
journal of computer and system sciences 54, 332�344 (1997)

Efficient Out-of-Core Algorithms for Linear
Relaxation Using Blocking Covers

Charles E. Leiserson*

MIT Lab for Computer Science, 545 Technology Square, Cambridge, Massachusetts 02139

Satish Rao

NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540

and

Sivan Toledo*

MIT Lab for Computer Science, 545 Technology Square, Cambridge, Massachusetts 02139

Received January 20, 1994

When a numerical computation fails to fit in the primary memory of

a serial or parallel computer, a so-called ``out-of-core'' algorithm,

which moves data between primary and secondary memories, must be

used. In this paper, we study out-of-core algorithms for sparse linear

relaxation problems in which each iteration of the algorithm updates

the state of every vertex in a graph with a linear combination of the

states of its neighbors. We give a general method that can save sub-

stantially on the I�O traffic for many problems. For example, our techni-

que allows a computer with M words of primary memory to perform

T=0(M1�5) cycles of a multigrid algorithm for a two-dimensional

elliptic solver over an n-point domain using only 3(nT�M1�5) I�O trans-

fers, as compared with the naive algorithm which requires 0(nT) I�O's.

Our method depends on the existence of a ``blocking'' cover of the

graph that underlies the linear relaxation. A blocking cover has the

property that the subgraphs forming the cover have large diameters

once a small number of vertices have been removed. The key idea in our

method is to introduce a variable for each removed vertex for each time

step of the algorithm. We maintain linear dependences among the

removed vertices, thereby allowing each subgraph to be iteratively

relaxed without external communication. We give a general theorem

relating blocking covers to I�O-efficient relaxation schemes. We

also give an automatic method for finding blocking covers for certain

classes of graphs, including planar graphs and d-dimensional simplicial

graphs with constant aspect ratio (i.e., graphs that arise from dividing

d-space into ``well-shaped'' polyhedra). As a result, we can perform T

iterations of linear relaxation on any n-vertex planar graph using only

3(n+nT- lg n�M1�4) I�O's or on any n-node d-dimensional simplicial

graph with constant aspect ratio using only 3(n+nT lgn�M0(1�d))I�O's.
] 1997 Academic Press

1. INTRODUCTION

Many numerical problems can be solved by linear relaxa-

tion. A typical linear relaxation computation operates

on a directed graph G=(V, E) in which each vertex v #V

contains a numerical state variable xv which is iteratively

updated. On step t of a linear relaxation computation, each

state variable is update by a weighted linear combination of

its neighbors:

x (t)
v = :

(u, v) # E

A (t)
uv x

(t&1)
u , (1)

where A (t)
uv is a predetermined relaxation weight of the edge

(u, v). We can view each iteration as a matrix�vector multi-

plication x(t)=A (t)x(t&1), where x(t)=(x (t)
1 , x (t)

2 , ..., x (t)
|V |)

T

is the state vector for the t th step, and A (t)=(A (t)
uv) is the

relaxation matrix for the t th step. We assume A (t)
uv=0 if

(u, v) � E. The goal of the linear relaxation is to compute a

final state vector x(T) given an initial vector x(0), a scheme

for computing A (t)
uv on each step t, and a total number T

of steps. Examples of linear relaxation computations include

Jacobi relaxation, Gauss�Seidel relaxation, multigrid

computations, and many variants of these methods [3].

(Iterative processes of the form y(t)=M (t)y(t&1)+b can be

transformed to an iteration of the form x(t)=A (t)x(t&1)

using a straightforward linear transformation.)

A computer with ample primary memory can perform a

linear relaxation computation by simply updating the state

article no. SS971473

3320022-0000�97 �25.00

Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

* This research was supported in part by the Advanced Research

Projects Agency under Grant N00014-91-J-1698.

vector according to Eq. (1). Since we are normally inter-

ested only in the final state vector x(T), we can reuse the

state-vector storage. If we assume that the scheme for

generating the nonzero entries of the relaxation matrices

A (t) is not a significant cost (for example, all relaxation

matrices may be identical), then the time to perform each

iteration on an ordinary, serial computer is O(E).1 (It can

be less, since if a row v of the relaxation matrix at some step

t is 0 everywhere except for a 1 on the diagonal, then no

computation is required to compute x (t)
v .) Besides the space

required for the relaxation weights, the total amount of

storage required for the entire T-step computation is 3(V)

to store the state vector.

If the computation does not fit within the primary

memory of the computer, however, a so-called ``out-of-core''

method must be used. An out-of-core algorithm tries to be

computationally efficient, but in addition it attempts to

move as little data as possible between the computer's

primary memory and secondary memories, since the I�O

bandwidth between the two memories is severely limited in

most computer systems. The naive method repeatedly

applies Eq. (1) to all vertices, computing the entire state

vector for one time step before proceeding to the next. This

strategy causes 0(TV) words to be transferred (I�O's) for a

T-step computation, if |V |�2M, where M is the size of

primary memory.

For some graphs, however, there are more clever

strategies that use many fewer I�O's. Such strategies have

been used at least since the 1960s; the earliest reference we

have found is due to Pfeifer [11]. Hong and Kung [5]

analyze a method for a T-step linear relaxation algorithm

on a - n-by-- n mesh that uses only 3(Tn�-M) I�O's,

where the primary memory has size M. The idea is

illustrated in Fig. 1. We load into primary memory the

initial state of a k-by-k submesh S, where k�-M is a value

to be determined. With this information in primary

memory, we can compute the state after one step of relaxa-

tion for all vertices in S except those on S 's boundary �S.

We can then compute the state after two steps of relaxation

for vertices in S&�S, except for vertices in �(S&�S). After

{ steps, we have a (k&2{)-by-(k&2{) submesh S$ at the

center of S such that every vertex i # S$ has state x ({)
i . We

then write the state of S$ out to secondary memory. By tiling

the - n-by-- n mesh with (k&2{)-by-(k&2{) submeshes,

we can compute { steps of linear relaxation in time

3(k 2{ } n�(k&2{)2), since there are n�(k&2{)2 submeshes

in the tiling, each requiring 3(k 2{) work. By choosing

k=-M and {=-M�4, the total time required for { steps

is 3(4n{)=3(n{). The number of I�O's for { steps is

3(k 2 } n�(k&2{)2)=3(4n)=3(n). By repeating this

strategy, we can compute T steps with proportional

FIG. 1. Performing an out-of-core linear relaxation computation on a

- n-by-- n mesh. The k-by-k mesh S is loaded into primary memory,

{ relaxation steps are performed, and the smaller mesh S$ is stored to

secondary memory.

efficiency, saving a factor of 3(-M) I�O's over the naive

method and using only a small constant factor more work,

which results from redundant calculations. Hong and Kung

extend this result to save a factor of 3(M 1�d�d) I�O's for

d-dimensional meshes.

Linear relaxation on a mesh naturally arises from the

problem of solving sparse linear systems of equations aris-

ing from the discretization of partial differential equations

on a mesh. For this class of problems, however, it has been

found that more rapid convergence can often be obtained by

performing a linear relaxation computation on a multigrid

graph [3]. A multigrid graph is a hierarchy of progressively

coarser meshes, as is shown in Fig. 2. The k th level is a

- n�2k-by-- n�2k mesh, for k=0, 1, ..., (lg n)�2, whose (i, j)

vertex is connected to the (2i, 2j) vertex on the (k&1)th

mesh.

