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ABSTRACT:

Aerial multi-camera platforms typically incorporate a nadir-looking camera accompanied by further cameras that provide oblique views,
potentially resulting in utmost coverage, redundancy, and accuracy even on vertical surfaces. However, issues have remained unresolved
with the orientation and calibration of the resulting imagery, to two of which we present feasible solutions. First, as standard feature
point descriptors used for the automated matching of homologous points are only invariant to the geometric variations of translation,
rotation, and scale, they are not invariant to general changes in perspective. While the deviations from local 2D-similarity transforms
may be negligible for corresponding surface patches in vertical views of flat land, they become evident at vertical surfaces, and in
oblique views in general. Usage of such similarity-invariant descriptors thus limits the amount of tie points that stabilize the orientation
and calibration of oblique views and cameras. To alleviate this problem, we present the positive impact on image connectivity of using
a quasi affine-invariant descriptor. Second, no matter which hard- and software are used, at some point, the number of unknowns of
a bundle block may be too large to be handled. With multi-camera platforms, these limits are reached even sooner. Adjustment of
sub-blocks is sub-optimal, as it complicates data management, and hinders self-calibration. Simply discarding unreliable tie points of
low manifold is not an option either, because these points are needed at the block borders and in poorly textured areas. As a remedy,
we present a straight-forward method how to considerably reduce the number of tie points and hence unknowns before bundle block
adjustment, while preserving orientation and calibration quality.

1. INTRODUCTION

While the first aerial photographs in history were oblique, usage
of such images has long been limited mostly to visualizations and
to object identification in the scope of reconnaissance. However,
the combination on a common platform of a nadir-looking cam-
era and further cameras that provide oblique views of the ground
is potentially beneficiary for geometric reconstruction, because
the imagery provides utmost coverage, redundancy, and large in-
tersection angles even on otherwise self-occluding surfaces, as
found in e.g. highly urbanized and/or vegetated areas.

Given the recent progress in sensor technology, computing hard-
ware, and processing automation, usage of aerial multi-camera
platforms has become feasible, and they have become commer-
cially available, especially targeting the application of city mod-
elling. Most of these systems incorporate a nadir-looking camera
and four oblique cameras heading in the four cardinal directions.
If their footprints overlap with the one of the nadir camera, then
the combined footprint resembles the shape of a Maltese cross,
which has given those systems their name.

(Rupnik et al., 2015) show the importance of flight planning for
ensuring proper coverage with oblique camera systems of urban
canyons, and they demonstrate both with simulations and evalu-
ations of real data that the increased redundancy and the larger
intersection angles improve the triangulation precision at the ob-
ject, especially in the vertical direction.

They use point correspondences only between images of the nadir
camera, between oblique images heading in the same direction,
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and between images of the nadir and an oblique camera, argu-
ing that automatically found putative correspondences between
oblique images heading in largely different directions are too prone
to be outliers due to respectively large perspective distortions, dif-
ferences in image scale, and occlusions. While the decrease in
image similarity surely results in a larger ratio of outliers, the
question arises whether the categorical rejection of correspon-
dences between oblique images of different headings is too con-
servative, and thus a considerable amount of them could be used
to stabilize the orientation and calibration of the oblique images
and cameras. This is particularly important if constant relative
orientations of the cameras on the platform are absent e.g. due
to a weak mechanical coupling of cameras or a missing synchro-
nization of exposures, as repeatedly witnessed by the authors.

Also, (Rupnik et al., 2015) simulate for exemplary cameras the
impact of oblique camera tilt and flying overlap on triangulation
precision, in order to help with finding a trade-off between costs
and data quality. While an increase in overlap beyond 80%/60%
per camera does not further improve triangulation precision dra-
matically, for city modelling, the overlap may need to be even
larger to ensure utmost coverage in complex urban scenes. This
means that with oblique multi-camera systems, the number of im-
ages to be oriented for a given project area is increased even fur-
ther, and this raises the question of how to cope with respectively
large bundle block adjustments.

