
EFFICIENT PARALLEL ALGORITHMS FOR PARABOLIC
PROBLEMS∗

Q. DU† , M. MU† , AND Z. N. WU‡

SIAM J. NUMER. ANAL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 39, No. 5, pp. 1469–1487

Abstract. Domain decomposition algorithms for parallel numerical solution of parabolic equa-
tions are studied for steady state or slow unsteady computation. Implicit schemes are used in order
to march with large time steps. Parallelization is realized by approximating interface values using
explicit computation. Various techniques are examined, including a multistep second order explicit
scheme and a one-step high-order scheme. We show that the resulting schemes are of second order
global accuracy in space, and stable in the sense of Osher or in L∞. They are optimized with respect
to the parallel efficiency.

Key words. parabolic equations, finite difference, parallel efficiency, stability, approximation
accuracy

AMS subject classifications. 65N10, 65P05

PII. S0036142900381710

1. Introduction. Domain decomposition is a powerful tool for devising parallel
PDE methods. There is rich literature on domain decomposition methods for both
elliptic and time-dependent problems [2, 6]. We consider the linear parabolic problem
in this paper. Explicit schemes are often naturally parallel and also easy to implement,
but they usually require small time steps because of stability constraints. Implicit
schemes are necessary for finding steady state solutions or computing slowly unsteady
problems where one needs to march with large time steps; however, implicit schemes
are not inherently parallel because at each time step essentially an elliptic type of
problem needs to be solved.
A conventional approach of parallelizing the implicit schemes is to apply the

elliptic-type domain decomposition based preconditioning methods to the problem
arising from the semidiscretization at each time step. It is noted [1] that the resulting
problem is well conditioned when the time step is small; nevertheless, small step size
is not always desirable in situations where implicit schemes become necessary to use.
An alternative approach of parallelization is to take advantage of previous time

steps since the problem considered here is time dependent; see [3, 7, 12, 13, 14]
for related discussions. Kuznetsov [7] proposed a modified approximation scheme
of mixed type, where the standard second order implicit scheme is used inside each
subdomain, while the explicit Euler scheme is applied to obtain the interface values
on the new time level. Once the interface values are available, the global problem
is fully decoupled and can thus be computed in parallel. A similar hybrid scheme
was proposed in [3], where instead of using the same spacing h as for the interior
points where the implicit scheme is applied, a larger spacing HD is used at each
interface point where the explicit scheme is applied. Due to stability and accuracy
requirements, both methods do not lead to satisfactory parallel efficiency as shown

∗Received by the editors November 29, 2000; accepted for publication (in revised form) June 26,
2001; published electronically December 26, 2001. This work was supported in part by the state
major fund for basic research G1999032804, by NNSFC contract 10025210, and by HKRGC.

http://www.siam.org/journals/sinum/39-5/38171.html
†Department of Mathematics, Hong Kong University of Science and Technology, Kowloon, Hong

Kong (madu@ust.hk, mamu@ust.hk).
‡Department of Eng. Mech., Tsinghua University, Beijing 100084, People’s Republic of China

(ziniuwu@tsinghua.edu.cn).

1469

1470 Q. DU, M. MU, AND Z. N. WU

in our analysis, although these methods can be implemented with little extra effort
using the original sequential codes.
In this paper we propose new parallel finite difference methods for parabolic

PDEs. For simplicity of presentation, we focus on a model problem, namely, the
one-dimensional heat equation in a spatial interval [0, 1]. The algorithms and detailed
presentations are given in section 2. For computation on the subdomain interface,
we use either a high-order explicit scheme or a multistep explicit scheme, with an
intermediate mesh size H lying inside (h,HD). The stability and error analysis of our
two new schemes are given in sections 3 and 4, respectively, using either a maximum
principle-type argument or the stability analysis in the sense of Osher [11]. The
parallel efficiency is addressed in section 5. Generalizations are considered in section
6, and some comments are given in section 7.

2. Algorithm presentation. Let u(x, t) be the solution of the model problem

∂u

∂t
=
∂2u

∂x2
, x ∈ (0, 1), t ∈ (0, T),(2.1)

together with the initial and boundary conditions

u(x, 0) = u0(x), x ∈ (0, 1),(2.2)

u(0, t) = u0(t), t ∈ (0, T),(2.3)

u(1, t) = u1(t), t ∈ (0, T).(2.4)

The initial and boundary data satisfy the compatibility conditions u0(0) = u0(0) and
u0(1) = u1(0).
We decompose the domain (0, 1) into p subdomains. In general, p is related to

the problem size and the number of processors in the computer platform, and the
subdomains may be of different lengths. For illustration let us consider only the two-
equal-subdomain case with p = 2 at this moment. Assume further that the domain
is discretized uniformly with spacing h = 1/N , where N is an even integer, although
the case of nonuniform discretization may be considered in a similar way. Denote the
grid points by xj =

1
2 + jh so that the interface point corresponds to j = 0 and the

boundary points to j = −N
2 and j =

N
2 .

