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Abstract

This model-based design of experiments (MBDOE) method determines the input magni-

tudes of an experimental stimuli to apply and the associated measurements that should be

taken to optimally constrain the uncertain dynamics of a biological system under study. The

ideal global solution for this experiment design problem is generally computationally intrac-

table because of parametric uncertainties in the mathematical model of the biological sys-

tem. Others have addressed this issue by limiting the solution to a local estimate of the

model parameters. Here we present an approach that is independent of the local parameter

constraint. This approach is made computationally efficient and tractable by the use of: (1)

sparse grid interpolation that approximates the biological system dynamics, (2) representa-

tive parameters that uniformly represent the data-consistent dynamical space, and (3) prob-

ability weights of the represented experimentally distinguishable dynamics. Our approach

identifies data-consistent representative parameters using sparse grid interpolants, con-

structs the optimal input sequence from a greedy search, and defines the associated opti-

mal measurements using a scenario tree. We explore the optimality of this MBDOE

algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model.

The 19-dimensional T-cell model also demonstrates the MBDOE algorithm’s scalability to

higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajecto-

ries of the target system states were reduced by as much as 86% and 99% respectively

after completing the designed experiments in silico. Our results suggest that for resolving

dynamical uncertainty, the ability to design an input sequence paired with its associated

measurements is particularly important when limited by the number of measurements.

Author Summary

Many mathematical models that have been developed for biological systems are limited

because the complex systems are not well understood, the parameters are not known, and

available data is limited and noisy. On the other hand, experiments to support model

development are limited in terms of costs and time, feasible inputs and feasible
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measurements. MBDOE combines the mathematical models with experiment design to

strategically design optimal experiments to obtain data that will contribute to the under-

standing of the systems. Our approach extends current capabilities of existing MBDOE

techniques to make them more useful for scientists to resolve the trajectories of the system

under study. It identifies the optimal conditions for stimuli and measurements that yield

the most information about the system given the practical limitations. Exploration of the

input space is not a trivial extension to MBDOE methods used for determining optimal

measurements due to the nonlinear nature of many biological system models. The explo-

ration of the system dynamics elicited by different inputs requires a computationally effi-

cient and tractable approach. Our approach plans optimal experiments to reduce

dynamical uncertainty in the output of selected target states of the biological system.

Introduction

Since experiments can be expensive and time consuming, it is important that they are planned

to generate useful data. Traditional design of experiments is a well established field and has led

to many advances in biology and medicine. The data obtained from strategically designed

experiments has facilitated the creation of mathematical models that relate experimental sti-

muli to measurable outcomes. These models typically describe the system’s input-output rela-

tionship but fail to capture or encode knowledge of the system’s internal mechanisms and

processes. Mechanistic and semi-mechanistic mathematical models encode the current under-

standing of the internal processes of the biological system even though many of these internal

states or species are not directly measurable. These mechanistic models can be used to support

optimal experiment design that considers the current knowledge of the system interactions and

practical experimental constraints. In recent literature this type of experiment design has been

referred to as model-based design of experiments (MBDOE). MBDOE produces experiments

meant to reduce some measure of uncertainty in the associated model while respecting cost,

time and resource constraints. Most MBDOE strategies can be categorized by three types of

objectives: (1) reducing model parameter uncertainty [1–7], (2) discriminating among possible

models [8–13], and (3) reducing dynamical uncertainty [14–17]. This work advances current

abilities to design experiments to resolve the trajectories of target states of a biological system

model, thereby reducing its dynamical uncertainty.

Many of the MBDOE strategies that support reduction of parameter uncertainty and model

discrimination rely on linear approximations that are locally optimal to design an experiment

by optimizing a criterion of the Fisher Information Matrix (FIM) [15, 18–21]. Such techniques

use the local sensitivities of parameters to design an optimal experiment which requires an ini-

tial estimate of the unknown parameters. Most biological system models are not well character-

ized, as data is limited and noisy, so initial estimates of the model parameters are inaccurate.

Furthermore, biological models are typically nonlinear, so a poor initial parameter estimate is

likely to result in a local minimum, which may result in sub-optimal experiment design. Alter-

natively, the Sigma Point method refines estimates of the characteristic values of the parameter

statistics [22, 23]. This method is computationally efficient and gives a better approximation of

the covariance matrix when compared to the FIM-based and boot-strap methods. However,

this method is not applicable when the biological system is not well characterized with existing

experimental data. These local methods for MBDOE are limited to scenarios when initial esti-

mates for the model parameters or their distributions are already fairly well known.

Stimuli Optimization MBDOE
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To overcome the shortcomings of local MBDOE strategies, global approaches that consider

the entire uncertain parameter range have been developed. Global optimization has been used

to improve the FIM-based design [24] and local deterministic optimization of the likelihood

with multi-start initial parameter estimates [25] have been previously employed. Some Bayes-

ian MBDOE methods use Monte Carlo generated estimates of the parameter confidence inter-

vals to design a global optimal experiment [16, 26–30]. A comparison of the FIM-based and

Bayesian-based MBDOE methods by Weber et al. [31] shows that Bayesian methods give more

accurate and informative designs. However, all of these global methods are computationally

prohibitive for large numbers of highly uncertain parameters and mathematical models that

are computationally intensive. The limitation due to computation has been partially abrogated

by methods that utilize surrogate models to approximate the mathematical model of the sys-

tem. Herein, as in our previous work [14, 15], we use a sparse grid interpolation tool to approx-

imate the biological model.

To find the optimal design a search has to be performed over all of the experimental factors

that define the feasible experimental perturbations and potential measurements. A complete

exploration of the full design space over the uncertain parameter space for an optimal experi-

ment design is impractical due to the combinatorial explosion of possible experimental factors

evaluated for all possible model parameterizations. To solve the problem, most MBDOE strate-

gies constrain the design space to a subset of the possible experiments. This reduces the design

space by assuming a small predefined set of possible measurement points, measurable species

and/or input levels [9, 31–33]. Herein, we define the input to be the exogenous experimental

factors, perturbations and/or stimuli that are applied to the biological system. Other designs

have considered finding an optimal input sequence while the times and measurement species

are defined a priori [2, 10, 24, 34]. To consider both optimal measurements and an optimal

input sequence, some strategies [16, 35] evaluate the optimality of a pre-defined set of specified

inputs and measurement points. All of these approaches may result in sub-optimal experiment

designs if the best experiment is not among the specified experimental options.