While more questions with the processing of oblique aerial im-
ages have remained unresolved, this work focusses on the two
issues outlined above, which are introduced more thoroughly in
the following subsections 1.1 and 1.2.
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1.1 Feature Matching Facing Large Perspective Distortion

SIFT (Lowe, 2004) is probably the most well known feature de-
tector and descriptor today. As it searches for local extrema in im-
age scale space, it detects stable points that can thus be found re-
peatedly under different viewing conditions. By describing their
local neighbourhood on that scale and with respect to the lo-
cally dominant direction of image gradients, their descriptors are
invariant to the geometric transformations of translation, rota-
tion, and scale i.e. to a similarity transformation. Thresholding
and normalization of the histograms of neighbouring gradients
serving as descriptors additionally makes them invariant to lin-
ear transformations of image brightness. As all descriptors have
the same size and a meaningful Euclidean distance can be de-
fined on them, they can be matched efficiently (Muja and Lowe,
2009). While SIFT has proven to work well with a great variety
of imagery, the descriptors are not invariant to general changes
in perspective and hence, SIFT fails to describe similarly enough
corresponding points viewed under largely different perspectives.

In a local neighborhood, even large perspective distortions can be
modelled sufficiently by affine transforms, and hence projective-
invariant local descriptors would generally be over-parameterized.
Thus, research beyond similarity-invariance has concentrated on
affine-invariance.

Affine-invariant feature point detectors iteratively adjust their lo-
cation, scale, and shape to their local neighbourhood, which may
fail, however (Mikolajczyk and Schmid, 2004). Among the affine-
invariant region detectors, Maximally Stable Extremal Regions
(MSER) (Matas et al., 2002) has proven to be robust. However,
its precision is limited, and it depends on extended, planar regions
being present on the object.

As an alternative to intrinsically affine-invariant feature point de-
tectors, approaches have been proposed that help standard sim-
ilarity-invariant feature point detectors to cope with large per-
spective distortions. These approaches try to free the imagery be-
forehand from distortions that cannot be modelled with similarity
transforms, passing respectively warped images on to the detec-
tor. If image orientations are approximately known and a coarse
object model is available, then the parameters for image warp-
ing can be derived directly (see e.g. (Yang et al., 2010)). If that
information is missing, then the 2-parameter subspace of affine
parameters that similarity-invariant feature detectors are not in-
variant to may be sampled, as suggested by (Morel and Yu, 2009)
for SIFT, termed Affine-SIFT (ASIFT).

Among other feature detectors, (Apollonio et al., 2014) evaluate
SIFT (Lowe, 2004) and ASIFT (Morel and Yu, 2009) for ter-
restrial imagery. While they do not find a clear overall winner,
we have found ASIFT to work notably well with archaeologial
oblique aerial images (Verhoeven et al., 2013).

1.2 Handling Large Bundle Blocks

Once the global rotations are known in a camera network, the
camera translations can be derived directly. Thus, methods have
been sought after to globally average pairwise camera rotations in
a robust way (Hartley et al., 2011, Chatterjee and Govindu, 2013).
These methods rely on image features only for the robust compu-
tation of relative image orientations. Introducing the respective
pairwise camera rotations as observations, and using the rotation
of one camera as datum, the global rotations of all other cam-
eras are adjusted in a first step, without introducing further un-
knowns. Subsequently, respective global camera translations are
computed, again keeping the translation of one camera fixed, and

without the introduction of any unknowns expect for the transla-
tion vectors. While these methods thus broadly increase the max-
imum number of images that can be oriented at once and they can
provide feasible initial values, global least-squares bundle block
adjustment remains the method of choice for the estimation of
optimal orientation parameters, self-calibration, and incorpora-
tion of additional observation types.

Various widely used methods exist that allow for the adjustment
of large bundle blocks on finite computing resources. Usage of
sparse matrices and the Schur-complement help to lower mem-
ory requirements and to speed-up each iteration by splitting the
equation system into smaller ones, making use of the structure of
the normal equations (Agarwal et al., 2010). Additionally, spe-
cialized factorization methods may be used that save memory and
work in parallel, e.g. (Chen et al., 2008). Usage of higher-order
derivatives reduces the number of needed iterations, and iterative
linear solvers further lower the memory requirements, at the cost
of introducing a nested loop (Triggs et al., 1999).