For the problem of marching the solution of (2.1) toward time T , we denote �ts
the time step required by the sequential implicit algorithm and let�τ denote the time
step used by an explicit scheme. �ts is usually large in the situation where the implicit
scheme needs to be used. Thus, if we use the standard explicit scheme in the whole
domain, due to the stability constraint, more time steps are required to reach the
final time T than using the implicit scheme, although the explicit scheme is perfectly
parallel and simple to implement. Overall, the total computational efficiency is still
low. Notice that this conclusion is reached using the following criteria for evaluating a
parallel algorithm: we are interested in the total parallel time used by an algorithm to
find the solution in (0, T), instead of the speedup or parallel efficiency when compared
with its own sequential version.
Let us start with the simplest case, where the implicit scheme is mixed with an

explicit one as proposed by Kuznetsov in [7]. The idea is elegant and natural. To
parallelize the computation of the implicit scheme on the new time level, one computes
an approximate solution value within certain accuracy at the interface point by using
the information computed in the previous level, which is easily done by applying an
explicit scheme at the interface point. We note that the resulting finite difference

PARALLEL ALGORITHMS FOR PARABOLIC PROBLEMS 1471

scheme is an approximation to the original sequential implicit scheme in the whole
domain due to the modification at the interface. With this slight change, however,
the implicit part can be perfectly parallelized. On the other hand, the explicit part,
although introduced only at the interface, causes the limitation on the time step �τ
due to the stability constraint �τ ≤ 1

2h
2.

To be able to carry out the implicit computation in every interval of the large step
size O(�ts) while retaining the parallelism and stability as above, a straightforward
extension is to apply the explicit scheme M steps with the step size O(�τ), where
M � τ = O(�ts), until the interface value at the distance of O(�ts) is obtained. We
note that the overhead due to decoupling the computation for parallelism at every
O(�ts) step is of O(M2) because there are as many points involved in the explicit
evaluation. On the other hand, the explicit scheme introduces spatial truncation error
at each substep. The accumulated error may affect the global spatial accuracy if �ts
is too large so that the number of substeps M is too large. So the spatial accuracy
requirement also imposes restriction on the practical number of substeps such that
more implicit steps are required to march to the final time T than the sequential
implicit scheme to be compared. We will show that the resulting parallel efficiency is
poor because of the high parallel overhead.
To minimize the parallel overhead, Dawson, Du, and Dupont [3] noticed that

the stability constraint on the time step �τ corresponding to the explicit scheme is
caused by the small spacing size h. However, one does not have to apply the explicit
scheme with the same spacing h as for the implicit scheme in order to approximate
the interface value. A standard second order explicit scheme with a larger spacing
HD was applied only once to compute the new interface value [3]. The corresponding
stability constraint now becomes �τ ≤ 1

2H
2
D. However, to make �τ comparable with

�ts, HD could sometimes become too large to use, and the large spacing also affects
the spatial approximation accuracy even if the explicit scheme is only local to the
interface location. Readers are referred to [3] for the error analysis.
We now present some new algorithms in order to maximize the parallel efficiency

and retain the approximation accuracy and stability. They combine the advantages of
the above methods. First, we use the second order explicit scheme with an interme-
diate spacing H ∈ (h,HD) and time step �τ which satisfies the stability condition:

�τ ≤ 1
2
H2.(2.5)

Meanwhile, we also apply the explicit scheme for m substeps with the step size �τ ,
wherem could be taken as large as O(�ts/�τ). The question is how to choose proper
parameters H and m. For this purpose, we will present the error analysis to show
that the global spatial approximation depends on H, m, and p. Based on this, we will
present the parallel performance analysis for the optimal choice for H and m in order
to optimize the parallel efficiency while retaining the global accuracy and stability.
For simplicity, we assume H =MHh, where MH is an integer.
Denote �t = m�τ and tn = n� t, τk = k�τ . Figure 2.1 depicts the grid points

involved in a typical time step of the algorithm, where “×” points correspond to where
the explicit scheme is applied, “◦” points correspond to where the implicit scheme is
applied, and “•” points correspond to where the boundary conditions (2.2) and (2.3)
are applied. Denote the set of all the “×” points and the set of “◦” points in the whole
computational domain by ΩEh and Ω

I
h, respectively. Let Ωh = Ω

E
h ∪ ΩIh. Also denote

the set of “•” points, including those on t = 0, by ∂Ωh. Corresponding to the grid
points in ΩEh , denote XJ =

1
2+JH for −m+1 ≤ J ≤ m−1. For a function f = f(x, t)

1472 Q. DU, M. MU, AND Z. N. WU

W
Q
�τPWQ��

−�P−�� … −� −� � � � … P−�

×

×

×

×

×

×× ×

× × × × × × ×

× × × × × ×

+
WQ

K

W
Q
�τ�

W
Q
�τ�

Fig. 2.1. The composite grid Ωh, consisting of the implicit and explicit grid points.

defined at mesh points (xj , t
n), let fnj = f(xj , t

n). Similarly, for a function f = f(x, t)

defined at mesh points (XJ , t
n+τk), let fn,kJ = f(XJ , t

n+τk). The numerical solution

to un,kJ (or unj) will be denoted by U
n,k
J (or Unj). For convenience, we denote the

solution vector at time tn+1 = tn +m∆τ by Un+1 = Un,m and Un,0 = Un. Given
function f , we use the notation

∂t,�τf(x, t) =
f(x, t)− f(x, t−�τ)

�τ ,

∂2
x,Hf(x, t) =

f(x−H, t)− 2f(x, t) + f(x+H, t)
H2

,

and similarly for ∂t,�t and ∂2
x,h. Our algorithm is now described in detail as follows.

Method 1.