Ideally, experiment design determines the optimal solution within a feasible space defined

by all the possible experimental measurements and inputs. Since different inputs can elicit dra-

matically different dynamics for some nonlinear systems, evaluating experiments for optimal

inputs is not necessarily a trivial extension of the global techniques for identifying optimal

measurements. Herein, we describe and evaluate a computationally efficient and tractable

method for performing global MBDOE to define optimal experimental inputs and measure-

ments to reduce the uncertainty in continuous nonlinear system dynamics. The method utilizes

the sparse grid surrogate model technique first employed for global experimental designs pre-

sented in [14, 15], which selected only optimal measurements and not optimal inputs. We pro-

posed an earlier version [36] of our input design MBDOE algorithm that used a combination

of scenario trees and sparse grid interpolation to screen the input design space for optimal

inputs that will generate diverse dynamics of the uncertain nonlinear system. This paper is an

extension of that work. Herein we utilize a greedy search to determine the input magnitude to

be applied using a method that is similar to that in [37] which determined near-optimal mea-

surements in polynomial time. Our MBDOE algorithm is made even more computationally

efficient and robust than our previous sparse grid based strategies due to the uniform sampling

over the dynamical space via careful selection of representative parameters, the optimization

criteria for optimal experiment design for a target system, and the repeated update of probabil-

ity weights over the dynamical space using predicted data. Our new MBDOE method develops

a strategic experiment design that yields highly informative data that can be used to constrain

the system dynamics to dynamical uncertainty regions.

Stimuli Optimization MBDOE
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In the methods section, we describe the experiment design problem and define the methods

used to solve the problem as sequential optimizations to first select an optimal input sequence

and, subsequently, specify the associated optimal measurement pairs (species and time points).

In the results section, we explore the optimality of the derived experiment design solution

using a small 3-dimensional Hes1 oscillatory model and demonstrate the scalability of this

MBDOE strategy with a 19-dimensional T-cell receptor model. The global applicability, sup-

port of hybrid experiment designs, and limitations of this MBDOE approach are discussed to

conclude the paper.

Materials and Methods

Dynamical Model Definition

This MBDOE algorithm is designed to resolve dynamical uncertainties associated with the bio-

logical system by reducing the predicted variance in the system dynamics. The system is

described by nonlinear ordinary differential equations of the general form:

_x ¼ fðx; u; θ; θ
0

; tÞ; xðt0Þ ¼ x0
ð1Þ

where f is a deterministic smooth function of x 2 R
nx , the states of the system, θ 2 R

np , the

known model parameters, θ0 2 R
np0 , the unknown model parameters, and u 2 R

nu the exoge-

nous inputs. Using control vector parameterization (CVP) [38], we represent u = [u(τ1), . . ., u

(τN)] 2 R
nu�N, as vector-valued function of the system inputs that can change value at each dis-

crete time point, τj, where j = 1, . . ., N. There is uncertainty in the dynamics of the system

which is generated by the uncertainty in the values of the unknown model parameters, θ0 2 O

where O is a compact set.

It is common in biological systems that not all states of this system are experimentally mea-

surable. All feasible measurements for this system are modeled by:

y ¼ hðx;u; θ; θ
0

; tÞ; ð2Þ

where h is a smooth vector-valued function that relates to the system’s internal states described

in Eq (1) and y 2 R
nm . We abbreviate Eq (2) by the notation y(u, θ0 , t). The user defines the

number of measurements that they would like to have designed, K, as well as the set of possible

times for measurement, T, by either specifying discrete time points or defining a time resolu-

tion, δt, between TI and TF, the initial and final model simulation times, respectively.

Our MBDOE algorithm designs experiments that reduce dynamical uncertainty in a target

system. This target system is a subset of the system states termed, target states, xT, when stimu-

lated by a target input, uT. This approach employs the concept of a target system also used to

evaluate an alternative MBDOE strategy [16].

We consider dynamical uncertainty in the measurable states, y, and the target states, xT,

generated by the uncertainty in the unknown parameters, θ
0
. As a result of limited and noisy

data, often biological system models will fit the data with a wide range of parameters values

and associated dynamics. Therefore, for an optimal design, we need to consider all the possible

data-consistent dynamical scenarios which are a function of the parameter space, O.

Optimization Problem Definition

The optimal experiment, D� 2 D, defines the optimal input stimulation and optimal measure-

ment pairs that resolve the target state dynamics. This design is defined by a piecewise input

sequence, u� (Eq (3)), and associated measurementsM� = {(mk, tk):k = 1,2,. . .K} 2M, which

defines Kmeasurement pairs by the index of a measurement speciesmk and its corresponding

Stimuli Optimization MBDOE
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measurement time tk.

u� ¼

u
�
1

t1 � t � t2

..

. ..
.

u
�
j tj � t � tjþ1

..

. ..
.

u
�
N tN � t � TF

ð3Þ

8

>>>>>>>>>>>>><

>>>>>>>>>>>>>:

We choose D� as the experimental design that maximizes a measure of information gained

from an experiment

D
� ¼ argmin

u2Rnu�N ;M2M

gðuÞ ð4Þ

The target state dynamical uncertainty (TDU), γ(u), is quantified by the sum of the maximum

variance in each target state that results when analyzed assuming the input sequence, u, has

been applied and measurements,M, exist to constrain the uncertain parameter space:

gðuÞ ¼
X

i

max ðVarðxTiðtÞÞ j ðu;MÞÞ ð5Þ

where the maximum variance of the ith target state, max(Var(xT i(t)j(u,M)), is chosen across

the simulated time t, from the initial, TI to the final time, TF.

The ideal solution for the above optimization problem simultaneously solves for the optimal

input vector, u�, together with the optimal measurements,M�. This is generally a computation-

ally intractable problem due to the combinatorial explosion of all possible selections for the

experiment design complicated by the expense of evaluating the design with the model for all

possible uncertain parameter values. Our approach proposes a computationally efficient

method to approximate both the optimal input vector and associated optimal measurement

points by breaking the problem into smaller computationally feasible optimization problems.

The first optimization problem solves for the input vector using a greedy method by minimiz-

ing the value of TDU at each iteration assuming a single best measurement is taken:

u� ¼ argmin
uj2R

nu

gðuÞ; j ¼ 1; � � �N ð6Þ

The optimal input vector is then used in the second optimization to determine the multiple

optimal measurements points. This combined solution of input and measurements approxi-

mates the optimal experiment design defined in Eq (4).

A flow-chart of the MBDOE algorithm is given in Fig 1 to display the sequence of events in

determining the optimal experiment design: (a) identify representative parameters that main-

tain the diversity of simulated dynamics that fit the existing data, (b) determine the optimal

input vector that minimizes TDU, and (c) specify associated multiple measurement pairs given

an optimal input vector.

