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ABSTRACT

Adopting the antifocal anomaly as the basis of a new orbital longitude, we obtain a variation on the true-
longitude method to numerically integrate perturbed Keplerian orbits. Although the new method is applicable to
elliptical orbits only, it achieves a larger stability region and gives significantly smaller integration errors than the
original method when the perturbations are small and the eccentricity is not too large.
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1. INTRODUCTION

Recently we succeeded in significantly reducing the accu-
mulation of round-off errors in the orbital longitude method for
numerically integrating perturbed Keplerian orbits (Fukushima
2004d).1 This is accomplished by taking the modulus of
the angle variables with 2� at each integration step if neces-
sary. The improved method, which we call the true-longitude
method for short, has better cost performance than the standard
method to integrate the motion in rectangular coordinates and
its variations—the methods of manifold correction (Fukushima
2003a, 2003b, 2003c, 2004a, 2004b, 2004c).2 The true-longitude
method is a sort of variable transformation method using a set
of one fast and five slow variables. The fast variable is a true
orbital longitude measured from a longitude origin solely de-
termined by the orbital angular momentum and the initial po-
sition vector. The slow variables are the deviations of five
quantities from their initial values. Here the five quantities
consist of the three rectangular components of the orbital an-
gular momentum and the two independent components of the
Laplace integral vector on the orbital plane.

Numerical experiments showed that the true-longitude
method has better cost performance than our existing methods
of manifold correction (see Paper VII). For Keplerian orbits,
the method produces only minute periodic errors for a usefully
long integration time if a sufficiently high order integrator is
used with a sufficiently small step size. This owes greatly to
the fact that our formulation becomes a one-dimensional
problem for Keplerian orbits, since the five slow variables
remain zero in that case. See Figure 1, showing the integration
errors of the fast variable, which essentially reduces to the true
anomaly for Keplerian orbits. The errors are suppressed at the
level of 10�11 radians for more than a million orbital periods.
(See also Fig. 2, for the periodic nature of the errors.) This is
the case of a moderate eccentricity, e ¼ 0:1. In performing
the integrations, we used the 13th-order implicit Adams
method in PECE mode (predict, evaluate, correct, evaluate)
as the integrator, fixed the step size at 1/64 the orbital period,
and prepared the starting tables with Gragg’s extrapolation
method. In plotting these figures, we measured the errors by
comparing with reference solutions obtained using the same
integrator and the same model parameters but half the step
size. The magnitude of the observed periodic errors reduces to
the level of the machine epsilon if we use a higher order

integrator3 or a smaller step size. When perturbations exist, on
the other hand, the errors first grow in proportion to the square
root of time for a certain amount of time, the length of which
depends on the magnitude of the perturbations (Figs. 8–12
below).

We confirmed that these good properties of the true-longitude
method are independent of various aspects of the integration
of perturbed orbits: the method of integration, the policy
governing step-size control, the kind of perturbation, and the
type of unperturbed orbit—whether elliptical, parabolic, or
hyperbolic. On the other hand, the total cost of integration
in the true-longitude method is almost the same as that of
the standard method. As we learned in Paper VII and stressed
above, these excellent characteristics are mainly due to the
fact that the equations of motion in the true-longitude method
reduce to one dimension when the perturbation vanishes, that
of the true anomaly (see eq. [A22] in Appendix A).

However, this is not a property possessed by the true
anomaly only. In general, there are other angles that can be
used in place of the true anomaly.4 Among them, we note the
antifocal anomaly, the polar angle in a coordinate system that
adopts as its coordinate origin not the primary but the sec-
ondary focus of the orbital ellipse (see Fig. 3 for a geometric
definition and refer to Appendix A for a summary of its basic
properties). Although useless for parabolic orbits, the antifocal
anomaly has a better feature than the true anomaly for mod-
erately eccentric and near-circular orbits. In fact, its expansion
with respect to the mean anomaly begins from the second
power of the eccentricity (see eq. [A23]). In other words, the
antifocal anomaly increases more uniformly with respect to
time than the true and other anomalies such as the eccentric
one. Thus, it is to be expected that its numerical integration
will lead to smaller errors for Keplerian orbits when the ec-
centricity is small. This is true, as can be seen in Figures 1 and
2, where both the results are after application of the round-off
reduction we discovered in Paper VII. Of course, whether this
works for perturbed orbits is a different issue to be investigated.

In this paper, we report that a variation of the true-longitude
method based on the antifocal anomaly performs better than
the original method for elliptical orbits if the perturbations are
small and the nominal eccentricity is not too large. In the

1 Hereafter Paper VII.
2 Hereafter Papers I–VI, respectively.

4 Well-known examples are the eccentric and the mean anomalies. How-
ever, we experienced some technical difficulty in properly extending them to
serve as the orbital longitude.

3 Of course, the order must be low enough to cause no numerical
instabilities.
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following, we describe the modification of the true-longitude
method in x 2 and present a numerical comparison with the
original true-longitude method in x 3.

