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Abstract—Wireless links exhibit diverse link quality (e.g., in
terms of error rate, latency, and required transmit power),
and inferring the link cost correctly is crucial to finding an
efficient path in multihop wireless networks. In this paper, we
consider the problem of estimating packet error rate (PER) in
wireless networks. Most existing schemes use observed error
rates of probe messages as representative packet error rates for
wireless links. However, since typical data packets are larger
than probe messages, the actual data packet error rate is often
higher than the observed error rate of probe messages. Instead
of directly using measurement statistics, our approach is to
analyze them to determine the link characteristics and estimate
the link quality (e.g., PER) based on the understanding. We
describe a simple estimation scheme based on a well-known
two-state Markov bit error model for wireless channels. We
perform various experiments on two wireless testbeds and show
the proposed scheme can successfully estimate PERs for packets
of arbitrary size in diverse environments. When compared to
other alternatives, the proposed estimation scheme is accurate
and incurs small control overhead. We also integrate the scheme
into an existing routing scheme. Our experiment results show
that the combined scheme can reduce the transmission overhead
by 60% when compared to a naive estimation strategy based on
one type of probe messages.

I. INTRODUCTION

In multihop wireless networks, end nodes typically re-
lay non-local messages to achieve end-to-end connectivity
between arbitrary source and destination. In earlier routing
schemes, the goal was to find a path with minimum hop
count [1]–[3]. In practice, however, different wireless links
show wide diversity in quality [4]–[6], and more recent
schemes attempt to find a path with low cost, for example,
based on energy consumption, latency, and link error rate.
In particular, wireless transmissions are typically more prone
to bit errors than wired ones, and several routing schemes
consider packet error rates over wireless links to improve
message delivery performance [5], [7]–[9].

To benefit from those proposed schemes and achieve actual
performance improvement, we need to be able to assess link
quality (e.g., data packet error rate) accurately and preferably
with low overhead. The most popular assessment strategy is to
use probe messages (e.g., periodic HELLO messages) and use
the observed error rate for all packets sent over the wireless
link [5], [6], [10]. One problem with this approach is that probe
messages are often shorter and less prone to bit-error-induced
losses than typical data packets. Therefore, the estimated error

rate based on probe messages can be significantly lower than
the actual error rate for data packets, especially in the so-
called communication gray zone [4]. For example, in our
experiments, average packet error rates for a particular wireless
link were around 14% for 16-byte messages and more than
37% for 1024-byte messages. Clearly, path selection based on
the inaccurate estimation will lead to suboptimal performance.
An alternative is to use probe messages with different sizes
(e.g., 128-, 256-, 512-, and 1024-byte probe messages) and
use the observed PER for a similar size as an approximation.
However, this approach (called multi-probe approach in this
paper) will incur higher overhead due to increased message
length and count.

We consider the accurate estimation of packet error rates
(PERs) over wireless links and its application to efficient
routing in multihop wireless networks. Our general approach
is that instead of directly using measurement values, we
analyze them to determine the channel characteristics and
estimate packet error rates based on the understanding. In this
paper, we present a simple estimation strategy that employs
a well-known two-state Markov bit error model for wireless
channels [11], [12]. This scheme extrapolates data packet error
rates based on the statistics of a few different types of probe
messages. We use two wireless testbeds to measure packet
error rates for various links and demonstrate that the strategy
can successfully estimate error rates for packets of arbitrary
size in diverse wireless environments. We also illustrate how
to incorporate this strategy into an existing routing scheme
in practice. In one of our experiments, when used with an
existing routing scheme, this estimation technique leads to
60% lower data transmission overhead when compared to the
naive estimation strategy using probe messages of a single
type. We also discuss possible approaches to further improve
estimation performance with smaller overhead.

The rest of this paper is organized as follows. In Section II,
we review some of related work. We present our estimation
scheme and discuss issues for practical deployment in Sec-
tion III. In Section IV, we report experiment results on two
wireless testbeds and demonstrate the estimation performance
of the proposed scheme. We describe how to integrate the es-
timation scheme into an existing routing protocol and present
simple experiment results in Section V. We conclude and
present our future directions in Section VI.



