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Summary. Spatial-clustered data refer to high-dimensional correlated measurements collected from units or subjects that
are spatially clustered. Such data arise frequently from studies in social and health sciences. We propose a unified modeling
framework, termed as GeoCopula, to characterize both large-scale variation, and small-scale variation for various data types,
including continuous data, binary data, and count data as special cases. To overcome challenges in the estimation and
inference for the model parameters, we propose an efficient composite likelihood approach in that the estimation efficiency
is resulted from a construction of over-identified joint composite estimating equations. Consequently, the statistical theory
for the proposed estimation is developed by extending the classical theory of the generalized method of moments. A clear
advantage of the proposed estimation method is the computation feasibility. We conduct several simulation studies to assess
the performance of the proposed models and estimation methods for both Gaussian and binary spatial-clustered data. Results
show a clear improvement on estimation efficiency over the conventional composite likelihood method. An illustrative data
example is included to motivate and demonstrate the proposed method.
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1. Introduction
In social and health sciences, research studies usually involve
subjects that are randomly selected within a large number of
geographical units. For example, among the studies of place
effects on health, Chaix, Merlo, and Chauvin (2005) inves-
tigated individual and contextual factors that determined
the health care utilization in France, where 10,955 people
were randomly surveyed within 4421 municipals in France. To
study the association of neighborhood environmental risk fac-
tors with cardiovascular diseases, Mujahid et al. (2007) used a
sample of 5988 subjects selected from 576 census tracts from
three states in USA. Grady (2010) assessed the impact of
racial residential segregation on low birth weight from a pool
of 10,277 cases nested in 1092 census tracts in Michigan. In
civil engineering studies, Sener, Pendyala, and Bhat (2011)
analyzed the physical activity participation levels of individ-
uals in a family unit based on data drawn from the 2000
San Francisco Bay Area Household Travel Survey, in which
individual and household socio-demographic as well as activ-
ity and travel episodes were recorded for subjects in 15,000
households.

These examples are just a glimpse of a growing number of
research projects that collect data in spatial dimensions, thus
necessitate the eminent need to generalize the multilevel data
analysis to incorporate the spatial dependencies among the
clustering units. In classic multilevel models, data across clus-
ters are assumed to be independent, and the focus dwells on
appropriately accounting for within-cluster correlations when
making statistical inferences. However, when clusters are spa-

tially correlated, such as neighborhoods or census tracts, sub-
jects from clusters are likely to be correlated due to location
proximity, hence, the between-cluster independence assump-
tion is no longer valid. Statistical analysis ignoring the spa-
tial effect can lead to wrong standard errors of the regression
coefficient estimates, which in turn biases hypothesis testing
(Anselin and Griffith, 1988). As a result, in order to draw
valid statistical inference, it is of critical importance to ac-
count for the between-cluster spatial correlation as well as
the within-cluster correlation.

In the current literature, there are two popular modeling
frameworks for analyzing spatially correlated data. One ap-
proach is based on random effects models, where mean mod-
els are specified conditional on cluster-specific random ef-
fects (e.g., Diggle et al., 2002). The spatial structures are
accounted for by allowing random effects to distribute as a
spatial stochastic process. For non-Gaussian data, regression
parameters in such hierarchical specification only have con-
ditional or cluster-specific interpretations, which may not be
desirable when population characteristics are of interest. The
other approach is the generalized estimating equation (GEE,
Liang and Zeger, 1986), which specifies the mean model and
covariance separately. In the covariance model, the spatial de-
pendence is incorporated via a spatially structured working
correlation matrix (e.g., Albert and McShane, 1995; Gotway
and Stroup, 1997). GEE is suitable when the mean model is
of central interest, since it treats spatial dependencies as nui-
sance components. As a result, GEE is not appropriate for
spatial interpolation, which however is an important task in
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many practical studies, such as disease mapping (Diggle et al.,
2002).

In this article, we adopt a flexible modeling framework
that models both mean and covariance structures of spatial-
clustered data, termed as GeoCopula regression model. In this
model, univariate margins are specified by generalized linear
models, while the spatial and cluster dependencies are mod-
eled through the multivariate Gaussian copula. The proposed
framework allows us to analyze a large variety of multivariate
discrete and continuous spatial-clustered data, including nor-
mal, binary, and count data as special cases. Since the mean
and the dependence structure are separately formulated, re-
gression parameters have marginal interpretations, and at the
same time, spatial dependence is explicitly modeled by the
copula and is not constrained by the mean model.

It is worth mentioning that Bárdossy (2006) and Bárdossy
and Li (2008) proposed to use bivariate copulas as an alterna-
tive to variograms and covariance functions to describe spatial
variability. They showed that the copula-based approach is
more flexible in accounting for asymmetrical dependence and
is superior in terms of prediction when the normality assump-
tion is violated. Moreover, Kazianka and Pilz (2010) proposed
a similar regression model in which the exponential dispersion
distribution family (Jorgensen, 1997) is used as the marginal
distributions and a multivariate copula is applied to model
the spatial dependence. More recently, Masarotto and Varin
(2012) provided a comprehensive methodological overview on
the topic of Gaussian copula marginal regression models, in
which they proposed an importance sampling procedure to
carry out maximum likelihood estimation. Our work in this
article extends the above mentioned methods to analyze more
challenging multi-level spatial-clustered data, and attempts
to provide a richer statistical presentation (e.g., large sample
properties) of the multivariate copula regression model. Most
importantly, our joint composite estimating function is new
and computationally efficient in such complex data structures.