Un+1
j = un+1

j (at boundary points),(2.6)

∂t,�τU
n,k
J = ∂2

x,HU
n,k−1
J , 1 ≤ k ≤ m, −m+ k ≤ J ≤ m− k (on ΩEh),(2.7)

∂t,�tUn+1
j = ∂2

x,hU
n+1
j (on ΩIh).(2.8)

The problem is solved as follows. For a typical time step, starting with the solution
at time level n, we know the solutions Un,0 = Un. Solving (2.7) for k = 1, . . . ,m, we
obtain Un,m0 . For each substep k, the number of space points involved is (2m−2k+1)
so that at k = m, only one point is involved. Then we put Un+1

0 = Un,m0 at the
interface and use (2.6) to solve (2.8) for the interior points. Note that H = h and
H = HD correspond to the two special cases in [7] and [3].
As discussed earlier, the choice of H in the algorithm depends on the spatial

approximation accuracy although H >> h. In case such an H is still not large enough

PARALLEL ALGORITHMS FOR PARABOLIC PROBLEMS 1473

so that a large number of substeps is required in (2.7), the parallel efficiency may
still be low. To allow for an even larger spacing H, we now propose an alternative
approach to improve the efficiency. The idea is to increase the spatial approximation
accuracy in the explicit scheme by extrapolation.

Method 2.

Un+1
j = un+1

j (at boundary points),(2.9)

∂t,�τUn+1
0 = α∂2

x,HU
n
0 + γ∂

2
x,2HU

n
0 (at interface point),(2.10)

∂t,�τUn+1
j = ∂2

x,hU
n+1
j (at interior points),(2.11)

where α = 4
3 , γ = − 1

12 so that the explicit scheme is of fourth order in space. We
note that if �τ determined by such an H is still not large enough compared with �ts,
multiple substeps could also be applied similar to Method 1. One can expect that the
number of substeps should be much smaller than that in Method 1.
We will present a maximum principle analysis for the stability and approximation

for Method 1 in section 3. Because the explicit scheme used in Method 2 is of order
4, the maximum principle does not hold there. So we present in section 4 the error
analysis for Method 2 based on the normal mode analysis and show that the method
is stable in the sense of Osher. The parallel efficiency analysis for all the methods will
be given in section 5.

3. Maximum principle analysis for Method 1. Define the finite difference
operator at a point P = (x, t) on the composite grid:

LhuP =

{
∂t,∆τu(x, t)− ∂2

x,Hu(x, t−∆τ) ∀P ∈ ΩEh ,
∂t,∆tu(x, t)− ∂2

x,hu(x, t) ∀P ∈ ΩIh.

We have the following maximum principle.
Lemma 3.1. Under the stability condition (2.5), the inequality for a grid function

U ,

LhUP ≤ 0 ∀P ∈ Ωh,(3.1)

implies

max
P∈Ωh

UP ≤ max
{
max
P∈∂Ωh

UP , 0

}
.(3.2)

The proof of the lemma is standard (see, for example, Lemma 6.1 in [10].) The
main task of the proof is to verify the positivity of the coefficients appearing in the
linear operator Lh, which is ensured by the stability condition (2.5) for the explicit
part and otherwise by the implicit part itself. With this maximum principle, we have
the error analysis for Method 1.

Theorem 3.2. Under the assumption (2.5) there exists a constant C independent
of ∆t, h, H, and m such that

|uP − UP | ≤ C(∆t+ h2 +mH3) ∀P ∈ Ωh,(3.3)

where uP and UP are the true solution of the PDE (2.1)–(2.4) and the approximation
generated by Method 1 at P ∈ Ωh, respectively.

1474 Q. DU, M. MU, AND Z. N. WU

Proof. The proof follows from standard argument based on the discrete maximum
principle [3]. We include it here for completeness. Let us define a comparison function
corresponding to the implicit part of the scheme as usual:

ψI(x) =
1

2
x(1− x).(3.4)

For the explicit part, for each “×” point XJ , J = 0,±1, . . . ,±(m − 1), on the first
level tn + τ1, we also define a comparison function:

ψJ(x) =

{
Hx(1−XJ), x ≤ XJ ,
H(1− x)XJ , x ≥ XJ .(3.5)

We can verify that for a grid point P = (x, t) ∈ Ωh, for ψI(x),
Lhψ

I
P = 1 ∀P ∈ Ωh;(3.6)

and for ψJ(x), if x = XJ ,
Lhψ

J
P = 0,(3.7)

and if x = XJ , then

Lhψ
J
P =

{
1 if P ∈ ΩEh ,
H
h if P ∈ ΩIh.

(3.8)

We now define a comparison function corresponding to the explicit part of the scheme
as

ψE(x) =
∑

|J|≤m−1

ψJ(x).(3.9)

From (3.7) and (3.8), we have, ∀P ∈ ΩEh ,
Lhψ

E
P = 1,(3.10)

and if P = (x, t) ∈ ΩIh, then

Lhψ
E
P =

{
H
h if x = XJ , for some |J | ≤ m− 1,
0 otherwise .

