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Abstract

Background: Joint alignment and secondary structure prediction of two RNA sequences can

significantly improve the accuracy of the structural predictions. Methods addressing this problem,

however, are forced to employ constraints that reduce computation by restricting the alignments

and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented

for the purpose of establishing alignment constraints based on nucleotide alignment and insertion

posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and

insertion are computed for all possible pairings of nucleotide positions from the two sequences.

These alignment and insertion posterior probabilities are additively combined to obtain

probabilities of co-incidence for nucleotide position pairs. A suitable alignment constraint is obtained

by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free

energy minimization algorithm for joint alignment and secondary structure prediction. The

resulting method is benchmarked against the previous version of Dynalign and against other

programs for pairwise RNA structure prediction.

Results: The proposed technique eliminates manual parameter selection in Dynalign and provides

significant computational time savings in comparison to prior constraints in Dynalign while

simultaneously providing a small improvement in the structural prediction accuracy. Savings are

also realized in memory. In experiments over a 5S RNA dataset with average sequence length of

approximately 120 nucleotides, the method reduces computation by a factor of 2. The method

performs favorably in comparison to other programs for pairwise RNA structure prediction:

yielding better accuracy, on average, and requiring significantly lesser computational resources.

Conclusion: Probabilistic analysis can be utilized in order to automate the determination of

alignment constraints for pairwise RNA structure prediction methods in a principled fashion. These

constraints can reduce the computational and memory requirements of these methods while

maintaining or improving their accuracy of structural prediction. This extends the practical reach

of these methods to longer length sequences. The revised Dynalign code is freely available for

download.
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1 Background
With the widespread availability of data sets of genome
and protein sequences, methods for analyzing the
sequences to extract biologically salient information have
emerged as powerful techniques in computational bioin-
formatics [1]. In this arena, comparative sequence analysis
has proven extremely powerful, whereby sequence seg-
ments across different genomes are examined for similar-
ities. Segments identified as similar represent
evolutionarily conserved homologs and are deemed to be
biologically significant due to their apparent preservation
across the genomes. The postulated significance can then
be tested with experiments, which can also help establish
functional correlates. Because the biological experiments
are time-consuming and expensive, the comparative anal-
ysis serves to improve efficiency by "pre-filtering" the rel-
atively large genome to determine relatively smaller
segments over which the experimental effort may be con-
centrated. The effectiveness of this pre-filtering step is, of
course, determined by its accuracy in correctly identifying
meaningful homologs and by the computational effi-
ciency of the algorithmic implementations.

In the identification of homologous segments of
genomes, sequence-alignment has been the primary
workhorse since it can be directly deployed on readily
available sequence data. Commonly used methods assign
a score to an alignment of a pair of sequences based on
nucleotide matches/mis-matches and gaps in the align-
ment. The similarity score for a pair of genome segments
is then computed as the maximum value of this score over
all potential alignments, which serves as an alignment-
based measure of homology. Through algorithmic inno-
vations (primarily dynamic programming formulations),
computationally-efficient methods have been developed
for sequence-alignment that can be effectively deployed
over large genomes [1], The computational speed-up,
however, does not ameliorate a limitation of these meth-
ods in that they rely on pure sequence-alignment whereas
biological function is actually determined largely by struc-
ture, which is not necessarily in one-to-one correspond-
ence with sequence. Structurally conserved biomolecular
elements with differing sequences directly illustrate this
problem. The divergence between structural and sequence
homology is particularly true of non-coding RNAs
(ncRNAs), where it is commonly believed that secondary
structure, i.e. the sum of the canonical base pairs, is more
conserved than the nucleotide sequence [2]. As a ncRNA
sequence evolves, compensating changes occur that allow
the sequence to drift without affecting the secondary
structure. Compensating base pair changes by which sec-
ondary structure is conserved, but sequence is not, are
therefore used to identify the conserved structure [3].

Given the strong correlation between structure and func-
tion observed in biological systems, it is more meaningful
to explore homologies based on structure rather than
sequence alone. In general, the determination of struc-
tural homology scores, i.e. a structural similarity measure
for the most "similar" (or common) 3-D structure corre-
sponding to genomic/proteomic sequence segments is a
challenging problem. In the case of ncRNA, however, the
problem may be rendered tractable, i.e. polynomial time
complexity, by focusing one's attention on secondary
structure. Sankoff [4] first proposed a dynamic program-
ming approach to this problem that addresses a large class
of secondary structures (excluding pseudoknots). Further-
more, he also illustrated how the approach can be
extended to include a composite score that accounts for
both sequence and structure similarity while retaining the
polynomial complexity.

Though polynomial in complexity, Sankoff's proposed
algorithm in its original form is still too computationally
demanding for deployment on long sequences, such as
16S or 23S rRNA, in the near future (the computational
complexity is O(N6) for two sequences of length N). A
simplified version of the algorithm, Dynalign, imple-
mented by Mathews et al. [5,6] constitutes one of the prac-
tical computational realizations. The method uses a
heuristic to improve computational efficiency by restrict-
ing the number of possibilities examined in each dynamic
programming step. However, its computational burden
remains significant and no analytic guidance is available
on the selection of parameter values for the heuristic sim-
plification.

In this paper, this limitation is addressed by developing a
principled mechanism for significantly improving the
computational efficiency of Dynalign. The motivation for
our technique arose from the "a posteriori" probability
decoding methods developed for error correction in elec-
trical communication systems in the early 1970s [7].
These have seen a recent re-resurgence of research interest
due to the development of turbo codes [8] and re-discov-
ery of low-density parity check codes [9] that now consti-
tute active areas of research and development in electrical
communication systems. An adoption of the a posteriori
probability methodology allows us to determine the con-
fidence in local accuracy of sequence alignment in a com-
putationally efficient fashion using a Hidden Markov
Model [1,10]. These probabilistic estimates of confidence
in local alignment accuracy are utilized in order to define
constraint windows for limiting the choices in the
dynamic programming step in Dynalign. Intuitively, this
process can be understood as follows: In regions with
strong confidence in the alignment accuracy, the possibil-
ities explored in the dynamic programming steps are
severely restricted to options mandated by the corre-
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sponding alignment and in regions with low confidence
in the alignment a wider range of possibilities are allowed
in the dynamic programming steps. The method is supe-
rior to the prior heuristic of restricting the number of pos-
sibilities to an arbitrary fixed number at each step since
the restrictions are based on confidence estimates in the
sequence alignment and therefore cuts computation
where it is not required (where the sequence similarity
alone provides high confidence) and does not restrict it
when it is in fact required (when sequence similarity pro-
vides little confidence). The resulting method provides a
very significant decrease in the time required for Dynalign
computations while simultaneously increasing (by a
small margin) the accuracy of estimating the common sec-
ondary structure between two homologous RNA
sequences.

It is worth noting that even though the present effort
focuses entirely on Dynalign, the methodology is more
general. The computed alignment constraints can be uti-
lized with other packages for joint sequence alignment
and structure prediction that permit their use for compu-
tational simplification, e.g. as "alignment envelopes" in
StemLoc [11,12].

The rest of the paper is organized as follows. Section 2
provides background on the problem of RNA structure
prediction and references to current related work in this
area. The proposed methodology for determining align-
ment constraints based on nucleotide alignment posterior
probabilities is summarized in Section 3. Results evaluat-
ing the performance of the proposed method and com-
parisons with other techniques are presented in Section 4.
Section 6 summarizes the main findings of the paper.
Details of our algorithmic methodology are included in
Section 7.

2 Overview of RNA Secondary Structure 
Prediction Methods
RNA structure is hierarchical [13]. The primary structure
comprises a linear chain of nucleotides joined together by
covalent phosphodiester bonds. This is identified by the
ordered sequence of nitrogenous bases that determine the
four types of individual nucleotides: adenine (A), guanine
(G), cytosine (C), and uracil (U). This primary structure is
determined by "sequencing" and is the starting point of
most computational methods for structure estimation.
The nucleotides within a chain interact through the for-
mation of hydrogen bonds between the pairs A – U, G –
C, and G – U. The set of these base pairings is referred to
as the secondary structure. Tertiary structure includes struc-
tural contacts arising from additional interactions on top
of secondary structure. These define the three-dimen-
sional structure of the RNA. Quaternary structure is the
interaction with other molecules, such as with proteins or

other strands of RNA. Secondary structure contacts are
stronger [14-16] and form faster [17] than tertiary struc-
ture contacts, therefore secondary structure can be largely
determined without knowledge of tertiary structure.

Comparative sequence analysis can be used to accurately
determine the secondary structure of functional RNAs for
which there are a large number of known homologs [3].
The secondary structure is the common structure to all
homologs, as determined by an alignment of the struc-
tures. Over 97% of base pairs predicted for ribosomal
RNA in this manner were subsequently found in high res-
olution crystal structures [18].