II. RELATED WORK

Packet transmissions in wireless networks are more prone
to bit errors than in wired networks, and significant research
efforts have been made to understand and model wireless
errors. Although some protocols and coding schemes assume
bit errors are independent and identically distributed, Markov
models with finite states have been popular. Among such
models, the two-state Gilbert/Elliot model [11], [12] is best
known due to its simplicity yet reasonable accuracy, which
we describe in more detail in Section III-A. Kopke et al. [13]
propose to use a chaotic map as a model for bit errors
over wireless channels and describe how to determine the
model parameters based on measurement data. To use this
chaotic map model, however, we need the information of bit
error processes, which is difficult to obtain from practical
packet-level communications. Also, we need to determine
more parameters to employ the model, which can be more
complex and error-prone in practice. Although Kopke et al.
present results that the Gilbert/Elliot model sometimes does
not accurately model the bit error processes, our experiment
results in Section IV indicate that the Gilbert/Elliot model is
a good approximation that can be efficiently implemented.

A number of researchers have performed experiments to
validate Markov models and utilize them for packet error
simulation. Arauz and Krishnamurthy [14] validate the tra-
ditional two-state Markov models using experimental traces
in various IEEE 802.11-based network envirnoments. Hartwell
and Fapojuwo [15] train Markov models with different number
of states using 802.11a measurement traces. Then, they use
the trained Markov models to generate simulated traces and
compare the generated traces with the original traces. Willig
et al. [16] present results of bit error measurements using
an IEEE 802.11-compliant radio modem in an industrial
environment. They show that the popular Gilbert/Elliot model
and its slight modification are useful for simulating bit errors
on a wireless link. The main focus of their work is to simulate
wireless errors more accurately. In contrast, our goal is to
propose an estimation scheme for packet error rates based on
the wireless error models.

Other researchers report measurement results in various
environments. Using AT&T WaveLAN wireless interfaces,
Eckhardt and Steenkiste [17] characterize packet errors and
evaluate the effects of interference and attenuation due to
distance and obstacles on the packet loss rate and bit error
rate. So et al. [18] report results from a series of experiments
designed to investigate loss behavior of broadcast messages
in a wireless sensor network. Zhao and Govindan [19] report
on a systematic medium-scale measurement of packet delivery
performance in three different environments: an indoor office
building, a habitat with moderate foliage, and an open parking
lot. Aguayo et al. [6] analyze the causes of packet loss
in a 38-node urban multihop 802.11b network. They find
that link error rates stay relatively uniform for the majority
of links. These efforts attempt to determine wireless link
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Fig. 1. The two-state Markov channel model by Gilbert and Elliot. G denotes
good state, and B denotes bad state.

characteristics through measurements, while we propose an
estimation strategy built on top of these previous findings.

Recently, attention has been paid to finding high-quality
paths in the face of error-prone wireless channels. Specifically,
some new routing metrics for multihop wireless networks take
link quality into consideration. For example, De Couto et
al. [5] propose a link metric called ETX (Expected Transmis-
sion Count), which corresponds to the expected number of
transmissions required to successfully deliver a packet over
the wireless link. This metric requires per-link measurements
of packet loss rates in both directions of a wireless link. Draves
et al. [7] propose WCETT (Weighted Cumulative Expected
Transmission Time), which assigns weights to individual links
based on ETT (Expected Transmission Time) of a packet over
the link. ETT is a function of the loss rate and the bandwidth
of the link. For minimum-energy routing in wireless networks,
Banerjee and Misra [20] define a link cost as a function of
both the link error rate and the energy required for a single
transmission attempt across the link. Lee et al. [8] propose a
new link metric for geographic routing, which we describe in
more detail in Section V. Compared to these works, our work
presents a PER estimation strategy and is complementary to
the practical implementation of such routing schemes.

III. PACKET ERROR RATE ESTIMATION

Our PER estimation technique is based on the Gilbert/Elliot
bit error model. In this section, we describe the model first and
the estimation technique next.

