
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1998

Efficient Parallel Algorithms for Planar st-Graphs Efficient Parallel Algorithms for Planar st-Graphs

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

Danny Z. Chen

Ovidiu Daescu

Report Number:
98-021

Atallah, Mikhail J.; Chen, Danny Z.; and Daescu, Ovidiu, "Efficient Parallel Algorithms for Planar st-Graphs"
(1998). Department of Computer Science Technical Reports. Paper 1410.
https://docs.lib.purdue.edu/cstech/1410

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EFFICIENT PARALLEL ALGORITHMS
FOR PLANAR ST-GRAPHS

Mikhail J. AtaUah
Danny Z. Chen
Ovidiu Dac.scu

CSD-TR #98-021
June 1998

Efficient Parallel Algorithms for Planar st-Graphs

Mikhail J. Atallah'
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907, USA

mja@cs.purdue.edu

Danny Z. Chent and Ovidin Daescu t

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
{chen,odaescu}@cse.nd.edu

Abstract

Planar st-graphs find applications in a number of areas. In this paper, we present efficient
parallel algorithms for solving several fundamental problems on planar st-graphs. The problems
we consider include all-pairs shortest paths in weighted planar st-graphs, single-source shortest
paths in weighted planar layered digraphs (which can be reduced to single-source shortest paths
in certain special planar st-graphs), and depth-first search in planar st-graphs. Our parallel
shortest path techniques exploit the specific geometric and graphic structures of planar st
graphs, and involve schemes for partitioning planar st-graphs into subgraphs in a way that
ensures that the resulting path length matrices have a monotonieity property (1, 2]. The parallel
algorithms we obtain are considerable improvement over the previously best known solutions
(when they are applied to these st-graph problems), and are in fact relatively simple. The
parallel computational models we use are the CREW PRAM and EREW PRAM.

1 Introduction

An n-vertex planar st-graph G = (V; E) is a planar directed acyclic graph with exactly one source

vertex s and exactly one sink vertex t, such that G can be embedded in the plane with both sand t

on the boundary of the external face of the embedding of G. Planar st-graphs find applications in a

number of areas, including partial orders, computational geometry (e.g., path planning, planar point

location, and visibility), graph theory (e.g., graph drawing, planar graph embedding, and graph

planarization), VLSI design (e.g., floorplanning and layout compaction), and motion planning (see

[32] for references). Series-parallel graphs are a special case of planar st-graphs.

In this paper, we present efficient deterministic parallel algorithms for solving several funda

mental problems on planar st-graphs. In particular, we consider the following problems.

"This author gratefully acknowledges the support of the COAST Project at Purdue University and its sponsors,
in particular Hewlett Packard, DARPA, and the National Security Agency.

tThe research of these authors was supported in part by the National Science Foundation under the NSF Grant
CCR-9623585.

1

• All-pairs shortest paths in weighted planar st-graphs (whose edges are associated with non

negative weights).

• Single-source shortest paths in weighted planar layered digraphs. Note that shortest paths in

planar layered digraphs can be reduced to shortest paths in certain special planar st-graphs.

• Depth-first search in planar st-graphs.

We henceforth assume all graphs have n vertices and have edges whose weights are nonnegative.

The parallel computational models we use are the CREW PRAM and EREW PRAM [14].

Recall that the PRAM is a synchronous parallel model in which all processors share a common

memory and each processor can access any memory location in constant time. The CREW PRAM

allows simultaneous accesses to the same memory location by multiple processors only if all such

accesses are for reading data only. The EREW PRAM forbids multiple processors to simultane

ously access the same memory location. We also refer to the CReW PRAM model, which allows

simultaneous accesses to the same memory location for both reading and writing data. Note that

the CReW PRAM is more powerful than the CREW PRAM and EREW PRAM, and the simu

lation of a CRCW PRAM algorithm on a CREW or EREW PRAM by using the same number of

processors can cause an increase in the time bound by a logarithmic factor. For convenience, all

our algorithms will be described using two parallel complexity bounds: Time and work (the work is

the time x processor product of an algorithm). The processor bounds of all our parallel algoritmm.

can be easily derived by using Brent's theorem [4].
The problem of computing shortest paths in graphs is fundamental in computer science, and

has applications in solving many scientific and engineering problems. Sequentially, the problem is

quite well studied and efficient algorithms for various versions of graph shortest path problems have

been given (e.g., see [6, 8]). However, designing efficient parallel algorithms for computing shortest

paths in graphs has remained an elusive task despite considerable efforts.