There has been a long-standing interest in the prediction
of secondary structure for a single sequence and free
energy minimization methods are currently the most
accurate and popular. Using dynamic programming algo-
rithms, the lowest free energy structure is determined
according to a set of nearest neighbor parameters that pre-
dict conformational stability [19-23]. These parameters
were empirically derived to fit stabilities determined by
optical melting experiments on small model systems
[19,24,25]. The accuracy of free energy minimization has
been benchmarked as high as 73% for predicting known
base pairs for a diverse set of sequences as long as 700
nucleotides with structures determined by comparative
analysis [19], For different sequences, including longer
sequences, the average accuracy is lower [26,27]. The use
of dynamic programming algorithms to predict low free
energy structures has been recently reviewed [28,29].

A recently introduced alternative to free energy minimiza-
tion is the determination of the most probable structure
using a stochastic context-free grammar (SCFG) [1]. The
transition probabilities for the SCFG are trained on sets of
sequences with known structure. An SCFG has been
reported that is nearly as accurate as structure prediction
as free energy minimization [26].

To improve the accuracy of structure prediction, a number
of methods have been developed that determine a second-
ary structure common to two or more sequences. These
methods have the advantage of including comparative
data, and, in general, they fall into three classes. The first
class takes a fixed sequence alignment as input. A second
class predicts structures for each sequence and then sorts
through the structures to find those common to all
sequences. The third class finds the structure common to
two or three sequences by simultaneously aligning the
sequences and finding the most likely structure. In gen-
eral, the third class is the most rigorous and accurate, but
also the most time-consuming. A number of these meth-
ods have been reviewed [29,30].
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Algorithms that find the secondary structure common to
the multiple, unaligned sequences are either genetic [31]
or dynamic programming algorithms. The dynamic pro-
gramming approaches trace their lineage to the theoretical
paper by Sankoff [4], which provides for a computational
complexity of O(N6) in time and O(N4) in memory where
N is the length of the smaller of the two sequences. A
number of different implementations of the Sankoff algo-
rithm have been developed to find the secondary structure
common to two sequences. Each of these implementa-
tions restricts the search space to make the program runt-
ime feasible. The first, FOLDALIGN [32], maximized an
empirical score and originally did not allow multibranch
loops to improve runtime. FOLDALIGN was later revised
to allow multibranch loops and use a subset of the free
energy nearest neighbor parameters [33]. The revised
FOLDALIGN restricts the alignment space to reduce runt-
ime. Two SCFG-based programs are available, StemLoc
package [11,12] and Consan [34]. To reduce runtime,
StemLoc introduced the concept of fold and alignment
envelopes that restrict, respectively, the search space for
possible base pairs and possible nucleotide alignments. In
the structure domain, the set of allowed base pairs for
each sequence are those found by the prediction of set of
probable structures for each single sequence. For the
alignment domain, the allowed nucleotide alignments are
those found in the "N most probable" sequence align-
ments for some choice of N. In a recent similar advance
[34], Consan improves its runtime by using highly proba-
ble nucleotide alignments as "pins" at which the exact
alignment is constrained. Highly probable nucleotide
alignments, exceeding a specified threshold, are forced to
occur in the simultaneous prediction of the alignment
and common sequence.

Dynalign [5,6] is an implementation of the Sankoff algo-
rithm that predicts the lowest free energy structure com-
mon to two sequences. To make the calculation time
tractable, a restriction of the alignment domain was intro-
duced [5]. In the most recent publication [35], for nucle-
otide i from sequence one to align to k from sequence two,
the following constraint must be met:

where M is a user-specified parameter, N1 is the length of
sequence one, and N2 is the length of sequence two. This
restriction on maximum insertion length imposes a heu-
ristic constraint on possible alignments. This implies a
constraint on the maximum insertion length, which is rea-
sonable for homologous sequences [5]. Equation (1) cor-
responds to a restricted search interval in the 2nd sequence
for alignment of ith nucleotide in the 1st sequence. The
restriction reduces the computation burden since M can

typically be chosen much smaller than the shorter
sequence length N. The computations are more tractable
with M parameter heuristic: O(M3N3) in time and
O(M2N2) in memory (as compared with O(N6) and
O(N4) in time and memory, respectively, without the M
parameter) where M is the measure of maximum permis-
sible insertion length and N is length of shorter sequence.
Dynalign also restricts the set of allowed base pairs for
each sequence to those found in low free energy structures
by single sequence secondary structure prediction [35].

In this paper, a new method for estimating alignment con-
straints is proposed and incorporated in Dynalign.
Instead of using the most probable sequence alignments
the method utilizes the a posteriori probabilities for nucle-
otide alignments in order to establish the alignment con-
straints. This method makes Dynalign more robust by
eliminating the need for the M parameter above.

3 Alignment Constraints from Posterior 
Probabilities
The M parameter mediates a trade-off between the com-
putation and accuracy. A smaller value of the parameter is
desirable in order to reduce the computation time to prac-
tically useful values. On the other hand, a small value can
be overly-restrictive and thereby reduce the accuracy of the
structure and alignment prediction from Dynalign. Thus,
an 'educated guess' for the M parameter is vital to the accu-
racy of secondary structure prediction. The value of M has
hitherto been empirically determined and found to vary
over different RNA families. The lack of an analytical
methodology for determining the M parameter has been
a limitation for Dynalign. In addition, a large M parame-
ter is typically required for longer sequences since they
typically can have longer insertions. This tends to make
the computation time for Dynalign with the M parameter
particularly onerous for longer sequences.

In this paper, a new principled methodology is proposed
for the introduction of alignment constraints in Dynalign.
Instead of the heuristic M parameter, alignment con-
straints are determined through a probabilistic analysis.
For this purpose, the alignment between homologous
sequences is modeled by a Hidden Markov Model
(HMM). Using the model, the posterior probability P(n1

↔ n2 | x1, x2) is determined, which denotes the probability
that nucleotide position n1 in the first sequence x1 is co-
incident with nucleotide position n2 in the second
sequence x2, given that the sequences are produced by the
model. Two nucleotide positions (one from each of the
two sequences) are said to be co-incident if they are either
aligned, or if one nucleotide position (from one of the
sequences) occurs in an insertion in that sequence that
begins at a nucleotide position aligned with the second
nucleotide position (from the other sequence). Formally,

| |
i N

N
k M

×
− ≤2

1

(1)



BMC Bioinformatics 2007, 8:130 http://www.biomedcentral.com/1471-2105/8/130

Page 5 of 21

(page number not for citation purposes)

a nucleotide position i from the first sequence and nucle-
otide position j from the second sequence are said to form
a co-incident pair (i, j) if: a) nucleotide positions i and j
are aligned, or b) nucleotide position i occurs in an inser-
tion in the first sequence and nucleotide position j in the
second sequence aligns with nucleotide position i_ from
the first sequence, where i_ denotes the largest position
index less than i in the first sequence that aligns with a
nucleotide position from the second sequence, or c)
nucleotide position j occurs in an insertion in the second
sequence and nucleotide position i in the first sequence
aligns with nucleotide position j_ from the second
sequence, where j_ denotes the largest position index less
than j in the second sequence that aligns with a nucleotide
position from the first sequence. As an example, consider
the alignment shown in Figure 1(a). The co-incident
nucleotide position pairs for this alignment are: (1,1),
(2,2), (3,2), (4,2), (5,3), (6,4). Figure 1(b) illustrates the
map of co-incident positions in the alignment of Figure
1(a) in a planar matrix of blocks, where the nucleotide
position n1 for the first sequence indexes the abscissa of
the block and the nucleotide position n2 indexes the ordi-
nate of the block. In this graphical matrix representation,
co-incident positions indicated above are depicted in Fig-
ure 1(b) as black blocks (for aligned locations) or cross-
hatched blocks (for insertions). Figure 1(b) illustrates that
for any alignment the set of co-incident positions defines
an unbroken path from the lower corner of the matrix to
the upper corner of the matrix (see Remark 1 in Appendix
Section 8). In the dynamic programming step in Dyna-
lign, at any given point, the sequence alignment compo-
nent of the iteration searches over positions of the matrix
that are adjacent to the current location (see Remark 2 in
Appendix Section 8). For an alignment to be allowable,
constraints specified in Dynalign (and also in alternate
methods for joint structure prediction over multiple-
sequences) must allow all the co-incident position pairs
corresponding to the alignment.

Now, if P(n1 ↔ n2 | x1, x2) is small, correspondingly it is
rather improbable that the nucleotide position n1 in the
first sequence x1 will be co-incident with nucleotide n2 in
the second sequence x2. This suggests that alignments (in
Dynalign) may be constrained by excluding highly
improbable alignments as indicated by extremely low val-
ues of the posterior co-incidence probability. Correspond-
ingly, an alignment constraint may be defined by
thresholding the posterior co-incidence probability with a
suitably low threshold Pthresh. Formally, an alignment
constraint set is defined as

C = {(n1, n2) | P(n1 ↔ n2 | x1, x2) > Pthresh} (2)

where C denotes the alignment constraint set. Elements of
C represent nucleotide position pairs that may co-incide

between the sequences and elements outside of C are
nucleotide alignment position pairs whose co-incidences
are disallowed.