However, no matter which hard- and software are used, at some
point, a bundle block may comprise too many unknowns to be
handled either feasibly or at all. With multi-camera platforms,
these limits are reached even sooner. Adjustment of sub-blocks
is sub-optimal, as it complicates data management, hinders cam-
era calibration, and makes it difficult to estimate globally optimal
parameters. No matter which feature point descriptors are in use,
the vast majority of tie points will be matched in only 2 views, and
these are hence of little reliability. Simply discarding tie points of
low manifold randomly is not an option, however, because these
points are needed at the block borders and in poorly textured ar-
eas. This calls for a method to reduce the number of tie points
and hence of unknowns to a large extent, while preserving image
orientation and camera calibration quality.

2. METHODS

2.1 Matching Across Oblique Views

We use the quasi-affine-invariant adaptation of SIFT introduced
as ASIFT by (Morel and Yu, 2009). Instead of being an intrinsi-
cally affine-invariant descriptor, ASIFT feeds the classical SIFT
algorithm with affinely warped images. These warped images
simulate camera rotations out of the original image plane that
hence cannot be modelled with a similarity transform. (Morel
and Yu, 2009) suggest to sample this 2-parameter space at 7 po-
lar angles from the original optical axis and at an increasing num-
ber of equally spaced azimuth angles along a half-circle, starting
at 1 (identity) for the zero-polar angle, and ending at 20 for the
maximum tilt.

2.2 Decimation of Tie Points

Our goal is to reduce the number of unknowns of a bundle block
as much as possible, without compromising image orientation
and camera calibration quality notably. Naturally, this calls for
a reduction of the number of tie points, especially those that are
observed in few images only (low manifold), as they contribute
little redundancy.

The most simple approach, which overlays the project area with
a regular grid and discards all tie points but the ones with highest
manifold in each cell, does not work for oblique aerial imagery,
because most of those tie points are matched in vertical images
only. Thus, oblique images would be left with too few image
points and thus be rendered non-orientable.
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# Input:
# tiePoints: List of tie points , each consisting
# of an ID and according image points.
# nImages: Count of images.
# nRows , nCols: Decimation grid resolution.
# minCount: Minimum tie point count per grid cell.
# gridIndex: Get grid index for image position.
# Output:
# List of tie point IDs to preserve.

# Initialize the result list.
tiePointsToKeep = list()

# For each image , zero -initialize a grid
# of tie point counts of the wanted resolution.
counts = list()
for imageId in range(nImages):

counts.append( zeros((nRows ,nCols)) )

# Sort tiePoints in descending order of manifold
tiePoints.sort(key=lambda x:len(x[1]),reverse=True)

# Iterate over them , in sorted order.
for tiePointId , imagePoints in tiePoints:

keep = False

# Iterate over image points of this tie point.
for imagePoint in imagePoints:

# Get imagePoint ’s position
# in the decimation grid.
row , col = gridIndex(imagePoint.position)
count = counts[imagePoint.imageId]
if count[row ,col] < minCount:

# Keep this tie point.
keep = True
break

if not keep:
# Discard this tie point , proceed with next.
continue

tiePointsToKeep.append(tiePointId)

# Increment the respective count in each image
# this tie point has been found.
for imagePoint in imagePoints:

row , col = gridIndex(imagePoint.position)
count = counts[imagePoint.imageId]
count[row ,col] += 1

Listing 1: Decimation of tie points in image space in Python-
syntax. The definition of the function that computes the grid
index associated with an image point position has been omitted.

Extending the approach such that for each camera separately, the
tie points with highest manifold in each cell of a grid laid over the
project area are kept, leads to a mediocre reduction of the number
of tie points, and it may result in unfavourable distributions of
image points.