Several interesting parallel graph algorithms for all-pairs shortest paths are known. Han, Pan,

and Reif [11] presented an O(Iog2 n) time, o(n3) work EREW PRAM algorithm for all-pairs shortest

paths in general directed graphs. Cohen [5] gave an O(log4 n) time, O(n2Iogn) work CREW PRAM

algorithm for all-pairs shortest paths in planar directed graphs. An O(logn) time, O(n2) work

EREW PRAM algorithm for all-pairs shortest paths in series-parallel digraphs can be obtained

from the results of [33] (by using the parallel tree contraction technique [14]). Note that a senes

parallel digraph is a directed acyclic graph with exactly one source and exactly one sink, such that

the graph can be constructed by series and parallel compositions. Series-parallel digraphs are a

special case of planar st-graphs.

There are also parallel graph algorithms for single·source shortest paths. Pan and Reif [25, 26]

developed an O(Iog3 n) time, O(n1.5) work algorithm for single-source shortest paths in planar

undirected graphs, and this result has been generalized to planar directed graphs [5, 11]. Klein

and Subramanian [21] gave a linear-processor, polylog-time algorithm for single-source shortest

paths in planar directed graphs, but the exponent in their polylogarithmic running time is rather

2

(,) (b)

Figure 1: (a) A planar directed grid graph. (b) A corresponding planar layered digraph.

large. An O(logn) time, O(n) work EREW PRAM algorithm for single-source shortest paths in

series-parallel digraphs was presented in [33J.

There are a few parallel algorithms for computing a shortest path between one pair of ver

tices in certain graphs. Aggarwal and Park (1] and Apostolico et al. [2] obtained an O(log2 n)

time, O(nlogn) work CREW PRAM algorithm for finding a source-ta-sink shortest path in pla

nar directed acyclic grid graphs (see Figure l(a) for an example of such graphs). An interesting

generalization is the result of Sairam, Tamassia, and Vitter [28], who considered planar layered

directed acyclic graphs (called planar layered digraphs). Note that the directed grid graphs con

sidered in [1, 2] are in fact a special case of planar st-graphs, and can be transformed to planar

layered digraphs (see Figure I(b) for an example). The CREW PRAM algorithm in [28] finds

a source-to-sink shortest path in planar layered digraphs in O(log2 n) time and O(nlogn) work,

based on an elegant one-way separator construction. It was also shown in [28] that shortest paths

in planar layered digraphs can be reduced to shortest paths in some special planar st-graphs.

The problem of computing a depth-first search tree in a graph is fundamental in graph theory,

and is easily solved in linear time sequentially [6]. In parallel, performing ordered depth-first search

that visits vertices of a graph in a given order is known to be P-complete [27]. There are parallel

algorithms for depth-first search in various special graphs, such as chordal graphs (20], series-parallel

graphs [12], planar undirected graphs [10, 13, 15, 19, 29, 30], and planar directed graphs [16, 17, 18].

In particular, Kao and Klein (18] gave an 0(1og10n) time, O(nlog10n) work algorithm for depth

first search in general planar directed graphs, and Kao [17] presented an O(logS n) time, O(n log<\ n)

work algorithm for depth~first search in strongly connected planar directed graphs.

In this paper, we present the following efficient parallel solutions:

• An 0(1og2 n) time, O(n2) work CREW PRAM algorithm for all-pairs shortest paths in planar

st-graphs. The techniques of this algorithm, when applied to computing all-pairs shortest

paths in the planar directed acyclic grid graphs of [1,2], yield an O(log2 n) time, O(n2) work

CREW PRAM algorithm.

• An O(log2 n) time, O(nlogn) work CREW PRAM algorithm for single-source shortest paths

in planar layered digraphs. This generalizes the source-to-sink shortest path result of [28).

• An O(logn) time, O(n) work EREW PRAM algorithm for depth-first search in planar st

graphs.

3

"

".

G

d
,

h ..
-"-.~.," ". b

("

, G

----~.,- "

, 'f, -_.b :
, .'
~•.-.-.

(h,

Figure 2: (a) Paths that must cross each other. (b) Paths that need not cross each other.

In comparison, our parallel algorithms arc considerable improvement over the previously best

known results (which are often for more general classes of graphs) when they are applied to these st

graph problems, and in fact are relatively simple. Further, note that our parallel depth-first search

and all-pairs shortest path algorithms are optimal, and the work bound of our parallel single-source

shortest path algorithm is within only a logn factor of the time bound of its corresponding optimal

sequential algorithm.