A. Gilbert/Elliot Model

In the Gilbert/Elliot (GE) model [12], a wireless channel is
in one of the following two states: good and bad (Figure 1).
If the channel is in good state, then a bit transmission error
occurs with the probability of eg . On the other hand, if the
channel is in bad state, the probability of bit transmission
error is eb. Prior to the transmission of each new bit, the
channel may change states or remain in the current state.
Figure 1 shows the GE model representation with state-
transition probabilities. We can easily obtain the following
steady-state probabilities:

PG =
1− q

2− (p + q)
, PB =

1− p

2− (p + q)
, (1)
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Fig. 2. Proposed estimation strategy. We use two observed error rates of
two different types of probe messages to determine the link characteristic
parameters of the GE model.

where PG and PB are steady-state probabilities for good and
bad states. In this paper, we use eg = 0 and eb = 1 for
simplicity.

In this model, the PER of n-byte message is:

PER(n) = 1− (PG p8n + PB(1− q)p8n−1). (2)

Note that there are two cases where no bit error occurs in
a packet. First, the channel is initially in good state and
remains there for all bit transmissions, and this probability
is PG p8n for an n-byte packet. In the other case, the channel
is initially in bad state, but the channel changes into good
state for the first bit transmission and remains in good state.
This probability is PB (1− q)p8n−1. A packet error occurs if
neither of them happens, and hence Eq. 2.

B. Estimation Strategy

In this subsection, we describe how we determine the link
characteristics based on the GE model and estimate packet
error rates using the determined link characteristics. Figure 2
illustrates the overall approach. Note that the simplified GE
model has only two characteristic parameters, and we use
statistics from two distinct types of probe messages to solve
two instances of Eq. 2 and obtain p and q. Then, when we
send a L-byte data packet, we can use the obtained parameters
(p and q) and Eq. 2 to estimate the expected error rate.
Specifically, given PER(m) and PER(n) from m-byte and n-
byte probe messages, we can calculate p as follows:

p =
(

1− PER(n)
1− PER(m)

) 1
8(n−m)

Then, we can estimate the PER of L-byte data messages using
the following formula:

PER(L) = 1− (1− PER(m))
(

1− PER(n)
1− PER(m)

)L−m
n−m

(3)

As illustrated in Section IV, if we obtain good statistics from
probe messages, we can estimate expected error rates for
packets of arbitrary size with reasonable accuracy.

Overhead Comparison with the Multi-probe Approach:
Since this extrapolation-based technique uses only two probe
types, when compared to the multi-probe strategy, it typically
incurs less estimation overhead due to fewer and smaller probe
messages. Our approach also can be beneficial when a node
needs to inform its neighbors of reverse link quality due to
asymmetry [5], [8]. For example, although node A knows the
observed link quality for B → A, it needs to know the link

quality for A → B, which A should learn from B. In the multi-
probe approach, B needs to inform A of multiple error rates
for various packet sizes (e.g., 4 different error rates for 128-,
256-, 512-, and 1024-byte packets). Since a periodic broadcast
should typically include such information for all neighbors, the
control messages can be considerably large when the node has
many neighbors. With our estimation scheme, the node needs
to send appropriate p and q only, not observed error rates for
multiple packet sizes; as a result, the size of control message
can be a fraction when compared to the multi-probe case.

C. Using Existing Periodic Messages

Many existing protocols use periodic message exchange [3],
[7], [21], [22], and our estimation technique can take advan-
tage of it. Depending on the protocol, the periodic message can
include various information about sender, neighbors, and links
between them [7], [21], [22], which can be quite long. Another
major objective of such periodic messages is to inform whether
a node is within the communication range of other nodes
(e.g., when nodes are mobile) [21], [22]. Since our estimation
technique needs two measurement values, we propose that two
different types of periodic messages be used and sent in an
alternate manner. The shorter message type includes only the
ID of transmitting node, which is mainly to inform reachability
with lower overhead. The longer message type will include
all the protocol-specific information. From the two types of
messages, we will be able to apply our technique to understand
the channel characteristics.

When there are no such periodic messages used in other
protocols, we need to send our own probe messages. This
incurs control overhead, but will be typically less than that
of the multi-probe approach because our estimation technique
typically uses fewer types of probe messages. To minimize
the control overhead due to periodic messages, Zhang et
al. [23] propose to infer link quality by using data packet
transmissions only. However, their scheme probabilistically
sends data packets to a set of neighbors to obtain up-to-date
link quality information, which can lead to inefficient use
of wireless resource. The relative performance of such data-
driven and beacon-based link estimation schemes will depend
on various aspects such as specific applications and network
environments.