Identify Representative Parameters

The first step of this process screens the uncertain parameter space, O, to identify the space of

acceptable parameters, OA. The acceptable parameters are those that support model

Stimuli Optimization MBDOE
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Fig 1. Flow charts describing the three steps for the MBDOEmethod. These describe (a) how acceptable and representative parameters are identified,
(b) the process for determining the optimal input vector, and (c) the selection of multiple measurement pairs associated with the optimal input vector.

doi:10.1371/journal.pcbi.1004488.g001
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simulations to fit the available data as:

OA ¼ θ
0

2 O j log 10 1þ
X

y
0
2O

~y iðu; θ
0

; tÞ � ŷ iðu; tÞ

siðtÞ

 !2
0

@

1

A � TA

8

<

:

9

=

;
ð7Þ

where ŷ iðu; tÞ is the mean of the experimental data for the ithmodel output at the time point, t,

collected with the applied input u, ~y iðu; θ
0
; tÞ is the corresponding model dynamics simulated

with a parameter set, θ0 , and σi(t) is the standard deviation of the data. In this work, we approx-

imate ~y iðu; θ
0
; tÞ using a sparse grid interpolation tool over the uncertain space O for computa-

tional efficiency. TA is the threshold for acceptability. This weighted least squares function has

been used before to define acceptable parameters in [14, 15]. The parameter space, O, is sam-

pled using Latin Hypercube Sampling (LHS). If the initial screen produces fewer acceptable

parameters than NA, the desired number of acceptable parameter vectors that will support the

experiment design, focused grids are created [15] to improve the resolution of the grid interpo-

lant in the acceptable regions of the uncertain parameter space. LHS is also used to sample the

focused grids to find more acceptable parameters until the cardinality(OA)� NA. In this work,

we define the dynamical uncertainty region to be the region spanned by the most extreme tra-

jectories of the acceptable parameters.

Selection of Representative Parameters. We select representative parameters from the

acceptable parameter space, ORA � OA, that span the dynamics space, denoted byDA, simu-

lated by the model over the acceptable parameter space. Our selection of ORA effectively sam-

ples the parameters consistent with the number of experimentally distinguishable dynamics for

robustness. We cluster the trajectories, η 2DA, where η = φ(θ0
) is the trajectory associated with

θ0
, so that parameters that generate similar dynamics are grouped together. A spectral cluster-

ing method is used that employs eigenvalue analysis to estimate the number of clusters. The

cluster number is determined at the largest gap of the eigenvalues of the normalized Laplacian

matrix that is used in spectral clustering as in [39]. After the clusters are created, we select rep-

resentative parameters from each cluster to form ORA. To preserve dynamical diversity, the

representative parameters are sampled from the convex hull of each cluster using the MATLAB

function convhulln. The number of representatives sampled from the convex hull of each clus-

ter is equal to a user-specified number, C, with minimum sample size of three to ensure trian-

gulation. Thus the representative parameters discretize the acceptable uncertain space into NRA

= C�(# of clusters) parameters that preserve the dynamical diversity. We use these representa-

tive parameters as an indirect means to approximate a uniform sampling from the acceptable

trajectory space as described next.

Computational Efficiency Afforded by Dynamical Representative Parameters. For

computational efficiency, our goal is to estimate the mean and variance of possible trajectories

with uniform sampling in dynamical space. To be more precise, let ‘O(θ
0
) be the likelihood of

θ0
based on existing experimental data. Then one way to define the probability of θ0

is:

p
O
ðy

0

Þ ¼
‘
O
ðy

0

Þ
X

l2OA

‘
O
ðlÞ ð8Þ

However, this focuses on the parameter space and may overweigh some regions of the dynam-

ical space if the dynamics are relatively insensitive to changes in the parameter values. This is

due to the fact that we obtained OA by LHS on the parameter space. Instead, we want to sample

uniformly in the dynamical space. LetDRA = φ(ORA) be the set of trajectories simulated with

the set of representative parameters. So the probability of a given trajectory, η, can be defined

Stimuli Optimization MBDOE
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by:

p
DRA

ðZÞ ¼
‘
D
ðZÞ

X

n2DRA

‘
D
ðnÞ ð9Þ

This can be used to translate to a pORA
(θ

0
) where θ

0
generates a trajectory, η, that is contained in

DRA. (Recall, η 2DA.) Thus, an alternative way to define the probability of θ
0
over the experi-

mentally distinguishable dynamical space is:

p
ORA

ðy
0

Þ ¼
‘
O
ðy

0

Þ
X

b2ORA

‘
D
ðbÞ ð10Þ

SinceDRA spans the dynamical set represented withinDA, its reduced membership is compen-

sated for by these probabilities.

The representative acceptable parameter set and its associated probability weights enable us

to estimate the expected values and variances for the measured and target states over the exper-

imentally distinguishable dynamics as:
X

DA

ðf Þ �
X

Z2DRA

p
DRA

ðZÞf ðZÞ ¼
X

y
0
2ORA

p
ORA

ðy
0

Þf ðy
0

Þ
ð11Þ

Table 1 specifies where this relationship in Eq (11) is used in the following equations to esti-

mate the expected values and variances in a computationally efficient manner using the repre-

sentative parameters.

Determine Optimal Input Vector

We propose solving the input vector using a greedy search algorithm. The input is discretized

as in control vector parameterization (CVP) by the potential admissible input times T =

{τ1� � �τN} and by potential magnitude levels. The number of possible input magnitudes is deter-

mined by the inputs bound [umin, umax] and resolution, δu:

Nu ¼
umax � umin

du
þ 1 ð12Þ

The algorithm for the greedy search method to select the optimal input vector is detailed in the

flowchart in Fig 1(b). The input magnitude is initially set to a base input level, u1 = ub(t) 8t 2

[TI TF], which is determined by the user. At each iteration, k, of the greedy search method, opti-

mized input levels, u�j , for the admissible times, τj 2 Tk−1, are selected from all Nu possible

Table 1. Mapping of functions to equation numbers to efficiently estimate necessary expected values
and variances.

Equation number Expected Value Description f(θ
0
)

(14) measurement variance, Var(yi(u, �, t)) (yi(u,θ
0
, t)−μi(t))

2

(14) and (18) expected experimental noise*, E(σi(u, t))
2

zb þ zs j yiðu; θ
0
; tÞ j þzt j _y iðu; θ

0
; tÞ j

(5) and (18) mean value, μ yi(u,θ
0 , tk)

(5) target state variance, Var(xTi(t)) (xTi(uT,θ
0 , t)−μTi(t))

2

*the constants ζb, ζs, ζt are described in [12].

doi:10.1371/journal.pcbi.1004488.t001
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admissible input magnitudes as described in Algorithm 1. We evaluate TDUj for each of the

admissible input times τj 2 Tk−1 and associated u
�
j and select the input conditions, ðt

�
j ; u

�
j Þ, that

minimize the value of TDU according to Eq (6) as optimal. These optimal input conditions

update the current input vector as follows:

u�
k ¼

u
�
j t�j � t � t

0

u�
k�1 Elsewhere

ð13Þ

8

<

:

where τ
0
is an input admissible time that has previously been optimized to update the vector,

u�k−1. We define Sk−1, a set of all previously optimized input admissible times such that

t0 ¼ min½t 2 Sk�1 j t > t�j 	. When the input vector is updated with optimal input conditions,

ðt�j ; u
�
j Þ, the input time, t�j is moved from the set Tk−1 to the set Sk−1. This process continues

iteratively, and the input vector is updated until T is empty or no input magnitude change

improves the value of TDUk−1 as shown in Fig 1(b).

