood function.

Appendix B

ECG for Several Latent Variable Models

B.1 Continuous Latent Variable Models

A latent variable model seeks to specify probabilistically how an observed variable x is

related to a set of latent variables Z. This can be viewed as a form of dimensionality reduction

or feature extraction. We will discuss a linear-Gaussian continuous hidden factor model, which

is a simple example of a latent variable model

Consider the generative model, where latent variables cause the observed data.

x = Λz + µ + ǫ, z ∽ N (0, I), ǫ ∽ N (0, Ψ)

The marginal distribution of x can be computed analytically:

p(x|Θ) =

∫

z

p(x|z, Θ)p(z)dz =

∫

z

N (Λz + µ, Ψ)N (0, I)dz =

1

(2π)d/2|C|1/2
exp

(

− 1

2
(x − µ)TC−1(x − µ)

)

(B.1)

The log-likelihood of observing data in these models is of the form:

L(Θ) = −N

2

(

d ln 2π + ln |C| + tr(C−1S)

)

(B.2)

Note that C is the model covariance C = ΛΛT + Ψ, and S is a sample covariance matrix

S = 1
N

∑

n(xn − µ)(xn − µ)T

72

APPENDIX B. ECG FOR SEVERAL LATENT VARIABLE MODELS 73

B.1.1 Factor Analysis and PPCA

Restricting the covariance matrix Ψ of the observation noise to be diagonal, we obtain a

standard statistical model known as Factor Analysis. Restricting the covariance matrix Ψ to be

spherical Ψ = ǫI , we arrive to so-called probabilistic principal component analysis [25]

We can directly find the derivatives of L(Θ) with respect to its parameters Θ = {Λ, Ψ},

without introducing an E-step.

Expectation-Conjugate-Gradient for Factor Analysis:

• E-Step: Analytical

• CG-Step:
∂L(Θ)

∂Λ
= N(C−1SC−1 − C−1)Λ

∂L(Θ)

∂Γ
=

N

2
diag

(

C−1SC−1 − C−1

)

Ψ

• Note that Ψii = exp Γii

Expectation-Conjugate-Gradient for Probabilistic PCA:

• E-Step: Analytical

• CG-Step:
∂L(Θ)

∂Λ
= N(C−1SC−1 − C−1)Λ

∂L(Θ)

∂η
=

N

2
tr

(

C−1SC−1 − C−1

)

ǫ

• Note that ǫ = exp η

B.2 Mixture Models

Mixture models can be regarded as generative models, where discrete hidden variable z

causes the observed data

A mixture model can be regarded as a linear combination of M component densities. Let

z = 1, .., M be discrete latent variable that labels these component densities.

p(x|Θ) =
M

∑

i=1

p(z = i)p(x|z = i, Θ)

=

M
∑

i=1

πip(x|z = i, Θi) (B.3)

APPENDIX B. ECG FOR SEVERAL LATENT VARIABLE MODELS 74

The log-likelihood function for mixture models takes the following form

L(Θ) =
∑

n

ln

M
∑

i=1

πip(xn|z = i, Θi) (B.4)

B.2.1 Mixture of Gaussians

Mixture of Gaussians model (MoG) is perhaps the most common density estimation tech-

nique. In this model, mixing component densities are defined to be multivariate Gaussians with

symmetric positive definite matrices Σi and mean vectors µi, pi(x) = N (µi, Σi).

The log-likelihood function of MoG model with parameters {πi, µi, Σi}M
i=1 is

L(Θ) =
∑

n

ln

M
∑

i=1

πiN (µi, Σi) (B.5)

Expectation-Conjugate-Gradient for Mixture of Gaussians:

• E-Step: Compute responsibilities hi(xn) for all i = 1, ..., M

• CG-Step:
∂L(Θ)

∂γi
=

∑

n

hi(xn) − Nπi

∂L(Θ)

∂µi

=
∑

n

hi(xn)Σ−1
i (xn − µi)

∂L(Θ)

∂Ai
=

[

NΣ−1
i S̄i −

∑

n

hi(xn)I

]

Σ−1
i Ai

• Note that S̄i is the responsibility-weighted local sample covariance matrix

S̄i = 1
N

∑

n hi(xn)(xn − µi)(xn − µi)
T , πi = exp (γi)� M

j=1 exp (γj)
, and Σ = AAT

B.2.2 Mixture of FAs

Mixture of Factor Analyzers (MFA) [7] can be interpreted as a combination of two basic

models: the standard mixture of Gaussians model together with Factor Analysis model. As a

result, this hybrid model simultaneously performs two tasks: clustering and local dimensional-

ity reduction within each cluster.