All our parallel algorithms exploit the specific geometric and graphic structures of planar st

graphs. Our parallel shortest path techniques involve two graph partitioning schemes: The strict

one-way separators for planar st-graphs (which make use of the visibility representation of planar

st-graphs in [32]), and the one-way separators for planar layered digraphs (which are a slight

modification of the ones used in [28]). These schemes partition planar st-graphs or planar layered

digraphs into subgraphs in a way that ensures that the resulting path length matrices have a

monotonicity property. This monotonicity property enables one to perform matrix multiplications

in a very efficient manner. In particular, we get around the following difficulty that arises in all

our shortest path computation. Observe that for the four vertices a, b, c, and d that are allan

the boundary of the external face of an embedded planar st-graph G as shown in Figure 2(a), the

shortest a-to-d path in G must cross the shortest b-to-c path in G at a vertex h (because G is

a planar st-graph). Such a l'crossingll property is a key to obtaining matrices with monotonicity

property. However, when some of the vertices are not on the boundary of the external face of G

(as shown in Figure 2(b)), shortest paths in G between these vertices need not cross each other. In

all our shortest path computation (especially for the all-pairs case), we must use appropriate graph

partitioning schemes for achieving path length matrices that have the monotonicity property.

For our parallel shortest path algorithms, we will only describe the versions for computing the

lengths of the shortest paths. The length versions of the algorithms can be easily modified to

generate actual shortest path trees as well as the shortest path lengths.

The rest of the paper is organized as follows. Section 2 reviews some useful definitions and

preliminary results_ Section 3 gives our parallel algorithm for all-pairs shortest paths in planar st

graphs. Section 4 presents our parallel algorithm for single-source shortest paths in planar layered

digraphs. Section 5 discusses our parallel depth-first search algorithm on planar st-graphs.

4

("

----- loyer.'i

.. --. laycr4

..... layer:3

..... layer2

.... layer I

,.... ~~.,>..,.<.~- ..'--- ... -.-. laycr6

------- loyer 5

._------ laycr4

- - -- layer)

...... layer 2

............. layer I

------- ---- [ayerO

(b'

Figure 3: (a) A 5-layer planar layered digraph. (b) The corresponding planar layered st-graph.

2 Preliminaries

Let G = (¥; E) be an n-vertex input graph (either a planar st-graph or a planar layered digraph),

with edges whose weights are nonnegative. As in [32J, we assume that the input graph representation

is embedded, that is, for each vertex v of G, the cyclic ordering of v's neighboring vertices (both

incoming and outgoing) in the embedding is given in standard form (as a doubly-linked edge list).

Without loss of generality (WLOG), we assume that the embedding of G is such that all its edges

are directed upwards (e.g., by rotating the embedding of the graphs in Figure 1 by 1[/4).

Planar layered digraphs are also called as planar proper hierarchies [7, 34]. The definition of a

planar layered digraph is reviewed as follows.

Definition 1 A planar layered digraph is a planar directed acyclic graph G = (V, E) that allows

an embedding in the plane, called k-line embedding, that has the Jollowing properties:

(i) The vertices oj G are partitioned into k subsets called layers.

(ii) The k layers oj G are consecutively embedded in k parallel lines, with layer i on the i·th line.

(iii) Every edge oj G corresponds to a directed straight line segment from a vertex oj layer i to a

vertex oj layer i + 1, for some i with 1 S i < k.

(iv) No two edges oj G cross each other in the embedding.

A planar layered digraph may have multiple sources and sinks (e.g., see Figure 3(a)). Note that

planar layered digraphs are a generalization of planar directed acyclic grid graphs in the sense that

such a grid graph can be easily transformed to a planar layered digraph (e.g., see Figure 1).

It has been shown in [28] that given a k-line embedding of an n-vertex planar layered digraph

G, it is possible to transform G to an (n + 2)-vertex planar layered st-graph G' with a (k + 2)-line

embedding, such that shortest path problems in G are equivalent to shortest path problems in G'

(this is done by adding to G a new source s and a new sink t, and adding edges with a weight of

+00). Furthermore, this transformation can be done in O(logn) time and O(n) work on the EREW

PRAM. An example of such a planar layered st-graph for the planar layered digraph in Figure 3(a)

is given in Figure 3(b) (with the dashed edges being the newly added edges with a weight of +00).

5

Hence, from now on, we assume that the given planar layered digraph is an n-vertex planar layered

st-graph with a k-line embedding.