(3.11)

Let eP = uP − UP be the error at P ∈ Ωh. From the standard truncation error
analysis, we have

LheP =

{
C1
P∆τ + C

2
PH

2 ∀P ∈ ΩEh ,
C1
P∆t+ C

2
Ph

2 ∀P ∈ ΩIh.
(3.12)

Denote C0 = max {maxP∈Ωh
|C1
P |,maxP∈Ωh

|C2
P |}. Let us now define a compari-

son function counting for both the explicit and the implicit parts:

ΦP = C0

[
ψIP (∆t+ h

2) + ψEP (∆τ +H
2)
]
.(3.13)

From (3.6) and (3.10)–(3.12), we have

Lh(eP − ΦP) ≤ 0 ∀P ∈ Ωh.(3.14)

PARALLEL ALGORITHMS FOR PARABOLIC PROBLEMS 1475

Also note that ΦP is a nonnegative function and

eP = 0 ∀P ∈ ∂Ωh.(3.15)

So,

eP − Φp ≤ 0 ∀P ∈ ∂Ωh.(3.16)

Applying Lemma 3.1, we obtain

max
P∈Ωh

(eP − ΦP) ≤ max
{
max
P∈∂Ωh

(eP − ΦP), 0
}

= 0,(3.17)

which implies

eP ≤ ΦP ∀P ∈ Ωh.(3.18)

Replacing eP by −eP in the above argument leads to
|eP | ≤ ΦP ∀P ∈ Ωh.(3.19)

Thus

|eP | ≤ max
P∈Ωh

ΦP

= C0

[
(∆t+ h2) max

P∈Ωh

ψIP + (∆τ +H
2) max
P∈Ωh

ψEP

]

= C0

1
8
(∆t+ h2) + (∆τ +H2)

∑
|J|≤m−1

max
P∈Ωh

ψJP

= C0

1
8
(∆t+ h2) + (∆τ +H2)

∑
|J|≤m−1

H

4

(3.20)

= C0

[(
1

8
+
2m+ 1

4m
H

)
∆t+

1

8
h2 +

2m+ 1

4
H3

]
,

which implies (3.3). This completes the proof.
The analysis can be extended to the general case of p subdomains (p ≥ 2).
Corollary 3.3. Under the assumption (2.5), there exists a constant C indepen-

dent of ∆t, h, H, p, and m such that

|uP − UP | ≤ C(∆t+ h2 +mpH3) ∀P ∈ Ωh,(3.21)

where uP and UP are the true solution of the PDE (2.1)–(2.4) and the approximation
generated by Method 1 at P ∈ Ωh, respectively.

4. Stability and error analysis for Method 2 based on the normal mode
analysis. We use the normal mode analysis of Osher [11] to establish the stabil-
ity. For convenience, let the solution in the left subdomain be unj with j < 0, and
the solution at the right subdomain be vnj with j > 0. Method 2 reduces to

un+1
j − σ(un+1

j−1 − 2un+1
j + un+1

j+1) = u
n
j , j < 0,(4.1)

vn+1
j − σ(vn+1

j−1 − 2vn+1
j + vn+1

j+1) = v
n
j , j > 0,(4.2)

1476 Q. DU, M. MU, AND Z. N. WU

with

un+1
0 = un0 + ασ(u

n
−M − 2un0 + vnM) + γσ(un−2M − 2un0 + vn2M),(4.3)

vn+1
0 = un+1

0 ,(4.4)

with α = 4
3 and γ = − 1

12 for fourth order accuracy.
Consider the normal mode representation of the solution

unj = u0z
nkj .(4.5)

Inserting (4.5) into (4.1) yields

[z(1− σ(k−1 − 2 + k))− 1]u0 = 0.

Nontrivial solution exists only for

z(1− σ(k−1 − 2 + k))− 1 = 0.(4.6)

Equation (4.6) is called the characteristic equation. For |z| ≥ 1 and z = 1, the
characteristic equation has two roots k1 and k2 satisfying

|k1| < 1 and |k2| > 1,
k1 =

1

k2
.

For convenience, denote

k1 =
1

k2
= τ

so that |τ | < 1. Obviously, for |z| ≥ 1 and z = 1, the solution belonging to l2 is

unj = u0z
nkj2 = u0z

nτ j .(4.7)

Similarly, and noting that we have used the same scheme for both u and v, the normal
mode solution in l2 for v

n
j is given by

vnj = v0z
nkj1 = v0z

nτ−j .(4.8)

Now inserting (4.7) and (4.8) into the interface conditions (4.3) and (4.4), and noting
that u0 = v0 by (4.4), we have

[z − 1− ασ(τM − 2 + τM)− γσ(τ2M − 2 + τ2M)]u0 = 0

so that nontrivial solution exists for |z| ≥ 1 and z = 1 only if

z = 1 + ασ(τM − 2 + τM) + γσ(τ2M − 2 + τ2M)

= 1− 2ασ(1− τM)− 2γσ(1− τ2M)

= 1− 2σ(1− τM)[α+ γ(1 + τM)]
= 1− 2σα(1− τM)

[
1− |γ|

α
(1 + τM)

]
.(4.9)

PARALLEL ALGORITHMS FOR PARABOLIC PROBLEMS 1477

The relation (4.9) is also called the root condition. If we have

z = 1− 2σα(1− τM)
[
1− |γ|

α
(1 + τM)

]
(4.10)

for |z| ≥ 1 and z = 1, then it means that there is no (nontrivial) solution with |z| ≥ 1
and z = 1, and the problem is stable. Now the left-hand side of (4.10) has a module
no smaller than 1 for |z| ≥ 1, it is thus sufficient to prove that its right-hand side has
a module smaller than 1, i.e.,∣∣∣∣1− 2σα(1− τM)

[
1− |γ|

α
(1 + τM)

]∣∣∣∣ < 1.(4.11)

Let τM = reiθ, r < 1, and w = (1− reiθ)(15− reiθ); then z = 1− σ
6w, and we want

to show that under appropriate conditions on σ we have |z| ≤ 1, thus leading to a
contradiction.
This is achieved if we can find a lower bound for

m̄ = min
Re{w}
|w|2 .