FIG. 2. A 9-by-9 multigrid graph. The graph has levels 0, the bottom-

most, through 3, the topmost.

333OUT-OF-CORE LINEAR RELAXATION

1 Inside asymptotic notation (such as O-notation or 3-notation), the

symbol V denotes |V | and the symbol E denotes |E |.

A typical multigrid application is that of solving a

parabolic partial differential equation. The computation

consists of many repeated cycles, in which the relaxation

proceeds level by level from the finest mesh to the coarsest

and back down. A naive implementation of T�lg n cycles

of the computation takes 3(Tn) time, even though there are

3(lg n) levels, since the number of vertices on each level

decreases geometrically as the grids become coarser. For a

computer with M word of memory running T cycles of a

- n-by-- n multigrid algorithm, where n�2M, the number

of I�O's required for T cycles is 3(Tn) as well.
Can the number of I�O's be reduced for this multigrid

computation? We shall show in Section 5 that in the ``red�

blue pebble game'' model for I�O proposed by Hong and

Kung [5], the answer is no, even if redundant computa-

tions are allowed. The naive algorithm is optimal. The

problem is essentially that information propagates quickly

in the multigrid graph because of its small diameter.

Nevertheless, we shall see in Section 5 that we can

actually save a factor of M 1�5 in I�O's. The key idea is to

artificially restrict information from passing through some

vertices by treating their state variables symbolically.

Because the relaxations are linear, we can maintain

dependences among the symbolic variables efficiently as a

matrix. This technique is general and is particularly suited

to graphs whose connections are locally dense and globally

sparse.

The remainder of this paper is organized as follows. In

Section 2 we formally introduce the notion of blocking

covers and discuss the relation between state variables in a

linear relaxation computation and a blocking cover. In Sec-

tion 3 we present our method. The details of the method are

presented in Section 4. The application of our basic result to

multigrid relaxation is presented in Section 5. In Section 6

we describe algorithms for finding good blocking covers for

planar and simplicial graphs, which yield I�O-efficient

relaxation algorithms for these classes of graphs. Section 7

contains a discussion of the practical aspects of our method.

We conclude the paper in Section 8 with a brief discussion

of our results and of related out-of-core algorithms that we

have developed.

2. BLOCKING COVERS

This section introduces the definition of a blocking cover,

as well as several other definitions and notations that we

shall use extensively in subsequent sections. We conclude

the section with an important identity describing how state

variables depend on one another.

We can abstract the method of Hong and Kung described

in Section 1 using the notion of graph covers. Given a

directed graph G=(V, E), a vertex v #V, and a constant

{�0, we first defineN ({)(v) to be the set of vertices inV such

that u #N ({)(v) implies there is a path of length at most {
from u to v. A {-neighborhood-cover [2] of G is a sequence

of subgraphs G=(G1=(V1 , E1), ..., Gk=(Vk , Ek)) , such
that for all v #V there exists a Gi #G for which N ({)(v)�Vi .

Hong and Kung's method can reduce the I�O requirements

by a factor of { over the naive method if the graph has a

{-neighborhood-cover with O(E�M) subgraphs, each of

which has O(M) edges, where M is the size of primary

memory. Although a vertex can belong to more than one

subgraph in the cover, there is one subgraph that it con-

siders to be its ``home,'' in the sense that the subgraph con-

tains all of its neighbors within distance {. When performing

a linear relaxation on G for { time steps, therefore, the state

of v depends only on other vertices in v's home. Thus, in a

linear relaxation computation, we can successively bring

each subgraph in the cover into primary memory and relax

it for { steps without worrying about the influence of any

other subgraph for those { steps.
The problem with Hong and Kung's method is that

certain graphs, such as multigrid graphs and other low-

diameter graphs, cannot be covered efficiently with small,

high-diameter subgraphs. Our strategy to handle such a

graph is to ``remove'' certain vertices so that the remaining

graph has a good cover. Specifically, we select a subset

B�V of vertices to form a blocking set. We call the vertices

in the blocking set blocking vertices or blockers. We define

the {-neighborhood of v with respect to a blocking set

B�V to be N ({)
B (v)=[u #V : _ a path u� u1� } } } �

ut� v, where ui #V&B for i=1, 2, ..., t<{]. Thus, the

{-neighborhood of v with respect to B consists of vertices

that can be reached with paths of length at most { whose

internal vertices do not belong to B.
We can now define the notion of a blocking cover of a

graph.

Definition. Let G=(V, E) be a directed graph. A

({, r, M)-blocking-cover of G is a pair (G, B), where G=

(G1=(V1 , E1), ..., Gk=(Vk , Ek)) is a sequence of sub-

graphs of G andB=(B1 , ..., Bk) is a sequence of subsets of

V such that

BC1. for all i=1, ..., k, we have M�2�|Ei |�M;

BC2. for all i=1, ..., k, we have |Bi |�r ;

BC3. �k
i=1 |Ei |=O(E);

BC4. for all v #V, there exists a Gi #G such that

N ({)
Bi
(v)�Vi .

For each v #V, we define home(v) to be an arbitrary one of

the Gi that satisfies BC4.

Our basic algorithm for linear relaxation on a graph G=

(V, E) depends on having a ({, r, M)-blocking-cover of G
such that r 2{2�M. In the description and analysis of the

basic algorithm, we shall assume for simplicity that each

334 LEISERSON, RAO, AND TOLEDO

step of the computation uses the same relaxation matrix A.
We shall call such a computation a simple linear relaxation
computation. We shall relax this simplifying assumption in

Section 5.

In a simple linear relaxation computation on a graphG=

(V, E) with a relaxation matrix A, the state vector x (t) at

time t satisfies

x (t)=Atx (0).

That is, the computation amounts to powering the matrix.2

We shall generally be interested in the effect that one state

variable x (s)
u has on another x (t)

v . Define the weight w(p) of
a length-r path p=v0� v1� } } } � vr in G to be

w(p)= `
r

k=1

Avk&1 , vk . (2)

For two vertices u, v #V, we define

w(r ; u, v)= :
p #P(r)

w(p),

where P(r)=[p #G : p is a length-r path from u to v]. (We

define w(r ; u, v)=0 if no length-r path exists between u
and v.) Using this notation, we have

x (t)
v = :

u #V

w(t ; u, v) x (0)
u . (3)

If Bi�V is a blocking set, then we define

wBi
(r ; u, v)= :

p #PBi (r)

w(p),

wherePBi
(r)=[p #G : p is a length-r path from u to vwhose

intermediate vertices belong to V&Bi].
Consider a subgraph Gi in the cover and its correspond-

ing blocking set Bi . The following lemma shows that in

order to know the value of a state variable x (t)
v where

home(v)=Gi , it suffices to know the intial values of all state

variables for vertices in Gi at time 0 and also to know the

values of the blocker variables��state variables for blockers��
in Bi at all times less than t.

Lemma 1. Let G=(V, E) be a directed graph, and let
(G, B) be a ({, r, M)-blocking-cover of G. Then, for any

simple linear relaxation computation on G, we have for all
v #V and for any t�{,

x (t)
v = :

u # Vi

wBi
(t ; u, v) x (0)

u

+ :
u # Bi

:
t&1

s=1

wBi
(s ; u, v) x (t&s)

u , (4)

where Gi=home(v).