Algorithm 1 Algorithm for Selecting u�j

Input: τj,umin,umax, δ u, Sk−1, Tk−1, u�
k−1

Output: u
�
j and corresponding TDU

j

for p = 1:Nu do (Note: Nu = number of possible input magnitudes)

1. Define u
p
j ¼ umin þ ðp� 1Þdu

2. Simulate dynamics with u = up for τj� t < τ
0
where τ

0
= min[t 2 Sk−1jt > τj]

3. Determine an associated measurement pair: mk 2 nm and tk 2 T. See Eq (15)

4. Update uncertain parameter probabilities given data for (mk, tk). See

Eq (16)

5. Estimate variance of target states, xT, with target input, uT, using

updated uncertain parameter probabilities

6. Calculate TDU
p
. See Eq (5)

end for

p� ¼ argmin
p2f1;���;Nug

TDU
p
. See Eq (6)

u
�
j ¼ u

p�

j

TDU
j
= TDU

p�

Determine an Associated Measurement Pair. Given an input vector, u 2 R
nu�N, a mea-

surement pair is selected from the feasible measurement space defined by themth
k entry in the y

vector at a specific sample time point, tk. This pair is selected as the one that maximizes a Ham-

pel smoothed distinguishability metric. We smooth the function of the distinguishability met-

ric, ξ(t), over time using a Hampel identifier, ΓHampel(•), to remove outliers and smooth the

grid approximation (when used). The distinguishability metric quantifies the ability of an

experiment to resolve the dynamics and is defined as:

xiðtÞ ¼ GHampel

Varðyiðu; �; tÞÞ

Eðsiðu; tÞÞ
2

 !

ð14Þ

where ξi(t) is the output’s distinguishability metric for the for the ithmeasurable model output

at each possible measurement time point. E(σi(u, t))
2 reflects the expected experimental noise

of a measurement. If the experimental measurement noise is not available prior to running the

experiments, we estimate the noise with an error model adopted from [14] as shown in

Stimuli Optimization MBDOE
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Table 1. The optimal measurement pair satisfies:

ðmk; tkÞ ¼ argmax
i2nm ;t2T

xiðtÞ ð15Þ

wheremk is the i
th species of y and tk is the sample time point.

This distinguishability metric is similar to the one introduced in [13] with the exception of

the Hampel smoothing and the probability weights which were added to smooth the approxi-

mations for smaller numbers of sampled uncertain parameters as described in Eqs (8) to (11).

The key point is that we focus on selecting measurements to distinguish dynamics rather than

parameters. Hence, probability weights, p(θ0
), are induced from a probability on dynamics in a

way that will allow us to sample uniformly in dynamical space. This enables us to calculate the

expected values and variances in Eq (14) over the experimentally distinguishable dynamics in a

computationally efficient manner.

Update Uncertain Parameter Probabilities. Given the optimal measurement pairs (mk,

tk), we use data that corresponds to the measurement point to assign and update parameter

probability weights. Each of the uncertain parameters, θ
0 2 ORA, is assigned a probability

weight to reflect the confidence given the simulation fitness for various scenarios. Herein, the

priors of these probability weights are initially assigned uniformly across θ
0 2 ORA and updated

following Bayes theorem:

pðθ
0

jŷ iðu; tkÞÞ ¼
pðŷ iðu; tkÞjθ

0

Þpðθ
0

Þ

~pðŷ iðu; tkÞÞ
ð16Þ

~pðŷ iðu; tkÞÞ �
X

y
0
2ORA

pðŷ iðu; tkÞjθ
0

Þpðθ
0

Þ
ð17Þ

The posterior parameter probability, pðθ0 j ŷ iðu; tkÞÞ, under the observation is given by the

prior probability, p(θ0 ), and the likelihood function, pðŷ iðu; tkÞ j θ
0Þ, normalized by the normal-

izing constant, ~pðŷ iðu; tkÞÞ which is approximated in Eq (17). ŷ iðu; tkÞ is the data of the i
thmea-

surement species at the specific time point tk collected under the application of the input u. If

experimental data is available, then ŷ iðu; tkÞ is the observed data. However, for our parallel

design, we make predictions of the data for the selected measurement point since data is not

available until the experiment design is over. In this case, ŷ iðu; tkÞ is the prediction of the data

for the selected species at the particular time point. With the design of multiple measurements

employed in this method, data is predicted with a scenario tree design as described below and

the likelihood of the predicted data is assumed to follow a Gaussian distribution:

p ŷ iðu; tkÞjθ
0

� �

¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pEðsiðu; tkÞÞ
2

q exp �
ðŷ iðu; tkÞ � yiðu; θ

0

; tkÞÞ
2

2Eðsiðu; tkÞÞ
2

 !

ð18Þ

where yi(u, θ
0
, tk)) is the model simulation of the dynamics of the model at the selected mea-

surement point (mk, tk) with the parameter θ
0
under the input u.

Specifying Multiple Measurement Pairs

Our design can identify multiple informative measurements given an optimal selected input vec-

tor, u�, as shown in Fig 1(c). We use an adaptation of the measurement scenario tree method

[15] which makes multiple predictions of the data value from a given measurement point to

allow the next informative point to be selected. In this work, we introduce the use of prior/poste-

rior probability updates to minimize the bias due to outliers. The use of probabilities also enables
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the algorithm to work well with a smaller number of sampled uncertain parameters than previ-

ously, contributing to the computational efficiency. As in [15], a measurement scenario tree is

initialized by a node which defines the first optimal measurement point. At each node, we deter-

mine the optimal sampling time point according to Eq (15) to maximize the distinguishability

metric for each measurable species. Our MBDOE algorithm selects the measurement pair that

minimizes the TDU according to Eq (5) as the optimal measurement pair for that node. Subse-

quent measurements (nodes) are chosen by considering three different scenarios (branches)

from the node. These scenarios arise by predicting three possible outcomes for the measurement

pair: previously these were defined by the minimum, mean, and maximum predicted measure-

ment values. Herein, the cumulative distribution function is computed from the priors to span

from the minimum to maximum predicted data values for that measurement pair. The three pre-

dicted possible outcomes are the simulated values at the measurement pairs that correspond to

the 10th,50th, and 90th percentiles. Using each of these predicted possible outcomes to approxi-

mate the data, ŷ iðu; tkÞ, the posterior for each branch are updated for the θ
0 2 ORA as in Eq (16).