APPENDIX B. ECG FOR SEVERAL LATENT VARIABLE MODELS 75

The log-likelihood function for MFA model with parameters {πi, µi, Λi, Ψ}M
i=1 is:

L(Θ) =
∑

n

ln
M

∑

i=1

πiN (µi, ΛiΛ
T
i + Ψ) (B.6)

Expectation-Conjugate-Gradient for Mixture of FAs:

• E-Step: Compute responsibilities hi(xn) for all i = 1, ..., M

• CG-Step:
∂L(Θ)

∂γi
=

∑

n

hi(xn) − Nπi

∂L(Θ)

∂µi
= C−1

i

∑

n

hi(xn)(xn − µi)

∂L(Θ)

∂Λi
=

[

NC−1
i S̄i −

∑

n

hi(xn)I

]

C−1
i Λi

∂L(Θ)

∂Γ
=

1

2
diag

(M
∑

i=1

[

NC−1
i S̄i −

∑

n

hi(xn)I

]

C−1
i

)

Ψ

• Note that S̄i is the responsibility-weighted local sample covariance matrix

S̄i = 1
N

∑

n hi(xn)(xn − µi)(xn − µi)
T , πi = exp (γi)� M

j=1 exp (γj)
, and Ψ = exp Γ

B.2.3 Mixture of PPCA

Mixture of Probabilistic Principal Component Analyzers (MPPCA) [28], as in case of

MFA, can be viewed as a basic clustering method together with local dimensionality reduc-

tion method.

The log-likelihood function for MPPCA model with: model parameters {πi, µi, Λi, ǫ}M
i=1 is

written as:

L(Θ) =
∑

n

ln

M
∑

i=1

πiN (µi, ΛiΛ
T
i + ǫI) (B.7)

APPENDIX B. ECG FOR SEVERAL LATENT VARIABLE MODELS 76

Expectation-Conjugate-Gradient for Mixture of Probabilistic PCAs:

• E-Step: Compute responsibilities hi(xn) for all i = 1, ..., M

• CG-Step:
∂L(Θ)

∂γi

=
∑

n

hi(xn) − Nπi

∂L(Θ)

∂µi
= C−1

i

∑

n

hi(xn)(xn − µi)

∂L(Θ)

∂Λi

=

[

NC−1
i S̄i −

∑

n

hi(xn)I

]

C−1
i Λi

∂L(Θ)

∂η
=

1

2
tr

(M
∑

i=1

[

NC−1
i S̄i −

∑

n

hi(xn)I

]

C−1
i

)

ǫ

• Note that S̄i is the responsibility-weighted local sample covariance matrix

S̄i = 1
N

∑

n hi(xn)(xn − µi)(xn − µi)
T , πi = exp (γi)� M

j=1 exp (γj)
, and ǫ = exp η

B.2.4 Hidden Markov Model

Hidden Markov Model can be interpreted as a dynamical mixture model, or a mixture model

evolving over time [22]. The log-likelihood of observing the data under this model with

parameters Θ = {π, A, H} is:

L(Θ) = log
∑

s1

∑

s2

...
∑

sT

πs1

T−1
∏

t=1

ast,st+1

T
∏

t=1

hst,xt
(B.8)

where we define:

• πi is the probability of state si at time t=1.

• A : aij is the transition probability from state si to state sj.

• H : hij is the probability of state si to generate observation xj .

APPENDIX B. ECG FOR SEVERAL LATENT VARIABLE MODELS 77

Expectation-Conjugate-Gradient for Hidden Markov Models:

• E-Step: Compute expectation of sufficient statistics:

E[δst,iδst+1,j], E[δst,iδyt,j], E[δst,i] for t=1,...,T

• CG-Step:
∂L(Θ)

∂γ
(π)
i

= E[δs1,i] − πi

∂L(Θ)

∂γ
(a)
ij

=
T−1
∑

t=1

[

E[δst,iδst+1,j] − E[δst,i]aij

]

∂L(Θ)

∂γ
(h)
ij

=
T

∑

t=1

[

E[δst,iδyt,j] − E[δst,i]hij

]

• Note that πi =
exp γπ

i� M
i′=1

exp γπ
i′

, aij =
exp γa

ij
� M

j′=1
exp γa

ij′

, hij =
exp γh

ij
� M

j′=1
exp γh

ij′

B.3 Unconstrained Optimization

In all of the considered models, we need to satisfy regularity constraints on the model pa-

rameters. To conduct unconstrained optimization, we use simple reparametarization of the

discrete model parameters

• In all mixture models we use softmax parametarization of the mixing coefficients:

πi =
exp (γi)

∑M
j=1 exp (γj)

(B.9)

• For covariance matrix Σ to be symmetric positive definite in MoG model, we use Choleski

decomposition:

Σ = AAT (B.10)

• To keep diagonal entries of the noise model positive, we use:

Ψii = exp Γii for Mixture of FAs (B.11)

ǫ = exp η for Mixture of PPCAs (B.12)

• In HMM model, we reparametarize probabilities via softmax function:

πi =
exp γπ

i
∑M

i′=1 exp γπ
i′

, aij =
exp γa

ij
∑M

j′=1 exp γa
ij′

, hij =
exp γh

ij
∑M

j′=1 exp γh
ij′

(B.13)

To remove translational degeneracy, we force γ1 = 0 and remove it from the parameter Θ.