The posterior probabilities of co-incidence between nucle-
otide positions are efficiently computed using the HMM
forward-backward algorithm. The process is schematically
illustrated in Figure 2. The posterior probability is com-
puted in terms of forward and backward variables as

where the sum is over the three possible states for nucle-

otide co-incidence, i.e., m = ALN, INS1, INS2, the forward

variable αm(n1, n2) represents the probability that the sub-

P n n
n n n n

P

m mm( | , )
( , ) ( , )

( , )
1 2 1 2

1 2 1 2

1 2

↔ =
∑

x x
x x

α β

(3)

Illustration of alignment of nucleotide at n1 in 1st sequence and nucleotide at n2 in 2nd sequence and how forward and backward variables are related to alignment of n1 and n2Figure 2
Illustration of alignment of nucleotide at n1 in 1st sequence 
and nucleotide at n2 in 2nd sequence and how forward and 
backward variables are related to alignment of n1 and n2. For-
ward variable keeps track of events before alignment posi-
tion (n1, n2) and backward variable keeps track of events after 
alignment position (n1, n2).

Example illustrating co-incidenceFigure 1
Example illustrating co-incidence. (a) A sample alignment of 
two sequences, where inserted locations in a sequence are 
shown with a gap  in the other sequence in the correspond-
ing location. (b) The set of co-incident position pairs is 
depicted. Coordinates corresponding to the co-incident 
position pairs are indicated by black (aligned) or cross-
hatched (insertion) blocks.
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sequences  and  of the first and second

sequence, respectively, are produced and the nucleotide

positions n1 and n2 are in the state m, and the backward

variable βm(n1, n2) represents the probability that subse-

quences  and  are observed given that the

 and  nucleotide positions are in state m. Details of

the model and the computation of posterior probabilities

are provided in Section 7.

Figure 3 shows a surface plot of the (logarithm of) the pos-
terior probability in (3) as a function of sequence nucle-
otide indices n1 and n2, for an exemplary case of two
homologous RNA sequences. At locations where the
"probability surface" is close to unity, there is good confi-
dence that the corresponding nucleotide positions are co-
incident and conversely near zero values of the "probabil-
ity surface" reflect near certainty that the corresponding
nucleotide positions are not co-incident as per the model.
The process of determining the alignment constraint set in
(2), may be thought of as slicing the "probability surface"
Figure 3 at a sufficiently low level close to the (n1, n2)
plane.

The choice of the threshold Pthresh in Eqn (2) represents a
trade-off between computation and the accuracy of the
alignment constraint (in a manner analogous to the M-
parameter). A smaller Pthresh offers higher confidence that
all actual alignments will lie within the corresponding
constraint sets but also requires more computation due to
the increased choices and region of computation in the
Dynalign phase. A high value of this threshold, on the

other hand, results in more a stringent alignment con-
straint set and thereby reduced computation require-
ments. However, there is a higher probability that actual
alignments will not lie within the constraint set, whereby
the prediction accuracy for Dynalign is (likely to be)
reduced (see Remark 3 in Appendix Section 8).

Suitable HMM parameter and threshold values are
required in order to determine effective constraint sets. In
order to have parameters that accurately capture statistical
characteristics, sequence pairs are grouped into bins based
on the percentage of nucleotides that are identical in the
optimal (maximum-likelihood) alignment and the
parameter and threshold values are established for each
bin. This ensures that the diverse range of statistical varia-
tion observed in sequence pairs is divided up into clusters
where the parameters for each cluster better represent the
statistics of sequence pairs in the cluster than would be
feasible with a single global model. This process is analo-
gous to binning employed in previously published work
[11,36], Details of the binning and parameter estimation
can be found in Section 7.

A sample alignment constraint set obtained for two tRNA
sequences, X57045 and X57046, is shown in Figure 4,
where the constraint set is also compared against the
actual (hand curated) alignment from RFAM database
[37] and the constraints implied by Eqn. (1) for a value of
M = 7. In Figure 4(b), the true alignment in black clearly
indicates an insertion run in the second sequence. It is
also clear that the probabilistic alignment constraint set
includes the true alignment (as desired). A comparison of
Figs. 4(a) and 4(c) is also instructive: while the M param-
eter constraint allows a uniform band of nucleotide align-
ments about the "diagonal" line, the probabilistic
alignment constraints are adaptive to the confidence in
the alignment and provide tighter constraint in regions
where this confidence is high and a looser constraint
where this confidence is low (in the vicinity of the inser-
tion run). Finally, Figure 4(d), illustrates the difference
between the probabilistic and the M-parameter constraint
sets. The significantly larger light gray area in comparison
to the dark gray area in this figure illustrate the computa-
tional savings of this method in comparison to the M-
parameter constraint.

4 Results
Three sets of experiments are performed: 1) Experiments
for verifying accuracy of probabilistic alignment con-
straints, 2) Experiments for determining structural predic-
tion accuracy, and 3) Experiments for comparing the
computation and memory requirements. The latter two
sets of experiments also compare performance of Dyna-
lign with the new constraint proposed here against the
previous version of the Dynalign (with the M parameter

1 1
1n
x 1 2

2n
x

n
N

1

1
1 1+ x

n
N

2

2
1 2+ x

nth
1 nth

2

Logarithm of posterior probabilities for co-incidences of nucleotide positions for a pair of sequences in a surface plot representationFigure 3
Logarithm of posterior probabilities for co-incidences of 
nucleotide positions for a pair of sequences in a surface plot 
representation.
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Illustration of the probabilistic alignment constraint set and comparison against the true alignment and the M parameter con-straint set for tRNA sequences: X57045 and X57046Figure 4
Illustration of the probabilistic alignment constraint set and comparison against the true alignment and the M parameter con-
straint set for tRNA sequences: X57045 and X57046. The abscissa and ordinates of the plots indicate nucleotide positions n1 

and n2 along the sequences X57045 and X57046, respectively, (a) Probabilistic alignment constraint set with permitted align-
ments (shown in dark gray). (b) Alignment constraint set with true alignment super-imposed (in black). (c) Alignment con-
straint set for the prior M parameter with M = 7 (shown in light gray). (d) Difference between the M parameter and the 
probabilistic alignment constraint sets. Light gray regions indicate nucleotide position alignments permitted by the M constraint 
and not by the probabilistic constraint and the situation is vice-versa for dark gray regions.
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constraint) and against other secondary structure predic-
tion methods. The parameters for the algorithms and soft-
ware version numbers used are summarized in Section
7.6.

4.1 Accuracy of Probabilistic Alignment Constraints

The experiments for accuracy of probabilistic alignment
constraints are performed over 5S RNA and tRNA align-
ments in the RFAM database [37]. The accuracy is deter-
mined by how probabilistic alignment constraint
performs with respect to actual annotated alignment in
RFAM database. Sensitivity and specificity of alignment
constraint will be used to report accuracy of probabilistic
alignment constraint and compare it with the M parame-
ter alignment constraint. Sensitivity for alignment con-
straint accuracy is defined as:

where Ntp is number of true positive predictions corre-
sponding to number of alignment positions which are in
actual (annotated as in RFAM database) alignment and
within the alignment constraint set. Nfn is number of false
negative predictions corresponding to number of align-
ment positions which are outside alignment constraint set
but are in the annotated alignment. Sensitivity is therefore
the fraction of known alignment positions that are
allowed in the alignment constraint set.

Specificity for alignment constraint accuracy is similarly
defined as:

where Ntn is number of true negative predictions (i.e. not
in RFAM annotation) corresponding to alignment posi-
tions which are outside the probabilistic alignment con-
straints. Nfpis number of false positive predictions
corresponding to alignment positions which are align-
ment constraint but are not annotated as aligned in
RFAM. Specificity, therefore, is the fraction of alignments
known to not occur that are not allowed in the alignment
constraint set.

Since the alignment constraint serves as a "pre-filter" in
Dynalign, a high sensitivity is desirable even at the cost of
some degradation in specificity (see Remark 4 in Appen-
dix Section 8). In order to better distinguish between high
specificity values, the fraction of nucleotide alignment
positions missed are computed and tabulated in Table 1
far the proposed probabilistic alignment constraints and
the M parameter constraints, used with M = 7 [35]. The
values in Table 1 indicate that the proposed method for

determining alignment constraints offers very high sensi-
tivity and performs significantly better than the M con-
straint that was previously employed. At the same time,
the proposed method also has better average specificity
than the M parameter. Note also that the hand curated
alignments in the RFAM database include some nucle-
otide position alignments that are obtained using consid-
erations that are exogenous to sequence nucleotide
similarity, e.g. by structural alignments. This, in part, lim-
its the sensitivity that may be obtained using most meth-
ods based on sequence nucleotide similarity alone
(including ours).

Table 2 summarizes the average values of sensitivity and
specificity over tRNA and 5S RNA alignments in RFAM
database for the proposed probabilistic alignment con-
straint, the previously employed M constraint, and for sin-
gle sequence prediction [19]. Once again, the average
values indicate the superior performance of the proposed
method over the previous M constraint. The maximum
and minimum values indicate the limits of the perform-
ance of these two methods. Note that the probabilistic
alignment constraint exhibits greater variability in the
minimum and maximum specificity as can be expected
due to the adaptive nature of the constraint.

sensitivity =
+

N

N N

tp

tp fn

(4)

specificity =
+

N

N N
tn

tn fp
(5)

Table 2: Average, minimum, maximum sensitivity and specificity 

over tRNA and 5S RNA alignments in RFAM database for the 

proposed probabilistic alignment constraint (New constraint) 

and the previously employed M constraint.