We next discuss a few issues with the efficient implemen-
tation of the scheme in practice.

D. Discussions

Estimation Accuracy: Since our estimation technique is
based on extrapolation, small measurement errors for shorter
probe messages will amplify the estimation error for longer
data packets. To avoid this, we often need to collect statistics
from a significant number of probe message to obtain reliable
measurements. In Section IV, we empirically show how many
probe message are needed to estimate PER with reasonable
accuracy. Another issue arises when we use existing protocol-
specific periodic messages as probes. Unless a network is



static, the probe message length may change over time (e.g.,
due to change in the number of neighbors). Then, we will have
probe messages of various sizes, and using probe messages
of any two fixed sizes may not lead to sufficiently accurate
estimation. In this scenario, applying a regression analysis
technique will be an interesting approach to investigate.

Unicast vs. Broadcast: In our PER estimation, we use
broadcast probe messages to infer the PER of unicast packets.
The difference in the two transmission mechanisms can po-
tentially affect the estimation accuracy [23]. Wireless packet
errors may be caused by collisions. In IEEE 802.11 networks,
RTS and CTS control messages exchange can reduce the
collision-induced errors of actual unicast data messages [24].
However, since broadcast messages do not have such a virtual
carrier-sense mechanism, they are more prone to collision-
based errors than unicast messages. One possible approach will
be to leverage existing schemes that infer active stations [25]
and take the collision probability into account [24]. Moreover,
multiple data transmission rates are supported in IEEE 802.11-
based networks. Probe messages are often broadcast typically
at a lower rate such as 1 Mbps. In contrast, unicast messages
can be sent at a higher transmission rate (up to 54 Mbps). We
will discuss the relationship between packet error rates and
data transmission rates in more detail in Section IV-B.

Other Wireless Channel Models: Our estimation technique
uses packet-level loss information. As in many bit error mod-
els, however, if we use the knowledge of bit-error processes,
then we can potentially understand the channel characteristics
better and estimate packet error rates more accurately. For
example, applying the chaotic map-based model [13] or the
bipartite models [26] might lead to better estimation accuracy.
However, while it is relatively easy to detect whether any
bit error has occurred (i.e., packet corruption detected by
checksum), it is more difficult and expensive in practice to
learn which bits are corrupted. To model wireless channel more
accurately, there are also some other Markov models which
consider wireless channel fading [27], [28]. But these models
are more complicated and use more states than the GE model.
Another possible approach for more accurate packet error
rate estimation is to use above mentioned Markov models.
In general, however, we need to determine more parameters
in such models, which potentially can lead to more types of
probe messages and higher control overhead.

IV. TESTBED EXPERIMENTS

In this section, we present results from our experiments
performed on real testbeds and demonstrate that our estimation
strategy performs well in various wireless environments.

A. Experiment Setup

We have performed our experiments in two open access
wireless testbeds: Emulab (http://www.emulab.net) and OR-
BIT (http://www.orbit-lab.org). Although Emulab is often used
to provide emulated network environments for wired networks
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Fig. 3. Partial floorplan for the Emulab wireless testbed. Nodes 1 and 9
cannot directly communicate, and all the other node pairs can talk to each
other.

experiments, the Emulab wireless testbed uses real air com-
munication through IEEE 802.11 wireless interfaces between
stationary PC nodes scattered around a typical office building.
We only use the nodes on the third floor (Figure 3). Each PC
has two Netgear WAG311 wireless interface cards based on the
Atheros 5212 chipset. It uses Redhat 9.0 with 2.4 kernel and
the MadWifi open-source device driver1. The ORBIT testbed
currently consists of 400 wireless nodes, each equipped with
two IEEE 802.11 wireless cards laid out in a 20-by-20 grid
with approximately one meter spacing between nearby nodes.
Due to the relatively small deployment area, observed packet
error rates in ORBIT show less diversity. Thus, although we
present results from ORBIT, we focus on results from Emulab
to illustrate that the estimation technique performs well for
both low-error and high-error links.