2. ORBITAL LONGITUDE METHOD USING
ANTIFOCAL ANOMALY

Let us construct the orbital longitude method using the
antifocal anomaly in place of the true anomaly. To do this,
however, we must backtrack to an earlier stage, Paper V,
where we invented a simplification of the linear transforma-
tion method that we developed in Paper IV.

The first simplification of the linear transformation method
given in Paper V uses a set of nine variables per celestial body,
(x, �L, �P). Here x is the position vector referred to the
primary focus, �L is the deviation of the orbital angular
momentum vector from its initial value, and �P is similarly
the deviation of the Laplace integral vector. Appendix B
contains a summary of the simplified method using this set.

Below, we describe the details of the construction in two
stages: (1) the introduction of the antifocal position vector and (2)
its three-step transformation into the antifocal orbital longitude.

2.1. Antifocal Position Vector

By changing the coordinate origin from the primary to the
secondary focus, we introduce various antifocal quantities: (1)
X, the antifocal position vector; (2) V � dX=dt, the antifocal
velocity vector; (3) R � jXj, the antifocal radius; and (4)
N � X=R, the antifocal unit position vector. See Figure 3 for
geometric definitions of X and R.

The basic relation5 between these antifocal quantities and
those referred to the primary focus is

X ¼ xþ S: ð1Þ

Here

S ¼ �P ð2Þ

is the separation vector between the two foci, and

� � 2a

�
¼ 2L2

�2 � P2
ð3Þ

is a parameter related to the semimajor axis a and the gravi-
tational constant � � GM . In the above rewriting,6 L and P

Fig. 1.—Numerical integration errors for the true and the antifocal
anomalies. The absolute errors for a Keplerian orbit with e ¼ 0:1 are plotted
on a log-log scale. The adopted integrator is the 13th-order implicit Adams
method in PECE mode, the step size was fixed as 1/64 the orbital period, the
starting tables were prepared with Gragg’s extrapolation method, and the
errors were measured by comparing with reference solutions obtained using
the same integrator and the same model parameters but with half the step size.
Both results include the round-off reduction by taking the modulus of the
anomaly with 2� at each integration step when necessary.

Fig. 2.—Close-up of the integration errors for the true and antifocal
anomalies, plotted on a linear-linear scale for the first few orbital periods. The
periodic error in the true anomaly � f has a peak at pericenter passage (P)
while that in the antifocal anomaly �F has a peak at apocenter (A). Note that
� f is too small to be visible in this scale until the first pericenter passage.
Although we show the results for the first four periods, we have confirmed that
the same situation continues up to more than 1 million orbital periods.

5 This holds because (1) the Laplace vector is in the direction from the
primary focus to the pericenter and, therefore, is also parallel to the direction
from the secondary to the primary focus, and (2) the distance between the two
foci is 2ae, where a is the semimajor axis and e is the orbital eccentricity.

Fig. 3.—Schematic diagram illustrating the antifocal anomaly and the anti-
focal radius. Shown are the primary focus (F), the secondary focus (A), the
pericenter (P), and a point on the ellipse (Q). Then the antifocal radius R and the
antifocal anomaly F are geometrically defined as R � AQ and F � BQAP.
Similarly, the radius r and the true anomaly f are defined as r � FQ and
f � BQFP. The separation between the two foci is 2ae, where a and e are the
semimajor axis and the eccentricity of the ellipse, respectively. The eccentricity
of the ellipse illustrated here is 0.6. The sum of R and r is constant, Rþ r ¼ 2a.
The antifocal position vector X and the usual position vector x are defined as
X � *

AQ and x � *
FQ, while the focus separation vector S is defined as S � *

AF.

6 The rewriting of � is derived from the condition �P ¼ 2ae, noting the
expressions of L and P in terms of the Keplerian elements as L ¼
½�a(1� e2)�1=2 and P ¼ �e.
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are the magnitudes of the orbital angular momentum vector L
and of the Laplace integral vector P, respectively.

The corresponding relation for the velocity becomes

V ¼ vþ U; ð4Þ

where

U � dS

dt
¼
�
�L =M þ �2P =Q

L2

�
Pþ �Q ð5Þ

is a quantity that vanishes for Keplerian orbits and

M � dL

dt
; Q � dP

dt
: ð6Þ

From Appendix A, we have that the antifocal radius is
expressed in terms of N, L, and P as

R ¼ L2

�� P =N
: ð7Þ

This is similar to equation (A4) in Appendix A, its counterpart
for r, the radius referred to the primary focus. From the de-
fining property of the ellipse, we know that the sum of the two
radii is constant. Then r is obtained from R as

r ¼ �� � R: ð8Þ

Using these two expressions for R and r, as well as equations
(1) and (3), we rewrite7 the expression for the velocity vector
referred to the primary focus, equation (B5) in Appendix B, as

v ¼ RL < (�N � P)

rL2
: ð9Þ

Finally, the equation of motion for X becomes simply

dX

dt
¼ V ¼ vþ U; ð10Þ

where the expressions for vvand U are as given above.
Then we are ready to obtain a variant of the first simplifi-

cation of the linear transformation method provided in Paper
V using the set (X, �L, �P). The resulting method is sum-
marized in Appendix C.