Proof. We have P(r)=PBi
(r)+PB� i (r), where PB� i (r)=

[p #G : p is a length-r path from u to v with at least one

intermediate vertex which belongs to Bi]. We also define

wB� i (r ; u, v)= :
p #PB� i (r)

w(p),

By Eq. (3) and the notation above we have

x (t)
v = :

u # V

w(t ; u, v) x (0)
u

= :
u # V

wBi
(t ; u, v) x (0)

u + :
u #V

wB� i (t ; u, v) x
(0)
u . (5)

We now prove that the first sum in Eq. (5) equals the first

sum in Eq. (4) and that the second sum in Eq. (5) equals the

second sum in Eq. (4). That the first summations are equal

follows from condition BC4 in the definition of blocking

covers, which imply that if home(v)=Gi , u �Vi , and t�{,
then wBi

(t ; u, v)=0.

We use induction on t to prove that

:
u # Bi

:
t&1

s=1

wBi
(s ; u, v) x (t&s)

u = :
z #V

wB� i (t ; z, v) x
(0)
z .

For t=0 the equation holds since both summations are

empty. Assume that the equation holds for all s>0 and for

all v #V such that home(v)=Gi . We split the blocking

influence wB� i (t ; z, v) according to the last blocker on each

path,

wB� i (t ; z, v)= :
u # Bi

wB� i , u (t ; z, v),

where wB� i , u (t ; z, v) is the sum of path weights over all

length-t paths from z to v in which the last vertex in Bi is u.
Splitting the paths from z to v at u we get

wB� i , u (t ; z, u)= :
t&1

s=1

wBi
(s; u, v) w(t&s ; z, u).

335OUT-OF-CORE LINEAR RELAXATION

2 Since we do not want to destroy the sparsity of A, and we wish our

technique to generalize, we do not take advantage of techniques such as

repeated squaring.

We now have

:
z #V

wB� i (t ; z, v) x
(0)
z = :

z # V

:
u # Bi

wB� i , u (t ; z, v) x
(0)
z

= :
u # Bi

:
z #V

wB� i , u (t ; z, v) x
(0)
z

= :
u # Bi

:
z # V

:
t&1

s=1

wBi
(t&s ; u, v)

_w(s ; z, u) x (0)
z

= :
u # Bi

:
t&1

s=1

wBi
(s ; u, v)

_ :
z #V

w(t&s ; z, u) x (0)
z

= :
u # Bi

:
t&1

s=1

wBi
(t&s ; u, v) x (t&s)

u ,

where the last equality follows by the inductive assump-

tion. K

3. SIMPLE LINEAR SIMULATION

In this section, we present our I�O-efficient algorithm to

perform a simple linear relaxation computation on any

graph with a ({, r, M)-blocking-cover (G, B). We call it a

``simulation'' algorithm, because it has the same effect as

executing a simple linear relaxation algorithm, but it does

not perform the computation in the same way. The simula-

tion algorithm is not a new numerical algorithm. Rather, it

is a new way to implement a numerical algorithm. Since we

only present a new implementation strategy, convergence

properties are maintained. Given a numerical algorithm, if

both a conventional implementation and our implementa-

tion are executed on an ideal computer with no rounding

errors, the output is exactly the same. In this section, we give

an overview of the simulation algorithm and analyze its per-

formance. In Section 7 we will discuss the issue of rounding

errors.

The goal of the simulation algorithm is to compute the

state vector x(T) in Eq. (3) given an initial state vector x(0)

and a number T of steps. The algorithm has four phases,

numbered 0 through 3. Phase 0 is executed once as a

precomputation step. It computes the coefficientswBi
(s ; u, v)

in the second summation of Eq. (4) that express the influence

of one blocker variable on another. Phases 1�3 advance the

state vector by { steps each time they are executed, and

these steps are then iterated until the state vector has been

advanced by a total of T steps. Phase 1 computes the first

summation in Eq. (4) for the blocker variables which, in

combination with the coefficients computed in Phase 0,

yields a triangular linear system of equations on the

blockers. Phase 2 solves these equations for the blockers

using back substitution. Finally, Phase 3 extends the solu-

tion for the blocker variables to all the state variables. If

r 2{ 2�M, each iteration of Phases 1�3 performs O({E)

work, performs O(E) I�O's, and advances the state vector

by { steps, as compared with the naive algorithm, which

would perform O({E) I�O's for the same effect. Phase 0, the

precomputation phase of the algorithm, requires O(r{E)

work and O(E) I�O's.

We now describe each phase in more detail.

The goal of Phase 0 is to compute the coefficients

wBi
(s; u, v) in the second summation of Eq. (4) for all s=

1, 2, ..., {&1, for all u # Bi , and for all v #B where B=
�Bi # B Bi and Gi=home(v). The coefficient wBi

(s; u, v)
represents the influence that the value of u at time {&s has
on the value of v at time {. The influence (coefficient) of

blocker u on another in the same time step (s=0) is 0,

unless the other vertex is in fact u, in which case the

influence is 1. Inductively, suppose that the state variable

for each vertex v contains wBi
(s; u, v). To compute the

wBi
(s+1; u, v), we set the blocker variables to 0 and run one

step of linear relaxation on Gi . The value for wBi
(s+1; u, v)

is produced in the state variable for v. To compute up to

s={&1, this computation is therefore nothing more than a

linear relaxation computation in which the blockers are

zeroed at every step. Intuitively, this method works because

any individual coefficient can be obtained from Eq. (4) by

setting all the state variables in both summations to 0,

except for that state variable in the second summation

which is multiplied by the desired coefficient, which we set

to 1. During Phase 0, any coefficient that represents an

influence of a blocker on a blocker whose home is Gi is

saved for use in Phase 2.

In Phase 1 we focus on the first summation in Eq. (4).

Phase 1 computes the sums �u # Vi
wBi

(t; u, v) x (0)
u for all

t�{ and for all v # B, where Gi=home(v). These values

represent the contribution of the initial state on v without

taking into account contributions of paths that come from

or pass through blockers in v's home. For a given subgraph

Gi in the blocking cover for G, the first summation is simply

a linear relaxation on the subgraph of Gi induced by

Vi&Bi . Thus, we can compute this summation for all

blocker variables whose home is Gi by a linear relaxation on

Gi as follows. We initialize the state variables according to

x (0), and then for each subsequent step, we use the value 0

whenever the computation requires the value of a blocker

variable.

Phase 2 solves for the blocker variables. If we inspect

Eq. (4), we observe that since we have computed the value

of the first summation and the coefficients of the variables in

the second summation, the equations become a linear

system in the blocker variables. Furthermore, we observe

that the system is triangular, in that each x (i)
v depends only

on various x (j)
u where j<i. Consequently, we can use the

336 LEISERSON, RAO, AND TOLEDO

back substitution method [4, Section 31.4] to determine

the values for all the blocker variables.

Phase 3 computes the state variables for the nonblocker

vertices by performing linear relaxations in each subgraph

as follows. For a subgraph Gi , we set the initial state accord-

ing to x (0) and perform { steps of linear relaxation, where at

step i blocker variable x (i)
u is set to the value computed for

it in Phase 2. We can show that the state variables for each

node whose home is in Gi assume the same values as if they

were assigned according to a linear relaxation of G with the

initial state x (0) by using induction and the fact that each

blocker variable assumes the proper value.

In Section 4 we prove that given a graph G=(V, E) with

a ({, r, M)-blocking-cover such that r2{2�M, a computer

with O(M) words of primary memory can perform T�{

steps of a simple linear relaxation on G using at mostO(TE)

work andO(TE�{) I�O's. The precomputation phase (which

does not depend on the initial state) requires O(r{E) work

and O(E) I�O's.