Given the updated branch specific priors, the measurement pair specifying the next node in each

branch is determined by the optimal measurement pair selected to minimize Eq (5) assuming the

estimated posterior is the prior. This process is continued until the tree structure contains at least

the specified number of unique measurements. The minimum number of levels in the tree is

log3(K)+1 where K is the user-specified desired number of measurements.

Computational Efficiency Afforded by Sparse Grid

Evaluating all possible experiments over the design space, D, using model simulations for a

large uncertain parameter space, O, is computationally prohibitive. The sparse grid tool offers

an efficient way to approximate the system’s output dynamics using interpolating polynomials

by sampling an uncertain space in a systematic way to create a surrogate model for the system.

The grid approximation is then used to interpolate additional points on the uncertain space

without the cost of directly simulating the model.

Sparse grid Interpolation over Uncertain Parameter Space. A sparse grid approximation

of the dynamics of the measured states over the uncertain parameter space is created using the

process described previously [15]. With the sparse grid interpolant, points are sampled from O

using LHS and their corresponding model output are approximated by:

~y ið�; θ
0

; tÞ ¼ Ld;qðtÞ 
 yið�; θ
0

;Ti
sÞ; ð19Þ

where ~y ið�; θ
0
; tÞ is the estimated value at time t for the ithmodel output and yið�; θ

0
;Ti

sÞ is a vec-

tor of the ithmodel output sampled at time points,Ti
s, specified by the time-interpolating vector

for the uncertain parameters, θ0 . Herein, the Ld, q are Lagrange polynomials where the degree d

can be increased to improve the accuracy of the interpolant approximation while ensuring

computational efficiency and q is used as the index to builds the polynomial, 0< q< d.

Sparse grid Interpolation over Input Space. If the number of all possible input combina-

tions exceed the maximum number of grid nodes predicted to create the sparse grid interpola-

tion, the sparse grid interpolation tool is used to approximate the model dynamics over the

input space. The sparse grid interpolant is sampled at the Nu possible input magnitudes and

the corresponding model outputs are approximated for each θ
0 2 ORA by:

~y iðu; �; tÞ ¼ Ld;qðtÞ 
 yiðu; �;T
i
sÞ; ð20Þ

The interpolated dynamics are used to characterize the experimental distinguishability metric

(Eq (14)) for each of the Nu possible input magnitudes.
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Computational Implementation Details

The algorithm was coded in MATLAB (2013a). The Sparse Grid toolbox (v5.1.1) was obtained

from http://www.ians.uni-stuttgart.de/spinterp [40] and integrated with our model-based

experiment design algorithm. We minimize the error due to inaccurate interpolants by specify-

ing the termination conditions based on their depth or by the relative or absolute errors of 10%

and 5 respectively. The max depth is set to 3 and 5 for the parameter screening and focused

grids, respectively, and 5 for the input grid. We set the data-consistent acceptability threshold

TA = 2, which correspond to two standard deviations. The Hes1 and T-cell receptor models for

the results were numerically integrated using the stiff ode solver ode15s with the default set-

tings. To increase computational efficiency, the sparse grid code and the mathematical models

were vectorized. The code was run on four 8-core Intel Xeon 3.4 GHz CPUs each with 16 GB

of memory and running the Windows 2003 server platform with the MATLAB Parallel Com-

puting Toolbox. Our input design MBDOE algorithm code is available upon request from the

corresponding author.

An upper bound on the number of model simulations used by our MBDOE algorithm can

be approximated by:

Teval ¼ SGy þ NA
|fflfflfflfflffl{zfflfflfflfflffl}

ðaÞ

þminðNu; SGuÞ 
 NRA 

NðN þ 1Þ

2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðbÞ

þ NRA
|{z}

ðcÞ

ð21Þ

where SGθ and SGu are the number of model simulations (nodes) used to create sparse grid

interpolants over the uncertain parameter and input space, respectively. An upper bound esti-

mate of these values can be calculated using a Sparse Grid toolbox function, spdim(maxDepth,

Dim) assuming the maximum possible depth and the dimension of the uncertain parameter or

input space. The number of simulations required to build an accurate interpolant may be quite

a bit lower than this approximation when the model is smooth over the uncertain parameter

and/or input space. The terms of this upper bound approximation are mapped to the steps of

Fig 1. The (a) term of Eq (21) is the total number of model simulations used to identify the rep-

resentative parameters. The second term, (b), is the number of simulations that determine the

optimal input vector. For this approximation, the sparse interpolant on the input space is only

created if the estimated maximum number of nodes, SGu required is less than Nu. Furthermore,

we assume a worst case scenario where the input magnitude changes at all N admissible times

resulting in the fraction, NðNþ1Þ

2
. The third term, (c), is the number of model simulations used

create the scenario tree to determine the measurement pairs.

Results

3-Dimensional Problem: The Hes1 Model

To illustrate the effectiveness of our MBDOE strategy to resolve dynamical uncertainty of a tar-

get system, we use a simple Hes1 oscillator toy model [41]. This example demonstrates how an

optimal perturbation enhances the ability of the MBDOE to reduce the dynamical uncertainty.

The Hes1 model was previously used to demonstrate a Bayesian design of experiments strategy

[16]. This model describes the changes in the level of the Hes1 transcription factor that is

important in somitogenesis. It is modeled with an ODE system that describes the changes of

the levels of the Hes1 mRNA,m, the cytosolic protein, P1, and the nuclear protein, P2, as

Stimuli Optimization MBDOE

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004488 September 17, 2015 12 / 23

http://www.ians.uni-stuttgart.de/spinterp


shown:

dm

dt
¼ �kmþ

1

1þ P2
P0

� �h
;

dP1

dt
¼ �kP1 þ nm� k1P1;

dP2

dt
¼ �kP2 þ k1P1

ð22Þ

A description of the parameters of the model and their nominal values are listed in Table 2.

The degradation rate, k, and protein transport rate, k1, are assumed to be known and their val-

ues are set to the nominal value while the rest of the parameters are considered unknown. The

uncertain parameter space, O, is initially set to have bounds of 0.1 and 10 times previously

reported nominal parameter values.

The experimental design space is D, partially defined by an input α 2 U that modifies the

transport rate, k1, as α × k1 where U = [0.01,2] with a δu = 0.05. The input magnitude can be

changed at admissible times, T = {0,2,5,8,10,50,100,150,200} min. In this example, ub, is set to α

= 1 8τ 2 T. The allowable measurement state space includes the Hes1 mRNA,m, and the total

protein concentration, P1+P2. The allowable sampling time space T = [0, 300] min was defined

to specify measurements with a δt = 10 min. We want the algorithm to specify a minimum of 8

distinct measurements. The experiment is designed to decrease the dynamical uncertainty on

three target states,m, P1, and P2 under a target input α = 1 applied for the simulated time

period.