A key obstacle of preventing the wide spread of spa-
tial analysis in contextual research is mostly due to com-
putational issues. Almost all existing models require either
high-dimensional matrix manipulations such as in GEE, or
high-dimensional integrations such as in random effects mod-
els. Numerical calculations quickly become intractable for
datasets with a large number of spatial units, as in the pre-
vious examples. Similar computational problems are faced by
Bayesian approaches as well.

To reduce computational burdens, composite likelihood
methods (Varin, 2008; Varin, Reid, and Firth, 2011) have
been often used at the cost of efficiency loss. Bai, Song, and
Raghunathan (2012) proposed a generalized estimation equa-
tion based approach, called Joint Composite Estimation Func-
tion or JCEF, to recover some efficiency through the weight
matrix in spatio-temporal setting. In this article, we extend
their idea to spatial-clustered data.

The rest of the article is structured as follows. In Section 2,
the GeoCopula model is proposed and detailed for multivari-
ate Gaussian and binary data. Section 3 proposes a joint com-
posite estimating function approach to estimating parameters
in the GeoCopula model. Large-sample properties of the pro-
posed estimator are presented in Section 4 with all technical
details available in the supplementary material. Simulation

experiments are conducted in Section 5. A real-data example
is illustrated in Section 6, followed by some discussions in Sec-
tion 7. Section 8 outlines the web supplementary material for
further details concerning Matérn covariance functions, mul-
tivariate probit model and R package GeoCopula as well as
some technical details for readers to understand the article.

2. Model

Let Ysi be the outcome of the ith subject nested in geographic
cluster s, where i ∈ Is, the index set of subjects in cluster s,
and s ∈ S ⊂ R2, with S being a collection of spatial clusters.
Denote the number of subjects in cluster s as ns, and the
total number of subjects is n = n1 + · · · + nS . Suppose each
outcome Ysi follows a generalized linear model (McCullagh
and Nelder, 1989), whose mean (or systematic component)
μsi is specified as a function of p covariates with an in-
tercept, xsi = (1, x1,si, . . . , xp,si)

T via a known link function
h; that is, h(μsi) = η(xsi) = xT

si β = β0 + β1x1,si + · · · + βpxp,si,

where β = (β0, β1, . . . , βp)
T is a vector of regression coeffi-

cients. The cumulative distribution function (CDF) of Ysi is
Fsi(ysi;μsi, ψsi), where ψsi is the dispersion parameter. For sim-
plicity, write the univariate CDF by Fsi(ysi), and the corre-
sponding density function fsi(ysi).

To specify a fully parametric model for all Ysi’s, we invoke
a Gaussian copula dependence model (Song, 2000) to charac-
terize both spatial and within-cluster correlations. The mul-
tivariate Gaussian copula is chosen for four reasons. First,
Gaussian copula is analytically and theoretically well stud-
ied. Second, it encompasses some existing popular models as
special cases. When margins are normal linear models, the
proposed GeoCopula model becomes the spatial multivariate
Gaussian distribution (Cressie, 1993), the most widely used
model for spatial continuous data. When a probit link is used
for binary data, the GeoCopula model results in a multivariate
probit model (Heagerty and Lele, 1998). Third, the correlation
matrix in the Gaussian copula enables us to model a depen-
dence map across the entire spatial region under study. It can
accommodate full dependence with correlations approaching
one, and full independence with zero correlation coefficients.
It allows for positive and negative correlations. Other copulas
such as Archimedean copulas are not as flexible as Gaussian
copula (Bárdossy, 2006; Kazianka and Pilz, 2010). Last, the
correlation pattern can be formulated as functions of spatial
coordinates and covariates, which can then be estimated for
spatial interpolation.

Given previously specified marginal CDFs, the GeoCopula
model is formulated as:

F(y) = �n

{
�−1(F11(y11)), . . . , �

−1(FSnS
(ySnS

))|�}
, (1)

where � accommodates desired spatial dependencies; see (2)–
(4) for the detail. Now, we discuss two special cases derived
from the GeoCopula model.

Example 1. (GeoCopula Special Case I: Mul-
tivariate Gaussian Regression Model). Assume

Ysi ∼ N(xT
si β, σ2

si), and denote its CDF as �

(
ysi−xT

si
β

σsi

)
.
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Equation (1) becomes

F(y) = �n

(
y11 − xT

11β

σ11

, . . . ,
ySnS

− xT
SnS

β

σSnS

∣∣∣∣∣�
)

.

That is, y ∼ Nn (Xβ, ���) , where X = (xT
11, . . . ,x

T
SnS

)T and
� = diag{σ11, . . . , σSnS

}.

Example 2. (GeoCopula Special Case II: Multivari-
ate Probit Model). Assume marginally Ysi ∼ Bernoulli(πsi).
Then the CDF of Ysi is Fsi(ysi) = (1 − πsi)I(0 ≤ ysi < 1) +
I(ysi ≥ 1), where I(A) = 1 if event A occurs, and I(A) = 0,
otherwise. Consider a probit regression model πsi = �(xT

si β).
Plug Fsi(ysi) into equation (1), we obtain a multivariate dis-
tribution for n-variate binary data which, as shown in Song
(2000), has the same probability mass function as the multi-
variate probit model studied by Heagerty and Lele (1998).