New constraint M constraint

sensitivity specificity sensitivity specificity

tRNA avg 0.999 0.827 0.997 0.816

min 0.38 0.42 0.44 0.78

max 1.00 0.99 1.00 0.85

5S RNA avg 0.999 0.924 0.995 0.883

min 0.78 0.63 0.53 0.85

max 1.00 0.98 1.00 0.88

Table 1: Accuracy of alignment constraints: Fraction of total 

number of alignment positions missed in 619941 tRNA pairwise 

alignments and 180901 5S RNA pairwise alignment in RFAM 

database.

New constraint M constraint

Fraction of alignment 
positions missed

tRNA 2.2 × 10-4 2.9 × 10-3

5S RNA 2.0 × 10-4 4.4 × 10-3

For the M constraint a value of M = 7 is chosen is chosen as 
established in [35]. New constraint refers to the probabilistic 
alignment constraint proposed in this paper.
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4.2 Accuracy of Structural Prediction

An evaluation of the structural prediction accuracy
obtained with the proposed constraints is important in
order to establish that the constraints are not overly strin-
gent. For this purpose, an archive containing 309 5S RNAs
[38] and 484 tRNAs [39] with known secondary structures
is utilized. Three methods for secondary structure predic-
tion are compared over 2000 randomly selected 5S RNA
and 2000 randomly selected tRNA sequence pairs from
this archive: a) Dynalign with probabilistic alignment
constraints, b) Dynalign with M constraint with M = 7 and
c) single sequence structure prediction [19].

Structural prediction accuracy for each of the methods is
quantified in terms of sensitivity and positive predictive
value (PPV). Sensitivity is defined as the fraction of canon-
ical pairings in the known (or true) structure that are cor-
rectly predicted and PPV is defined as the fraction of
predicted base pairings that are in agreement with the
known structure. In both cases, a single nucleotide shift
on any one side is allowed. Detailed definitions of the
sensitivity and PPV can be found in the methods part in
Section 7.5.

The average values of PPV and sensitivity for the three
methods are listed in Tables 3 and 4 for the tRNAs and 5S
RNAs, respectively. The tables for the tRNA dataset
include two columns indicated by + and - that corre-
spond, respectively, to versions of the algorithms that do
or do not utilize available knowledge of modified nucle-
otides that cannot accommodate the canonical A-form
helix. For the results in the + columns, these nucleotides
are forced single-stranded to improve structure prediction
[24] whereas the information is not utilized for the results
in the – column. From the tabulated numbers it is clear
that Dynalign with the proposed probabilistic alignment
constraint is improved compared to the previously used M
constraints. Both Dynalign methods outperform single
structure prediction.

4.3 Computation and Memory Requirements

In order to compare the computational and memory
requirements for Dynalign with the proposed probabilis-
tic alignment constraints against the prior M-parameter
heuristic, these requirements were estimated by sampling
100 tRNA and 5S RNA sequence pairs each at random
from the RFAM database and recording the CPU time and
memory usage. An Opteron 270 (dual core, 2 GHz)
machine with 4 GB of RAM using Fedora Core running
Linux Core 4 and gcc compiler were utilized for these
experiments. For the M parameter constraint a value of M
= 7 was used throughout as established in the most recent
publication on Dynalign [35].

Minimum, maximum, and average CPU times per Dyna-
lign execution (for a sequence pair) are reported in Table
5. The CPU time in these tables is as reported by Linux and
it refers to time in seconds that the (Dynalign) process
occupies the CPU excluding dispatches and input/output
wait times. The major benefit of the proposed methodol-
ogy is immediately apparent from the numerical figures in
this table. On average, the incorporation of the probabil-
istic constraints reduces the CPU time by a factor of
approximately 2 for the 5S RNA experiments, where the
average sequence length was 119.59 nucleotides. For the
tRNA experiments, where the average sequence length was
much shorter (77.44 nucleotides), the method requires
almost the same computation time as the previous ver-
sion of Dynalign (with the M parameter). In fact, the com-
putational time requirement for this case favors the M-
parameter Dynalign by a small amount. This is the result
of computational optimizations that have been incorpo-
rated in Dynalign due to which the computation is now
significantly faster than prior versions. As a result of this
speed-up, for smaller sequences, the overhead of comput-
ing the alignment envelope for the new method and of
performing the resulting dynamic memory allocations is
no longer negligible in comparison to the overall run
time, whereas in the M constraint, these are pre-deter-
mined.

The significance of these timing gains is even greater when
taken in conjunction with the results in the preceding sec-
tions that indicate that the improvement is not at the cost

Table 4: Structural prediction accuracy of Dynalign with M 

constraint, new constraint and single prediction over 2000 

random 5S RNA pairs.

Dynalign

New constraint M constraint Single Sequence 
Prediction

Sensitivity 0.907 0.905 0.739

PPV 0.821 0.817 0.647

Table 3: Structural prediction accuracy of Dynalign with the M 

constraint and the new constraint, and for single sequence 

prediction over 2000 random tRNA pairs.

Dynalign

New constraint M constraint Single Sequence 
Prediction

+ - + - + -

Sensitivity 0.926 0.873 0.923 0.866 0.874 0.764

PPV 0.925 0.846 0.922 0.836 0.848 0.707

Column with '+' refers to Dynalign making use of structural 
constraints where modified nucleotides that cannot accommodate 
the canonical A-form helix are forced single-stranded [24].
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of prediction accuracy. Furthermore, it is worth noting
that the speed-up factor is larger for the longer 5S RNA
sequences. Since these require significantly more time
than the shorter tRNA sequences the overall impact of the
speed-up is very significant and in fact increases the length
of sequences on which Dynalign can be deployed.

The memory requirements for the two methods are com-
pared in Table 5, where the minimum, maximum, and
average memory (in megabytes) required for the 100
sequence pairs each of tRNAs and 5S RNAs are indicated.
Memory requirements are as reported in the size entry of
Linux ps command after all requisite dynamic allocations
are done. This number corresponds to approximate value
of virtual memory usage of the (Dynalign) process. The
tabulated numbers indicate that the proposed method
also offers a memory advantage. As might be anticipated,
the advantage is relatively minor for short sequence
lengths (e.g. tRNAs) but quite significant for longer
sequences (e.g. 5S RNAs). The savings for longer
sequences are particularly attractive since often memory is
a limitation that restricts the length of sequences for
which Dynalign may be utilized.

4.4 Benchmarking Against Other Structure Prediction 

Methods

For benchmarking purposes, the implementation of the
new principled alignment constraint (using the threshold
of posterior co-incidence probabilities) and the previous
Dynalign banding constraint (M constraint) [35] were
also compared against three other dynamic programming
algorithms. The three other programs are FOLDALIGN
[33], which uses a free energy-based scoring function, and
StemLoc [11] and Consan [34], which use SCFG models.
Each program was run using default parameters. Our
interest is both in the accuracy of the methods and in their
use of resources, CPU time and memory.

Tables 6 and 7 show the accuracy of structure prediction
for the methods with tRNA [39] and 5S rRNA [38], respec-
tively. In each case, 2000 pairs of sequences were ran-
domly chosen from a database of sequences with known
structure. These tables also show the comparison of the
programs that find the structure common to two
sequences to the accuracy of single sequence secondary
structure prediction. Sensitivity and positive predictive
value (PPV) are both scored [22], where sensitivity is the
fraction of known pairs correctly predicted and positive
predictive value is the fraction of predicted pairs in the
known structure. Results are stratified by percent similar-
ity of the two sequences and the final column summarizes
the results over all values of sequence pair similarities.

For determining computation and memory resource
requirements, calculations were performed using one core
on a dual Opteron 270 (dual core, 2 GHz) machine with
4 GB of RAM under Fedora Core Linux with the gcc com-
piler.

Table 8 compares the computation times for the different
methods benchmarked in this study and the memory
requirements for these methods are listed in Table 9.
Dynalign performs favorably as compared to the other
programs. Each method has similar average accuracy on
the tRNA database. The free energy minimization
approaches, Dynalign, FOLDALIGN and single sequence
prediction, provide lower accuracy than the SCFG-based
methods at high sequence identity and higher accuracy at

Table 6: Structural prediction accuracy statistics for the methods 

benchmarked over 2000 random tRNA selections.

Percent sequence similarity

20–40 40–60 60–80 80–100 0–100

Dynalign new 
constraint

Sens 0.830 0.874 0.936 0.719 0.873

PPV 0.800 0.845 0.930 0.701 0.846

Dynalign M 
constraint

Sens 0.824 0.867 0.930 0.719 0.866

PPV 0.792 0.834 0.921 0.701 0.836

FOLDALIGN Sens 0.753 0.858 0.898 0.690 0.848

PPV 0.838 0.906 0.949 0.846 0.902

StemLoc Sens 0.587 0.896 0.943 0.871 0.862

PPV 0.755 0.901 0.926 0.876 0.889

Consan Sens 0.800 0.909 0.945 0.768 0.899

PPV 0.769 0.852 0.873 0.667 0.843

Single 
Prediction

Sens 0.757 0.762 0.785 0.717 0.764

PPV 0.709 0.703 0.738 0.673 0.707

Results are summarized for sequence similarity values ranging from 
20% through 100% in steps of 20% and for the overall data set (0 – 
100). Dynalign new constraint refers to Dynalign with probabilistic 
alignment constraints proposed here. Software version numbers and 
parameters for the algorithms are described in Section 7.6.