4. THE ALGORITHM IN DETAIL

This section contains the details of our basic algorithm,

which was outlined in Section 3. We begin by describing the

data structures used by our algorithm and then present the

details of each of the four phases of the algorithm. We give

pseudocode for the phases and lemmas that imply their

correctness.

Data Structures

The main data structure that the algorithm uses is a table

S which during the algorithm contains information about

vertices in one of the subgraphs Gi in the blocking cover of

G with respect to the blocking set Bi . Each row S[j] of S

contains several fields of information about one vertex. The

field S[j]. Name contains the vertex index in G, the boolean

field S[j] .IsInB denotes whether the vertex belongs to

B=�Bi #B
Bi , the boolean field S[j] .IsBlocker denotes

whether the vertex belongs to Bi , and the boolean field

S[j] .IsHome denotes whether the home of the vertex is Gi .

The field S[j] .Adj is an adjacency list of the neighbors of

the vertex in Gi (incoming edges only). Each entry in the

adjacency list is the index of a neighbor in S, together with

the relaxation weight of the edge that connects them. The

two last fields are numeric fields S[j] .x and S[j] .y. The

field S[j] .x holds the initial state of the vertex, and after

the algorithm terminates the field S[j] .y holds the state

after time step { if S[j].IsHome is set.

A data structure S i is stored in secondary memory for

each subgraph Gi in the cover. In addition to Si we store in

secondary memory a table Hi for each subgraph Gi . For

every vertex v whose home is Gi , the table lists all the sub-

graphs Gj in the blocking cover containing v and the index

of v in Sj . These tables enable us to disperse the value of x ({)
v

from the home of v to all the other Gj which contain v. The

size of each Si is 6 |Vi |+2 |Ei |. The total amount of

secondary storage required to store the blocking cover is

O(E).

We also store in secondary memory two 2-dimensional

numeric tables WX and X of size {-by-|B|, and one

3-dimensional numeric table W of size {-by-r-by-|B|. The

table W is used to store the coefficients wBi
(s; u, v) for all

s<{, for all u # Bi , and for all v # B, where Gi=home(v).

The tableWX is used to store the sum�u #Vi
wBi

(t; u, v) x (0)
u

for all t�{, and all v # B, where Gi=home(v). The table X

is used to store the values x (t)
v for all t�{ and all v # B.

Phase 0

The pseudocode below describes Phase 0 of the algo-

rithm. The influence of one blocker on all other blockers in

a subgraph is computed by ProcedureBlockersInfluence.

Procedure PhaseZero loads one subgraph at a time into

primary memory, and then calls BlockersInfluence at

most r times. Before each call exactly one vertex whose

S[j] .IsBlocker field is set is chosen, its S[j].x field is set to

1 and all the other x fields are set to 0. The index i of the

blocker whose influence is computed is passed to Blockers-

Influence.

PhaseZero()

1 for i� 1 to k

2 do load S i into primary memory

3 for b� 1 to M

4 do if S[b] .IsBlocker

5 then for l� 1 to M do S[l] .x�0

6 S[b] .x� 1

7 BlockersInfluence(b)

BlockersInfluence(b)

1 for s�1 to {&1

2 do for j� 1 to M

3 do S[j] . y��(l,a) # S[j] .Adja } S[l] .x

4 for j� 1 to M

5 do if S[j] .IsBlocker

6 then S[j] .x� 0

7 else S[j] .x�S[j] .y

8 if S[j] .IsInB and S[j] .IsHome

7 then write S[j] .y to W[s, S[b] .Name,

S[j] .Name]

Lemma 2. After Phase 0 ends, for each v # B, u # B i and

s<{, we have

W[s, u, v]=wBi
(s; u, v),

where Gi=home(v).

337OUT-OF-CORE LINEAR RELAXATION

Proof. We denote the state vectors in phase 0 by e(t)

instead of x(t) to indicate that the initial state is a unit vector

with 1 for one blocker and 0 for all the other vertices.

We prove by induction on s that lines 1�7 of BlockersIn-

fluence perform linear relaxation on G with all outgoing

edges from blockers in Bi removed, on all the vertices v for

which N (s)
Bi
(v)�Vi and on all the blockers in Bi . The claim

is true for s=0 because before the first iteration the state

S[j] } x of every vertex is the initial state set by PhaseZero.

Assume that the claim is true for s<{&1. In the next itera-

tion S[j] .y is assigned the weighted linear combination of

all of its neighbors in Gi . If the vertex v is a blocker, its state

is zeroed in line 6 and the claim holds. If the vertex is not a

blocker but N (s+1)
Bi

(v)�Vi , then all its neighbors are in G i ,

and each neighbor u is either a blocker or N (s)
Bi
(u)�V i . In

either case, the y field is assigned the weighted linear com-

bination of vertex states which are correct by induction, so

its own state is correct.

The initial state is 0 for all vertices except for one blocker

u=S[b] .Namewhose initial state is e (0)u =1. By Eq. (3) and

condition BC4 in the definition of blocking-covers we have

for all s<{ and v #V such that Gi=home(v)

e (s)v = :
z # V

wBi
(s; z, v) e (0)z

=wBi
(s; u, v).

The value e (s)v =wBi
(s; u, v) is written to W[s, u, v] in line 9

for all v # B such that Gi=home(v). K

Let us analyze the amount of work and the number of

I�O's required in Phase 0. BlockersInfluence is called at

most rk times, where k is the number of subgraphs in the

cover. In each call, the amount of work done is O({M) so

the amount of work is O(rkM{)=O(r{E). The total num-

ber of I�O's is O(E) to load all the Si into primary memory,

and |B| r{�kr2{=O(E) to store the table W (since

W[s, V, v] is a sparse vector).

Phase 1

Phase 1 is simpler than Phase 0. Procedure InitialState-

Influence is similar to Procedure BlockersInfluence in

Phase 0, but the table WX is written to secondary memory

instead of the table W. Procedure PhaseOne loads one sub-

graph at a time and calls InitialStateInfluence once, with

the initial state loaded from secondary memory.

PhaseOne()

1 for i� 1 to k

2 do load Si into primary memory

3 InitialStateInfluence()

InitialStateInfluence()

1 for s�1 to {

2 do for j� 1 to M

3 do S[j] .y��(l,a) # S[j] .Adj a } S[l] .x

4 for j� 1 to M

5 do if S[j] .IsBlocker

6 then S[j] .x� 0

7 else S[j] .x�S[j] .y

8 if S[j] .IsInB and S[j] .IsHome

9 thenwriteS[j] .y toWX[s,S[j] .Name]

Lemma 3. After Phase 1 ends, for each v # B and s�{,

we have

WX[s, v]= :
u #Vi

wBi
(s; u, v) x (0)

u ,

where Gi=home(v).

Proof. Lines 1�7 of InitialStateInfluence simulate

linear relaxation on Gwith all outgoing edges from blockers

in Bi removed. The proof of this claim is identical to the

proof of Lemma 2, with the initial state being the given

initial state x(0). Therefore we have for all s�{ and v #V

such that Gi=home(v),

x (s)
v = :

z # V

wBi
(s; z, v) x (0)

z . (6)

This value is written to WX[s, v] in line 9 for all v # B such

that Gi=home(v). K

The total amount of work in Phase 1 is O(k{M)=O({E).