We need to review some useful structures of planar st-graphs, based on the development of

Tamassia and Preparata [31J. Let F be the set of faces of a planar st-graph G = CV; E).

Definition 2 Four functions leftO, right(·), law(·)' and high(·) are defined on the set VUEUF,
as follows.

1. For a vertex v E V, left(v) (resp., right(v)) is the face in F that is to the left (resp., right)

o/v and separates the incoming edges ofv from its outgoing edgesi law(v) = high(v) = v.

2. For an edge e E E from vertex 'U to verlex v, left(e) (resp_, right(e)) is the face in F that is

immediately to the left (resp., right) of ei law(e) = tt, and high(e) = v.

3. For a face f E F, left(J) = right(f) = f i law(f) (resp., high(f)) is the common starling

(resp., ending) vertex of the two bounding paths of f.

The external face l' of G is conceptually partitioned into two faces: The "left" and "right"

external faces of G, with the left (resp., right) external face being to the left (resp., right) of the

left (resp., right) bounding path of 1'.

Definition 3 The dual graph G* = (V., E*) of a planar st-graph G = (V, E) is the directed graph

obtained as follows: V* = F U {s*, ttl, where s* (resp.} t*) is the left (resp., right) external face of

G. For every edge e E E, there is an edge (left(e),right(e)) E E* from left(e) to right(e).

It is easy to see that G* is also a planar st-graph with source s* and sink t'".

Definition 4 Two partial orders, denoted by t and ---7, are defined on VUE UF of G as follows:

For any x,y E VUE U F, it is said that x is below y (denoted by x t y) if there is a path from

high(x) to low(y) in G, and that x is to the left of y (denoted by x --t y) if there is a path from

right(x) to left(y) in the dual graph G* of G.

Exactly one of the following holds for any x,y E VUEUF: xtYl ytx, x ---7 y, or y --+ x [31J.

Definition 5 Two total orders, denoted by <L and <n, are defined on VUE UF of G as follows:

For any x,y E V UEUF, X <L y iDx t y or x --+ Yi X <R y iff x t y Dry --+ x. The sequence

of all elements in VUE U F sorted according to <L (resp., <R) is called the left sequence (resp.,

right sequence) of G_

The two total orders <L and <R are very useful. For example, one can make use of the fact

that there is a path from a vertex v to another vertex w in a planar st-graph G iff v precedes w in

both the left and right sequences of G [31]. Tamassia and Vitter [32] gave an O(1ogn) time, O(n)

work EREW PRAM algorithm for computing the two total orders <L and <R.

WLOG, we assume that the source vertex for our single-source shortest path and depth-first

search computation is the source s ofthe input planar st-graph G. When the source vertex for these

6

G"

~~'",,-p
":';"'"- "'---

R" •
----,

,

One-way separatoI5

Figure 4: A shortest path P between two vertices of R" may go outside R".

problems is v f= 5, one can reduce such a problem to one on a (possibly smaller) planar st-graph

whose source is V, in O(logn) time and D(n) work on the EREW PRAM (by using the parallel

transitive closure result of [32]).

A number of results on computing various separators for planar graphs are known (e.g., see

[9, 19, 22, 23, 24]). The graph partitioning schemes of our parallel shortest path algorithms are

based on two types of separators specifically for planar st-graphs. These planar st-graph separators

have some special properties. One type of the separators, called one-way separators, was introduced

by Sairam, Tamassia, and Vitter [28J. The following definition reviews and generalizes the idea of

one-way separators.

Definition 6 Let S be a subset of vertices of a directed graph G' = (V', E ') such that removing

S and the edges adjacent to any vertex of S from G' partitions V' - S into subsets Vi, V2, ... ,

Vh, with h > 1. For any subset W of V', let G'(W) be the subgmph of G' whose vertices are the

vertices of Wand whose edges are the edges of G' connecting vertices of W. S is called a one-way

separator of G' if for any directed path P in G', one of the following holds for every Vj: 1) P n
G'(Vj U S) is empty, 2) P n G'(Vj U S) is a connected subpath of P, 3) P n G'(Vj) is a connected

subpath of P. S is called a strict one-way separator of G' if S is a one-way separator of G' and if

for any directed path Pin G' , P n G'(S) is either empty or a connected subpath of P.

Intuitively, for a one-way separator S of the graph G' , a directed path in G' can "cross" the

subgraph O'(S) at most once, but may enter and leave G'(S) multiple times (without crossing it).