Unlike the aforementioned approaches, the method that we sug-
gest to use for the decimation of tie points works in image space
instead of object space. Each image is overlaid with a regular grid
and a counter for each grid cell. The algorithm then iterates over
the tie points sorted by their manifold in descending order. For
each tie point, it checks for all of its image points, if the counters
for the respective grid cell they fall into is below the minimum
number of wanted tie points. If this is not the case for any of its
image points, then this tie point will be omitted from bundle ad-
justment. Otherwise, the counters of all cells associated with its
image points are incremented. The tie point gets scheduled for
introduction into the bundle adjustment, and the algorithm pro-
ceeds with the next tie point.

Apart from the data, the proposed algorithm requires as input the
resolution of the image grid overlay and the minimum number
of wanted points per grid cell. Both of these parameters steer the
amount of tie point decimation. If no outliers are to be expected in
the input data, then the target number of tie points per cell should

be set to 1, which results in most homogeneous distributions of
points throughout the image areas.

Listing 1 shows the proposed algorithm in Python code. As can
be seen, it is straight-forward, with an outer loop over the sorted
list of tie points, and less than two full inner loops over each
of their image points. Note that the outer and inner loops may
as well be swapped, if that is favourable according to the data
structures.

3. EVALUATION

Methods have been implemented in OrientAL (Karel et al., 2013,
Karel et al., 2014).

3.1 Similarity- vs. Affine-Invariant Features

For this evaluation, we use scenario “A” of the ISPRS / EuroSDR
image orientation benchmark dataset (Nex et al., 2015). From the
original imagery, only every other strip has been made available,
resulting in 300 images with 60%/60% overlap, all captured in the
same flight direction. In addition to the imagery, ground control
points at opposite sides of the project area have been published,
together with check points with undisclosed object coordinates.
Image coordinates of both ground control and check points are
provided besides approximate camera interior and exterior orien-
tations.

We compare bundle block adjustment results based on the stan-
dard SIFT feature point descriptor on the one hand and on its
quasi affine-invariant adaptation ASIFT on the other hand. Dur-
ing the feature detection stage, the 40k strongest of all detected
features are retained per image by both detectors. As we use
the parameters suggested by the authors, ASIFT passes for each
aerial image 61 warped images on to SIFT, which means that in
each warped image, only a fraction of 40k features is retained.

The respective descriptors are then matched with the typical con-
straint on mutual nearest neighbors and a threshold on the ra-
tio between the descriptor distances to the nearest and second-
nearest neighbours. Based on these initial matches, relative ori-
entations of the image pairs are then computed using RANSAC.
Matches that contradict the epipolar constraints are dropped, as
are matches that appear to be projected multiply in the same im-
age. The chains / connected components of the remaining fil-
tered matches form the initial tie points. Using these tie points,
a robust incremental reconstruction with alternating spatial re-
sections and forward intersections is executed, during which tie
points that contradict the structure are dropped, leaving only the
final tie points at the end of reconstruction.

Table 1 compares the numbers of matches and tie points for the
two investigated feature detectors at the mentioned stages of the
reconstruction pipeline. Most notably, there are 1.5 times more
initial SIFT feature matches that have passed the mutual descrip-
tor distance checks. However, only 2.5% of them pass the epipo-
lar filtering stage, while 14.1% do so for the ASIFT matches,
resulting in almost 4 times more filtered ASIFT matches. Merg-
ing the chains of matches results in 3.4 times more initial ASIFT
image points, but only 3.1 times more initial object points, as
the average manifold of ASIFT tie points is 2.29, while the one
for SIFT tie points is only 2.11. The fraction of image and ob-
ject points dropped during reconstruction is slightly lower for the
ASIFT points by 2 percentage points. Thus, their higher mani-
fold is maintained until the end of reconstruction. Finally, table 1
also lists σ0, which turns out to be slightly larger for the ASIFT
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#pairwise matches #image points #object points σ0

init filtered init final init final
SIFT 9510k 237k 2.5% 441k 385k 87% 209k 183k 87% 0.913
ASIFT 6575k 927k 14.1% 1495k 1330k 89% 652k 583k 89% 0.933

Table 1: Efficiency of SIFT vs. ASIFT features.
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Figure 1: Histograms of tie point manifolds after reconstruction,
SIFT vs. ASIFT. The maximum possible manifold would be 25
at the very center of the block (Jacobsen and Gerke, 2016).

reconstruction. However, this is to be expected due to the larger
perspective distortions that are coped with.