The number of I�O's is O(E) to load all the subgraphs and

|B| { to store the table WX.

Phase 2

Phase 2 solves the lower triangular system of linear equa-

tions defined by Lemma 1 for every v # B and all t�{.

Entries in the tables W, WX, and X are written and read

from secondary memory as needed.

PhaseTwo()

1 for t�1 to {

2 do for v� 1 to |B|

3 do Let Gi be the home of v

4 X[t, v]�WX[t, v]+�1�s<t, u # Bi

W[s, u, v] X[t&s, u]

Lemma 4. After Phase 2 ends we have for each v # B and

t�{,

X[t, v]=x (t)
v .

338 LEISERSON, RAO, AND TOLEDO

Proof. The result follows immediately from Lemma 1

and the previous two lemmas. K

Since the number of terms in each of the T |B| sums is at

most rT, the total amount of work and I�O's is

O(r |B| {2)=O(kr2{2)=O(E).

Phase 3

The structure of Phase 3 is similar to the structure of

Phase 1. The main difference between the two phases is that

in Phase 1 a zero was substituted for the state of a blocker

during the simulation, whereas in Procedure RelaxG the

correct value of the state of blockers is loaded from the table

X in secondary memory. Procedure PhaseThree loads each

subgraph and its initial state to primary memory, calls

RelaxG, and then stores back the subgraph with the

correct state in the y field.

PhaseThree()

1 for i� 1 to k

2 do load S i into primary memory

3 RelaxG()

4 store S i back to secondary memory

RelaxG()

1 for s�1 to {

2 do for j� 1 to M

3 do S[j] .y��(l,a) # S[j] .Adj a } S[l] .x

4 for j� 1 to M

5 do if S[j] .IsBlocker

6 then read X[S[j] .name, s] into S[j] .x

7 else S[j] .x�S[j] .y

8 for j� 1 to M

9 do if S[j].IsHome

10 then S[j] .y�S[j] .x

Lemma 5. After Phase 3 ends, for every v #V whose

home is Gi , the y field in the entry of v in Si is x
({)
v .

Proof. We prove by induction on s that lines 1�7 of

RelaxG simulate linear relaxation on G on all the vertices

v for which N (s)
Bi
(v)�Vi and on all the blockers in Bi . The

claim is true for s=0 because before the first iteration the

state S[j] .x of every vertex is the initial state loaded from

secondary memory. Assume that the claim is true for s<{.

In the next iteration S[j] .y is assigned the weighted linear

combination of all of its neighbors in Gi . If the vertex v is a

blocker, its state is loaded from the table X in line 6 and the

claim holds. If the vertex is not a blocker butN (s+1)
Bi

(v)�V i ,

then all its neighbors are in Gi , and each neighbor u is either

a blocker or N (s)
Bi
(u)�V i . In either case, the y field is

assigned the weigheted linear combination of vertex states

which are correct by induction, so its own state is correct.

The lemma follows from the inductive claim, since if

Gi=home(v) then N ({)(v)�Vi and therefore its y field is

assigned x ({)
v . K

In Phase 3 each subgraph is loaded into primary memory

and RelaxG is called. The total amount of work is

O(k{M)=O({E) and the total number of I�O's is

O(E+V)=O(E).

Summary

The following theorem summarizes the performance of

our algorithm.

Theorem 6 (Simple linear simulation). Given a graph

G=(V, E) with a ({, r, M)-blocking-cover such that

r2{2�M, a computer with O(M) words of primary memory

can perform T�{ steps of a simple linear relaxation on G

using at most O(TE) work and O(TE�{) I�O's. A precom-

putation phase (which does not depend on the initial state)

requires O(r{E) work and O(E) I�O's.

Proof. The correctness of the algorithm follows from

Lemma 5. The bounds on work and I�O's follow from the

performance analysis following the description of each

phase. K

The simple linear simulation theorem applies directly in

many situations, but in some special cases which are com-

mon in practice, we can improve the performance of our

method. In Section 5 we will exploit two such improvements

to obtain better I�O speedups.

5. MULTIGRID COMPUTATIONS

In this section we present the application of our method

to multigrid relaxation algorithms. We show that a two-

dimensional multigrid graph (shown previously in Fig. 2)

has a (3(M1�6), 3(M 1�3), M)-blocking-cover, and hence,

we can implement a relaxation on the multigrid graph using

a factor of 3(M1�6) fewer I�O's than the naive method. We

improve this result to 3(M1�5) for multigrid computations

such as certain elliptic solvers that use only one level of the

multigrid graph at a time and have a regular structure of

relaxation weights. We conclude by discussing our results in

the context of the ``red-blue pebble game'' I�O model of

Hong and Kung [5].

Lemma 7. For any {�-M, a two-dimensional multigrid

graph G has a ({, r, M)-blocking-cover, where r=O({2).

Proof. Consider a cover of a multigrid graph in which

every Gi=(Vi , Ei) consists of a k-by-k submesh at the bot-

tommost level together with all the vertices above it in the

multigrid graph, and the blocking set Bi/Vi consists of all

the vertices in levels l+1 and above. Let each subgraph Gi

339OUT-OF-CORE LINEAR RELAXATION

be the home of all vertices in the inner (k&{2l+1)-by-

(k&{2l+1) bottommost submesh of Gi and all the vertices

above them. The number of vertices in Bi is

r= :
(lg n)�2

i=l+1
\
k

2 i+
2

<\
k

2 l+1+
2

:
�

i=0

4&i

=
4

3 \
k

2l+1+
2

and the number of edges in Gi is

|Ei |=(2+ 1
4) |Vi |

< 9
4 }

4
3 k

2

=3k2,

since there are at most two edges for each vertex in a mesh,

and in the multigrid, 14 of the O((4�3) k 2) vertices have edges

connecting to a higher level mesh. Setting k&{2l+1=k�2,

we obtain k=4{2l and r<(4�3)(2{)2=(16�3) {2. Setting

l= 1
2 lg(M�{2), we obtain |Ei |<48M. K

Combining Theorem 6 and Lemma 7, we obtain the

following result.

Corollary 8. A computer with 3(M) words of primary

memory can perform T=0(M1�6) steps of a simple linear

relaxation on a - n-by-- n multigrid graph using O(Tn)

work and O(Tn�M1�6) I�O's A precomputation phase requires

O(M1�2n) work and O(n) I�O's.

Proof. Set {=M1�6 in Lemma 7 and apply Theorem 6. K

As a practical matter, linear relaxation on a multigrid

graph is not simple: it does not use the same relaxation

matrix at each step. Moreover, for many applications, a

given step of the relaxation is performed only on a single

level of the multigrid or on two adjacent levels.

For example, one generic way to solve a discretized

version of a parabolic two-dimensional heat equation in the

square domain [0, 1]2, as well as a wide variety of other

time-dependent systems of partial differential equations,

such as the Navier�Stokes equations, is to use discrete time

steps, and in each time step to solve an elliptic problem on

the domain. In the heat equation example, for instance, the

elliptic problem is

�2u(x, y, t i)

�x 2
+

�2u(x, y, ti)

�y2
=

u(x, y, ti)&u(x, y, ti&1)

t i&t i&1

.