Consider latent normal variable Zsi = xT
si β + εsi, and ε =

(ε11, . . . , εSnS
)T ∼ N(0, �). Define a dichotomous procedure

as: Ysi = I(Zsi > 0). Then (Y11, . . . , YSnS
)T has the same prob-

ability mass function as the random vector in Example 2.
That is, the multivariate probit model is a special case of the
GeoCopula regression model.

Besides the versatile specifications of the marginal distri-
butions, the correlation matrix specified in the Gaussian cop-
ula also allows a wide range of spatial correlation patterns.
For example, if we assume a compound symmetry (i.e., ex-
changeable) structure for within-cluster correlation, then the
within-cluster correlation matrix for cluster i is

�ii = (1 − ρ)Ini
+ ρJni

, i = 1, . . . , S (2)

where ρ is the correlation among individuals within the same
cluster, and Ini

is an ni × ni identity matrix, and Jni
an ni × ni

matrix with all entries being 1.
Furthermore, if we model the spatial correlation by the

Matérn class across clusters, the spatial correlation matrix
between observations in clusters s and t is

�st = 1

�(ν)2ν−1

(√
2νdst

α

)ν

Kν

(√
2νdst

α

)
Jns×nt

, (3)

where dst is the distance between cluster s and t, and Jns×nt

is an ns × nt matrix with all entries being 1. That is, subjects
in cluster s are equally correlated with subjects in cluster t.
The strength of the correlation is a function of the distance
between two clusters.

It follows that the overall correlation matrix � is a block
matrix of the form

� = [�ij]S×S, i, j = 1, . . . , S, (4)

where the block-diagonal �ii is given in (2) and the off block-
diagonal �ij is given in (3).

(i)

(ii)

Figure 1. Configurations of spatial-clustered data with two
clusters. (i) Between-cluster pair, (ii) within-cluster pair.

3. Estimation

General Theory. For a large-scale dataset, computing the dis-
tribution function of the GeoCopula models in equation (1)
either requires high-dimensional integration or large matrix
inversion, hence is not numerically feasible. Following Besag
(1974), we consider a pseudo-likelihood approach to perform-
ing parameter estimation and inference for the GeoCopula
models. Estimation functions are formulated from pairwise
marginal composite likelihoods (Lindsay, 1988; Varin et al.,
2011). Bai et al. (2012) proposed the joint composite esti-
mating function (JCEF) approach to further improving the
estimation efficiency. The idea is to form a quadratic objec-
tive function from different types of pairwise estimating func-
tions. A natural grouping scheme for spatial-clustered data
is to partition pairs into within-cluster and between-cluster
groups (e.g., villages), as shown in Figure 1. The former con-
tains pairs of observations from a common cluster, which are
more relevant to subject-level effects and within-cluster cor-
relations. The latter contains pairs of observations from dif-
ferent clusters, which capture more information relevant to
cluster-level covariate effects and between-cluster spatial cor-
relations.

To develop JCEF, the first step is to marginalize the high-
dimensional CDF function in equation (1) into 2-dimensional
margins. This is valid because copula models are marginally
closed. Collect the parameters of interest into θ = (β, ψ, ρ, α),
including the mean regression coefficients β, the dispersion
parameters ψ, and the variance and covariance parameters ρ

and α in �, provided that a Matérn class spatial correlation
function is used with a known parameter ν. Assume the length
of θ is q. By the property of marginal closure of the Gaussian
copulas, a 2-dimensional marginal CDF is,

F(ysi, ytj; θ) = �2{�−1(Fsi(ysi;β, ψsi)), �
−1(Ftj(ytj;β, ψtj))

| �si,tj(ρ, α)},

where �si,tj is the 2 × 2 corresponding sub correlation matrix.
Let f (ysi, ytj; θ) be the density with respect to F(ysi, ytj; θ),

whose explicit expression form can be adapted from stan-
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dard copula density functions (Song, 2007, Section 6.3.2).
Let U(ysi, ytj; θ) be the marginal score function associated
with f (ysi, ytj; θ), which is called the component score func-
tion (CSF). According to Varin et al. (2011), the con-
ventional composite likelihood estimating functions sums
all such CSFs within a certain distance lag d: S(θ, d) =∑

||s−t||<d
U(ysi, ytj; θ, d), where || • || is the Euclidean distance

in space R2. We call this method weighted composite likeli-
hood (WCL) approach (Bevilacqua et al., 2012). The weight
is 0 or 1, depending on the distance between two clusters.

The optimal d can be determined by evaluating the Go-
dambe information matrix (i.e., asymptotic covariance of
the estimates) of the corresponding estimating equations
(Bevilacqua et al., 2012). A value of d leading to the most
informative set of estimating equations is then used. How-
ever, when the information matrix is computationally costly,
empirical guidelines can be used. For example, from the em-
pirical spatial variogram, one can learn the spatial dependence
patterns, and choose a value for d within which pairwise cor-
relations are fairly high. Numerous simulation experiments
(Davis and Yau, 2011; Varin et al., 2011; Bai et al., 2012)
have shown that including pairs within shorter distances usu-
ally results in more efficiency. This is desirable, since a sub-
stantial number of pairs can be eliminated from estimation,
which greatly accelerates the computation speed.

To construct JCEF, we partition pairs into between-cluster
and within-cluster groups. Label the two sets as DW,n and
DB,n, respectively. They are given by DW,n = {(s, i, s, j) : s ∈
S, and i 	= j, i, j ∈ Is}, and DB,n = {(s, i, t, j) : 0 < ||s − t|| ≤
d; s, t ∈ S, and i ∈ Is, j ∈ It}. Then Dn = DW,n ∪ DB,n ⊂ R2 ×
N+ × R2 × N+ is the set containing all pairs used in es-
timation. For convenience, we write {y(k) = (ysi, ytj)

T, k =
(s, i, t, j) ∈ Dn} as the paired random process.