The higher manifold of ASIFT tie points can also be seen in
figure 1. It shows histograms of tie point manifolds at the end
of both reconstructions, indicating that indeed ASIFT yields tie
points of higher manifolds, albeit the effect is moderate.

Table 2 shows the percentages of tie points at the end of recon-
struction that are shared by the 5 cameras, trying to answer the
question whether using ASIFT, the goal of increasing the num-
ber of tie points in oblique images can be achieved. It turns out
that usage of ASIFT increases the ratio of tie points shared by
different cameras by a factor of 1.2 to 19.1%, and it increases
the fraction of tie points shared by different oblique cameras by a
factor of 4, albeit to a still low level of 2%.

3.2 Decimation of Tie Points for Large Bundle Blocks

As the dataset used in subsection 3.1 is too small to call for tie
point decimation, and as there is hardly any redundant control in-
formation publicly available, we use a different data set here that
consists of 42k images flown with 70%/60% overlap, taken with 5
Nikon D800E cameras with sensor resolutions of 7360x4912px2

in the classical Maltese cross configuration. They have been cap-
tured with unsynchronised camera exposures and along parallel
flight strips in mutual flight directions, without cross strips, cov-
ering an area of about 27x37km2 of mostly flat terrain. 73 con-
trol points are available with according 2717 manual image mea-
surements. Feature points detected and matched using Pix4D’s
Pix4Dmapper have already been available, and have not been pro-
cessed using the method presented in subsection 2.1 due to time
constraints.

We decimate the initial 1M tie points using the method presented
in subsection 2.2 at decreasing resolutions of grid overlays, each

N E V S W

N 23.61 0.08 1.38 0.03 0.06
E 14.57 9.56 0.17 0.09
V 15.71 2.59 2.06
S sym. 15.10 0.05
W 14.93

(a) SIFT. Different cameras (off-diagonal): 16.1%. Different
oblique cameras (off-diagonal, excl. vertical camera): 0.5%.

N E V S W

N 24.29 0.35 2.56 0.11 0.23
E 13.78 7.38 1.06 0.08
V 12.20 3.88 3.25
S sym. 13.42 0.18
W 17.22

(b) ASIFT. Different cameras (off-diagonal): 19.1%. Different
oblique cameras (off-diagonal, excl. vertical camera): 2.0%.

Table 2: Tie points shared by the Vertical and oblique cameras
(North, East, South, West) after reconstruction [%], for SIFT (a)
and ASIFT (b). Note that tie points with multiplicities larger than
2 contribute to more than 1 entry.

time dropping more and more tie points. As hardly any outliers
are to be expected in the data exported from Pix4D, we set the
target number of tie points to keep per cell to 1. The grid resolu-
tions are selected such that the cells cover approximately square
areas, starting at a large resolution with hardly any effect, drop-
ping 1 row each time, until reaching the minimum resolution of 3
columns and 2 rows.

Figure 2 shows the effect of tie point decimation on the rela-
tive frequency of tie point manifolds: as the algorithm favours
tie points of large manifolds, the percentages of large manifolds
get increased. Also noticeable is the distribution of manifolds
of the tie points delivered by Pix4D, which have obviously been
homogenized internally.

The number of remaining tie points decreases smoothly with the
decrease of the number of cells in the decimation grid, as can be
seen on figure 3. Also, the decimation seems to be efficient, as
e.g. a grid with 4 columns and 3 rows that leaves at least 12 points
for each image, reduces the number of tie points to 133994, which
are only 13% of the original value, and only 3.2 times the number
of images.

For evaluating the impact of tie point decimation on the orienta-
tion and reconstruction quality, we select 30 control points with
1190 according image points to be used as check points, not to
be used in bundle block adjustments. This still leaves 43 con-
trol points sparsely distributed across the block that encircle the
check points in order to avoid extrapolation, and having accord-
ing 1527 image points. For each set of decimated tie points, we
run a bundle block adjustment with self-calibration including all
parameters of the interior camera orientations and affine, radial,
and tangential lens distortion parameters.