In our experiments, a sender broadcasts 16, 32, 64, 128,
256, 512 and 1024-byte UDP packets every 0.05 seconds in
an intermixed fashion to minimize the effect of link condition
variation over time on the error rates of different message
types. In our experiments, we use only one sender at any
instant to minimize the interference and collisions. Each sender
broadcasts 10000 packets for each size (70000 packets total).
All nodes receiving the packets record the packet size and
sequence number to calculate the observed PERs for each
message type. In this paper, without otherwise mentioned,
we use the fixed transmission rate of 1 Mbps, the default
broadcast transmission rate in the MadWifi device driver, for
all messages. But we also evaluate the estimation performance
for other different data transmission rates in Section IV-B. The
transmit power is fixed at 31 mW, which is the default value
in the device driver.

We compare the estimation performance of the following
strategies:
• BASIC(m): This scheme uses the average error rate of

m-byte probe messages for data packets of all sizes.
• INDEP(m): This scheme assumes the independent bit

error model and extrapolates the expected packet error
rate based on the statistics of m-byte probe messages.

• GE(m, n): This is the proposed scheme based on the GE

1http://www.madwifi.org
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Fig. 4. Estimated and observed PERs for 1024-byte packets over the link
from node 1 to node 4 in Emulab (Figure 3).

model, which uses the statistics of m-byte and n-byte
probe messages.

• OBSERVED: This is the actual observed packet error rate.
For the INDEP scheme, we can estimate PERs as follows.
Suppose we know the observed value of PER(m) from m-
byte probe messages. To infer the PER for L-byte data
messages, we can use PER(L) = 1 − (1 − PER(m))L/m.
Only one measurement value is required for INDEP; GE uses
two parameters, and there can be more possible combinations
of the two. For both schemes, proper parameter choice can be
crucial to correct PER estimation. We consider three different
combinations of parameters for GE and two different cases for
INDEP and compare the estimation performance.

B. Experiment Results

We first consider how well the above estimation strategies
perform. In Figure 4, we plot the observed error rate for 1024-
byte packets and estimated error rates by different schemes2.
We use a representative experiment sending 10000 packets
for each probe type, and each point in the figure is based
on cumulative packet error rates after every 1000 packets. In
Figure 4, the estimation by GE(16,128) closely matches the
actual average packet error rate. In general, we observe that
the estimation error for GE(16,128) becomes smaller as we
use more probe messages; we discuss this issue later in more
detail.

In our experiments, GE(16,32) does not perform as well as
GE(16,128). In Figure 4 there is considerable difference in the
estimated value over time, and the measurement error is often
relatively large. One possible explanation is that the estimation
by GE(16,32) is less robust because we use extrapolation based
on two relatively nearby sample points; a small measurement
error can amplify the estimation error. Also, Kopke et al. [13]
find that there is difference in bit error probability depending
on the bit position, and bit errors occur more frequently at

2We include additional 84 bytes of lower layer headers in the calculation.
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Fig. 5. Estimated and observed PERs for 1024-byte packets over a link in
ORBIT.

Emulab Links
8→9 1→13 1→7 1→4 1→8 11→16 16→5

OBSERVED 0.018 0.135 0.145 0.334 0.375 0.548 0.738
GE(16,128) 0.021 0.131 0.145 0.385 0.393 0.526 0.754
GE(16,64) 0.025 0.222 0.247 0.465 0.332 0.415 0.791
GE(16,32) 0.046 0.154 0.043 0.524 0.243 0.594 0.677

INDEP(128) 0.052 0.222 0.255 0.629 0.645 0.907 0.996
INDEP(16) 0.092 0.332 0.383 0.816 0.831 0.993 1.000

BASIC(128) 0.010 0.047 0.055 0.173 0.180 0.385 0.646

TABLE I
COMPARISON OF DIFFERENT ESTIMATION TECHNIQUES AGAINST ACTUAL
PACKET ERROR RATES. WE USE 10000 PACKETS FOR EACH OF PROBE AND

DATA MESSAGE TYPES. VALUES IN BOLD REPRESENT THE CASES WITH
MINIMUM ESTIMATION ERROR.

the beginning of a packet. As a result, estimation using short
probe messages alone can potentially lead to higher estimation
errors. In Figure 4, INDEP does not estimate PER correctly,
and although not shown in the figure, the estimation error by
INDEP(16) is larger than that of INDEP(128). Although we
do not show all the results here, we have experimented with
other links and performed multiple experiments for each link,
and the results are similar. We later present some of them in
Table I.