The between-cluster CSF is constructed as �B,n(θ, d) =
1

|DB,n|
∑

(s,i,t,j)∈DB,n
U(ysi, ytj; θ, d). And the within-cluster CSF

is �W,n(θ) = 1
|DW,n|

∑
(r,l,r,m)∈DW,n

U(yrl, yrm; θ), where |A| is the

cardinality of set A. Instead of summing two types of
CSFs, we stack them into an extended CSF: �n(θ, d) =(
�T

B,n(θ, d), �T
W,n(θ)

)T
. Note that the dimension of �n is larger

than that of θ, leading to the so-called over-identification sce-
nario (Hansen, 1982). To obtain an estimate of θ, following
Hansen (1982) and Qu, Lindsay, and Li (2000), we form a
quadratic objective function of the following form: Qn(θ, d) =
�T

n (θ, d)W−1�n(θ, d), where W is a 2p × 2p positive-definite
weight matrix. A JCEF estimator is defined as

θ̂n(d) = argmin
θ∈	

Qn(θ, d). (5)

According to Hansen (1982), the optimal weight matrix is
W∗ = Var (�n(θ, d)), in the sense that the resulting estimator
has the maximum efficiency.

JCEF in multivariate Probit model. It is relatively easy to
derive JCEF in the multivariate Gaussian model following the
procedure outlined above. Here, we illustrate the derivation of
JCEF in the GeoCopula regression model for binary data. We
refer to Heagerty and Lele (1998) that considered multivariate
probit model for spatial binary data.

First, the probability mass function for (Ysi, Ytj) in the gen-
eral canonical form is:

log Pr (Ysi = ysi, Ytj = ytj) = α0(si, tj) + α1(si, tj)ysi

+ α2(si, tj)ytj + α3(si, tj)ysiytj.

Second, according to Zhao and Prentice (1990), the score
function may be expressed as Usi,tj(θ) = 
T

si,tjV
−1
si,tjRsi,tj, with


si,tj = ∂

∂θ
(μsi, μtj, σsi,tj)

T, V si,tj = Var (Rsi,tj) and Rsi,tj(θ) =
(ysi − μsi, ytj − μtj, (ysi − μsi)(ytj − μtj) − σsi,tj)

T. The detailed
expression of V si,tj can be found in Section 2 in the
web supplementary material. Third, the GeoCopula model
has μsi = E(ysi) = �(xT

si β), and σ2
si,tj = �2

(
xT

si β, xT
tj β|�si,tj

) −
�(xT

si β)�(xT
tj β). Finally, the group-based composite score

functions are

�B,n(θ, d) = 1

|DB,n|
∑

(s,i,t,j)∈DB,n

Usi,tj(θ, d) and

�W,n(θ) = 1

|DW,n|
∑

(r,l,r,m)∈DW,n

Url,rm(θ).

Estimation of the weight matrix. Although the optimal
weight matrix W∗ = Var{�n(θ, d)} can be derived analytically
using multivariate Gaussian quadrant probabilities, given the
large number of possible pairs, analytic computation is not
practically feasible. To mitigate this problem, we propose two
approaches to estimating W∗ in practice.

Parametric bootstrap. A straightforward solution to this
problem is the bootstrap method (Efron, 1982; Varin et al.,
2011) in that sampling data from the fully parametric model

(1) is computationally efficient. To be specific, let θ̂ be a
parameter estimate for the GeoCopula model (1) given ob-
served data y. For m = 1, . . . , M, we simulate data y(m) from
the fitted model (1) with parameter θ = θ̂, and then we fit

the model using y(m) to obtain estimate θ̂(m). The para-
metric bootstrap estimate of the weight matrix is given by
Ŵp(d) = 1

M

∑M

m=1
�n(̂θ

(m), d)�T
n (̂θ(m), d). In the article, we re-

fer to this approach as “JCEF.p”, that is, the JCEF approach
with the weight matrix estimated by parametric bootstrap.

Subgroup sampling. Alternatively, in spatial data anal-
ysis, estimation of the W∗ matrix is mostly achieved
by subsampling (Sherman and Carlestein, 1994). Specif-
ically, let the sampling region be An = S × T, where
|An| = n. Under the assumption that, asymptotically,
|An|E

{
�n(θ)�

T
n (θ)

} → W∗, as n → ∞, we can estimate
matrix W∗ using sample covariance matrix of statis-
tics computed on either overlapping or non-overlapping
subshapes of the sampling region An. That is, Ŵ s(θ, d) =
1

Kn

∑Kn

k=1
|A(k)

s(n)|
{

�
(k)
n (θ, d) − �(θ, d)

}{
�

(k)
n (θ, d) − �(θ, d)

}T

,

with �(θ, d) = ∑Kn

k=1
�

(k)
n (θ, d)/Kn, where �

(k)
n (θ, d) is vector

�n(θ, d) evaluated in A(k)

s(n), k = 1, . . . , Kn, a collection of

(non)overlapping sub-shapes of An, and Kn denotes the num-
ber of sub-shapes. This technique is useful to estimate matrix
W∗ and standard errors of parameter estimates. Politis and
Romano (1994) showed that the optimal subsample size Kn
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is proportional to Cna/(a+2), where a is the dimension of the
spatial domain and C is a tuning constant. There are two
approaches suggested in the literature to determine constant
C. One is demonstrated by Heagerty and Lumley (2000) that
examine the effect of different choices of C, and the other
is given by Sherman (1996) that utilizes some empirical
evidence about the range of correlation for the selection of C

by the following rule of thumb: If the correlation decays fast,
small subsamples can be used; otherwise, large subsamples
should be considered. Here, we refer to this approach as
“JCEF.s”, that is, the JCEF approach with the weight
matrix being estimated by subgroup sampling.