In comparison, for a strict one-way separator S, a directed path in G' can enter and leave G'(S)

at most once. Computationally, these two types of separators have quite different consequences.

For a region R' of a graph G1 that is bounded by strict one-way separators, all directed paths (and

hence shortest paths) between any two vertices of R' never go outside R' (although these paths can

touch the boundary vedices of R'). Therefore, the shortest paths in G' between any two vertices of

R' can be computed simply from the region R' of G'. However, for a region RII of a graph Gil that

is bounded by one-way separators, a directed path P (and hence a shortest path) that is between

two vertices of R" and that has an end vertex on the boundary of R" need not stay insides the

boundary of R" - such a path may pass through vertices of Gil outside R" (see Figure 4 for an

example). Therefore, the shortest paths between two vertices of R" and with an end vertex on the

7

boundary of RIl that are computed only from the region R" may not be true shortest paths in Gil.

This makes the shortest path computation using one-way separators somewhat more difficult.

As in [1, 2, 281, our algorithms involve multiplying special kinds of matrices (matrices with

monotonicity, or Monge, property), in the (max,+) closed semi-ring, i.e., (M' * M")(i,j) =

maxk {M'(i, k) + M"(k,j)}. Although the situation depicted in Figure 2 (b) implies that the

structure that gives rise to such matrices is not always available, the fact that we can deal with the

situation in Figure 2 (a) will be useful.

For two disjoint vertex sets A and B on the boundary of a region R of G, let matrix MAR

contain the lengths of the shortest paths that start in A and end in B (by convention, these paths

go through the vertices of G on their way from A to B).

Definition 7 Let X and Y be two disjoint vertex sets on the boundary of a region R of G, each

totally ordered in some way (i.e., using one of the orders in Definition 5) , and such that the TOWS

(resp., columns) of the matrix Mxy are as in the ordering for X (resp., Y). Then, matrix Mxy is

Monge iff for any two successive vertices p, p/ in X and two successive vertices q, ql in Y, we have

Mxy{p, q) + Mxy{p', q') ~ Mxy{p, q') + Mxy{P', q).

The following well-known lemma [2, 1] will also be useful.

Lemma 1 Assume that matrices Mxy and Myz are Monge, with IXI = cI1Y1 ~ c2[ZI for some

positive constants CI and C2. Then Mxy *M yz can be computed in O(log IYI) time and O(IXIIZI)

work in the CREW PRAM model.

3 All-Pairs Shortest Paths in Planar st-Graphs

This section presents our O(log2 n) time, O(n2) work CREW PRAM algorithm for computing

all-pairs shortest paths in planar st-graphs. Our parallel algorithm uses a divide-and-conquer

approach. A key to this divide-and-conquer algorithm is a partitioning scheme that makes use

of strict one-way separators. We will discuss first our graph partitioning scheme, and then our

divide-and-conquer algorithm.

3.1 Strict One-Way Separators

The strict one-way separators we use are based on a geometric structure that is described by the

following visibility representation for planar st-graphs.

Definition 8 A visibility representation VR(G) for a planar st-graph G is a mapping of G in

the plane as follows: Every vertex u of G is mapped to a horizontal line segment VRh(U), and

even) directed edge (u,w) ofG is mapped to a vertical line segment VRu((u,w)) whose lower (resp.,

upper) endpoint is on the horizontal segment VRh(U) (resp., VRh(W)) such that VRu((u, w)) does

not intersect any other horizontal segment of VR(G) (see Figure 5 for an example).

8

(a)

b

-I-"-
,

(b)

Figure 5: (a) A planar st-graph. (b) A visibility representation for the graph of Cal.

It has been shown in [32] that a visibility representation VR(G) of a planar st-graph G can be

computed in O(logn) time and D(n) work on the EREW PRAM, such that all the y-coordinates

of the horizontal segments of VR(G) are distinct integers. Actually, the sequence of the horizontal

segments of VR(C) in the increasing order of their y-coordinates corresponds to a topologically

sorted sequence of the vertices of G [32]. WLOG, we assume that such a visibility representation

VR(G) in the plane is already available for the planar st-graph G we use.

A strict one-way separator Be for an n-vertex planar st-graph G is defined as follows: Let L(Be)

be a horizontal line in the plane such that nj2 horizontal segments of VR(G) are strictly above

(resp., strictly below) L(SG). Then L(Se) intersects the interior of a number of vertical segments

of VR(G). IfL(Se) intersects the vertical segment VRv(e) for an edge e of G, then we assume that

L(Se) intersects VRv(e) at an interior point which corresponds to an artificial-vertex av(e) of G.