Table 5: Average, minimum, maximum run times (in seconds) 

and memory (in megabytes) requirement results of proposed 

probabilistic alignment constraint (New constraint) and the 

previously employed M constraint.

tRNA 5S RNA

New 
constraint

M 
constraint

New 
constraint

M 
constraint

Memory avg 10.988 10.960 12.377 14.306

min 9.36 10.528 10.176 12.664

max 13.592 12.040 17.436 14.840

Timing avg 9.98 9.39 34.38 73.07

min 1.0 4.0 20.0 36.0

max 55.0 29.0 234.0 111.0

A dual-core AMD Opteron®-270 2.0 GHz system with 4 GBytes of 
main memory running Linux Fedora Core 4 was utilized for the 
timing experiments.
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low sequence identity. For 5S rRNA, however, Dynalign
has higher average accuracy than all the other methods
tested. In particular, Dynalign does well on cases with
both high and low pairwise identity. In general, the SCFG-
based methods show lower average accuracy as pairwise
identity decreases. Each structure prediction method that
finds the structure common to two sequences is signifi-
cantly more accurate than single sequence secondary
structure prediction. Dynalign is faster and uses less mem-
ory than the other programs.

5 Discussion
In this paper, a novel technique is presented for reducing
the alignment search space for finding the common sec-
ondary structure and alignment for two RNA sequences.
The allowed nucleotide alignments are those determined
to be reasonable (posterior nucleotide co-incidence prob-

ability greater than a chosen threshold) as determined by
a forward-backward calculation using a Hidden Markov
Model (HMM). This new method provides a significant
improvement in rigor and speed as compared to previous
versions of Dynalign, in which the user was required to
empirically choose a parameter that set a band of allowed
alignments [5,35]. The HMM is significantly more flexible
in the application of constraints because the allowed
region is narrow where the alignment is well-defined by
sequence conservation alone, but also wide when the
alignment is poorly defined.

Other pairwise implementations of the Sankoff algorithm
have also explored alignment constraints to speed execu-
tion time. For StemLoc, Holmes introduced the alignment
"envelope," which is the set of allowed nucleotide align-
ments as determined by the union of "N-best align-
ments," i.e. only nucleotide position alignments
occurring in the N most likelihood sequence alignments
[11,12]. This has the disadvantage that regions of the
nucleotide alignment can be poorly resolved and there-
fore not well sampled with N alignments. For Consan,
Dowell and Eddy use a forward-backward HMM to deter-
mine nucleotide alignments of high probability, called
"pins" [34]. In Consan, these high probability nucleotide
alignments are forced to occur. This approach has the

Table 9: Memory requirements (in megabytes of main memory) 5 different structure prediction methods on 5S RNAs and tRNAs 

alignments from [38] and [39]

tRNA 5S RNA

Min Max Avg Min Max Avg

Dynalign new constraint 9.360 13.592 10.988 10.176 17.436 12.277

Dynalign M constraint 10.528 12.040 10.960 12.664 14.840 14.306

StemLoc 41.440 750.660 252.246 94.300 2788.296 415.973

Consan 34.272 358.704 131.595 98.976 1676.492 317.303

FOLDALIGN 93.276 230.032 134.438 585.900 820.204 730.214

A dual-core AMD Opteron®-270 2.0 GHz system with 4 GBytes of main memory running Linux Fedora Core 4 was utilized for the timing 
experiments.

Table 7: Structural prediction accuracy statistics for the methods 

benchmarked over 2000 random 5S RNA selections.

Percent sequence similarity

20–40 40–60 60–80 80–100 0–100

Dynalign new 
constraint

Sens 0.895 0.903 0.914 0.909 0.907

PPV 0.838 0.824 0.821 0.785 0.821

Dynalign M 
constraint

Sens 0.892 0.901 0.912 0.909 0.905

PPV 0.837 0.821 0.815 0.786 0.817

FOLDALIGN Sens 0.726 0.753 0.787 0.510 0.749

PPV 0.772 0.784 0.803 0.572 0.778

StemLoc Sens 0.272 0.673 0.899 0.776 0.740

PPV 0.652 0.805 0.901 0.826 0.840

Consan Sens 0.666 0.799 0.931 0.865 0.842

PPV 0.671 0.761 0.817 0.722 0.775

Single 
Prediction

Sens 0.680 0.722 0.766 0.784 0.739

PPV 0.603 0.632 0.672 0.673 0.647

Results are summarized for sequence similarity values ranging from 
20% through 100% in steps of 20% and for the overall data set (0 – 
100). Dynalign new constraint refers to Dynalign with probabilistic 
alignment constraints proposed here. Software version numbers and 
parameters for the algorithms are described in Section 7.6.

Table 8: Minimum, Maximum and Average run times (in 

seconds) for 5 different methods over 100 randomly chosen 5S 

RNA and tRNA alignments each from [38] and [39].

tRNA 5S RNA

Min Max Avg Min Max Avg

Dynalign new 
constraint

1.0 55.0 9.98 2.0 234.0 34.38

Dynalign M 
constraint

4.0 29.0 9.39 36.0 111.0 73.07

StemLoc 3.0 1308.0 210.16 11.0 8133.0 616.06

Consan 21.0 793.0 209.29 123.0 7330.0 1032.84

FOLDALIGN 14.0 76.0 30.33 181.0 822.0 349.48

A dual-core AMD Opteron®-270 2.0 GHz system with 4 GBytes of 
main memory running Linux Fedora Core 4 was utilized for the timing 
experiments.
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drawback that there are no constraints between pins and,
for sequence pairs with low identity, it is possible that no
pins will be found.

The present manuscript describes the combination of the
proposed method for determining alignment constraints
with Dynalign. The technique, however, is general and
would apply to other implementations of the Sankoff
algorithm, including Consan [34], FOLDALIGN [33],
PMcomp [40], and StemLoc [11]. Two pairwise calcula-
tions of alignment constraints could also be used to accel-
erate X-Dynalign, a program that finds the common
structure and alignment for three homologous sequences
[41]. Aside from the improved speed of Dynalign for
determining secondary structure, this new method will
have a significant impact in the discovery of non-coding
RNA (ncRNA) sequences in genome scans. Two papers
have reported the use of algorithms that can find the sec-
ondary structure common to two unaligned sequences as
generic RNA gene finders [35,42]. These programs have
high sensitivity for ncRNAs, especially for regions of
genome alignment that have low pairwise identity. The
principal drawback is that they are slow compared to pro-
grams that find ncRNAs by scanning fixed, predetermined
alignments [43,44]. The method used here to accelerate
Dynalign mitigates some of the computational cost and
will allow faster scanning of genomes for novel ncRNAs.
The success of the methodology also suggests that iterative
methods based on a posteriori probability estimates that
have been extremely successful in communication sys-
tems [8,9] may offer parallels in biological problems
involving sequence and structure similarity [45].

Since the method adaptively computes alignment con-
straints for each pair of input sequences, its complexity
varies depending on the input sequence pair. In practice,
the computational complexity will depend on the extent
of sequence conservation between the two homologous
sequences. In the worst case, it can require as much com-
putation as the full unrestricted Sankoff algorithm, viz.
O(N6) in computation and O(N4) in memory. In the best
case, where the alignment constraint actually corresponds
to a single alignment, i.e. a band of width M = 1, the com-
plexity reduces to O(N3) in computation and O(N2) in
memory. From the computational perspective, the best
case scenario is encountered for the case of identical
sequences with sufficient nucleotide diversity (within a
sequence). In this case, however, comparative analysis
offers little benefit for the overall problem of joint struc-
ture prediction. The worst case scenario is rare for homol-
ogous sequences.

Finally, note that the alignment constraint constitutes
only one element (out of at least three) that determine the
structural prediction accuracy. The accuracy depends also

on the thermodynamic scoring model and on the "fold
constraints" utilized in the computation. In particular,
experimental results for some of the situations in which
the proposed method fails demonstrate that the thermo-
dynamic model actually predicts a lower free energy for
the structure determined by Dynalign (with the new con-
straint) than for the true structure.

6 Conclusion
A new procedure is proposed for establishing alignment
constraints in joint alignment and secondary structure
prediction problems for RNA sequences. The proposed
technique when integrated in Dynalign eliminates the
need for manual parameter selection and provides signif-
icant computational savings (a factor of 2 over a 5S RNA
database with average sequence length of approximately
120 nucleotides) while simultaneously providing a small
improvement in the structural prediction accuracy. The
revised version of Dynalign can be downloaded, either as
source code or as part of the RNAstructure package for
Microsoft Windows [46].

7 Methods
A Hidden Markov Model (HMM) formulation is utilized
in order to estimate a posteriori symbol-to-symbol align-
ment probabilities. HMMs have been previously used in
sequence analysis [1], in speech recognition [47], and in
error correction coding [7].