Determining the smoothness parameter in Matérn kernel.
The aforementioned estimation method assumes the smooth-
ness parameter ν in the Matérn kernel (3) is known. In prac-
tice it needs to be estimated. Following the suggestions by
Diggle and Ribeiro Jr (2007) and Bai et al. (2012), we pro-
pose to estimate ν using the profile quadratic objective func-
tion: Pn(ν, d) = Qn(̂θ(ν), d), where θ̂(ν) is a JCEF estimate in
(5) with a given ν, and Qn(·) is the corresponding quadratic
objective function. Given a sequence of values ν1, . . . , νK, pa-
rameter ν can be estimated by minimizing Pn(ν, d), that is,
ν̂(d) = arg mink Pn(νk, d). This ν̂ along with the associated es-

timates θ̂(̂ν) are the model parameter estimates.
Determining initial values. A simple and fast proce-

dure is used to generate consistent initial estimates of θ

under independence working correlation, including (i) fit

a GLM to obtain estimates of regression coefficients, β̂;

(ii) given β̂, obtain ρ̂ using only the within-cluster CSF

�W,n, ρ̂ = argminρ �T
W,n(β̂, ρ, d)�W,n(β̂, ρ, d); (iii) given β̂, ρ̂,

obtain α̂ using only the between-cluster CSF �B,n, α̂ =
argminα �T

B,n(β̂, ρ̂, α, d)�B,n(β̂, ρ̂, α, d).

4. Large Sample Properties

We establish large-sample properties of the JCEF estimator θ̂n

with the given optimal weighting matrix W∗ = Var{�n(θ0, d)},
under the increasing domain context (Mardia and Marshall,
1984). That is, the sample size increase is achieved by ex-
panding the spatial domain. We present the two main theo-
rems below. Details on assumptions and analytic arguments
can be found in Section 3 of the supplementary material. We
establish the consistency of the JCEF estimator in Theorem
1 and asymptotic normality in Theorem 2.

Theorem 1. Under the regularity conditions stated in
Lemma 1 in the web supplementary material, if the true pa-
rameter value θ0 is the unique minimizer of EQn(θ) in equa-

tion (5), and θ̂n minimizes Qn(θ), then θ̂n

p→ θ0, as n → ∞.

Theorem 2. Under the increasing domain framework,
given Assumptions 1–6 and mixing conditions (a)–(c) in the

supplementary material, we have
√

n(θ̂n − θ0)
L→ N(0, �(θ0)

�(θ0)�
T(θ0)), n → ∞, where �(θ0) = −{IT(θ0)�

−1(θ0)

I(θ0)}−1IT(θ0)�
−1(θ0), �(θ0) = limn nVar{�n(θ0, d)} and

I(θ0) = limn ∇θ�n(θ0, d).

5. Simulation Experiments

We perform simulation studies to evaluate the performance
of the proposed methods compared with some existing meth-
ods. In particular, four estimation methods are compared, the
maximum likelihood estimation (MLE), the weighted compos-
ite likelihood estimation (WCL), the JCEF approach with the
weight matrix estimated by parametric bootstrap (JCEF.p),
and the JCEF approach with the weight matrix estimated by
subsampling (JCEF.s). For the binary data, following Chan
and Kuk (1997), we implement MLE using the EM algorithm,
treating latent continuous variables Zsi as missing and ap-
plying Gibbs sampler to generate Monte–Carlo samples from
truncated multivariate normal distributions. The subgroups
in subsampling are chosen by Sherman (1996)’s method as
overlapping circle subregions with a radius 4 and the number
of subregions Kn = 20.

Set Up. We begin by conducting two simulation experi-
ments, one based on clustered Gaussian data (Example 1)
and the other based on multivariate probit model for clus-
tered binary data (Example 2). For convenience, the number
of subjects within a cluster is fixed at four. We randomly select
100 clusters from a 20 × 20 spatial grid with two coordinates
spanning from 1 to 20. The total number of observations in
one simulation run is 400.

For both experiments, the marginal mean model is speci-
fied the same with two covariates: h(μsi) = β0 + β1x

1
s + β2x

2
si,

where x1
s is a cluster-level covariate, and x2

si is a subject-level
covariate, both generated from the uniform distribution in
(0, 1). The correlation matrix � consists of diagonal blocks
of 4 × 4 exchangeable correlation �w in (2), and off-diagonal
blocks of 4 × 4 Matérn correlation �st in (3), where ρ ∈ (−1, 1)
is the within-cluster correlation, and α > 0 is a spatial scaling
parameter for between-cluster spatial correlation. The vector
of parameters is θ = (β0, β1, β2, ρ, α). For both cases, we set a
common θ = (1, 1, −1, 0.8, 2), ψ = 1 and the smoothness pa-
rameter ν = 1.5. We generate 200 simulated datasets for each
case to draw conclusions.