2.2. Antifocal Orbital Longgitude

Once the simplification of the linear transformation method
using the antifocal position vector X is established as in
Appendix C, the remaining tasks to obtain the orbital longi-
tude method using the antifocal anomaly are straightforward,
as we did for the true-longitude method in Papers V and VI.

In particular, the procedure consists of the following three
steps: We first replace the antifocal position vector X by its
unit vector N. The resulting method is a variation of the
simplified linear transformation method using another set of
nine antifocal variables, (N, �L, �P). Second, we introduce

the coordinate triad (eA, eB, eC) referred to the orbital plane
as we did in Paper VI. As a result, we reduce the number
of variables to seven, (NA, NB, �L, �PA, �PB). Finally, we
express NA and NB in terms of the antifocal longitude, w, as

NA ¼ cos w; NB ¼ sin w: ð11Þ

Here w is the same as the antifocal anomaly but is measured
from a longitude origin defined as the direction of eA. The
method finally obtained is the orbital longitude method based
on the antifocal orbital longitude. It uses a new set of six
variables, (w, �L, �PA, �PB).

The core part of the new method is the equation of motion
of the angle w:

dw

dt
¼ �W þ �S þ �F : ð12Þ

Here

�W � L=(rR) ð13Þ

is the angular velocity of the orbital motion around the sec-
ondary focus. This has the same form as in the Keplerian case,
equation (A26) in Appendix A. Next,

�S � (N < U) = eC
R

ð14Þ

is the angular velocity of the rotation associated with the
perturbed motion of the focus separation vector, S. Finally, �F

is the angular velocity of the frame rotation due to perturba-
tion of the orbital angular momentum vector, which was dis-
cussed extensively in Paper VI.

Originally, equation (14) is derived8 from the equation of
motion for N,

dN

dt
¼ 6N <N; ð15Þ

where 6N is defined9 as

6N � N < V

R
: ð16Þ

Using equations (7), (11), and (12), we rewrite the above
definition10 as

6N ¼ L

rR
þ N < U

R
; ð17Þ

8 This form for the equation of motion of a unit vector is of a general nature,
since the identity (dN=dt) =N ¼ 0 always holds. This is derived from the dif-
ferentiation of the normalization condition, N2 ¼ 1.

10 The details of the rewriting for the part in v are as follows:

N < v

R
¼ N

R
<
RL < (�N � P)

rL2
¼ N < ½L < (�N � P)�

rL2

¼ ½N = (�N � P)�L
rL2

¼ (�� P =N)L

rL2
¼ L

rR
;

where we have used the identities N2 ¼ 1 and N =L ¼ 0.

9 This definition is derived from the expression

V ¼ dX

dt
¼ d RN

dt
¼ dR

dt
N þ R

dN

dt
¼ dR

dt
N þ (R6N < N );

by taking the vector products of both sides with N.

7 In detail,

v ¼ L < (�nþ P)

L2
¼ L < (�xþ rP)

rL2
¼ L < ½� (X � S)þ rP�

rL2

¼ L < ½�X � (�� � r)P�
rL2

¼ L < (�RN � RP)

rL2
¼ RL < (�N � P)

rL2
:
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which leads to the final expressions for �W and �S.
11 The

addition of �F is due to the introduction of the coordinate
triad, as explained in Paper VI.

The whole procedure for the new orbital longitude method
is summarized in Appendix D.

3. NUMERICAL EXPERIMENTS

Let us compare the performance of the new orbital longi-
tude method using the antifocal orbital longitude with that of
the original one, using the true orbital longitude.

We begin with the Keplerian orbits. In these cases, the
problem is reduced to one dimension, namely, the integration
of the true anomaly f and that of the antifocal anomaly F.
From Appendix A, their equations of motion are

df

dt
¼ �(1þ e cos f )2;

dF

dt
¼ �

�
1� 2e cos F þ e2 cos2F

1� 2e cos F þ e2

�
; ð18Þ

where � ¼ n=(1� e2)3=2 is a constant of time computed from
the mean motion n and the eccentricity e.