In a common implementation of this strategy, the elliptic

solver is a multigrid algorithm, in which case the entire

solver can be described as a linear relaxation algorithm on

a multigrid graph [3]. The algorithm consists of a number

of cycles, where each cycle consists of 3(lg n) steps in which

the computation proceeds level-by-level up the multigrid

and then back down. Since the size of any given level of the

multigrid is a constant factor smaller than the level beneath

it, the 3(lg n) steps in one cycle of the algorithm execute a

total of 3(n) work and update each state variable only a

constant number of times. Thus, a naive implementation of

T cycles of the elliptic solver requires O(nT) work and

O(nT) I�O's.

We can use the basic idea behind the simple linear simula-

tion algorithm to provide a more I�O-efficient algorithm.

We present the algorithm in the context of a multigrid graph

which is used to solve an equation with constant coefficient,

but the same algorithm works in other special cases.

Definition. We say that a multigrid graph has regular

edge weights if for every level, the edge weights in the inte-

rior of the grid are all identical, the edge weights in the inte-

rior of every face (or edge) of the grid are all identical, and

if the edge weights going from one level to another are all

identical in the interior and all identical along each face.

Theorem. A computer with 3(M) words of primary

memory can perform T=0(M1�5) multigrid cycles on a

- n-by-- n multigrid graph with regular edge weights using

O(nT) work, and O(nT�M1�5) I�O's. A precomputation step

requires O(M8�5) work and O(M) I�O's.

Proof. The algorithm generally follows the simple linear

relaxation algorithm. We outline the differences.

The linear simulation algorithm uses a ({, r.M)-blocking-

cover as described in the proof of Lemma 7, but we now

choose {=M 1�5 and r=3(M 2�5). Because the relaxation

algorithm is not simple, the paths defined by Eq. (2) must

respect the weights defined by the various relaxation

matrices. In a single cycle, however, there are only a con-

stant number of relevant state variables for a single vertex.

Moreover, the phases can skip over steps corresponding to

updates at level (3�10) lg M+1 and above, since only

blocker variables occupy these levels. Most of these changes

are technical in nature and, whereas the bookkeeping is

more complicated, we can simulate one cycle of the elliptic

solver with asymptotically the same number of variables as

the simple linear simulation algorithm uses to simulate one

step of a simple linear relaxation problem on the lowest level

of the multigrid.

The real improvement in the simulation, however, comes

from exploiting the regular structure of the blocking cover

of the multigrid graph. The cover has three types of sub-

graphs: interior ones, boundary ones, and corner ones. All

subgraphs of the same type have isomorphic graph struc-

ture, the same relaxation weights on isomorphic edges,

and an isomorphic set of blockers. Thus, in Phase 0 of

340 LEISERSON, RAO, AND TOLEDO

the simulation algorithm, we only need to compute the

influence on blockers in one representative subgraph of each

type. We store these coefficients in primary memory for the

entire algorithm, and hence, in Phase 2, we need not per-

form any I�O's to load them in. Phase 1 and 3 are essentially

the same as for simple linear simulation.

The change to Phase 2 is what allows us to weaken the

constraint r2{2�M from Theorem 6 and replace it by

r2{�M, which arises since the total work (r{)2 E�M in

Phase 2 must not exceed E{ if we wish to do the same work

as the naive algorithm. Because all three types of subgraphs

must fir into primary memory at the same time, the

contraint 3r2{�M also arises. Maximizing { under the con-
staints of Lemma 7 yields the choice {=M1�5. The work in

Phase 2 is O((r{)2 E�M)=O(M 1�5n), rather than O(n) as it
would be without exploiting the regularity of subgraphs.

The number of I�O's in Phase 2 is O(r{) E�M)=O(n) in
order to input the constants computed in Phase 1 corre-

sponding to the first summation in Eq. (4). The work in

Phases 1 and 3 is O({E)=O(M 1�5n), and the number of

I�O's is O(r{E�M)=O(n). The amount of work in Phase 0

becomes O(3r{M)=O(M 8�5), and the number of I�O's for

this precomputation phase is O(M). K

We mention two extensions of this theorem. The three-

dimensional multigrid graph has a ({, r, M)-blocking-cover,

where r=O({3), which yields an I�O savings of a factor of

{=3(M 1�7) over the naive algorithm when { is maximized

subject to the constraint r2{�M. For the two-dimensional

problem, one can exploit the similarity of the coefficients

computed by Phase 0 to save a factor of as much as3(M1�3)

in I�O's over the naive method, but at the expense of doing

asymptotically more work.

We conclude this section with a discussion of Hong and

Kung's ``red�blue pebble game'' [5]. This pebble game is a

formal model for studying the I�O requirements of out-of-

core algorithms. The model assumes that an algorithm is

given as a directed acyclic graph (dag) in which nodes repre-

sent intermediate values in the computation. The only con-

staint in this model is that all predecessors of a node must

reside in primary memory when the state of the node is com-

puted. Other than this constraint, the red�blue pebble game

allows arbitrary scheduling of the dag. In a linear relaxation

computation, for example, each node in the dag corre-

sponds to a state variable, and its predecessors are the state

variables of its neighbors at the previous time step. The

arbitrary scheduling allowed in the red�blue pebble game

can be effective in reducing I�O as outlined in Section 1 for

relaxation on multidimensional meshes. It has also been

applied to various other problems (see [1] for examples).

Elliptic problems with constant coefficients are often

solved using algorithm based on the fast Fourier transform

rather than multigrid algorithms. Hong and Kung [5]

showed that under the assumptions of the red�blue pebble

game, the reduction in I�O for the FFT is limited to

3(lg M).

We now show that under the assumptions of the red�blue

pebble game, the reduction in I�O for the multigrid com-

putation is limited to O(1). In other words, no asymptotic

saving is possible in this model.

Multigrid algorithms belong to a large class of numerical

methods, including Krylov subspace methods such as con-

jugate gradient, which have a common information flow

structure. The methods iteratively update a state vector. The

dag associated with the methods contains a set of nodes

corresponding to the state vector variables for each iteration

of the algorithm, plus some intermediate variables. The

state of a variable at the end of iteration t is an immediate

predecessor in the dag of the state of the variable at the end

of iteration t+1. In addition, the states of all variables at
the end of iteration t are indirect predecessors of every

variable at the end of iteration t+1. In multigrid algorithms

we associate the state vector with the state of the finest

mesh, the intermediate variables with the state of all other

meshes, and each iteration corresponds to a multigrid cycle

in which information is transferred from the finest mesh to

the coarsest and back to the finest.

Theorem 10. Let D be the dag corresponding to a T-step
iterative computation with an n-node state vector x(t), in
which the state x (t+1)

v of a node v after iteration t+1 depends
directly on x (t)

v and indirectly on the x (t)
u for all state variables

u. Then any algorithm that satisfies the assumptions of the
red�blue pebble game requires at least T(n&M) I�O's to
simulate the dag D on a computer with M words of primary
memory.

Proof. The red�blue pebble game allows redundant

computations, and therefore the state of a vertex v after time

step t, x (t)
v , may be computed more then once during the

course of the execution of the algorithm. Let Time (t)v be the

first instant during the execution of the algorithm in which

x (t)
v is computed. We denote by Time(t) the first instant in

which the state of some vertex after time step t is computed,

Time(t)=min
v # V

[Time (t)v].

The state of each vertex v after iteration t+1, x (t+1)
v ,

depends on the state of all vertices after iteration t. There-
fore we deduce that Time(0)<Time(1)< } } } <Time(T) and

that algorithm must compute the state of all vertices after

iteration t between Time(t) and Time(t+1).