We have performed experiments on the ORBIT testbed. In
Figure 5, we plot the observed and estimated error rates for
1024-byte obtained from ORBIT. In ORBIT, all the nodes are
relatively close to each other, and in the figure, we use the link
with the highest link error rate. We observe the trend shown
in Figure 5 (from ORBIT) is similar to the one in Figure 4
(from Emulab); GE(16,128) performs better than GE(16,32).
The performance of INDEP(128) in this particular experiment
is better than in Figure 4. In the rest of this section, we use
results from Emulab only.

Experiments with Various Links: In the previous results,
we considered results only from a few links. We now present
results from various wireless links with diverse link quality.
In Table I, we report estimated PERs by different schemes
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Fig. 6. PER estimation for different packet sizes. Data transmission rate is
1M. We use the link from node 1 to node 4. Again, GE(16,128) performs best
for all packet sizes.

as well as observed error rates for 1024-byte packets3. We
observe that GE(16,128) estimation is the most accurate in
all cases (highlighted in bold), and the estimation error is
small regardless of link quality. GE(16,64) often performs
better than GE(16,32), but both of them result in larger
estimation errors than GE(16,128). As in Figure 4, INDEP leads
to large estimation errors, while INDEP(128) performs better
than INDEP(16). Although the independent bit error model has
served as a reasonable model in [29], it does not seem to reflect
the channel characteristics correctly in our indoor experiments.
BASIC(128) uses the error rate of 128-byte probe messages
as the estimation for 1024-byte packets, which results in
significant underestimation. In Section V, we illustrate that this
underestimation by BASIC can lead to significant inefficiency
when used with existing routing schemes.

Varying Data Packet Sizes: In the previous experiments,
we fixed the data packet length to 1024 bytes. In this set
of experiments, we vary the data packet size and compare
the estimated and observed error rates. In this experiment,
we use additional packet sizes (750, 1200, and 1400 bytes).
In Figure 6, we plot the estimated and actual packet error
rates with varying packet sizes. We use the statistics of 10000
messages for each probe type. Not surprisingly, average packet
error rates increase as data packets become larger. We observe
that GE(16,128) again performs best in estimating error rates
for all packet sizes. Other schemes show similar trends to
Figure 4; GE(16,64) performs worse than GE(16,128), while
INDEP performs worst. This result illustrates that our proposed
technique estimates error rates for various packet sizes.

Varying Data Transmission Rate: IEEE 802.11-based net-
works provide multiple bit-rates for data transmission. Rate
adaptation algorithms such as Auto Rate Fallback (ARF)

3Nodes 5, 11, and 16 are not shown in Figure 3. The full floorplan is
available at https://www.emulab.net/floormap.php3.
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Fig. 8. PER estimation for different packet sizes. Data transmission rate is
11M. We still use the link from node 1 to node 4. GE(16,128) performs best
for all packet sizes.

[30] are needed to achieve higher performance under varying
conditions. Among these rates, 1M, 2M, 5.5M and 11M use
direct sequence spread spectrum (DSSS), while the other
transmission rates such as 6M, 12M and 54M employ orthogo-
nal frequency division multiplexing (OFDM). Generally, high
quality links can use higher bit-rates to transmit more data
and lower bit-rates usually have a lower packet error rate on
low quality links. In previous research work, it was pointed
out that, due to different modulation techniques used, there are
many links that can operate at lower bit rate but not at higher
bit rate and vice-versa [31].

In the previous experiments, we fixed the data transmission
rate to 1M. In this set of experiments, we vary the data
transmission rate and compare the estimated and observed
error rates. All the other configurations are the same as those
in the experiment for Figure 6. In Figure 7 and Figure 8, we
plot the estimated and actual packet error rates for different
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Figure 4.

packet sizes at 2M and 11M bit-rates, respectively. We find
that GE(16,128) still performs best in estimating error rates
for those two bit-rates. We also evaluate the estimation per-
formance for 5.5M bit-rate and get similar result. However,
because of the limitation of Emulab testbed, for other data
transmission rates such as 6M, 12M and 54M, only a few
links work. As a whole, Figure 6, Figure 7 and Figure 8
show that our proposed technique can estimate error rates for
various DSSS-based data transmission rates. In general, it will
be useful to understand the relationship among error rates for
packets sent at different transmit rates over the same wireless
link [6], which we plan to investigate further in the future.