If we integrate these equations with a given integrator, we
face three kinds of error growth with respect to time: (1) the
case showing exponential or faster growth, (2) the case of
linear growth, and (3) the case of no growth, which we saw in
Figure 1 already. Figure 4 shows the integration errors as
functions of time for the antifocal anomaly in the case of
e ¼ 0:1. Here the step size was fixed at 1/64 the orbital pe-
riod, while the order of the implicit Adams method in PECE
mode was varied from 1 to 21. In the figure, use of an ex-
tremely high order such as the 21st leads to the first case,
usually described as numerical instability. The second case
occurs for low orders such as the first and the eighth, which

first show only periodic errors but exhibit linear growth in the
long run. The last case corresponds to a moderately high
order such as the 15th, which produces only the periodic
errors.
By conducting test integrations for vast combinations of the

order and step size while fixing the eccentricity at e ¼ 0:1, we
prepared Figures 5 and 6, showing two-dimensional diagrams
of the manner of error growth with respect to the order and
step size for the antifocal and true anomalies, respectively.
First we observe that the numerical integration of the antifocal
anomaly is much more stable than that of the true anomaly.
Compare the lines indicating the stability limit in the two
graphs, which separate the unstable region and the other two.
The cost of multistep methods such as the Adams method
mainly depends not on the order but on the step size. On the
other hand, their performance greatly depends on the order for
a given step size. Thus the superiority in numerical stability
means higher cost performance. For example, the difference in
the available maximum order amounts to 4 or 5 for typical
step sizes corresponding to the range of 32 to 128 steps per
period. This means that we may expect a gain in precision of

Fig. 4.—Order dependence of the numerical integration errors for the
antifocal anomaly, plotted for different orders of the implicit Adams method.
Here the step size and the eccentricity are fixed at 1/64 the orbital period and
e ¼ 0:1, respectively. If the order is as low as 1 or 8, the errors remain periodic
for some integration period and then grow linearly with respect to time. For
the moderately high order of 15, the errors remain finite. On the other hand,
for the too-high order of 21, the errors grow exponentially.

Fig. 5.—Diagram of order vs. step size for the antifocal anomaly F. The
plane (for the implicit Adams method in PECE mode) separates into three
regions: an unstable region, a region of purely periodic errors, and a region of
linearly growing error over the long run.

Fig. 6.—Same as Fig. 5, but for the true anomaly, f.

11 The derivation is easy, since �W ¼ (rR)�1L = eC , �S ¼ (N <U=R) = eC ,
and eC � L=L.
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around two to six digits.12 On the other hand, the separation
between the regions of linearly growing errors and of periodic
errors is mostly the same (the lines denoted ‘‘characteristic
curve’’ in the graphs).

We assume that the magnitude of the integration errors of
these anomalies is in proportion to that of the nonlinear
components of the angles themselves. From equations (A15)
and (A16) in Appendix A, we can see that the nonlinear
component of the antifocal anomaly is smaller than that of the
true anomaly by a factor of e/8 when the eccentricity is suf-
ficiently small. Then, even under the condition that the same-
order integrator is used with the same step size, we also expect
a gain in precision of the above factor or so by replacing the
true anomaly with the antifocal anomaly. Figure 7 shows the
eccentricity dependence of the integration errors in f and F,
where the integrator and the step size are fixed as the 13th-
order implicit Adams method in PECE mode and 1/64 the
orbital period, respectively. There exists a critical value of
eccentricity, e ¼ 0:10 in this case. The integration errors for
the orbits with eccentricity equal to or less than this critical
value remain periodic for a usefully long integration time.
Otherwise, the errors seem to be periodic for some initial
duration, say, 1000 orbital periods or so, and then increase
linearly with respect to time. The above expectation roughly
holds in the regime of periodic errors where the order of the
integrator used is sufficiently high and the adopted step size is
sufficiently small.

Let us move on to the perturbed cases. Figure 8 shows the
case of a weak perturbation, that of a post-Newtonian effect of
relative magnitude 10�8. This is the same order of magnitude
as Earth feels from the general relativistic effect of the Sun. In
this case, the orders of the integrator were set to the highest
among those that led to no numerical instabilities. This is to
examine the maximum cost performance, that is, to explore
the highest precision for the same computational time. The
resulting orders are 15 for the true-longitude method and 20
for the antifocal one. Imagine a cross section of Figures 5 and
6 along the lines of 64 steps per period. This large difference
in the maximum available order of the integrator results a
large difference in the integration errors, as well as in the

manner of error growth. Therefore, the antifocal longitude
method is much superior to the true-longitude method in the
case of weak perturbations.

Unfortunately, the superiority of the antifocal longitude
method diminishes when the perturbations become larger.
Figure 9 shows such an example, the case of an artificial
satellite under the J2 perturbation of Earth. This time the
semimajor axis of the orbit was taken to be as small as Earth’s
radius. This is an extreme case for a J2-type perturbation.
The maximum available orders are 15 for the true-longitude
method and 17 for the antifocal one. In this case, the errors of
the antifocal longitude method are significantly smaller than
those of the true-longitude method for the first few thousand
periods. However, this situation is reversed in the long run.

12 In reality, however, the gain in precision is a few digits in most cases.

Fig. 7.—Eccentricity dependence of integration errors for the true and the
antifocal anomalies. The diagram compares the errors in Keplerian orbits of
different eccentricities after integration for 1 million orbital periods.