In fact, we need σ ≤ 12m̄ for stability.
Direct calculation shows

Re{w} = 15− r2 − 16r cos(θ) + 2r2 cos2(θ),

Im{w} = 2r sin(θ)(r cos(θ)− 8),

|w|2 = (1 + r2)(225 + r2)− (480 + 32r2)r cos(θ) + 60r2 cos2(θ).

It is easily seen that

Re{w}
|w|2 =

14

452
<
1

32

for cos(θ) = 0 and r = 1. Thus, m̄ < 1/32.
On the other hand, we have

33Re{w} − |w|2 = 495− 33r2 − 528r cos(θ) + 66r2 cos2(θ)
−(1 + r2)(225 + r2) + (480 + 32r2)r cos(θ)− 60r2 cos2(θ)

= 270− 259r2 − r4 + (32r2 − 48)r cos(θ) + 6r2 cos2(θ).

Differentiating the function g(x, y) = 270 − 259y − y2 + (32y − 48)x + 6x2 with
respect to x, y, we get

∂g

∂x
= 32y − 36 , ∂g

∂y
= −259− 2y + 32x.

We see that for 0 ≤ y ≤ 1 and −1 ≤ x ≤ 1, the partial derivatives are all negative;
thus, g(x, y) ≥ g(1, 1) = 0.

1478 Q. DU, M. MU, AND Z. N. WU

This implies

m̄ = min
Re{w}
|w|2 ≥ 1

33
.

Thus, we have the stability under the condition that 0 < σ ≤ 12/33 = 4/11.
Theorem 4.1. Method 2 is stable in the sense of Osher for 0 < σ ≤ 4/11.
Following Gustafsson [4], Theorem 4.1 leads to the following estimate (see also

[5, 8, 9]).
Theorem 4.2. For Method 2, under the stability condition 0 < σ ≤ 4/11, there

exists a constant C independent of ∆t, and h such that

|uP − UP | ≤ C(∆t+ h2 +H5) ∀P ∈ Ωh,(4.12)

where uP and UP are the true solution of the PDE (2.1)–(2.4) and the approximation
generated by Method 2 at P ∈ Ωh, respectively.

5. Parallel efficiency analysis. Assume that there are p processors and the
whole domain (0, 1) is uniformly decomposed into p subdomains with p− 1 interface
points. Let N be the total number of grid points, then each subdomain has O(Np)
grid points. We assume that N � p ≥ 2 so that the parallel algorithms are of coarse
granularity.
There are different measurements to assess parallel algorithms. It is sometimes

misleading to use the so-called relative speedup or parallel efficiency by comparing a
parallel algorithm with its own version running on a single processor. In that sense,
an explicit scheme always has the maximal speedup and efficiency. In our context, we
assume that for a computational experiment (either for computing the solution for
large time or for slow unsteady solution), it is already known that the best sequential
algorithm (namely, the one that uses the least time to reach the time T) is an implicit
scheme of the cost tIs per time step with a large step size ∆ts. Our goal is to find a
parallel algorithm which, with a given number of p processor, takes as little time as
possible to reach the final time T without degrading the order of accuracy.
The per step computational cost tIs depends on which implicit solver is applied.

In general, we may have

tIs = O(C
INα logβ N)

for certain exponents α, β, and constant CI , where N is the size of the problem
to which the implicit solver is applied. For the one-dimensional case, the Thomas
algorithm is applicable to the tridiagonal matrix problem. Thus the implicit solver
has the CPU time complexity

tIs = C
I ·N ;(5.1)

i.e., we have α = 1 and β = 0. However, the situation becomes more complicated for
two-dimensional and three-dimensional problems, depending on the algorithm used in
the implicit solver. The available algorithms include band solver, nested dissection,
SOR, CG, multigrid, or a general sparse solver. The time complexity varies, of course,
and has a different order of magnitude. The best case could be tIs = O(N) if the
problem is so nice that, for instance, an effective preconditioner can be constructed
for all time steps such that the condition number of the preconditioned problem is
independent of the grid size. However, this is not always true in practice. In the rest

PARALLEL ALGORITHMS FOR PARABOLIC PROBLEMS 1479

of this section, we consider the one-dimensional case. We will extend the analysis to
higher-dimensional cases in section 6.
Now, consider Method 1 where the number of “explicit points” involved in a

typical step is

m∑
l=1

(2l − 1) = m2.(5.2)

Ignoring the communication cost, the parallel time of Method 1 from tn to tn+1 is

tp = C
Em2 + CI

N

p
.(5.3)

The total parallel run time to reach the final time T is

Tp =

(
T

∆t

)
tp.(5.4)

Note that there are two parametersm andH to be determined subject to the accuracy
condition

O(mpH3) = O(h2)(5.5)

and the stability condition

∆τ ≤ 1
2
H2.(5.6)

The speedup relative to the sequential implicit scheme is defined as

S =
Ts
Tp

(5.7)

=
(T
/
∆ts) · tIs

(T
/
∆t) · tp

=
m∆τ

∆ts

[
CIN

CEm2 + CIN/p

]

=
mH2

2∆ts

CIp

(CEm2hp+ CI)
.

Or the parallel efficiency is given by

E =
S

p
(5.8)

=
CI

CI + CEm2hp
· mH

2

2∆ts
.

Let us study different cases as follows.
Case I. H = h,m = O(∆ts∆τ). This corresponds to one extreme case where one

tries to directly parallelize the best sequential implicit scheme by applying Kuznetsov’s
technique with enough explicit substeps. Note that the stability restriction (5.6) now
reads as

∆τ ≤ 1
2
h2,

1480 Q. DU, M. MU, AND Z. N. WU

which implies a large number of substeps

m = O

(
2∆ts
h2

)
.