Convergence Time for Accurate Estimation: One of our
goals is to estimate error rates quickly with small overhead.
In this set of experiments, we look into the number of probe
messages needed to achieve reasonable estimation accuracy.
As mentioned in Section III, small measurement errors in
probe messages can cause large extrapolation errors. However,
sending 1000 probe messages (to obtain the first point in
Figure 4) takes tens of minutes if we send a probe message
every second. In this experiment, we calculate the estimation
using the cumulative statistics after every 100 probe messages.
One issue with inferring error rates based on a small number
of packets is that the observed error rate of 16-byte packets
is sometimes higher than that of 128-byte packets, which is
contrary to the trend shown in Figure 6. In that case, when we
apply Eq. 2, the estimation is often negative for longer data
packets. Clearly, it is due to limited number of samples, and
we are unlikely to have a good estimation by blindly applying
Eq. 2 with only a small number of probe messages. In such
a case, we use the maximum of the following three values as
the estimated error rate: PER(16), PER(128), and the estimated
PER from Eq. 2.

In Figure 9, we consider the estimation performance when
we use a smaller number of probe messages. We observe

that GE(16,128) converges after 300 probe messages, while
GE(16,32) shows a substantial amount of fluctuation. Still,
GE(16,128) takes several minutes before achieving reasonable
convergence if we send a probe message every second. This
amount of time is acceptable for more static wireless mesh
networks [6], while more dynamic wireless networks such as
ad hoc networks may require faster convergence. We plan to
investigate how to reduce the number of required probe mes-
sages further in the future. As mentioned in Section III, one
possibility is to experiment with regression analysis techniques
combined with observed error rates for actually transmitted
data packets.

V. APPLICATION TO EXISTING ROUTING SCHEMES

This paper is part of our work to implement a geographic
routing scheme that can find an efficient path. In this section,
we briefly describe the proposed framework for efficient
geographic routing [8] and present results when we integrate
the estimation strategy into the framework.

A. Background: Efficient Geographic Routing

In geographic routing, nodes use location information of
neighbors and destination to choose next hop nodes [3],
[32]. The most popular strategy in geographic routing is
the greedy forwarding—the current node S greedily selects
the neighbor that is closest to destination T whenever pos-
sible. Let us consider the amount of decrease in distance
by a neighbor n, which is called the advance (ADV) of n:
ADV(n) = D(S) − D(n), where D(x) denotes the distance
from node x to T. Then, the above greedy strategy tries
to maximize the ADV of next hop without considering link
quality. Lee et al. [8] propose to use a new metric called
NADV (normalized advance), defined as ADV divided by link
cost, i.e., NADV = ADV/Cost. In particular, if we consider
packet error rate and use Cost=ETX=1/(1-PER), we have the
following link metric4:

NADV =
ADV
Cost

= ADV(1− PER). (4)

Then, among the available neighbors, we choose the neighbor
with largest NADV. Intuitively, NADV denotes the amount
of advance achieved per unit cost. We can show that NADV
can find optimal paths under certain idealized conditions and
achieve significant performance improvement in more realistic
scenarios. (See [8] for details.)

B. Experiment Results

We have modified the geographic routing implementation
from USC5 to account for link cost when choosing next hops.
We installed the modified code at the nodes shown in Figure 3.
In our experiments, node 9 is the destination, and node 1 is the
source sending 1000 UDP packets (1024 bytes each) at the rate

4Although ETX considers the reverse error rate for ACK [5], we ignore it
here for simplicity.