Fig. 8.—Effect of weak perturbations on the two orbital longitude methods.
Compared are the errors for a planet under post-Newtonian perturbations of
relative magnitude 10�8, roughly the same as the Sun’s perturbation acting on
Earth. The orbit is of moderate nominal eccentricity and inclination, e ¼ 0:1
and I ¼ 23

�
, respectively. The step size is 1/64 the nominal orbital period and

the integrator is the implicit Adams method in PECE mode. The order of the
integrator was chosen to be the highest that remained stable: 15 for the
method using the true orbital longitude and 20 for that using the antifocal
longitude.

Fig. 9.—Same as Fig. 8, but for moderate perturbations. Shown are the
errors for an Earth-grazing orbit of an artificial satellite under J2 perturbation.
The (highest stable) orders of the integrators are 15 for the method using the
true orbital longitude and 17 for that using the antifocal longitude. The errors
of the new method are smaller for the first few thousand periods, and then the
situation reverses.
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In cases of strong perturbation, the inferiority of the
antifocal longitude method is clear. See Figure 10, which
illustrates the position errors of the Moon in the restricted
three-body problem of the Sun, Earth, and the Moon, the so-
called main problem of lunar theory. This time the maximum
available orders are 15 for the true-longitude method and 14
for the antifocal method. Examining the variations of four
angular velocities, �W, �S, �C � L=r2, and �F, we learn that
�S oscillates so strongly13 in this case that the integration
of the antifocal orbital longitude is less stable than that of
true orbital longitude. This difference in stability results in
the observed difference in the magnitude of the integration
errors.

Figure 11 depicts a comparison of integration errors in a
complicated problem, the errors of Mercury in a simulta-
neous integration of the Sun and nine major planets. This is
a case of moderate perturbations, as the J2 perturbation.
This time the maximum available orders are 15 for the true-
longitude method and 18 for the antifocal one. At the
outset, the superiority of the antifocal longitude method is
obvious. However, the true-longitude method wins in the
end.

Finally, let us examine the behavior of the new method in
the region where round-off errors play the key role. Figure 12
shows a curve similar to that in Figure 11 but for the new
method, fixing the step size at 0.70 days and using the 13th-
order implicit Adams method in PECE mode. Comparing this
with the similar graph for the true-longitude method, Figure 9
of Paper VII, we can see that the new method gives almost the
same performance in the cases where round-off errors are
dominant. Namely, the integration errors first grow in pro-
portion to the square root of time for some period, 1000 years
or so in this case, and then increase rapidly.

4. CONCLUSION

Replacing the orbital longitude based on the true anomaly
with one based on the antifocal anomaly, we have modified
the improved orbital longitude method from Paper VII. The
new method inherits all the good properties of the original
method. However, the new method is no more universal;
that is, it is applicable to elliptical orbits only. At the price of
this demerit, the new method has better cost performance,
namely, achieving higher precision results for the same com-
putational time, than the original method in two cases: (1)
when the perturbing acceleration is relatively small, and (2)
when the strength of the perturbing acceleration is moderate
and the integration time is short enough that the perturbations
do not grow too much. In such cases, we recommend use
of the new method for integrating perturbed Keplerian orbits
numerically.

13 It is well known that the eccentricity vector of the Moon liberates in such
a wild fashion.

Fig. 10.—Same as Fig. 8, but for strong perturbations. Shown are the errors
in the position of the Moon in the restricted three-body problem of the Sun,
Earth, and the Moon, the so-called main problem of lunar theory. The step
size is 1/64 the sidereal month. The (highest stable) orders of the integrators
are 15 for the method using the true orbital longitude and 14 for that using
the antifocal longitude. This time, the perturbation on the vector separating
the foci is so strong that the new method is of lower stability than the
original orbital longitude method, as reflected in the observed difference in
performance.

Fig. 11.—Effect of compound perturbations on the two orbital longitude
methods. Shown are the errors of Mercury in a simultaneous integration of the
Sun and nine major planets. The step size is 1.96 days, 1/64 the nominal
orbital period of Mercury. The orders of the integrators are again the highest
stable, 15 for the method using the true orbital longitude and 18 for that using
the antifocal longitude.

Fig. 12.—Same as Fig. 11, but for a step size of 0.70 days, 1/180 the
nominal orbital period of Mercury. Combined with the adopted 13th-order
integrator the step size is so small that round-off errors play the key role in the
growth of overall integration error. We omit the graph for the true-longitude
method, which is shown in Fig. 8 of Paper VII, since it is almost the same as
that for the new method illustrated here.
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APPENDIX A

ANTIFOCAL ANOMALY

Here we summarize the properties of the antifocal anomaly,
F. In particular, the main target is the derivation of its equation
of motion, used in the main text.