On the other hand, the accuracy condition (5.5) reads as

m = O

(
1

ph

)
.

This leads to

m = min

{
O

(
1

ph

)
, O

(
2∆ts
h2

)}
,(5.9)

which depends on ∆ts, p, and h. Note that O(
1
ph) ≤ O(2∆tsh2) implies

∆ts ≥ O
(
h

2p

)
,(5.10)

which usually holds when an implicit method is applied. So we have

m = O

(
1

ph

)

= C
N

p
.

Equation (5.10) implies that the implicit scheme cannot be applied with the full step
size ∆ts due to the accuracy constraint (5.5) because the actual time step of the
implicit scheme in this mixed algorithm is only m∆τ = O(h2p) ≤ ∆ts. In other
words, the explicit scheme introduces spatial truncation error at each substep. The
accumulated error will degrade the global spatial accuracy if �ts is too large so
that the number of substeps is too large. So the spatial accuracy requirement also
imposes restriction on the practical number of substeps such that more implicit steps
are required to march to the final time T than the sequential implicit scheme to be
compared.
We now have the speedup relative to the best sequential algorithm:

S1 =
mh2

2∆ts
· CIp

(CEm2hp+ CI)
(5.11)

=
CCIh2 · p

2∆ts(CE · C2 + CIph)

= O

(
CI

CE
∆t−1

s h
2p

)

≤ O
(
CI

CE
hp2
)
.

Thus,

E =
S

p
(5.12)

≤ O
(
CI

CE
p/N

)
.

PARALLEL ALGORITHMS FOR PARABOLIC PROBLEMS 1481

We have two observations from this analysis. First, the parallel efficiency of the
algorithm is very poor as N � p, which is caused by the severe stability condition
that leads to small ∆τ (or equivalently, large m) so that much more extra overhead
is introduced in the explicit substep in order to decouple the implicit computation.
This shows why we would like to make H as large as possible. On the other hand, the
situation could be improved in higher-dimensional cases where the explicit cost is of
lower order than the implicit one. In fact, it is true that the faster the implicit solver
is, the more difficult it is to parallelize it by using certain explicit computation.

Case II. H = Hmax, m = 1. This corresponds to another extreme case as in [3],
where only one explicit step is used but H must be as large as possible. The accuracy
condition (5.5) with m = 1 implies

H = O

((
h2

p

)1/3
)
= C

(
h2

p

)1/3

.(5.13)

Note that H � h because N � p. The stability condition (5.6) now reads as

∆τ =
C2

2

(
h2

p

)2/3

.(5.14)

Correspondingly, the speedup is

S2 =
∆τ

∆ts
· CIN

CE + CIN/p
(5.15)

=
C2

2∆ts
·
(
h2

p

)2/3

· CIp

CI + CE · hp.

Comparing the two cases from (5.11) and (5.15), we have

S2

S1
= O

(
CE

CI

(
N

p

)2/3
)
.(5.16)

We observe from (5.16) that Case II is more efficient than Case I because N � p. On
the other hand, Case II is still far less efficient because

E2 =
S2

p
(5.17)

= O

(
∆t−1

s ·
(
h2

p

)2/3
)

� 1
for large ∆ts, p, and small h. This is caused by the fact that ∆τ � ∆ts from (5.14).

Case III. H = Hopt, m = mopt. Now let us consider the case where we vary both
parameters H and m in order to optimize the algorithm in terms of parallel run time.
From stability, we have

Tp =
T

∆t
· tp(5.18)

=
T

m∆τ

(
CEm2 + CI

N

p

)

=
2T

mH2

(
CEm2 + CI

N

p

)
.

1482 Q. DU, M. MU, AND Z. N. WU

The accuracy condition requires

H3 =
Ch2

mp
.

So,

Tp =
2T

m ·
(
Ch2

mp

)2/3

(
CEm2 + CI

N

p

)
=
2Tp2/3

C2/3h4/3

(
CEm5/3 + CI

N

p
m1/3

)
.

(5.19)

To minimize Tp with respect to m, we solve

∂Tp
∂m
= 0,

which yields

5CEm2 = CI
N

p
,(5.20)

namely,

mopt =

√
CI

5CE
N

p
.(5.21)

Correspondingly, we have

T optp =
2Tp2/3

C2/3h4/3 ·m1/3
opt

(
CEm2

opt + C
IN

p

)
(5.22)

=
2Tp2/3

C2/3h4/3 ·
(
CI

5CE
N
p

)1/6

(
CI

5

N

p
+ CI

N

p

)
.

Therefore,

Sopt =

(
T

∆ts

)
CIN

T optp

(5.23)

= O

((
CI

5CE

)1/6

∆t−1
s · h7/6 · p1/6

)
.

Comparing (5.22) with (5.15), we have

Sopt
S2
= O

((
CI

5CE

)1/6

·
(
1

hp

)1/6
)
.(5.24)

Therefore, Sopt > S2 because N � p. Furthermore, the improvement would become
more substantial as the cost in the implicit part increases relative to the explicit part
like in the two-dimensional and three-dimensional cases, as shown in section 6.

PARALLEL ALGORITHMS FOR PARABOLIC PROBLEMS 1483

So far, in our parallel efficiency analysis we have compared the parallel algorithms
with the best sequential algorithm which is the implicit scheme. It is also of interest
to compare them with the explicit scheme which is perfectly parallel. The run time
for the parallel explicit scheme is

TEp =
2T

h2
· CEN

p
.(5.25)

Comparing with Case III, for instance, from (5.22) we have

γ =
T optp

TEp

= O

(
CI

CE
p

N

)5/6

.