To evaluate the MBDOE algorithm in silico, we simulate a plant model for which we want

to reduce the dynamical uncertainty. The plant model is initially simulated with unknown

model parameters set at the nominal values shown in Table 2. We generate 6 initial measure-

ments of both mRNA,m, and total protein concentration, P1+P2, at times t = 10,20,60 min

with 10% additive Gaussian noise.

Initial data identify the acceptable parameter space, OA, that is consistent with the data as

defined by Eq (7). The resulting optimal experiment design is in Table 3. The optimal input

sequence is specified by α values shown in Fig 2a and associated predicted measurements are

shown on Fig 2b, superimposed on the representative dynamics for the measurable species to

illustrate their connection with uncertainty. The greedy algorithm for the input selection is

shown in Table 4 showing each iteration of input selection with the progressive predicted

reduction in TDU values. The initial uncertainty and final uncertainty in the dynamics of the

target states are superimpossed in Fig 2c to demonstrate the reduction of the region of uncer-

tainty of the dynamics. The dynamical uncertainty regions associated with the mRNA, P1, P2

Table 2. Hes1model parameters and definitions.

Symbol Parameter Description Nominal value Parameter Range

k degradation rate 0.03 min−1 fixed

k1 transport rate of protein 0.16min−1 fixed

P0 regulatory transcription level of protein 2.4 0.24—24

h Hill type coefficient 2 0.2—20

� rate of mRNA transcription 2.5 × 10−2 min−1 2.5 × 10−3−2.5 × 10−1

doi:10.1371/journal.pcbi.1004488.t002
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target states are reduced by 84%, 81% and 86%, respectively. In all cases, this reduced uncer-

tainty region enclose the true dynamics of the system.

The measurement pairs are shown in the scenario tree in Fig 3a. the nodes of the tree specify

the measurements that maximize uncertainty in the measurable species, ξ, while minimizing

the TDU, γ, under the optimal input sequence, u�. In general, the values of ξ and γ decrease as

you move down the tree and the predicted dynamics are constrained. To investigate how the

measurement pairs contribute to the reduction of uncertainty in the dynamics of the target sys-

tem, the total, γ, and individual variances are estimated assuming each predicted measurement

has been taken (moving down and from left to right along the tree, neglecting repeated mea-

surements). These results are shown in Fig 3b and 3c. These figures show that the first five

unique measurements from the tree are necessary to resolve the target system dynamics.

To further explore the optimality of our MBDOE algorithm, we compare our results

achieved with u� andM� to those of measurement only MBDOE. For this comparison, the

measurement only MBDOE determined the optimal measurements,MT, assuming the applied

input was the target input, uT. These results are summarized in Table 5 by the percentage

reduction in the uncertain dynamical region for each target species and TDU. Our MBDOE

algorithm outperforms all other experiment design combinations based on the TDU reduction.

Although our MBDOE design is not the best in reducing the uncertain dynamical region for all

target states, the results are comparable. The supplemental material contains the figures show-

ing the uncertain dynamical regions for all measurement and input combinations in the Table.

The supplemental material also contains figures that indicate the ability of our MBDOE algo-

rithm to reduce the uncertain dynamical regions for different parameterizations of the Hes1

plant model.

Table 3. Optimal Experiment Design for Hes1 Example.

Time Step Action under MBDOE design Scenario Tree Level

T = 0 mins Apply α = 0.1 -

T = 2 mins Apply α = 1.9 -

Measure P1+P2 2nd

T = 40 mins Measure mRNA 3rd

Apply α = 0.3 -

T = 50 mins Measure mRNA 3rd

T = 70 mins Measure mRNA 3rd

T = 80 mins Measure mRNA 3rd

Apply α = 0.35 -

T = 100 mins Measure P1+P2 3rd

T = 120 mins Measure mRNA 1st

T = 130 mins Measure P1+P2 2nd

T = 140 mins Measure mRNA 3rd

T = 150 mins Apply α = 0.75 -

T = 180 mins Measure P1+P2 3rd

Measure P1+P2 2nd

T = 190 mins Measure P1+P2 3rd

T = 200 mins Apply α = 0.95 -

T = 210 mins Measure mRNA 3rd

doi:10.1371/journal.pcbi.1004488.t003
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Fig 2. An illustration of the optimal experiment design for the Hes1 example. (a) The input sequence selected by the design for the duration of the
experiment. (b) Model simulation of the output dynamics of the measurable speciesm and P1+P2 under an optimal input simulated withΩRA. The red dots
specify the selected optimal measurement points which are the mean values generated using nominal plant with additive 10%Gaussian noise. Error bars are
also given by the standard deviation of the simulated data (three data points are generated for each time point). (c) The initial (grey) and final (blue)
uncertainty in the target states dynamics. The designed experiment reduces the uncertainty region by 84%,81%, and 86% for mRNA, P1, and P2,
respectively. The red line shows the simulated dynamics of the nominal plant.

doi:10.1371/journal.pcbi.1004488.g002

Table 4. Greedy Method for Hes1 Input Vector Design.

Iteration min(TDU) τ* u* u at time T = {0 2 5 8 10 50 100 150 200}

0 − − − [1 1 1 1 1 1 1 1 1]

1 11.5191 50 0.3 [1 1 1 1 1 0.3 0.3 0.3 0.3]

2 10.7718 0 0.1 [0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3]

3 7.8597 2 1.9 [0.1 1.9 1.9 1.9 1.9 1.9 0.3 0.3 0.3 0.3]

4 7.6381 100 0.35 [0.1 1.9 1.9 1.9 1.9 1.9 0.3 0.35 0.35 0.35]

5 1.1810 150 0.75 [0.1 1.9 1.9 1.9 1.9 1.9 0.3 0.35 0.75 0.75]

6 0.5849 200 0.95 [0.1 1.9 1.9 1.9 1.9 1.9 0.3 0.35 0.75 0.95]

doi:10.1371/journal.pcbi.1004488.t004
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Fig 3. Supporting details of optimal experiment design for Hes1 example. (a) The measurement scenario tree representation for selecting optimal
measurements. Each node defines, the measurement pairs with the predicted value of the distinguishability metric, ξ, target dynamical uncertainty, γ, and
three estimated measurement values from simulation, G1, G2, and G3. The path along the scenario tree with predictions closest to the data from the nominal
plant is shown in red. (b) Reduction of TDU and (c) individual variance of target states with each additional unique measurement from the scenario tree.

doi:10.1371/journal.pcbi.1004488.g003

Table 5. Comparison of Optimal Input MBDOEwith Measurement Only MBDOE for the Hes1 Model.