These artificial-vertices are treated like ordinary vertices of G in the following way: If av(e) is an

artificial-vertex on the original edge e = ('1.1., v) of G, then it is as if the edge ('1.1., v) is replaced by edges

('1.1., av(e)) and (av(e), v) in G. However, artificial-vertices have no representation in VR(G), and

hence they do not affect our graph partitioning scheme (Le., we compute strict one-way separators

based only on the original information of the graph G). (As to be shown later, artificial-vertices are

useful in our shortest path computation.) Let Se be the sequence of such artificial-vertices created

by the line L(Se), such that Se is in the increasing order of the x-coordinates of the intersection

points between L(Se) and the corresponding vertical segments of VR(G).

Lemma 2 The sorted sequence Se of all artificial-vertices created by the horizontal line L(Se) on

VR(G) is a strict one-way separator for the planar st-graph G, such that Se partitions G into two

regions (jor which the number of original vertices differs by at most one). Furthermore, for any

two consecutive artificial-vertices av(e/) and av(efl
) in Se, their corresponding edges e' and elf are

on the boundary of the same face f of G, with e' (resp_, e") being on the left (resp., right) bounding

path of f.

Proof. The sequence Se is a strict one-way separator because of the following: (1) L(Se) cuts

VR(G) into two parts, (2) any directed path from an artificial-vertex av(e) in Sa can only go

strictly upwards in VR(G), and (3) each artificial-vertex is in the interior of an original edge of G.

By its definition, Se clearly partitions G into two regions, each with the same number of original

vertices. The fact on any two consecutive artificial-vertices av(e') and av(e") in Se follows from

the way in which a horizontal line intersects the structure of VR(G). 0

9

Actually, it is not hard to see that any directed path in G intersects at most one artificial-vertex

of Sc (i.e., no directed path in G passes through two distinct artificial-vertices of So). From the

visibility representation VR(G) of G, it is easy to compute the strict one-way separator Sa of G,

in O(logn) time and O(n) work on the EREW PRAM. With such strict one-way separators, we

have the following graph partitioning scheme for the planar st-graph G:

1. Use the strict one-way separator So to partition G into two regions G t and G2 (with G1

"below" G2). Note that G t and G2 each contain nj2 original vertices of G, but Se and the

edges of G that contain an artificial-vertex of Sc are excluded from G1 and G2 •

2. Recursively partition each of Gt and G2, until every region contains exactly one vertex of G.

One can see that every region R of G generated by the above partitioning scheme is bounded

by two strict one-way separators, one on a horizontal line bounding R from above and the other on

another horizontal line bounding R from below. Further, every directed path (and hence shortest

path) between two vertices of R stays insides R (since R is bounded by strict one-way separators).

We use a partition tree TG to capture the above partitioning process on the graph G. The root

of Tc is associated with G and with the strict one-way separator Sc of G. The left (resp., right)

child of the root ofTc is the root of the partition tree Tal (resp., TC2) for the lower (resp., upper)

region G t (resp., G2) of G. Note that the leaves ofTa, in the left-to-right order, correspond to the

horizontal segments of VR(G) in the increasing order of their v-coordinates. Clearly, the number

of levels of the tree Ta is O(log n). Since computing the strict one-way separator Se of G takes

O(logn) time and O(n) work, Te can be obtained in altogether O(log2 n) time and O(nlogn) work

on the EREW PRAM.

Lemma 3 Let z be a node of the tree To that is associated with a subgraph R of G and with the

strict one-way separator Sn of R. Let R contain r original vertices of G. Then the size of Sn can

be as big as O(r) and as small as zero.

Proof. Since R is an r-vertex planar graph, ISRI can certainly be O(r) (i.e., the horizontal line

L(Sn) cuts O(r) edges of R in the visibility representation VR(G) of G). On the other hand, it is

also possible that ISnl = 0 since there may be no edge connecting the two regions into which Sft

partitions R. 0

We maintain Te explicitly for our shortest path computation. Every node of Te stores certain

information: The root root(TG) of TG stores G and Se, the left child of root(Tc) stores G 1 and

Sall etc. Some shortest path information is also stored at the nodes of Te (more on this later).

3.2 All-Pairs Shortest Path Computation

We are now ready to discuss the parallel computation for all-pairs shortest paths in the planar

st-graph G. Note that the partitioning scheme in Subsection 3.1 puts exactly one artificial-vertex

av(e) on every original edge e of G. Hence G has O(n) artificial-vertices. We shall be computing

the O(n2) all-pairs shortest paths between the O(n) original and artificial vertices ofG.