7.0.1 Notation

Individual output sequences are denoted by lowercase

boldface letters specifically x1 and x2 for the case of two

sequences. Specific nucleotides or subsequences selected

from a sequence are indicated by prescripts:  denotes

the n1
th nucleotide of the 1st sequence and  denotes

the subsequence of nucleotides from index n1 to n2 in

sequence x. An alignment between the two sequences is

specified by a sequence of states from the set

M = {ALN, INS1, INS2} (6)

These states define an alignment by relating nucleotide
positions between the two sequences as illustrated by
means of an example in Figure 5. The ALN state represents
aligned nucleotide positions, where each of the two
sequences has a nucleotide (identical nucleotides in these
positions are evidence of evolutionary conservation and
differences represent mutations). An INS1 state represents
an insertion of the first sequence, where there is a nucle-
otide in the first sequence x1 but no corresponding nucle-
otide in the second sequence x2. In Figure 5 this is denoted
by pairing the nucleotide in sequence x1 with the null or

n1
x

n
n

1

2 x
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gap symbol . Similarly, the INS2 state represents the com-
plementary situation of an insertion in the second
sequence. The letter m (possibly subscripted) will denote
a specific state, i.e., an element of the set M.

A nucleotide position n1 from the first sequence is said to
be co-incident with a nucleotide position n2 from the sec-
ond sequence if either of the following three conditions
hold:

1. n1 and n2 are aligned.

2. n1 occurs in an "insertion run" in the first sequence that

began at a nucleotide position aligned with position n2 in

the second sequence. Formally, this may be described as

follows: the nucleotide at position n1 is an insertion in the

first sequence and nucleotide position  from sequence

1 is aligned with nucleotide position n2 from sequence 2,

where  denotes the largest nucleotide position index in

sequence 1 under n1 that is aligned (with a nucleotide

position from sequence 2).

3. n2 occurs in an "insertion run" in the second sequence

that began at a nucleotide position aligned with position

n1 in the first sequence, i.e., the nucleotide at position n2

is an insertion in the first sequence and nucleotide posi-

tion  from sequence 2 is aligned with nucleotide posi-

tion n1 from sequence 1, where  denotes the largest

nucleotide position index in sequence 2 under n2 that is

aligned (with a nucleotide position from sequence 1).

7.1 Hidden Markov Model for Homologous Sequences

The HMM models the relation between two homologous
nucleotide sequences, x1 and x2 by a two-stage probabilis-
tic model. The first stage comprises the sequence of states
that represents the alignment and the second stage models
the nucleotides in the sequences. Specifically, the
sequence of states in the first stage of the model are
assumed to constitute a time-invariant (see Remark 5 in
Appendix Section 8).

Markov process. This three-state Markov process can be

represented in terms of the state transition diagram illus-

trated in Figure 6 and is characterized by the state transi-

tion probabilities  where τ(m1, m2) ≡

P(m2 | m1)represents the probability that the next state is

m2 given that the current state is m1. In each stage, the

HMM emits an ordered symbol pair from the alphabet set

{A, C, G, U, }. The chronological progression of the first

elements of the emitted ordered pair constitute the first

sequence and the second elements make up the second

sequence. As indicated before, the  represents a null sym-

bol or a gap where no nucleotide is emitted in the

sequence. The emission probabilities for all possible

ordered pairs, for each of the states, characterize the sec-

ond stage of the model. The probability that the symbol

pair (u, v) is emitted in state m is denoted by γm(u, v). Each

state of the alignment Markov process allows emission of

only a subset of the total set of ordered symbol pairs.

Ordered symbol pairs emitted in the aligned states can

only be nucleotide pairs (no gaps), those emitted in the

INS1 state can only be of the type (X, ) where X is a nucle-

otide, and those emitted in the INS2 state can only be of

the type (, X) where X is a nucleotide. A gap pair (, ) is a

disallowed output in any state. Disallowed outputs are

readily handled in the model by requiring that the corre-

sponding emission probabilities are zero. Observe that

the ALN state can output ordered pairs which are mis-

matched (i.e. pairs of differing nucleotides). As a final

′n1

′n1

′n2

′n2

{ ( , )} ,τ m m m m M1 2 1 2∈

State transition diagram for the (hidden) Markov Process determining alignment between the sequencesFigure 6
State transition diagram for the (hidden) Markov Process 
determining alignment between the sequences. The three 
states ALN, INS1, and INS2 represent alignment, insertion in 
sequence 1 and insertion in sequence 2, respectively.

A sample sequence alignment and corresponding state sequenceFigure 5
A sample sequence alignment and corresponding state 
sequence.
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remark on the model, note that the alignment states are in

fact hidden and unobservable since only the sequences

are observed.

The HMM parameters consist of the state transition prob-
abilities for the first stage Markov process and the emis-
sion probabilities for the second stage. The model is
useful because with appropriately chosen parameters it
captures observed statistics of homologous sequences. For
instance, in homologous sequences, aligned base pairs are
more likely to have matching rather than differing nucle-
otides. Higher probabilities for emission of these match-
ing nucleotide pairs in the ALN state allow for this
statistical behavior to be modeled. Similarly, gaps in
homologous sequences tend to occur in long runs rather
than as single nucleotide insertions; a characteristic that
the HMM can represent through a high probability of self
transitions for the states in Figure 6. Thus the HMM pro-
vides a suitable model for homologous sequences.

The HMM formulation is advantageous because it can pro-
vide answers to several meaningful questions in a compu-
tationally tractable and efficient manner. For instance,
given any two sequences one can determine the most
probable alignment between them (as per the model) and
the corresponding probability that sequences are related
by the model. If this probability is high (and the model is
good), one may infer that the sequences are likely to be
homologs. This method is in fact utilized for sequence
alignment and computing probabilistic similarity scores.
However, as indicated in Section 1 for ncRNA sequence
similarity alone is a poor metric for homology, particularly
in regions with poor sequence similarity (since these may
still have high structural similarity). Therefore, instead of
determining the best alignment and the corresponding
probability, the proposed method computes the posterior
probability of each nucleotide position in one sequence
being aligned with each nucleotide position in the other
sequence. Subsequently, we can use these posterior proba-
bility estimates in order to restrict the search space for
Dynalign and improve its computational efficiency. Spe-
cifically, as described in Section 3, an alignment constraint
is computed by thresholding posterior alignment proba-
bilities of nucleotide positions of two sequences. The esti-
mation of these posterior alignment probabilities using
the HMM is described next.

7.2 Posterior Probabilities for Pairwise Sequence Alignment

The posterior probability P(n1 ↔ n2| x1, x2) in (3) denotes

the probability that nucleotide position n1 in the first

sequence x1 is co-incident with nucleotide position n2 in

the second sequence x2, given that the HMM emits the two

sequences. Conceptually, this probability may be deter-

mined by computing the probability of each possible

alignment between the two sequences and summing up

the probabilities for the alignments for which the 

position of x1 is co-incident with the  position of x2 to

obtain the desired posterior probability (and dividing by

the probability that the sequences are emitted by the

model). The process, however, would require computation

and memory that are exponential in the sequence lengths

and is infeasible for practical sequence lengths of interest.

Using the HMM forward-backward algorithm, which con-

stitutes a dynamic programming approach for the prob-

lem, these probabilities may be computed in a

computationally efficient manner. The forward-backward

algorithm provides a set of efficient recursions using which

the posterior probabilities can be determined. For the gen-

eral HMM setting, these recursions may be found in [47].

The specific situation of pairwise alignment HMMs will be

considered here.

7.2.1 Trellis Representation of the Hidden Markov Process

In order to present the forward-backward recursions, it is
convenient to represent the HMM in the form of a three-
dimensional trellis of nodes {(n1, n2, m)}, where the first
two coordinates correspond to the sequence indices and
the third corresponds to the hidden state variable. An
alignment between two sequences can be represented in
the form of a feasible path in the trellis (described subse-
quently in this section). A sample trellis is shown in Figure
7, which depicts the nucleotide sequences and alignment
path corresponding to the example of Figure 5.

The transitions between the trellis nodes represent the

(hidden) Markov process for the alignment. The process

can be thought of as evolving in "time" by transitioning

from a current node position ( , , m') in the trellis to

the next node (n1, n2, m) and emitting a pair of symbols

(for the two sequences). In this process (see Remark 6 in

Appendix Section 8), the transition probabilities (for the

next state) are determined by the current state and the

emission probabilities (for the emitted symbol pair) are

determined by the next state. Furthermore, the next node

(n1, n2, m) is determined by the current node ( , , m')

and the next state m as follows:

and

nth
1

nth
2

′n1 ′n2
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These constraints reflect the state dependent constraints

on emitted symbol pairs that were outlined earlier and

restrict the allowable paths for the process within the trel-

lis. Only (directed) edges ( , , m') → (n1, n2, m)

between adjacent (in a 3-D neighborhood) nodes in the

trellis that satisfy the above constraint are allowed or fea-

sible transitions between trellis nodes. The allowed or fea-

sible paths are then a sequence of feasible edges such that

the end node of each edge is identical to the beginning

node of the next edge. A section of the trellis illustrating

the feasible paths corresponding to a specific node is

shown in Figure 8.