Let C (t)
u be the chain of vertices in the dag x (0)

u �

x (1)
u � } } } �x (t)

u . If x (t)
u is computed between two time

points Time(t) and Time(t+1), we know either that a vertex

in C (t)
u was in memory at Time(t) or one I�O was performed

between Time(t) and Time (t+1) in order to bring some vertex

in C (t)
u into primary memory.

341OUT-OF-CORE LINEAR RELAXATION

The vertex sets C (t)
u and C (t)

w are disjoint for u{w. Since
primary memory at time Time(t) can contain at most M
vertices, one vertex from a least n&M chains C (t)

u must be

brought from secondary memory between Time(t) and

Time(t+1). Summing over all iterations, we conclude that

the algorithm must perform at least T(n&M) I�O's. K

Since the total work in each multigrid cycle is 3(n), the
performance of the naive out-of-core algorithm matches the

asymptotic performance of any algorithm which satisfies

the red-blue pebble game assumptions, if M<2n. Corol-
lary 8 and Theorem 9 show that by simulating the dag in an

unorthodox fashion, this lower bound does not apply. In

particular, our method does not always compute the state of

a node from the previous state of its neighbors.

6. FINDING BLOCKING COVERS

In this section, we describe how to find blocking covers

for graphs that arise naturally in finite-element computa-

tions for physical space. Consequenctly, I�O efficient linear

relaxation schemes exist for these classes of graphs. Spe-

cially, we focus on planar graphs to model computations in

two dimensional and d-dimensional simplicial graphs of

bounded aspect ratio to model computations in higher

dimensions. Planar graphs are those that can be drawn in

the plane so that no edges cross. Simplicial graphs arise

from dividing d-dimensional space into polyhedra whose

aspect ratio is bounded and where the sizes of polyhedra are

locally similar : the volume of a polyhedron is no larger than

twice (or some constant times) the volume of any neigh-

boring polyhedron. Linear relaxation algorithms on such

graphs can be used to solve differential equations on various

d-dimensional structures [9, 10].

We begin by defining simplicial graphs formally using

definitions from [9].

Definition. A k-dimensional simplex, or k-simplex, is
the convex hull of k+1 affinely independent points in Rd.

A simplicial complex is a collection of simplices closed

under subsimplex and intersection. A k-complex K is a sim-

plicial complex such that for every k$-simplex in K, we have
k$�k.
A 3-complex is a collection of cells (3-simplexes), faces

(2-simplices), edges (1-simplices), and vertices (0-simplices).

A d-dimensional simplicial graph is the collection of edges

(1-simplices) and vertices (0-simplices) in a k-complex in

d-dimensions. The diameter of a k-complex is the maximum

distance between any pair of points in the complex, and the

aspect ratio is the ratio of the diameter to the k th root of the

volume. A simplicial graph of aspect ratio : is a simplicial

graph that comes from a k-complex with every k-simplex

having aspect ratio at most :.
We now state the main theorems of this section.

Theorem 11. A computer with 3(M) words of primary
memory can perform T�{ steps of simple linear relaxation
on any n-vertex planar graph using O(nT) work and O(nT�{)
I�O's, where {=O(M 1�4�- lg n). A precomputation phase
requires O({2n lg n) work and O(n) I�O's. Computing the
blocking cover requires O(n lg n) work and I�O's.

Theorem 12. A computer with 3(M) words of primary
memory can perform T�{ steps of simple linear relaxation
on any n-vertex d-dimensional simplicial graph of constant
aspect ratio using O(nT) work and O(nT�{) I�O 's, where {�
M0(�d)�lg n. A precomputation step requires ({0(d)n lg0(d) n)
work and O(n) I�O's. Computing the blocking cover requires
(n2�{+nM) work and I�'s.

These theorems follow from the fact that good blocking

covers can be found for planar and simplicial graphs by

extending the techniques of [6, 12]. We proceed by stating

the definition of a cut cover from [6], and then we relate cut

covers to blocking covers. We describe recent results from

[6, 12] that describe how to find good cut covers, and thus,

how to find good blocking covers for planar and simplicial

graphs.

Given a subgraph Gi=(Vi , Ei) of a graph G=(V, E)

with vertex and edge weights w: V_E� [0, 1], we define

the weight of Gi as w(Gi)=�v #Vi
w(v)+�e # Ei

w(e). The
following definitions are slight modifications of definitions

in [6].

Definition. A balanced ({, r, =)-cut-cover of a graph

G=(V, E) with vertex and edge weights w: V_E� [0, 1]
is a triplet (C, G1 , G2), where C�V is called a cut set and
G1=(V1 , E1) and G2=(V2 , E2) are subgraphs of G, such
that

CC1. |C |�r ;

CC2. w(G1)+w(G2)�(1+=) w(G);

CC3. max(w(G1), w(G2))�2w(G)�3;

CC4. \v #V, either N ({)
C (v)�V1 or N

({)
C (v)�V2 .

Definition. A two-color ({, r, =)-cut-cover for a graph

G=(V, E) with two weight functions w1 , w2 : V_E�

[0, 1] is a triplet (C, G1 , G2) which constitutes a balanced

({, r, =)-cut-cover for G both weight functions.

The following theorem relates cut covers to blocking

covers.

Theorem 13. If every subgraph of a graph, G=(V, E),

has a two-color ({, r, O(1�lg E))-cut-cover for any two weight
functions, then the graph has a ({, 3r, M)-blocking-cover.

Proof. We find a blocking cover by recursively taking

two-color cut-covers of subgraphs of G with respect to two

weight functions. One weight function wE assigns weight 1

to each edge in the graph and weight 0 to each vertex. The

342 LEISERSON, RAO, AND TOLEDO

second weight function wB assigns 1 to any node that was

designated to be a blocker at a higher recursive level and

assigns 0 to any other node or edge. That is, we find a

two-color ({, r, ==O(1�lg E))-cut-cover (B, G1 , G2) on the

current subgraph, G, and then repeat on each of G1 and G2 ,

where wB and wE for Gi is inherited from G, except that the

new wB assigns 1 to any element of B in Gi .

We now argue that the set of subgraphs generated at level

log3�2 |E |�M of the recursive decomposition is a ({, 3r, M)-

blocking cover of G. The set of subgraphs forms a {-cover

since a ({, r, =) cut-cover is a {-cover and successively taking

{-covers yields a {-cover of the first graph. The number of

blockers in any subgraph can be bounded by 3r as follows.

Assume that at some recursive level, the current subgraph G

contains 3r blockers from higher recursive levels. Then the

number of blockers that G1 or G2 contains is less than
2
3 (3r)+|B|�3r by the definition of two-color cut-cover.

After log3�2 |E |�M recursive levels, the largest subgraph has

at most M edges, since the number of edges in a subgraph

is reduced by at least 2
3 at each recursive level. Finally, the

total number of edges in the set of subgraphs is at most

(1+=)log3�2(|E |�M) |E |�e= log3�2(|E |�M)|E |=O(E), since the

total number of edges does not increase by more than

(1+=) at each recursive level. K

Kaklamanis, Krizanc, and Rao [6] have shown that for

every integer l, every n-vertex planar graph has a two-color

({, O(l), {�l)-cut-cover which can be found in O(n) time.

Moreover, Plotkin, Rao, and Smith [12] have recently

shown that for every l, every n-vertex d-dimensional sim-

plicial graph of constant aspect ratio has a two-color

O({, O(lO(d) lg n), {�l)-cut-cover that can be found inO(n2�l)

time.3 These results can be combined with Theorem 13 to

yield the following corollaries.