10

To simplify the computation, we need to reduce the planar st-graph G (with weighted edges) to

another planar st-graph with weighted vertices: (1) For every original vertex v of G, let the weight

of v be zero, (2) for every artificial-vertex av(e) of G, let the weight of av(e) be the weight of the

corresponding original edge e of G, and (3) let the weights of all edges of G be zero. This reduction

is easy to perform. We still let G denote the planar st-graph so resulted.

The two lemmas below form the basis for achieving efficiency in our shortest path computation.

Lemma 4 Let SR be the strict one-way separator Jor a region R of G. For any vertex v oj G, if

there are two directed paths in G, one between v and an artificial-vertex av(e) of 8R and the other

between v and another artificial-vertex av(e') of 8 R (with av(e) preceding av(el
) in 8 R), then there

is a directed path in G between v and every artificial-vertex oj 8R that is between av(e) and av(e').

Proof. WLOG, assume that the two directed paths are from the vertex v to the artificial-vertices

of SR (if any). Let PI (resp., P2) be a directed path from v to the sink t of G passing through

av(e) (resp., av(e')). Then every artificial-vertex av(e") of 8R that is between av(e) and av(e') is

insides the region of G that is bounded by PI and P2 • Since there is a directed path P3 from the

source s of G to av(e") in G, P3 must intersect a vertex on either PI or P2. This implies that there

is a directed path in G from v to av(e'/). 0

Lemma 4 helps us decide for which pairs of artificial-vertices of G (on various strict one-way

separators generated by our graph partitioning scheme in Subsection 3.1) we need to compute

shortest paths. Note that a query on whether there is a directed path from a vertex v to another

vertex w in G can be answered in 0(1) work after an O(logn) time, O(n) work EREW PRAM

preprocessing [32].

Let SPR(U, v) denote a shortest path insides a graph region R from a vertex u to another vertex

v. Let Length(P) denote the length of a path P.

Lemma 5 Let 8 ' and 8" be two strict one-way separators stored in the nodes of the partition

tree TG, such that the horizontal line L(81
) containing 5' is bellow the horizontal line L(511

) con~

taining 811
, Let a and b be two artificial-vertices oj 8 1 with a preceding b in 8', and let c and d

be two artificial~vertices of 81/ with c preceding d in 5". Then the shortest path 5Pc (a,d) inter

sects the shortest path 8Pc(b,c) at a vertex of G (see Figure 6). Further, Length(8Pc (a,c)) +
Length(SPG (b, d)) S Length(SPG (", d)) + Length(SPG(b, e)).

Proof. To prove that the shortest paths 8Pc(a, d) and 8Pc (b, c) intersect each other at a vertex

of G, let P(s,a) (resp., P(d, t)) be a directed path in G from the source s of G to a (resp., from

d to the sink t of G). Then the vertices band c are on opposite sides of the upward directed

path Q = P(s, a) U 8Pc (a,d) U P(d, t). Hence the shortest path 8Pc (b, c) must cross the path Q.

Since 8Pc(b, c) goes upwards in the visibility representation VR(G) of G, such a crossing cannot

be below the line L(8'/) and cannot be above the line L(S). Therefore 8Pc (a,d) and 8Pc (b,c)

intersect each other (say) at a vertex h of G. To show that Length(8PG(a,c)) + Length(SPc(b, d))

:5 Length(SPc(a,d)) + Length(8Pc (b,c)), we only need to point out that Length(SPc(a,c))

11

'0..
'.

; P(d,l)

" P(s,a)--

Figure 6: Illustrating Lemma 5.

$ Length(SPc(a,h)) + Length(SPc(h,c)) and that Lengtl,(SPc(b,d)) $ Length(SPc(b,h)) +
Length(SPc(h, d)) (see Figure 6). 0

Lemma 5 ensures that the length matrices for shortest paths between artificial-vertices on any

two strict one-way separators generated by OUI graph partitioning scheme in Subsection 3.1 have the

monotonicity property [1, 2]. Therefore, we can usc the efficient parallel algorithms for monotone

matrix multiplications in [1, 2] to compute shortest paths in planar st-graphs.

The main steps of our all-pairs shortest path algorithm are as follows:

1. A bottom-up stage on the partition tree TG. In this stage, for every region R in Ta, we

compute and store the shortest path lengths from the artificial-vertices on the lower boundary

of R to the artificial-vertices on the upper boundary of R.