7.2.2 Forward-Backward Algorithm for Posterior 

Probability Computation

From Bayes' rule, the posterior probability in (3) may be
written as

where P(n1 ↔ n2, x1, x2) represents the joint probability
that nucleotide n1 of sequence 1 is co-incident with nucle-
otide n2 of sequence 2 and the sequences x1 and x2 are
emitted (by the HMM). The computation of this joint
probability is expressed in terms of recursions involving a
forward-variable and a backward-variable (see Remark 7 in

Appendix Section 8). In order to define these variables,
denote by Sm(n1, n2) the event that the state is m at the
point when n1 nucleotides corresponding to the first
sequence and n2 nucleotides corresponding to the second
sequence have been emitted. Equivalently, this is the
event that the path of the HMM process through the trellis
visits the trellis node (n1, n2, m).

The forward-variable is then defined as the joint probabil-
ity

i.e., the probability that the subsequence  of n1 nucle-

otides is emitted in the first sequence, the subsequence

 of n2 nucleotides is emitted in the second sequence,

′n1 ′n2

P n n
P n n

P
( | , )

( , , )

( , )
1 2 1 2

1 2 1 2

1 2

↔ =
↔

x x
x x

x x
(9)

αm m
n n

n n S n n( , ) ( ( , ), , ),1 2 1 2 1 1 1 2
1 2= P x x (10)

1 1
1n
x

1 2
2n
x

Segment of the HMM trellis illustrating the feasible edges arriving at and originating from one trellis nodeFigure 8
Segment of the HMM trellis illustrating the feasible edges 
arriving at and originating from one trellis node. The red 
solid circle represents the trellis node for which edges are 
depicted (it corresponds to an ALN state). Feasible edges 
arriving at the node are shown as blue arrows that converge 
at the trellis node and feasible edges originating from the 
node are shown as green arrows diverging outward from the 
trellis node.

Trellis illustrating an alignment pathFigure 7
Trellis illustrating an alignment path.
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and the state (of the alignment Markov process) is to m.

The backward variable is defined as the conditional prob-

ability

i.e., the probability that subsequences  and 

are observed given that state is m when n1 and n2 nucle-

otides have been emitted in the first and second sequence,

respectively. Here N1 and N2 represent the lengths of

sequences x1 and x2, respectively.

From the Markov property of the hidden alignment proc-
ess, the joint probability in (9) can be written as

P(n1 ↔ n2, x1, x2) = αALN(n1, n2)βALN(n1, n2) (12)

The forward variable can be computed recursively by not-
ing that each node in the trellis has three distinct incom-
ing feasible edges corresponding to the three possible
values for the immediately previous state (see Figure 8).
Hence, the forward variable is obtained as

where in accordance with (7) and (8),

and

Now using the HMM state transition probabilities and the
symbol emission probabilities defined in Section 7.1, it
can be seen that the forward variable expression in (13),
yields the recursion formula,

Following a similar procedure, recursions for the back-
ward variable are obtained:

The joint probability that the sequences are emitted in the
denominator of (9) can also be obtained from the forward
variable as,

Using (12) and (18) in Equation (9) the posterior proba-
bility of co-incidence of two nucleotides can be obtained
as,

7.2.3 Boundary Conditions

Boundary conditions are required to initiate the recur-
sions in Equations (16) and (17). The forward variable
recurses on the previous states and backward algorithm
recurses on next states. As a result forward variable needs
a boundary condition at the starting symbol pairs and
backward algorithm needs the boundary condition at the
ending pairs. Since the method is employed over ncRNAs
rather than arbitrarily chosen RNA segments, special
dummy symbol pairs are introduced at the beginning, i.e.,
nucleotide positions (0,0) and at the end, viz, nucleotide
positions (N1+ 1, N2 + 1).

The beginning state is then specified by:

Similarly the end state is specified by:

7.3 Probabilistic Alignment Constraint Computation

As indicated in Section 3 the alignment constraints are
computed by utilizing a threshold on the posterior prob-
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ability of co-incidence. This process can be summarized as
follows:

1. Using the boundary condition (20) and the recursions
(16), calculate the forward variable αm(n1, n2) over 3D
trellis ((n1, n2, m) ∈ [1 : N1] × [1 : N2] × M).

2. Using the boundary condition (21) and the recursions
(17), calculate backward variable βm(n1, n2) over same
trellis.

3. Calculate probability P(x1, x2) of emission of the
observed sequences using (18).

4. Using (19), compute the alignment posterior probabil-
ity P(n1 ↔ n2 | x1, x2), for all possible nucleotide align-
ment positions, i.e. for (n1, n2) ∈ [1 : N1] × [1 : N2].

5. Determine a statistical confidence threshold Pthresh such
that pair-wise alignments with a probability of lower than
Pthresh may be considered improbable and therefore
excluded (from the computations in subsequent Dynalign
stage).

6. Determine the constraint set C of allowable nucleotide
position alignments between the sequences by threshold-
ing the posterior probability at the chosen statistical con-
fidence level Pthresh, i.e.

C = {(n1, n2) | P(n1 ↔ n2 | x1, x2) > Pthresh} (22)

Note that (22) is identical to equation (2) in Section 3.

The constraints on alignment are then imposed a priori in
Dynalign by considering (in the dynamic programming
step) only the pair-wise alignment positions in C.

7.4 Model Parameter and Threshold Estimation

Seed alignments from the RFAM database [37], are uti-
lized to estimate HMM parameters and thresholds
required for the determination of alignment constraint
sets. The process uses multiple sequence alignments for
the 10 RNA families: 5S RNA, archaeal RNAseP, bacterial
RNAseP classA, bacterial RNAseP classB, bacterial SRP,
eukaryotic SRP, Group1 catalytic intron, Group2 catalytic
intron, Nuclear RNAseP, and tRNA. Within each family
the set of sequences available are randomized and half are
utilized in the training process for determining the HMM
parameters and the other half are used for testing and for
establishing threshold probability values as will be
described subsequently. The RFAM database includes
multiple alignments and in order to obtain pairwise align-
ments, all possible (unique) pairwise sequence align-
ments implied by the multiple alignments of member
sequences within a family are used.

In order to allow the model to better represent observed
statistics, sequence pairs are grouped into a number of
"bins" and HMM parameters are estimated for each bin.
Bins are established based on estimates of percent nucle-
otide-identity – an approach that has been commonly
used for several probabilistic models [11,36]. A brief
description of the process follows. First, a "universal" set
of HMM parameters is obtained by utilizing all align-
ments in the training set (from the 10 RNA families).
Using this universal set of parameters, for any sequence
pair, a maximum-likelihood (ML) alignment is per-
formed which is then utilized to compute the percentage
nucleotide-identity, i.e., the percentage of positions in the
ML alignment that are aligned and have matching nucle-
otides. The seed alignments in the training set are then uti-
lized to estimate the HMM model parameters, i.e., the
state-transition and emission probabilities, for sequence
pairs with percent nucleotide identities corresponding to
the bins (see Remark 8 in Appendix Section 8): < 30%, 30
– 40%,40 – 50%,50 – 60%, 60 – 70%, 70 – 80%, 80 –
90%, and 90 – 100%. Once the HMM parameters are
known, for any pair of sequences, first using the ML align-
ment with the universal model, the percent nucleotide
identity is computed which is then used to identify the
corresponding bin for the HMM parameters. Using these
parameters, the posterior probability of nucleotide co-
incidence may be calculated as described in Section 7.2.

Once the HMM parameters are established, suitable val-
ues of probability thresholds (Pthresh in (2)), are deter-
mined by empirically evaluating the performance of the
alignment constraint set over test sequences (not included
in the training). Since nucleotide alignments outside the
alignment constraint set are disallowed, it is desirable that
as few as possible of the true nucleotide alignment posi-
tions are outside the constraint sets. Figure 9 shows a plot
of the fraction of missed alignment position pairs as a
function of the (logarithm of) threshold Pthresh for the 7
different bins indicated above (over 5s and tRNA
sequences in the test set). Figure 10 illustrates the fraction
of missed alignments, i.e., alignments for which even one
nucleotide alignment position is outside the correspond-
ing constraint set. Using Figure 9, values of the threshold
probability (Pthresh) were determined for each of the 7 bins
that ensured that less than one in 10,000 alignment posi-
tions were missed, i.e., the empirical probability of miss-
ing an alignment position was less than 10-4. These
threshold values were then utilized in subsequent experi-
ments to determine alignment constraints for Dynalign.

7.5 Scoring Structure Predictions

The accuracy in correctly predicting canonical base pair-
ings is utilized for the purpose of scoring the performance
of the structural prediction methods. The performance is
quantified using sensitivity, i.e., the fraction of canonical
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pairings in the known (or true) structure that are correctly
predicted by the method and the positive predictive value
(PPV), which is defined as the fraction of predicted base
pairings that are in agreement with the known structure.
In both cases, a "slippage" of one nucleotide on one side
of the base pairing is allowed. Thus a base pairing i - j in
the known structure is considered correctly predicted (for
computation of sensitivity) if the predicted structure con-
tains a base pairing in one of the 5 positions: i - j, (i ± 1) -
j, i - (j ± 1). Likewise, a base pairing i - j in the predicted
structure is considered correctly predicted (for computa-

tion of PPV) if the known structure contains a base pairing
in one of the 5 positions: i - j, (i ± 1) - j, i - (j ± 1).