5Available at http://enl.usc.edu/software.html



Next ADV NADV Number of Retransmissions
Hop BASIC(128) GE(16,128) at source at relay total

4 19.16 15.85 11.78 536 188 724
7 25.96 24.54 22.19 185 119 304
8 30.00 24.61 18.20 768 4 772

13 20.55 19.59 17.85 250 171 421

TABLE II
ROUTING METRICS BASED ON DIFFERENT ESTIMATION SCHEMES AND

ACTUAL ROUTING PERFORMANCE. VALUES IN BOLD CORRESPOND TO THE
BEST CHOICES UNDER DIFFERENT CRITERIA. THE DELIVERY RATIOS FOR

ALL CASES ARE OVER 99.9% DUE TO MAC-LEVEL RETRANSMISSIONS
FOR UNICAST MESSAGES.

of 20 packets per second. As in Section IV, we use the IEEE
802.11 MAC protocol, and the MAC-level transmit data rate
is fixed at 1 Mbps. Depending on the estimation strategies we
combine with the routing metric, we can potentially choose
different next hops. For each case, we measure the average
delivery ratio and number of total retransmissions (overhead).
In some of our experiments, we force the routing code to
choose a particular next hop to compare the performance.
We use an internal variable (LongRetryCount) in the MadWifi
device driver to retrieve the total number of MAC-level
retransmissions. To maintain consistency with the results in
Table I, we use the estimated values in the table as fixed link
cost when choosing the next hop. We compare the performance
when we use BASIC(128), INDEP(128), and GE(16,128)6.

In Table II, we present (1) routing metrics for each neighbor
from the source node 1 when using different estimation
schemes and (2) the number of MAC-level data retransmis-
sions when choosing different nodes as the next hop. Node
1 sends 1000 UDP packets total. For the ADV metric, since
we do not consider link quality, we choose node 8, which
is closest to the destination node 9. When we use NADV
based on BASIC(128), error rates for 1024-byte packets are
underestimated, and node 8 is chosen as the best next hop.
However, the actual data packet error rate for the link to
node 8 is significantly higher (37.5% for 1024-byte packets
vs. 18.0% for 128-byte packets), and using node 8 as relay
node leads to multiple packet retransmissions due to losses. In
contrast, when we use NADV and GE(16,128), we can estimate
the actual error rate more accurately. Consequently, we can
transfer data messages with minimum data overhead; when
using node 7 as relay, we experience 304 retransmissions,
which is only around 40% of the case of using node 8 as
relay (304 vs. 772). Although not shown here, when using
INDEP(128) and NADV, node 7 is still chosen as next hop.
However, this selection is based on incorrect PER estimation
(25.5% for INDEP(128) estimation vs. 14.5% for observed
PER). Such incorrect estimation by INDEP can potentially

6In the implementation we use, periodic messages use 16-byte UDP
packets. If periodic messages include neighbor information such as reverse
link quality and location information [32], the size of periodic message will
be easily over 128 bytes even with a few neighbors. Therefore, our scheme
can be implemented without introducing additional overhead.

eliminate the use of links with reasonable quality, which will
be often suboptimal. Thus, we expect that INDEP will not
work well in other scenarios, and we plan to perform more
experiments in various settings.

Although not comprehensive, we believe the results in
this section indicate that our proposed scheme can achieve
significant performance improvement in practice.

VI. CONCLUSIONS AND FUTURE WORK

Longer data packets are more prone to bit errors than
shorter probe messages, and directly using the statistics from
short probe messages as estimated data error rates can lead
to significant inaccuracy and inefficiency. In this paper, we
have described a simple PER estimation scheme based on
the two-state Markov bit error model by Gilbert and Elliot.
We perform various experiments on two wireless testbeds and
compare the estimation performance of the proposed scheme
with that of other schemes. We demonstrate that our proposed
scheme can estimate error rates for packets of arbitrary size in
various environments, while the independent bit-error model
does not lead to accurate estimation. We also have integrated
our scheme into an existing geographic routing framework
and shown that the combination can improve the network
efficiency significantly.

There are many interesting issues we can look into for more
accurate PER estimation with lower overhead and delay. Using
other available information (e.g., observed loss rates of data
packets, SNR values, overheard nearby communications, etc.)
will be a promising approach to reduce the number of probe
messages while achieving reasonable estimation accuracy. In
practice, there can be collision-induced packet errors, and
identifying those errors to improve the estimation accuracy
will be an interesting issue for future work.
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