We see that T optp << TEp because N >> p.
Similar analysis can be carried out for Method 2, where the accuracy condition

(5.5) will be replaced by

O(mpH5) = O(h2).(5.26)

6. Extension to two and three dimensions.

6.1. Presentation of the method. We now discuss the higher-dimensional
generalization. Let us consider the two-dimensional heat equation on a unit square,

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, x, y ∈ (0, 1), t ∈ (0, T),(6.1)

together with the initial and boundary conditions

u(x, y, 0) = u0(x, y), x, y ∈ (0, 1),(6.2)

u(x, y, t) = 0, x = 0, 1 or y = 0, 1, t ∈ (0, T).(6.3)

For illustration, we decompose the spatial domain into two subdomains, separated by
the line x = 1

2 , although it is similar to p (≥ 2) subdomains. Given Cartesian grid
points {xi, yj}, Method 1 can be extended to

Un+1
i,j = un+1

i,j (at boundary points),(6.4)

∂t,�τU
n,k
i,j = ∂

2
x,HU

n,k−1
i,j + ∂2

y,hU
n,k
i,j , 1 ≤ k ≤ m (on ΩEh),(6.5)

∂t,�tUn+1
i,j = ∂2

x,hU
n+1
i,j + ∂

2
y,hU

n+1
i,j (on ΩIh).(6.6)

Here, ΩEh and Ω
I
h can be similarly defined.

Similarly, Method 2 can be extended to

Un+1
i,j = un+1

i,j (at boundary points),(6.7)

∂t,�tUn+1
0,j =

4

3
∂2
x,HU

n
0,j −

1

12
∂2
x,2HU

n
0,j + ∂

2
y,hU

n+1
i,j (at interface point),(6.8)

∂t,�tUn+1
i,j = ∂2

x,hU
n+1
i,j + ∂

2
y,hU

n+1
i,j (at interior points).(6.9)

Note that (6.5) and (6.8) are explicit in the x direction while implicit in the y
direction. Thus, the Thomas algorithm can be applied in parallel for each tridiagonal
system of size h−1 so that the parallel run time for each solution is O(h−1). Another
possible extension is to apply the explicit scheme in both the x and the y directions.

1484 Q. DU, M. MU, AND Z. N. WU

6.2. Stability and convergence of the methods. For Method 1, maximum
principle is still valid in the higher-dimensional case. Thus, similar to Corollary 3.3,
we have the following corollary.

Corollary 6.1. Under the assumption (2.5), there exists a constant C indepen-
dent of ∆t, h, H, p, and m such that

|uP − UP | ≤ C(∆t+ h2 +mpH3) ∀P ∈ Ωh,(6.10)

where uP and UP are the true solution of the PDE (6.1)– (6.3) and the approximation
generated by Method 1 at P ∈ Ωh, respectively.
For Method 2, we consider the normal mode

Uni,j =

{
znτ i sin(jhπ), i ≥ 0,
znτ−i sin(jhπ), i < 0.

Then, we get (
1− 1

z

)
− σ(τ + τ−1 − 2) + σ4 sin2

(
hπ

2

)
= 0.

Again, for |z| ≥ 1, there are two roots for τ , including one with |τ | < 1.
Using the interface condition, we get

(z − 1)− 4
3
σ(2τL − 2) + 1

12
σ(2τ2L − 2) + 4σz sin2

(
hπ

2

)
= 0.

Thus,

z =
1 + 4

3σ(2τ
L − 2)− 1

12σ(2τ
2L − 2)

1 + 4σ sin2(hπ2)
.

Using the analysis made for the one-dimensional problem, we see that for 0 <
σ < 4/11, we have |z| < 1. This contradiction implies that |z| < 1. Thus, the normal
mode is stable.
By generalizing the theory of Osher and Gustafsson, we can also obtain the con-

vergence theory for this case as well [4, 5, 8, 9, 11].

6.3. Parallel efficiency analysis. Let us examine Method 1, and the analysis
is similar for Method 2. Recall that the parallel time for each explicit substep, with
the Thomas algorithm applied in parallel, is O(h−1). So (5.3) is now replaced by

tp = C
Em2h−1 + CIg(N, p),(6.11)

where CIg(N, p) is the run time of the implicit solver applied to each subdomain,
and N = h−2 is the total number of unknowns of the global problem. For Jacobi and
Gauss–Seidel solvers, we have

g(N, p) =
N

p
h−2 =

N2

p
.(6.12)

For a band solver, because each subdomain has h−1 grid points in the y direction and
h−1

p points in the x direction, we can order the grid points so that the bandwidth of

the coefficient matrix is O(h
−1

p). Thus, we have

g(N, p) =
N

p

(
h−1

p

)2

=
N2

p3
.(6.13)

PARALLEL ALGORITHMS FOR PARABOLIC PROBLEMS 1485

For SOR solver, we have

g(N, p) =
N

p
h−1 = N1.5/p.(6.14)

The cost would be further reduced if other more efficient solvers could be applied.
Corresponding to (5.18), the total parallel run time becomes

Tp =
T

∆t
· tp(6.15)

=
T

m∆τ

(
CEm2h−1 + CIg(N, p)

)
=
2T

mH2

(
CEm2h−1 + CIg(N, p)

)
.