Estimating θ. We first evaluate the performance of esti-
mating the parameter θ, with ν being fixed at 1.5. The profile
estimation of ν will be considered in a separate simulation. We
present estimation bias and root mean squared error (RMSE)
in Table 1. Individual RMSE is scaled by the absolute value
of the corresponding parameter, and summed up to obtain
a measure of overall efficiency, called total scaled RMSE in
Table 1.

As shown in Table 1, for Gaussian data, MLE, JCEF.p, and
JCEF.s are comparable in terms of bias, while WCL tends
to have a slightly larger bias, especially for β2, ρ, and α. In
general, MLE has the smallest RMSE, followed by JCEF.p
and JCEF.s, whereas WCL has the largest RMSE. These re-
sults confirm that when the model assumption is satisfied,
MLE achieves the highest efficiency, and JCEF.p is more ac-
curate than JCEF.s. WCL appears to be the least efficient
among the four methods. Clearly, the results in the Gaus-
sian case show that both JCEF approaches improve estima-
tion efficiency over WCL, and the JCEF.p performs compara-
bly to MLE for some of the parameters. For the binary data
case, these four methods yield similar bias and WCL appears
to have large bias in estimating α. Once again, both JCEF
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Table 1
Parameter estimation bias, root mean squared error (RMSE), and converage probability of 95% confidence interval of four
methods (MLE, JCEF.p, JCEF.s, and WCL) using spatial-clustered Gaussian data and binary data. The true parameter is
set as θ = (β0, β1, β2, ρ, α) = (1, 1, −1, 0.8, 2) and the smoothness parameter ν is assumed to be known and fixed as 1.5. The
number of clusters is 100 and the number of subjects per cluster is 4. The total sample size is 400. The total scaled RMSE is
the summation of RMSEs scaled by the absolute true value of the corresponding parameters. Results are summarized based

on 200 simulated datasets. All values are reported in unite of 10−2.

Gaussian Binary

×10−2 MLE JCEF.p JCEF.s WCL MLE JCEF.p JCEF.s WCL

β0 −0.25 0.32 0.09 −0.06 −2.19 −4.38 −0.91 −4.44
β1 0.07 −0.58 0.10 −0.78 3.82 −7.20 7.57 3.66

Bias β2 −0.04 0.71 −0.20 1.02 1.31 2.31 −1.38 8.35
ρ 1.77 −1.65 2.96 −4.57 5.47 −4.73 −4.45 6.27
α 0.23 −0.72 0.49 11.55 −16.29 7.41 −27.6 48.51

β0 1.87 1.91 2.00 6.37 7.35 7.71 8.16 7.84
β1 1.65 1.81 2.23 3.26 7.02 7.34 8.41 18.22

RMSE β2 1.29 1.52 1.56 3.92 5.98 6.08 7.25 8.79
ρ 0.19 0.27 0.74 0.94 1.07 1.10 2.75 11.18
α 9.54 9.94 12.02 12.72 15.67 15.71 17.77 36.46

Total scaled RMSE 9.83 10.55 12.73 21.08 29.52 30.37 36.13 67.05

β0 93.5 97.5 96.5 98.5 96.0 96.5 92.5 99.5
β1 95.0 98.5 96.5 96.0 94.0 97.5 96.5 100.0

Coverage β2 95.0 95.5 96.0 97.5 92.5 97.5 97.0 99.0
ρ 96.5 95.0 94.5 98.0 94.5 97.0 93.5 100.0
α 97.0 94.5 95.0 98.0 96.5 94.5 95.5 98.5

approaches achieve lower RMSE than WCL, judged by the
total scaled RMSE. JCEF.p repeatedly outperforms JCEF.s
with smaller RMSE.

Results of the confidence interval coverage are also reported
in Table 1. It is shown that the WCL approach generally pro-
vides wider confidence intervals, and the resulting empirical
coverage probabilities appear too near 100% to be reasonable.
In contrast, the proposed JCEF.p and JCEF.s methods yield
reasonable coverage rates. In other words, the WCL approach
has lower power to detect signals than the proposed methods.

In summary, the proposed JCEF improves the estimation
efficiency over the existing WCL for both Gaussian and bi-
nary data. The extent of the improvement depends on how
accurately the weight matrix W∗ is estimated. It seems that
the weight matrix plays a more significant role in Gaussian
data than in binary data for efficiency improvement. The ef-
ficiency gain also increases as the spatial dependence across
clusters diminishes according to our other simulation studies
(not shown here).

Determining ν. We conduct a simulation study to evaluate
performance of the profile QIF method for determining ν dis-
cussed in Section 3. We focus on the case of spatial-clustered
binary data as it is more challenging than the Gaussian case.
We consider a set of ν values in (0.5, 1.0, 1.5, 2.0, 2.5, 3.0), and
at each ν value we apply the JCEF with subsampling ap-
proach (i.e., JCEF.s). We find that over 92% of 200 simulation
rounds, the profile QIF method determines ν̂ = 1.5. Figure 2
displays a boxplot of objective function Q(ν̂) at different ν

values over 200 simulated datasets. This indicates that mini-
mizing the profile QIF objective function Q with respect to ν

works well.