Input Applied Measurements % Uncertainty Reduction

m P1 P2 TDU, γ

u* M* 84% 81% 86% 84.6%

uT MT 75% 68% 81% 77%

u* MT 86% 82% 83% 84.2%

uT M* 80% 79% 82% 80.8%

doi:10.1371/journal.pcbi.1004488.t005
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The computational efficiency of this MBDOE method partially arises from the use of an

interpolation as a surrogate of the model to reduce numerical integration of ODEs. The sparse

grid terminated with a relative accuracy of 0.7% with an absolute tolerance of 0.9. The algo-

rithm required only 137 model evaluations to build an interpolant which was sampled 10,000

times to identify 3852 acceptable parameters where NA = 2000. The algorithm selected 48 rep-

resentative parameters, NRA = 48, to span the distinguishable dynamics generated by the

acceptable parameters. For the input design, separate 1-D sparse grids are constructed for each

admissible time of input change with 9 nodes. The total number model evaluation used for the

complete experiment design is 18,716 where 2137 were for finding the representative parame-

ters, 16,531 were used for the input selection, and 48 were used for the measurement selection.

Clearly the majority of the model simulations were used to determine the optimal input signal.

This is exceptionally large since we allowed the input to change at 9 time points and had fine

input resolution with 40 different values. For comparison purposes, the Hes1 model experi-

ment design in [16] required more than 30,000 model simulations to determine which species

should be measured to provide the most information.

19-Dimensional Example: The T-cell Receptor Model. The scalability of the MBDOE

strategy to high dimensional problems is demonstrated using a T-cell receptor signaling model

proposed by Lipniacki et al. [42]. This model was used previously as an example model to

resolve dynamical uncertainty using parallel measurements only [15]. The model has 37 ODE

equations that describes the dynamics of the species involved in the activation of T-cell signal-

ing pathway, and 19 model parameters. Herein, we assume all of the parameters are unknown.

The Lipniacki model demonstrates the effectiveness of the MBDOE algorithm to use an

optimal input to reduce dynamical uncertainty in a target system with conditions that maybe

difficult to manipulate experimentally exactly. For illustrative purposes, we consider the system

that could be experimentally determined to have a concentration of the agonist ligand,

pMHC1, significantly higher than the concentration of the TCR receptors. The target system

assumes that the concentration of this ligand pMHC1 predictably decreases as it binds to the

TCR receptor. Two inputs are allowed to be manipulated in the experiment design under the

system with constant supersaturating concentration of pMHC1: the drugs Sanguinarine, an

Erk inhibitor, and PMA, an upstream activator of the protein kinase C. The magnitude levels

of these control inputs, U, where U 2 [0, 1] with a resolution of δu = 0.3 can be changed at

potential times T = {5,10,15,20} min while the duration of an experiment run is 30 minutes. In

this example, the initial ub is set to no drug application. None of the drugs are applied to the

target system.

The allowable measurement state spaceM is defined to include phosphorylated Zap, pZAP,

total phosphorylated Mek, pMEK + ppMEK, and total phosphorylated Erk, pERK + ppERK.

The allowable sampling time space T = [0 30] min was defined to specify measurements with a

δt = 1 min. Optimal measurements are designed under an optimal input to reduce dynamical

uncertainty in target states, free SHP, ZAP, ppMEk, and ppERK under the target system with

predictable decreasing levels of pMHC1. A total of four measurements are to be designed. The

design is initiated by identifying acceptable parameters that fit an initial data set containing 9

points, pERK + ppERK at 0, 2, 5, 7, 8, 10, 12, 20 and 30 minutes.

The optimal experimental design that constrains the predicted dynamics of the target sys-

tem is presented in Table 6. Optimal drug levels for Sanguinarine and PMA are administered

at times t = 10 minutes and optimal measurements are specified at times t = 14,18 and 30 min-

utes. These predicted measurements are also superimposed on the simulation of the represen-

tative parameters in Fig 4a to illustrate their connection with uncertainty. The optimal

experimental design yields a reduction of uncertainty in target state dynamics by as much as

99% observed in Zap, with the least predicted dynamical uncertainty reduction by 46% for free
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SHP (Fig 4b). Although we would like to dramatically reduce the uncertainty for all target

states, the reduction performance is highly dependent on the relationship between the target

and measurable states. There are cases where the measurements may not be informative at all;

our MBDOE approach will help inform the experimentalist a priori.

For completeness, the measurement scenario tree design is provided in Fig 5a. Each mea-

surement from the scenario tree is investigated to determine how it contributes to the decrease

in the TDU and the individual maximum variance (Fig 5b and 5c). Fig 5b also compares the

reduction in TDU for our MBDOE approach to a measurement only design. For the measure-

ment only MBDOE approach, we choose to find 4 measurements assuming the target input

was applied to the TCR model. From this figure, it is clear that the optimization of the input

signal is most important when a limited number of measurements are taken.

The computational efficiency of this MBDOE method on a higher dimension problem

depends on the use of interpolation to explore the uncertain parameter space. From the 10,063

nodes used to create the grid, the algorithm identified 3974 acceptable parameters. The grid

interpolant was sampled 100,000 times using LHS to identify an additional 403 acceptable

parameters. The algorithm determined NRA = 44 with NA = 2000. There was no need to

Fig 4. An illustration of the optimal experimental design for the TCR example. (a) Model simulation of the output dynamics of the measurable species
under the optimal input provided in Table 6 simulated withΩRA. The red dots specify the selected optimal measurement points by the mean values generated
by nominal plant with additive 10%Gaussian noise. Error bars are also given by the standard deviation of the simulated data (three data points are generated
for each time point). (b) The initial (grey) and final (blue) uncertainty in the target states dynamics. The designed experiment reduces the uncertainty region
by 46%,99%,85% and 59% for free SHP, ZAP, ppMEK and ppERK, respectively. The red line shows the simulated dynamics of the nominal plant.

doi:10.1371/journal.pcbi.1004488.g004

Table 6. Optimal Experiment Design for TCR Example.

Time Step Action under MBDOE design Scenario Tree Level

Sanguinarine = 0 -

T = 10 mins Apply PMA = 0.3 -

T = 14 mins Measure pERK+ppERK 2nd

T = 18 mins Measure pMEK+ppMEK 2nd

T = 30 mins Measure pERK+ppERK 1st

T = 30 mins Measure pERK+ppERK 2nd

doi:10.1371/journal.pcbi.1004488.t006
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construct an input sparse grid since Nu = 16 and there were only 4 admissible times for poten-

tial input changes. The total number of model simulations for the complete experiment design

is 16,991 with 12,063 for the selection of representative parameters, 4884 simulations for the

input design, and 44 simulations to support the measurement selection. The majority of the

model simulations are used to explore the large dimension uncertain parameter space to iden-

tify the acceptable and representative parameters. Given Eq (21) and the settings specified for

the TCR model, the maximum number of model simulations possible was 19,084. The number

of simulations actually performed was smaller than the worst case scenario because the input

design terminated due to a lack of improvement in the TDU with additional changes to the

input vector. For comparison purposes, previous work with this TCR model assuming different

initial data and measurable species in [15] required 19,000 model evaluations to only define

optimal measurements for a parallel design that fully resolved the dynamics to within experi-

mental capabilities.