After the adjustment, we forward intersect the check points, and
by comparison with their nominal values, we compute RMSEs

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B1-199-2016

 
202



5

Tie point manifolds w.r.t. decimation parameters

full

5 15x10

5 13x9

5 12x8

5 10x7

5 9x6

5 7x5

5 6x4

5 4x3

0 5 10 15 20 25 30 35 40

5 3x2

Figure 2: Histograms of tie point manifolds [%] at different dec-
imation grid resolutions. Top: tie points exported from Pix4D.
Bottom: tie points decimated on an image grid overlay with 3
columns and 2 rows. During each decimation process, the target
count of tie points per image grid cell to retain is set to 1.

for them. See figure 4 for a plot of the results. As can be expected,
RMSEs of Z-coordinates are considerably larger than those of
planar coordinates. Noticeable are the consistently larger RMSEs
of X-coordinates than those of Y-coordinates. This may be ex-
plained by the X-coordinate being parallel to the longer edges of
the vertical camera, and hence being parallel to the longer edges
of the majority of cameras.

Surprising at first sight is the trend of RMSEs becoming smaller
with decreasing numbers of tie points. Comparing this trend with
the evolution of σ0 w.r.t. the decimation in figure 5 may provide
part of an answer. While σ0 is increased with a decrease of the
number of tie points until a decimation grid resolution of 9x6, σ0

shrinks notably for even smaller grid resolutions and respectively
less tie points. This may indicate that by dropping tie points of
low manifolds, weakly defined feature points are dropped that do
not add significant redundancy, but still affect σ0. However, the
relative reduction of σ0 is much smaller than the relative reduc-
tion of RMSEs. Apparently, tie points of low manifold have a
worse impact on orientation quality than may be derived from the
evolution of σ0. A possible explanation for the large negative in-
fluence of low manifold tie points is that their observations are of
little reliability and hence, outliers are likely to not be detected.

4. CONCLUSIONS & OUTLOOK

ASIFT features have proven to affect image connectivity posi-
tively. They not only increased the average tie point manifold, but
they also increased the number of tie points shared between dif-
ferent oblique cameras, albeit still on a low level. While ASIFT
has been proposed in combination with SIFT, the method of sam-
pling camera rotations out of the image plane synthetically be-
forehand can be applied to any other similarity-invariant feature
point detector. While we have applied it to SIFT only, other de-
scriptors are e.g. faster to evaluate, or they provide more compact
descriptors, which makes them easier to match.

The demonstrated method for tie point decimation manages to
drop large portions of tie points, while increasing the overall tie
point manifold, and keeping all images orientable. Furthermore,

full 15x10 13x9 12x8 10x7 9x6 7x5 6x4 4x3 3x2
Decimation grid resolution

0

200000

400000

600000

800000

1000000

1200000
Number of tie points w.r.t decimation

Figure 3: Number of tie points for different decimation grid res-
olutions.
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Decimation grid resolution
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50

60

70
RMSE [cm] at check points w.r.t decimation

RMSE X
RMSE Y
RMSE Z
RMSE total

Figure 4: RMSE at check points for different decimation grid
resolutions.

it is fast, its parameters are easy to understand and memorize, and
its implementation may be adapted to the data structures in use.
In fact, if the outer loop iterates over the images, then oblique im-
ages should be processed first, so to favour their tie points. This
would probably homogenize the final count of tie points in the
vertical camera and in the oblique cameras. The simplicity and
straight-forwardness, however, comes at the cost of not providing
globally optimal results, as a considerable number of images will
be left with many more tie points than was targeted at.

The possibly surprising correlation of decreasing RMSEs at check
points with decreasing numbers of tie points can partly be ex-
plained by the likewise decreasing σ0, and the omission of low
manifold tie points that are hence of little reliability. However,
deficiencies in the data may as well play a role, e.g. missing cross
strips and respective difficulties with proper self-calibration.
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