Cluster size and sample size. To evaluate the estimation
accuracy under different cluster and sample sizes, we conduct
another simulation study with varying sample sizes. Multi-
variate probit model is chosen to mimic both real-data and
model structure considered in Section 6. We randomly se-
lect S locations from 65 villages in Gambia (see Section 6 for
data details) and generate at each location n binary outcomes
ysi from a multivariate probit model with nine coefficients
βj = 0.5 × (−1)j for j = 1, . . . , 9 with covariance parameters
ρ = 0.5, α = 2.5, and ν = 1.5. The number of locations S varies
among 35, 45, 55, and 65, and the cluster size ns ranges over
4, 6, 8, and 10, which results in a total of 16 cases. In Table
2, we summarize the total scaled RMSE and the max abso-
lute bias of the nine parameter estimates over 200 simulation
replicates. It is clear that when the sample size is 650 (S = 65,
ns = 10), the max absolute bias drops by 25% and the total
scaled RMSE reduces by 17% compared to the case of sample
size being 140 (S = 35, ns = 4).

6. Data Example

In this section, we illustrate an application of the JCEF to a
real-world data. Diggle et al. (2002) investigated the spatial
variation in the prevalence of malaria among village resident
children in Gambia. They developed a spatial generalized
linear mixed model to account for the spatial correlation
among the residuals at the village level and implemented
it in a Bayesian MCMC framework. Thomson et al. (1999)
used GEE to obtain regression estimates and accounted for
the extra-binomial variation by a working correlation matrix
with an exponential spatial correlation function. We now
re-analyze this dataset using the proposed GeoCopula model.
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Figure 2. Boxplot that summarizes estimates of smooth-
ness parameter ν by the profile quadratic inference function
over 200 simulated datasets.

Two thousand thirty-five children were randomly sampled
from 65 villages along the Gambia river. A graphical repre-
sentation of the spatial configuration of the sampled villages
is given in Figure 3. Villages scatter into four distinct re-
gions on the map and are labeled from Area 1 to Area 5.
The pairwise distances between two villages range from 0.95
to 273.3 km. The response from each child is a binary indi-
cator of the presence of malarial parasites in the blood sam-
ple. Covariates include child level variables: age, bed net use
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Figure 3. Spatial configuration of the sampled villages.

(NetUse) and whether the bed net is treated (Treated); and
the village level variables: inclusion or exclusion from the pri-
mary health care (PHC) system and greenness of surround-
ing vegetation as derived from satellite information (Green).
In the final model suggested by Diggle et al. (2002), the five-
level area dummy variables (Area) are also included to adjust
for the regional effects. However, information about the par-
tition of Areas 4 and 5 is not available in the data given in
R package geoRglm (Christensen and Ribeiro, 2002), nor can
it be inferred from the map. As a result, we have to combine
Areas 4 and 5 into one region in our analysis.

For child i in village s, let the binary random variable Ysi

denote the presence of malaria (1 for yes; 0 for no). Let πsi =
E(Ysi|xsi) be the probability of the malaria infection. Then the
probit model is:

πsi = �(xT
si β) = �(β0 + β1Agei + β2NetUsei + β3Treatedi

+ β4Greens + β5PHCs + β6Areasi),

where β = (β0, . . . , β6)
T is the vector of corresponding regres-

sion coefficients.
The correlation matrix � is specified similar to equation

(4). That is, the within-village correlation is specified as com-

Table 2
Estimation accuracy of the JCEF parameter estimation in the multivariate probit model for different cluster size (35, 45, 55,
65) and different number of observations per cluster (4, 6, 8, 10). The maximum absolute bias (MAB) across over all the
parameter estimations and the total scaled RMSE (TRMSE) are summarized based on 200 replicates of simulation. All

values are reported in unit of 10−2.

×10−2 Cluster size

Observations 35 45 55 65

per cluster MAB TRMSE MAB TRMSE MAB TRMSE MAB TRMSE

4 74.17 79.33 55.93 33.34 46.65 37.59 39.31 26.23
6 47.21 47.14 39.37 56.88 29.49 24.95 26.76 31.94
8 34.18 28.32 25.62 64.64 28.17 19.71 19.69 25.24
10 29.32 21.89 20.22 18.94 21.28 21.71 12.43 19.41
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Table 3
Parameter estimates and 95% confidence intervals for the malaria data analysis, obtained from JCEF, WCL, and MLE at
smoothness parameter ν̂ = 0.5. We combine Areas 4 & 5 because of insufficient location information available in the data

source.

JCEF WCL MLE

Estimate 95% C.I. Estimate 95% C.I. Estimate 95% C.I.

Int −0.0221 −0.2590 0.2148 −0.1138 −0.8224 0.5949 −0.0241 −0.2383 0.1941
Age (year) 0.3723 0.0750 0.6696 0.5079 −0.1488 1.1646 0.2825 0.0903 0.6543
NetUse −0.2156 −0.5042 0.0729 −0.1994 −0.7192 0.3205 −0.2138 −0.4800 0.0488
Treated −0.1690 −0.3967 0.0587 −0.0450 −0.2679 0.1778 −0.1474 −0.3794 0.0414
Green −0.0557 −0.2672 0.1558 0.0037 −0.2882 0.2956 −0.0645 −0.2477 0.1363
PHC −0.2727 −0.7106 0.1651 −0.5945 −0.8438 −0.3452 −0.2937 −0.6877 0.1423
Area 2 −0.1948 −0.4206 0.0310 0.1087 −0.1385 0.3559 −0.2133 −0.4006 0.0110
Area 3 −0.4320 −0.6328 −0.2312 −0.4325 −0.7108 −0.1541 −0.3698 −0.6176 −0.2464
Areas 4 &5 0.5145 0.2467 0.7823 0.4057 0.0499 0.7614 0.5126 0.2639 0.7651
ρ 0.5401 0.4318 0.6447 0.5444 0.4288 0.6554 0.3918 0.4382 0.6420
α 2.4570 2.1052 2.8088 3.8955 3.1387 4.6523 1.9742 2.1353 2.7787

pound symmetry, and the between-village correlation is given
by a Matérn kernel function of distance between two villages,
as in equation (4). As discussed in Section 3, we minimize the
profile quadratic inference function on a set of smoothness pa-
rameters {0.1, 0.5, 1.0, 1.5, 2.5, 3.0}. We find that the smooth-
ness parameter ν̂ = 0.5, and in this case the Matérn kernel
function corresponds to the exponential decay function. This
finding is in agreement with that reported in Diggle et al.
(2002).