The conditions (5.5) and (5.6) on accuracy and stability remain the same. Thus, for
Case III corresponding to (5.19), we have

Tp =
2T

m ·
(
Ch2

mp

)2/3

(
CEm2h−1 + CIg(N, p)

)

=
2Tp2/3

C2/3h4/3

(
CEm

5
3h−1 + CIg(N, p)m− 1

3

)
.(6.16)

Optimizing Tp with respect to m, corresponding to (5.21), we have

mopt =

√
CIg(N, p)h

5CE
.(6.17)

Thus,

T optp =
2Tp2/3

C2/3h4/3 ·m1/3
opt

(
CEm2

opth
−1 + CIg(N, p)

)
(6.18)

=
2Tp2/3

C2/3h4/3 ·
(
CI

5CE g(N, p)h
)1/6

(
CI

5
g(N, p) + CIg(N, p)

)

=
12CITp2/3g5/6(N, p)

5C2/3h3/2
(
CI

5CE

)1/6
.

Therefore,

Sopt =

(
T

∆ts

)
CIg(N, 1)

T optp

(6.19)

= O

(
∆t−1

s · h3/2g(N, 1)

p2/3g5/6(N, p)

)
.

To measure the gain of the new algorithm, we analyze Case II, corresponding to (5.15),
to obtain the speedup:

S2 =
∆τ

∆ts
· CIg(N, 1)

CEh−1 + CIg(N, p)
(6.20)

=
C2

2∆ts
·
(
h2

p

)2/3

· CIg(N, 1)

CEh−1 + CIg(N, p)
.

1486 Q. DU, M. MU, AND Z. N. WU

Thus,

Sopt
S2
= O

(
(g(N, p)h)

1/6
)
.(6.21)

This shows that the more expensive the local solver is, the more gain the new algorithm
has, because we have managed to maximize the use of cheaper explicit computation
while maintaining the stability and global accuracy. For Jacobi and Gauss–Seidel
solvers, for example, from (6.12) we have

Sopt = O
(
∆t−1

s · h5/6 · p1/6
)

(6.22)

and

Sopt
S2
= O

((
1

h3p

)1/6
)
.(6.23)

Compared with (5.24) in the one-dimensional case, the improvement in parallel effi-
ciency of the new algorithm is more substantial over the previous approaches. For the
case of the band solver, from (6.13), we have

Sopt = O
(
∆t−1

s · h5/6 · p1/6 · p
)
.(6.24)

To reach the optimal speedup Sopt = O(p) only requires ∆ts = O((
h5

p)
1/6) > O(h),

which is a much weaker restriction on the step size than ∆t = O(h2) is, as in the
explicit scheme.

7. Concluding remarks. In this paper, we have outlined a few possible im-
provements for the parallel discretization of the linear parabolic equations so that
higher parallel efficiency can be achieved. It is likely that generalizations can be
made to cases with nonuniform grids and fractional time steps. We will consider
those generalizations in the future.

Acknowledgments. The authors would like to thank Tony Chan for the valu-
able discussions, especially on Method 2, and also to thank Tarek Mathew for the
references.

REFERENCES

[1] X. Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations, Numer.
Math, 50 (1991), pp. 41–52.

[2] T. F. Chan and T. Mathew, Domain Decomposition Algorithms, CAM report CAM 94-2,
UCLA, 1994.

[3] C. N. Dawson, Q. Du, and T. F. Dupont, A finite difference domain decomposition algorithm
for numerical solution of the heat equation, Math. Comp., 57 (1991), pp. 63–71.

[4] B. Gustafsson, The convergence rate for difference approximations to general mixed initial
boundary value problems, SIAM J. Numer. Anal., 18 (1981), pp. 179–190.

[5] B. Gustafsson, H.-O. Kreiss, and A. Sundström, Stability theory of difference approxima-
tions for mixed initial boundary value problems. II, Math. Comp., 26 (1972), pp. 649–686.

[6] D. E. Keyes, Domain Decomposition: A Bridge between Nature and Parallel Computers,
ICASE report 92-44, Langley, VA, 1992.

[7] Y. Kuznetsov, New algorithms for approximate realization of implicit difference scheme, So-
viet J. Numer. Anal. Math. Modelling, 3 (1988), pp. 99–114.

[8] D. Michelson, Stability theory of difference approximations for multidimensional initial-
boundary value problems, Math. Comp., 40 (1983), pp. 1–45.

PARALLEL ALGORITHMS FOR PARABOLIC PROBLEMS 1487

[9] D. Michelson, Convergence theorem for difference approximations of hyperbolic quasilinear
initial-boundary value problems, Math. Comp. 49, (1987), pp. 445–459.

[10] K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations,
Cambridge University Press, Cambridge, UK, 1994.

[11] S. Osher, Stability of parabolic difference approximations to certain mixed initial boundary
value problems, Math. Comp., 26 (1972), pp. 13–39.

[12] Z. N. Wu and H. Zou, Grid overlapping for implicit parallel computations of compressible
flows, J. Comput. Phys., 157 (2000), pp. 2–43.

[13] G. Yuan, L. Shen, and Y. Zhou, Unconditional stability of alternating difference schemes
with intrinsic parallelism for two-dimensional parabolic systems, Numer. Methods Partial
Differential Equations, 15 (1999), pp. 625–636.

[14] Y. Zhou and G. Yuan, General difference schemes with intrinsic parallelism for semilinear
parabolic systems of divergence type, J. Comput. Math., 17 (1999), pp. 337–352.