Corollary 14. For every {>0, every n-vertex planar

graph has a ({, r, M)-blocking cover, where {=O(r�lg n).

Corollary 15. For every r>0, every n-vertex d-dimen-

sional simplicial graph with constant aspect ratio has a

({, r, M)-blocking cover, where {=O(r3(1�d)�lg1+3(1�d) n).

Corollary 14 and Corollary 15 can be combined with

Theorem 6 to prove Theorem 11 and Theorem 12.

7. PRACTICAL CONSIDERATIONS

In this section we discuss two implementation issues, the

constants involved with our multigrid algorithm and the

numerical stability of our linear relaxation algorithm.

Estimated Performance of the Multigrid Algorithm

We describe below the results of a careful analysis of the

constants involved with the implementation of a two-

dimensional multigrid algorithms using our method. We

have made the following assumptions:

v The amount of data reuse should be around 10

primary memory accesses to every word fetched from

secondary memory. This level of data reuse hides most of

the low bandwidth of the I�O channel of a modern work-

station.

v Information propagates distance of about four grid

points at every of a multigrid computation. The information

propagation is due to two or three relaxation steps on each

level, plus the transfer of information from one level to

another.

To achieve data reuse ratio of 10, the value of { in our algo-

rithm should be around 30, to compensate for the loading of

the graph in both Phases 1 and 3, for the amount of overlap

in the blocking cover, and for the I�O in Phase 2. We deter-

mined that, with a certain choice of parameters, our scheme

requires that the size M in words of primary memory must

satisfy M>5,570{5, or M>180_109, for {=32. The con-

stant is much larger in three dimensions.

We feel that these constants are too large for the method

to be attractive for practical use on workstations��the

amount of memory required is larger than the address space

of a 32-bit microprocessor and certainly much larger than

the actual memory size of any existing workstation.

The method may still be useful for simulation of other

graphs, such as planar graphs, and for situations where the

amount of memory available is much larger, such as on

supercomputers. Since the amount of memeory required is

proportional to {5, it is very sensitive to the value of {, and

therefore, applying the algorithm with a smaller { requires

much less memory. On the other hand, the algorithm

performs between 2�3 times more work than the naive

algorithm, so it is not particularly useful for hiding small dif-

ferences between the bandwidths of primary and secondary

memory. We believe that our ideas do have practical value

and that situations in which blockers and blocking covers

are advantageous will arise in the future.

Numerical Stability

We now briefly discuss the numerical stability of our out-

of-core linear relaxation algorithm. In exact arithmetic our

algorithm yields the same output as the naive algorithm.

Therefore, we need only to be concerned with rounding

errors in floating-point arithmetic and not with convergence

properties. There are two possible sources of instability in

our algorithm. First, the linear relaxation which is used

in Phase 0 and 1 is done on the graph with some edges

343OUT-OF-CORE LINEAR RELAXATION

3 In fact, they can find cut-covers in any graph that exludes a shallow

minor. That is, they consider graphs that do not contain Kh as a minor,

where the set of vertices in the minor that correspond to a vertex of Kh has

small diameter. Our results also hold for this class of graphs.

removed. This process may be unstable, leading to an inac-

curate values for WX or for W. In addition, the matrix W

may be ill-conditioned, which may lead to instability in

Phase 2.

8. CONCLUSIONS

We conclude the paper with a short discussion of our

results and with a reference to two important extensions of

our work, which will be discussed in detail elsewhere.

Our out-of-core linear relaxation algorithm is the first

algorithmic design method for out-of-core algorithms which

is not based on scheduling and redundant computations. By

exploiting problem-specific properties such as linearity, our

method achieves speedups which are not possible by merely

scheduling and computing redundantly. Although a careful

analysis of the constants in our analysis leads us to believe

that the multigrid algorithm would not be very useful in

practice, we have found that the idea of blockers can lead to

efficient out-of-core algorithms.

Baruch Awerbuch of MIT has pointed out that our

approach of using blocking covers can be applied to reduce

the latency of performing linear relaxation algorithms in

parallel systems. For example, we can perform O(N 2�14)

steps of a linear relaxation on a multigrid graph in a two-

dimensional mesh-connected computer in O(-N) time,

yielding an average latency of only O(N5�14). Any general

computation on a multigrid graph, however, requires an

average latency of at least 0(N1�2�lg N) [7].

Using ideas similar to the those developed in this paper,

we have developed two other out-of-core numerical

methods: one for Krylov space algorithms and the other for

implicit linear relaxation on a line, a problem that arises

from discretization of one-dimensional parabolic partial dif-

ferential equations. One can show that the lower bound we

proved in Theorem 10 holds for these methods as well, and

therefore, only through the use of specific problem proper-

ties can one get an efficient out-of-core implementation.

These extensions were discussed in a preliminary version of

this paper [8], and we plan to describe them in detail in

future papers.

ACKNOWLEDGMENTS

We thank one of the referees for his helpful comments.

REFERENCES

1. A. Aggarwal and J. S. Vitter, The input�output complexity of sorting

and related problems, Comm. ACM 31, No. 9 (1988), 1116�1127.

2. B. Awerbuch and D. Peleg, Sparse partitions, in ``31st Symposium on

Foundations of Computer Science, 1990,'' pp. 503�513.

3. W. L. Briggs, ``A Multigrid Tutorial,'' SIAM, Philadelphia, 1987.

4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, ``Introduction to

Algorithms,'' MIT Press, McGraw�Hill, New York, 1990.

5. J.-W. Hong and H. T. Kung, I�O complexity: The red�blue pebble

game, in ``Proceedings, 13th Annual ACM Symposium on Theory of

Computing, 1981,'' pp. 326�333.

6. C. Kaklamanis, D. Krizanc, and S. Rao, New graph decompositions

and fast emulations in hypercubes and butterflies, in ``Proceedings, 5th

Annual ACM Symposium on Parallel Algorithms and Architectures,

June 1993,'' pp. 325�334.

7. R. Koch, T. Leighton, B. Maggs, S. Rao, and A. Rosenberg, Work-

preserving emulations of fixed-connection networks, in ``Proceedings,

21st Annual ACM Symposium on Theory of Computing, May 1989,''

pp. 227�240.

8. C. E. Leiserson, S. Rao, and S. Toledo, Efficient out-of-core algorithms

for linear relaxation using blocking covers, in ``34rd Annual Sym-

posium on Foundations of Computer Science, November 1993,''

pp. 704�713.

9. G. Miller and W. Thurston, Separators in two and three dimensions,

in ``Proceedings, 22nd Annual ACM Symposium on Theory of Com-

puting, May 1990,'' pp. 300�309.

10. G. L. Miller, S.-H. Teng, and S. A. Vavasis, A unified geometric

approach to graph separators, in ``Proceedings, 32nd Annual Sym-

posium on Foundations of Computer Science, 1991,'' pp. 538�547.

11. C. J. Pfeifer, Data flow and storage allocation for the PDQ-5 program

on the Philco-2000, Comm. ACM 6, No. 7 (1963), 365�366.

12. S. Plotkin, S. Rao, and W. Smith, Shallow excluded minors and

improved graph decomposition, in ``Proceedings, 5th Annual ACM-

SIAM Symposium on Discrete Algorithms, 1994,'' pp. 462�470.

344 LEISERSON, RAO, AND TOLEDO