First of all, let us introduce a radius associated with the
antifocal anomaly. We name it the antifocal radius. The pair of
the antifocal radius R and the antifocal anomaly F are the
polar coordinates of a point Q on an elliptical orbit in a co-
ordinate system in which the coordinate origin is not the
primary focus F but the secondary one, A, and the longitude
origin is the pericenter, P, as usual (see Fig. 3). Then this polar
angle F can be said to be an anomaly since it takes the value 0
at the pericenter and � at the apocenter. Let us denote the
two-dimensional rectangular coordinates associated with the
antifocal polar coordinates as (X, Y ).

From the above definition, the rectangular coordinates of Q
referred to the primary focus, (x, y), can be expressed in four
ways: in terms of (1) the (true) radius r and the true anomaly f,
(2) the semimajor axis a and the eccentric anomaly E, (3) the
antifocal radius R and the antifocal anomaly F, and (4) the
antifocal rectangular coordinates X and Y, respectively, as

x ¼ r cos f ¼ a(cos E � e) ¼ R cos F � 2ae ¼ X � 2ae;

ðA1Þ
y ¼ r sin f ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sin E ¼ R sin F ¼ Y ; ðA2Þ

where e is the orbital eccentricity. From these, it is easily
shown that R has an expression

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2

p
¼ a(1þ e cos E ) ¼ a(1� e2)

1� e cos F
; ðA3Þ

which is similar to that for r,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ a(1� e cos E ) ¼ a(1� e2)

1þ e cos f
: ðA4Þ

As a by-product, we prove the important property that the sum
of R and r is constant,14

Rþ r ¼ 2a: ðA5Þ

As a consequence, we obtain an expression for r in terms
of F as

r ¼ a(1� 2e cos F þ e2)

1� e cos F
; ðA6Þ

as well as its counterpart,

R ¼ a(1þ 2e cos f þ e2)

1þ e cos f
: ðA7Þ

Another by-product is the anomaly-anomaly relation

(1þe cos E )(1�e cos F )¼ (1�e cos E )(1þ e cos f ) ¼1�e2:

ðA8Þ

Using the tangent half-angle formulae, we obtain its more
popular variation as

ffiffiffiffiffiffiffiffiffiffiffi
1þ e

1� e

r
tan

�
F

2

�
¼ tan

�
E

2

�
¼

ffiffiffiffiffiffiffiffiffiffiffi
1� e

1þ e

r
tan

�
f

2

�
: ðA9Þ

Unfortunately, these expressions are indefinite at the apo-
center and, therefore, are insuficient from a practical point of
view. Thus, we rewrite them in an effective form as

f ¼ F þ 2 tan�1

�
e sin F

1� e cos F

�

¼ E þ 2 tan�1

�
e� sin E

(1� e)(1� e� cos E )

�
; ðA10Þ

F ¼ f � 2 tan�1

�
e sin f

1þ e cos f

�

¼ E � 2 tan�1

�
e� sin E

(1þ e)(1þ e� cos E )

�
; ðA11Þ

E ¼ F þ 2 tan�1

�
e� sin F

(1� e)(1� e� cos F )

�

¼ f � 2 tan�1

�
e� sin f

(1þ e)(1þ e� cos f )

�
; ðA12Þ

where

e� � 2e

(
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ e

p
)2

� e

2
þ O(e3): ðA13Þ

These are useful in obtaining f or F as a function of time or
of the mean anomaly, M. This is done by way of E, which is
determined by solving the Kepler equation

E � e sin E ¼ M : ðA14Þ

As a result, we obtain their expansions in M as follows:

f � M þ 2e sinM þ 5e2

4
sin 2M þ O(e3); ðA15Þ

F � M þ e2

4
sin 2M þ O(e3): ðA16Þ

Thus the magnitudes of the nonlinear parts15 of f and F are
different roughly by a factor of e/8 when e is small.

Next, by differentiating the expressions for the rectangular
coordinates with respect to time, we obtain the velocity com-
ponents as

dx

dt
¼ dr

dt
cos f � r sin f

�
df

dt

�
¼ �a sin E

�
dE

dt

�

¼ dR

dt
cos F � R sin F

�
dF

dt

�
¼ dX

dt
; ðA17Þ

15 That of f is known as the equation of center.

14 Rather, an ellipse is geometrically defined as the loci of a point satisfying
this property.
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dy

dt
¼ dr

dt
sin f þ r cos f

�
df

dt

�
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
cos E

�
dE

dt

�

¼ dR

dt
sin F þ R cos F

�
dF

dt

�
¼ dY

dt
; ðA18Þ

where we used the facts that a and e are constants of time.
From these, we obtain the time derivatives of f and F in terms
of that of E as

r2
df

dt
¼ x

dy

dt
� y

dx

dt
¼ a2

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p
(1�e cos E )

dE

dt
; ðA19Þ

R2 dF

dt
¼ X

dY

dt
� Y

dX

dt
¼ a2

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p
(1þ e cos E )

dE

dt
: ðA20Þ

We note that up to this point, all the expressions referred to the
primary and secondary foci have been reciprocal, in the sense
that the former transform into the latter by exchanging the
combination (r, f, e) with (R, F, �e). This is simply a conse-
quence of the symmetry of the ellipse (see Fig. 3 again).