Thus,

where  is the number of base pairings in the known

(k) structure that are correctly (c) predicted as per the

above definition, and  is the total (t) number of base

pairings in the known structure.

Similarly,

where  is the number of base pairings in the predicted

(p) structure that are correct (c) as per the above defini-

tion, and  is the total (t) number of base pairings in

the predicted structure.

The motivation for allowing the one nt slippage is two-
fold: firstly, the slippage of one nt does not typically
change the predicted topology of the secondary structure,
which is much more significant than the exact pairing pre-
dicted. Secondly, the "correct" pairings are obtained using
experiments and comparative sequence analysis, which
also have uncertainty due to dynamics of base pairings
and limited resolution of the methods. The scoring meth-
odology based on the one nt slippage has also been used
in prior published literature [6,24,48]. The scoring
method adopted yields values of sensitivity and PPV
roughly 2–3% higher than when an exact match criterion
is used for scoring, where a base pairing i - j in the known
structure is deemed correctly predicted for the purpose of
sensitivity computation if and only if the exact base pair-
ing i - j is also predicted (and likewise exact match is used
for PPV computation). For completeness, sensitivity and
PPV values obtained with the exact match constraints for
scoring are included as Tables 10 and 11.

7.6 Parameters for Dynalign and Other Programs used for 

Benchmarking

For all the experiments, Dynalign is run with constraints
on folding where base pairs whose minimum free energy
structure is above 70% of minimum free energy structure
as determined by single sequence secondary structure pre-
diction are not allowed to pair [35]. This is the default set-
ting and is used in both Dynalign with M constraints and
Dynalign with probabilistic alignment constraints. In
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Fraction of sequence alignments missed as a function of probability threshold for restricting alignmentsFigure 10
Fraction of sequence alignments missed as a function of 
probability threshold for restricting alignments.

Fraction of aligned base pairs missed as a function of proba-bility threshold for restricting alignmentsFigure 9
Fraction of aligned base pairs missed as a function of proba-
bility threshold for restricting alignments.
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addition, Dynalign with the M constraint uses M = 7 as
explained in [35]. Only the minimum free energy struc-
tures were predicted, i.e. suboptimal foldings are not gen-
erated. The thermodynamic parameters used in both
versions of Dynalign are those compiled in references
[19,25]. Dynalign with M constraint used all parameters
identical to the ones for the new method with the excep-
tion of the alignment constraint, which was replaced
instead by the banded constraint implied by M and
defined in Equation (1).

For the purposes of benchmarking, the new proposed
method was compared against single structure prediction

[19] and four other pairwise structural prediction meth-
ods: Dynalign with the previous M constraint [35], Stem-
Loc [11], Consan [34], and FOLDALIGN [33]. These
programs were utilized in their default configuration. A
summary description of these methods and the runtime
options utilized in the benchmarking experiments fol-
lows:

• StemLoc: StemLoc [11]is a pairwise structural alignment pre-
diction program based on stochastic context-free grammars. It
uses "fold" and "alignment" envelopes to reduce computation
and memory. The benchmarking experiments utilized StemLoc
version 0.19b in global alignment mode ('-g' option) with 100

Table 11: Structural prediction accuracy statistics for the methods benchmarked over 2000 random 5S RNA selections when scored 

using an exact match criterion.

Percent sequence similarity

40–60 60–80 80–100 0–100

Dynalign new constraint Sens 0.850 0.870 0.876 0.869 0.871

PPV 0.790 0.791 0.782 0.743 0.785

Dynalign M constraint Sens 0.847 0.869 0.876 0.869 0.870

PPV 0.789 0.789 0.778 0.744 0.782

FOLDALIGN Sens 0.684 0.721 0.772 0.501 0.724

PPV 0.724 0.750 0.789 0.562 0.752

StemLoc Sens 0.253 0.631 0.858 0.711 0.698

PPV 0.603 0.751 0.854 0.738 0.786

Consan Sens 0.602 0.743 0.882 0.759 0.786

PPV 0.598 0.704 0.768 0.608 0.717

Single Prediction Sens 0.655 0.695 0.734 0.744 0.709

PPV 0.579 0.606 0.641 0.632 0.618

Results are summarized for sequence similarity values ranging from 20% through 100% in steps of 20% and for the overall data set (0 – 100). 
Dynalign new constraint refers to Dynalign with probabilistic alignment constraints proposed here. Software version numbers and parameters for 
the algorithms are described in Section 7.6.

Table 10: Structural prediction accuracy statistics for the methods benchmarked over 2000 random tRNA selections when scored 

using an exact match criterion.

Percent sequence similarity

20–40 40–60 60–80 80–100 0–100

Dynalign new constraint Sens 0.818 0.862 0.923 0.715 0.861

PPV 0.788 0.832 0.916 0.697 0.834

Dynalign M constraint Sens 0.813 0.854 0.917 0.716 0.855

PPV 0.781 0.822 0.907 0.698 0.825

FOLDALIGN Sens 0.731 0.846 0.887 0.690 0.835

PPV 0.815 0.894 0.939 0.846 0.889

StemLoc Sens 0.581 0.894 0.940 0.872 0.860

PPV 0.747 0.899 0.924 0.876 0.886

Consan Sens 0,786 0.905 0.944 0.769 0.894

PPV 0.755 0.848 0.873 0.667 0.838

Single Prediction Sens 0.743 0.746 0.774 0.717 0.748

PPV 0.696 0.688 0.728 0.673 0.693

Results are summarized for sequence similarity values ranging from 20% through 100% in steps of 20% and for the overall data set (0 – 100). 
Dynalign new constraint refers to Dynalign with probabilistic alignment constraints proposed here. Software version numbers and parameters for 
the algorithms are described in Section 7.6.
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best alignments ('-na 100' option) and 1000 ('-nf 1000'
option) best folds.

• Consan: Consan [34] is a pair-SCFG for making pairwise
structural alignment. It utilizes the concept of "pins", i.e.
nucleotide positions that are constrained to be aligned, in
order to constrain the alignment space and thereby limit
computation and memory. Pins are selected based on
posterior probabilities of alignment. The benchmarking
was performed using Consan version 1.2. The training
required for Consan was performed over the dataset of
LSU and SSU RNAs included with the package (using
'mltrain -s mixed80.mod mixed80.stk'). The resulting
model file "mixed80.mod" is used for Consan runs (using
'sfold -S -m mixed80.mod fastal fasta2'). The '-S' option is
used for suppressing all messages to standard output
except the structural information that Consan predicts.

• FOLDALIGN: FOLDALIGN [33]is free energy minimiza-
tion based Sankoff implementation for local structural align-
ment of multiple sequences. The benchmarks were computed
using FOLDALIGN version 2.0.3 in global alignment mode ('-
global' option) since the input consisted of homologous tRNA or
5S RNA pairs.

• Single Prediction: The single sequence prediction
method is based on thermodynamic free energy minimi-
zation [49]. Our implementation utilized the version
included in the current version of RNA Structure and
Dynalign [19].

Dynalign and the single sequence prediction method can
utilize knowledge of modified nucleotides that cannot
accommodate the canonical A-form helix (communicated
in the form of lower case alphabets for the corresponding
bases in the input). These are forced single-stranded in the
structural prediction and the knowledge therefore
improves the overall prediction [24]. The tRNA database
includes knowledge of modified nucleotides whereas the
5S RNA database does not include any knowledge of
modified nucleotides. Since the other methods bench-
marked do not utilize knowledge of modified nucle-
otides, for the benchmarking results of Section 4.4, the
knowledge of modified nucleotides was not utilized for the
Dynalign and single sequence predictions. Results in Sec-
tion 4 list the performance both with and without the use
of this knowledge in prediction.

Computation times for all the methods are determined by
using the time command under Linux. Memory require-
ments for the programs are as reported in the size entry of
Linux ps command. For the Dynalign methods the mem-
ory usage is estimated after all requisite dynamic alloca-
tions are done. For other programs, the memory usage is
estimated at exactly half of the run time for each sequence

pair, except for sequences with computation times over
120 seconds, for which the memory usage is evaluated at
60 seconds.
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8 Appendix
1. Note that the set of aligned positions alone (black
blocks) does not satisfy this requirement.

2. The actual search is 4-dimensional, which can be
thought of as combination of a two-dimensional search
over possible alignments between the sequences along
with a two-dimensional search over (identical) folds for
the sequences.

3. The prediction accuracy for Dynalign also depends on
the thermodynamic model employed for scoring second-
ary structures and hence the dependence on the alignment
constraint is indirect.

4. A reasonably high value of specificity is also advanta-
geous because it reduces computation time and memory.

5. The assumption of time invariance may be dropped if
necessary. It is adopted for notational simplicity.

6. Some of the details of the trellis representation are a
matter of convention and there exist other valid conven-
tions that may be adopted instead.

7. In computational biology literature, the terms forward
matrix and backward matrix are alternately used for the
forward and backward variables.

8. Note that random nucleotide sequences of the same
length can be expected to have a sequence similarity of
25%.
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