The choice of the distance lag d is based on the level of the
empirical spatial correlation. Diggle et al. (2002) show that
the spatial dependence decays at a fairly fast rate, so pairs of
villages within 5 km are used to construct the pairwise CSF.
To create subsamples for the weight matrix estimation and
the standard error estimation, overlapping subregions within
radius of 10 km and Kn = 20 are determined by Sherman’s
method as the sub-blocks. Given the fact that the villages
scatter into four major regions, the subsampling is carried
out in each region and then combined to form the overall
subsample. In this way, spatial dependence patterns from dif-
ferent regions are all represented in the subsample.

Statistical results are summarized in Table 3, including
JCEF estimates and their corresponding 95% confidence in-
tervals obtained by the parametric bootstrap. JCEF finds that
age (in years) is positively associated with malaria prevalence,
and the bed net use and the treatment of the bed net tend
to reduce the risk, although being only marginally significant
at 0.1 significance level. Prevalence in the eastern region is
significantly higher than the rest of regions. The 95% con-
fidence interval for ρ is (0.4318, 0.6447). The confidence in-
terval for the spatial scaling parameter α is (2.1052, 2.8088),
corresponding to an approximately 65% decrease in depen-
dence with 1 km increase in distance. This means that the
spatial variation operates on a relatively small-scale. We find
that both the JCEF estimates and the confidence intervals are
close to those obtained by the MLE. In contrast, the WCL ap-
proach yields larger confidence intervals than our JCEF and
the MLE for most of the model parameters, hence fails to
identify some significant covariate effects (e.g., age). Also, the

findings from our JCEF approach are consistent with those
in Diggle et al. (2002); for example, in the final model pro-
posed by Diggle et al., age and being in Area 5 are positively
associated with the risk of malaria. Nevertheless, it is impor-
tant to note that results in this article, although similar, are
not directly comparable to those in Diggle et al. (2002). The
GeoCopula model provides population-level effect estimates,
while the spatial linear mixed model used in Diggle et al.
(2002) is a cluster-specific model. In addition, we do not have
the specific boundary information for defining the same five
regions as done in their analysis. Also for identification, cor-
relation ρ instead of the variance is estimated in GeoCopula
model, and our spatial scaling parameter α corresponds to the
inverse of their scaling parameter.

7. Discussion

Till now, Bayesian methods are predominantly used in the
analysis of spatial/temporal data, owing to the numerical lim-
itations of the traditional likelihood methods. The proposed
GeoCopula model and JCEF method in this article offer a
competitive alternative package for analyzing spatial data
from a frequentist perspective. The GeoCopula model fur-
nishes both population-level regression parameter estimates
and flexible within- and between-cluster spatial dependence
structures. The new JCEF procedure is used to improve the
estimation efficiency over the conventional composite likeli-
hood methods (i.e., WCL). As shown in various simulation
studies, the JCEF method gains significantly higher efficiency
over the WCL approach for both Gaussian and binary spa-
tial data, and is very comparable to MLE for Gaussian data.
Our numerical experiences suggest that the parametric boot-
strap works well albeit being slightly computationally costly,
whereas the subsampling approach is faster but possibly pro-
vides underestimated standard errors when the sample size
is small. Thus, the choice between parametric bootstrap and
subsampling method may be made in light of the sample size.

We focus on the GeoCopula model built upon the multi-
variate Gaussian copula. Some disadvantages include the tail
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independence and symmetrical correlation structures in the
lower and upper tails. It is not clear if any modifications to
account for tail-dependence are necessary to reflect spatial de-
pendencies in practice. Although we particularly discuss the
Matérn covariance function in this article, the proposed Geo-
Copula model is so flexible that it may incorporate nonsta-
tionarity in both the mean and the spatial dependence mod-
els. This framework can be extended to more complex spatial
dependence structures, such as those of inherent nonstation-
arity and anisotropy. In addition, as pointed out in Bai et al.
(2012), the quadratic objective function also provides a way
for a goodness-of-fit test of the mean-zero model assumption,
H0 : E�n(θ) = 0. This is because by Hansen (1982) Qn(θ̂) fol-
lows χ2 distribution with degrees of freedom equal to the num-
ber of estimating functions minus the number of parameters.
These are potential future research directions.

8. Supplementary Material

Web supplementary Sections 1–3 referenced in Sections
2, 3, 4 are available with this article at the Biomet-
rics Website on Wiley Online Library. A user-friendly R

package GeoCopula supplies both MAC OS X and DOS
Window OS versions available on the following webpage:
web1.sph.emory.edu/users/jkang30/software/GeoCopula.

html. It provides respective R functions for estimation and in-
ference in GeoCopula models for continuous and binary data.
More details may be found in the supplementary material.
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