It is well known that the time derivative of E is obtained by
differentiating the Kepler equation as

dE

dt
¼ n

1� e cos E
; ðA21Þ

where n � dM=dt is the mean motion. Thus the equations of
motion for f and F can be expressed as

df

dt
¼ na2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

r2
¼ � (1þ e cos f )2; ðA22Þ

dF

dt
¼
�
na2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

R2

��
1þ e cos E

1� e cos E

�

¼ �

�
1� 2e cos F þ e2 cos2F

1� 2e cos F þ e2

�
; ðA23Þ

where

� � n

(
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
)3
: ðA24Þ

By means of the radius expressions and the magnitude of the
orbital angular momentum,

L � na2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
; ðA25Þ

these are simply rewritten as

df

dt
¼ L

r2
;

dF

dt
¼ L

rR
; ðA26Þ

the first of which is nothing but Kepler’s second law of plane-
tary motion.

APPENDIX B

SIMPLIFIED LINEAR TRANSFORMATION METHOD
USING POSITION VECTOR

Let us summarize the first simplification of the linear
transformation method provided in Paper V, that using the set
of nine variables (x, �L, �P).

Consider the perturbed two-body problem. Usually we
adopt the pair of the relative position vector and the relative

velocity vector referred to the heavier body, (x, vv), as the basic
set of variables to be integrated. Their equations of motion are

dx

dt
¼ v;

dv

dt
¼ �

�
�

r3

�
xþ a: ðB1Þ

Here � � GM is the gravitational constant of the two-body
problem, r � jxj is the mutual distance between the two bod-
ies, and a is the perturbing acceleration in the relative sense,
which is expressed as a function of x, vv, and the time t in gen-
eral as

a ¼ a(x; v; t): ðB2Þ

The conversion to the new set of variables from the ordi-
nary set is as follows:

�L ¼ L� L0; �P ¼ P� P0; ðB3Þ

where

L ¼ x < v; P ¼ v < L� �n; n ¼ x=r; ðB4Þ

and the quantities with the subscript zero are their initial
values.
On the other hand, the reverse transformation is

v ¼ L< (�nþ P)

L2
; ðB5Þ

where n, L, and P are obtained as

n ¼ x=r; L ¼ L0 þ�L; P ¼ P0 þ�P: ðB6Þ

The equations for the time development of the new variables
are

dx

dt
¼ v;

d�L

dt
¼ M;

d�P

dt
¼ Q; ðB7Þ

where

M ¼ x < a; Q ¼ a < Lþ v < M; ðB8Þ

and the velocity vv, the orbital angular momentum L, and the
perturbing acceleration a are evaluated from equations (B5),
(B6), and (B2), respectively.
At each integration step, we modify the integrated position

vector so as to satisfy the orthogonality relation with the an-
gular momentum vector,

x =L ¼ 0; ðB9Þ

and the radius vector expression16

r ¼ L2

�þ P =n
: ðB10Þ

This is done by means of two procedures. The first is an
orthogonalization

x0 ¼ x�
�
L = x

L2

�
L; ðB11Þ

16 This is essentially the same as eq. (A4).
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where the primed position is an intermediate quantity. The sec-
ond is a scaling of the intermediate position,

x� ¼
�

L2

�r 0 þ P =x0

�
x0; ðB12Þ

where r 0 � jx0j and the position with an asterisk is the final
position, to be used in the next step of the integration.

APPENDIX C

SIMPLIFIED LINEAR TRANSFORMATION METHOD
USING ANTIFOCAL POSITION VECTOR

We next summarize a variation on the first simplification of
the linear transformation method provided in Paper V that
replaces the variable set with (X, �L, �P). The conversion to
the new set of variables from the ordinary set (x, vv) is

X ¼ xþ S; �L ¼ L� L0; �P ¼ P� P0; ðC1Þ

where the quantities needed are evaluated as follows:

L ¼ x < v; n ¼ x=r; P ¼ v < L� �n; L2 ¼ L =L;

P2 ¼ P =P; � ¼ 2L2

�2 � P2
; S ¼ �P: ðC2Þ

The quantities with the subscript zero are initial values.
On the other hand, the reverse transformation is

x ¼ X � S; v ¼ RL < (�N � P)

rL2
; ðC3Þ

where the quantities needed are evaluated as

L ¼ L0 þ�L; P ¼ P0 þ�P; L2 ¼ L =L;

P2 ¼ P =P; � ¼ 2L2

�2 � P2
; S ¼ �P; R2 ¼ X =X;

R ¼
ffiffiffiffiffi
R2

p
; r ¼ �� � R; N ¼ X=R: ðC4Þ

The time development of the new variables is described by

dX

dt
¼ vþ U;

d�L

dt
¼ M;

d�P

dt
¼ Q; ðC5Þ

where

M ¼ x < a; Q ¼ a < Lþ v < M; U ¼ �Pþ �Q;

� � d�

dt
¼ 2� (L =M)þ �2(P =Q)

L2
; ðC6Þ

and the quantities x, vv, L, P, and � are obtained during the
reverse transformation.