Fig 5. Supporting details of optimal experiment design for TCR example. (a) The measurement scenario tree representation for selecting optimal
measurements. Each node defines, the measurement pairs with the predicted value of the distinguishability metric, ξ, target dynamical uncertainty, γ, and
three estimated measurement values from simulation, G1, G2, and G3. The path along the scenario tree with predictions closest to the data from the nominal
plant is shown in red. (b) Reduction of TDU (blue line) and (c) individual variance of target states with each additional unique measurement from the scenario
tree. In (b) the reduction in TDU for a measurement only MBDOE scenario (red line) is provided for comparison purposes.

doi:10.1371/journal.pcbi.1004488.g005
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Discussion

In this work, we have proposed an MBDOE algorithm that extends previous work to include

the design of an optimal input together with optimal measurements to reduce dynamical

uncertainty in biological systems. The global nature of the algorithm overcomes the challenges

posed by traditional MBDOE designs that rely on the local FIM design. Furthermore, most

MBDOE techniques that consider input design only compare a predefined set of input values

and/or measurements. Our computationally efficient approach enables us to avoid this limita-

tion and search over the input space for the optimal input values at pre-specified time points.

Our strategy achieves a global design by implementing computationally efficient strategies

using sparse grid interpolation, probability-weighted scenario trees, and dynamical representa-

tive parameters. An interpolant of the ODE system is created by strategically sampling the

uncertain parameter space and is used to evaluate additional points by LHS without simulating

the ODEs. Representative parameters are used to span the dynamics of the acceptable parame-

ter space. Together, the representative parameters and the sparse grid interpolation are used to

efficiently screen the dynamical variance on the input space and facilitate the probability-

weighted scenario tree to identify associated optimal measurements that minimize the uncer-

tainty in the target system dynamics. We have confirmed that our optimal input MBDOE algo-

rithm will specify experiments that are more informative in their ability to reduce dynamical

uncertainty over MBDOE techniques that only specify optimal measurements using 3D and

19D models. The optimization of the input signal is most important when a limited number of

measurements are taken.

The computational expense of the MBDOE method is highly dependent on the dimension

of the unknown parameter space and the feasible input space. For high dimension models, a

large number of model simulations may be required to explore the large dimension uncertain

parameter space to identify the acceptable and representative parameters. This computational

burden can be reduced by the use of the sparse grid interpolation tool if the model output is

smooth over the uncertain parameter space. For large input spaces, the majority of the model

simulations in the MBDOE algorithm may be used to determine the optimal input signal. The

number of model simulations increases with more flexibility in the input feasible space in

terms of: (1) number of inputs that could be applied, (2) number of allowable changes in the

inputs magnitudes (input resolutions), and (3) the number of admissible input times. In our

examples, we specified a high degree of flexibility in the feasible input space for the lower

dimension Hes1 model than the high dimension TCR model. As a result, the TCR model used

12,063 model simulations for the optimal input vector design while the Hes1 system required

16,531 model simulations.

Historically, MBDOE methods have designed experiments sequentially, whereby informa-

tion gained from a previous experiment is used immediately to inform the next experiment

design [32, 43, 44]. This approach is prevalent with the local MBDOE strategies since it

improves the accuracy of the parameter estimates that support the design of the next experi-

ment. The sequential design becomes problematic when the number of uncertain parameters is

large because a single experiment does not estimate all the parameters accurately [45]. A paral-

lel design methodology improves the estimates of the parameters and reduces experimental

costs by specifying multiple measurements. The parallel design in [15] uses scenario trees to

specify all optimal measurements necessary to resolve the experimentally distinguishable

dynamics. A hybrid design combines the advantage of the sequential design with the cost effi-

ciency of the parallel design by specifying multiple experiments to perform and iterating with

the results informing the next round of MBDOE. Our MBDOE design uniquely supports this

hybrid design strategy. It uses a measurement scenario tree to determine a user-specified
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number of measurements as opposed to the previous scenario tree approach that indicated all

measurements required to fully resolve the dynamics. Herein, the number of desired measure-

ments controls the depth of the constructed scenario tree. (If a tree is made too deep, we believe

that many of the specified measurements would be sub-optimal since the actual dynamics only

lie within a fraction of the predicted tree.) Thus, if the desired dynamical resolution is not

achieved by one application of our MBDOE algorithm, the design can be repeated while

informed with the new additional experimental data. New experimental data restricts the

acceptable parameter space further to generate a new more relevant optimal experimental

design.

Although our MBDOE algorithm is global, we cannot claim it is globally optimal. The algo-

rithm makes optimal decisions within constraints. To make the problem tractable, we split the

optimization problem into two sequential steps while the first specifies the optimal inputs and

the second finds the associated measurement pairs. It is possible, that a better solution does

exist and our algorithm misses it. Another source that may contribute to a sub-optimal result

would be in the accuracy of the sparse grids. If the interpolants are not sufficiently accurate sur-

rogates for the model responses, the results may be sub-optimal. In addition, we do not pre-

sume to have a good estimate of the number of acceptable parameter values needed to support

the MBDOE since it is a function of the the biological system, the experimental setup, measure-

ment noise, the mathematical model and its uncertainty. Hence, there is no exact formula for

calculating the number of acceptable parameter vectors needed to support our experiment

design algorithm. If the value is too small, the algorithm output would be sub-optimal and

likely not repeatable. However, if repeated runs of our MBDOE algorithm produce similar

results for increasing numbers of NA than it is likely to be sufficiently large. Thus, without put-

ting constraints on the biological system model, NA must be sufficiently large to cover all dis-

tinguishable dynamics so that repeated application of our MBDOE algorithm derives similar

optimal experiment designs.

Overall, the proposed MBDOE strategy successfully extends previous MBDOE capabilities

to design an optimal input with associated measurements that minimizes the uncertainty in

the target system dynamics. The interpolation grid provides a computational efficient way to

search for both parameter fits and optimal input over large uncertain spaces. The use of repre-

sentative parameters, selected to span the dynamical space of the biological model, provides a

means to sample the dynamical space uniformly enhancing the computational tractability of

this approach. Furthermore, the probability weighted scenario tree designs modified from [15]

supports input and multiple optimal measurement pair selection with fewer sampled parame-

ters. Although the enhancement of the discrimination ability of the experiment is somewhat

model dependent, for the examples we have presented herein, we have found that the ability to

specify an optimal input in addition to optimal measurements has enhanced the ability to

bound the expected target system dynamics.

Supporting Information

S1 Text. Additional results to support the efficacy of the MBDOE algorithm to reduce

dynamical uncertainty in model states.

(PDF)
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