At each integration step, we modify the integrated antifocal
position vector so as to satisfy the orthogonality relation17

with the angular momentum vector,

X =L ¼ 0; ðC7Þ

and the condition

R ¼ L2

�� P =N
; ðC8Þ

which is essentially the same as equation (A3). This is
again done by means of two procedures. The first is the
orthogonalization

X 0 ¼ X �
�
L =X

L2

�
L; ðC9Þ

where the primed position is an intermediate quantity. The
second is a scaling of the intermediate position,

X� ¼
�

L2

�R0 � P =X 0

�
X 0; ðC10Þ

where R0 � jX 0j and the position with an asterisk is the final
position to be used in the next step of integration.

APPENDIX D

ANTIFOCAL ORBITAL LONGITUDE METHOD

Finally, we summarize the variation of the true-longitude
method presented in Paper VI that replaces the true orbital
longitude with the antifocal one, w. The resulting new method
uses the set of variables (w, �L, �PA, �PB).

The conversion to the new set of variables from the ordi-
nary set (x, vv) is

w ¼ tan�1(NB=NA); �L ¼ L� L0;

�PA ¼ PA � (PA)0; �PB ¼ PB � (PB)0; ðD1Þ

where the quantities with subscript zero are initial values. The
quantities needed here are evaluated as follows:

r2 ¼ x = x; r ¼
ffiffiffiffi
r2

p
; n ¼ x=r; L ¼ x< v;

P ¼ v<L� �n; L2 ¼ L =L; P2 ¼ P =P;

� ¼ 2L2

�2 � P2
; S ¼ �P; X ¼ xþ S; R2 ¼ X =X;

R ¼
ffiffiffiffiffi
R2

p
; N ¼ X=R; L ¼

ffiffiffiffiffi
L2

p
; eC ¼ L=L;

A ¼ B0 <L; A2 ¼ A =A; A ¼
ffiffiffiffiffi
A2

p
; eA ¼ A=A;

eB ¼ eC < eA; NA ¼ N = eA; NB ¼ N = eB;

PA ¼ P = eA; PB ¼ P = eB: ðD2Þ

Here

B0 � L0 < x0 ðD3Þ

must be computed in advance. Note that the condition jwj < �
holds.

On the other hand, the reverse transformation is

x ¼ xAeA þ xBeB; v ¼ vAeA þ vBeB; ðD4Þ
17 This is valid because another orthogonality relation, L =P ¼ 0, holds even

under perturbations.
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where the quantities needed are evaluated as

NA ¼ cos w; NB ¼ sin w; PA ¼ (PA)0 þ�PA;

PB ¼ (PB)0 þ�PB; L2 ¼ L =L; P2 ¼ (PA)
2 þ (PB)

2;

R ¼ L2

�� (PANA þ PBNB)
; � ¼ 2L2

�2 � P2
;

r ¼ �� � R; L ¼
ffiffiffiffiffi
L2

p
; � ¼ R=(rL);

xA ¼ RNA � �PA; xB ¼ RNB � �PB;

vA ¼ �(� �NB þ PB); vB ¼ �(�NA � PA):

ðD5Þ

In evaluating NA and NB in the above, we recommend use
of our fast procedure given in Paper VI to evaluate the
sine and cosine functions simultaneously. The expressions
for x, vv, and P in terms of A- and B-components auto-
matically satisfy the conditions of orthogonality with the
orbital angular momentum, x =L ¼ v =L ¼ P =L ¼ 0, which
significantly contributes to the reduction of integration
errors.

The equations for the time development of the new varia-
bles are

dw

dt
¼ �W þ �S þ �F ;

d�L

dt
¼ M;

d�PA

dt
¼ QA � �FPB;

d�PB

dt
¼ QB þ �FPA: ðD6Þ

The quantities needed in the above are evaluated as follows:

M ¼ x< a; �W ¼ L

rR
; �F ¼ (B0 < eB) =M

A
;

Q ¼ a < Lþ v<M; QA ¼ Q = eA; QB ¼ Q = eB;

� ¼ 2� (L =M )þ �2(PAQA þ PBQB)

L2
;

UA ¼ �PA þ �QA; UB ¼ �PB þ �QB;

�S ¼
NAUB � NBUA

R
; ðD7Þ

where the quantities not explicitly written here are evaluated
in the process of the reverse transformation, equation (D5).
At each integration step, we perform the domain reduction

of w as

if (w > �) {w �= 2�;} else if (w < ��) {w += 2�;} ;

Then the condition jwj < � is always satisfied throughout the
integration.
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