2. A top-down stage on the partition tree Te. In this stage, for each level k in Te and for each

two regions R' and R II on level k 1 such that R' is l'bellow" R", we compute the shortest path

lengths from the artificial-vertices on the upper boundary of R' to the artificial-vertices on

the lower boundary of R", Thus, at the end of this stage, we have computed the all-pairs

shortest path lengths between the artificial vertices in G.

3. An update stage, to obtain the shortest path lengths between original vertices of G.

The computation of the first stage proceeds upwards level by level on Te, starting from the

leaves of Te . Suppose that the computation reaches a node z of Te at the current level. Let z

be associated with a graph region R of G and with the strict one-way separator SR. Then SR

is the llcommon boundary" of the two regions associated with the two children of z in Te. The

computation at the left child of z has obtained and stored shortest path lengths from the artificial

vertices on the lower boundary of R to the artificial-vertices on SR, and the computation at the

right child of z has obtained and stored shortest path lengths from the artificial-vertices on SR to

the artificial-vertices on the upper boundary of R. The computation at z then obtains and stores

the shortest path lengths from the artificial-vertices on the lower boundary of R to the artificial

vertices on the upper boundary of R, using the shortest path information stored at the two children

12

of z. This shortest path computation is based on Lemmas 4 and 5.

After the first stage reaches the root of Te, the second stage takes over. The computation of

the second stage proceeds downward level by level on Te. Let u and v be any two nodes of Te at

the current level, such that u (resp., v) is associated with a region R' (resp., R II
) of G and with

the strict one-wa.y separator SR' (resp_, Sn"), and such that R' is "below" R II
. Then the shortest

path lengths from the artificial-vertices on the upper boundary of R' to the artificial-vertices on the

lower boundary of R II are computed_ This shortest path computation gets help from the shortest

path information already computed and stored at the parent node u' of u and at the parent node

Vi of v, and is also based on Lemmas 4 and 5. For a node x E TG, let S,(x) (resp., Sr(x)) be

the one-way separator bounding the region Rx, associated with x, from bellow (resp., above). For

two one-way separators Sl and S2, let M[SI, S2] be the matrix of shortest path lengths from the

artificial vertices on SI to the artificial vertices on S2. There are four possible cases to consider for

every pair of nodes u and v at the current level, depending on whether u (resp., v) is the left or

right child of its parent node:

Case 1: u is the right child of u' and v is the left child of Vi. Then, the shortest path

lengths were already computed at the previous level.

Case 2: u is the right child of u' and v is the right child of Vi. Then, the shortest

path matrix M[Sr(u), S,(v)] is computed as a monotone matrix multiplication between

the shortest path matrix M[Sr(u'), S,(v')], stored at u' (computed earlier in the second

stage), and the shortest path matrix M[SI(X), Sr(x)], stored at the left child x of Vi

(computed in the first stage).

Case 3: u is the left child of u' and v is the left child of v'. Then, the shortest path

matrix M[Sr(u), SI(V)] is computed as a monotone matrix multiplication between the

shortest path matrix M[Sj(x), Sr(x)], stored at the right child x of u' (computed in

the first stage) and the shortest path matrix M[Sr(u'), Sj(v')], stored at u' (computed

earlier in the second stage).

Case 4: u is the left child of u' and v is the right child of v'. Then, the short~

est path matrix M[Sr(u), S/(v)] is computed as two monotone matrix multiplications.

The first multiplication, between the shortest path matrix M[S/(x), Sr(x)], stored at

the right child x of u' (computed in the first stage) and the shortest path matrix

M[Sr(u'), S/(v')], stored at u' (computed earlier in the second stage), computes the

shortest path matrix M[S/(x), Sj(v')]. The second multiplication, between the short·

est path matrix M[S/(x), 8j (Vi)] and the shortest path matrix M[S/(y), Sr(Y)], stored

at the left child y of v' (computed in the first stage), gives the shortest path matrix

M[S,(u), Sf(U)],

To obtain the shortest path lengths between the original vertices of G, we only need to observe

that the shortest path length between two artificial vertices av(e) and av(e'), on edges e and e'

13

respectively, is also the shortest path leng~h between the original vertices z and z', where z is ~he

lower vertex of av(e) and z' is the upper vertex of av(e') in V R(G).

Our parallel all-pairs shortest pa~h algori~hm takes altogether O(log2 n) time and O(n2) work

on the CREW PRAM. To obtain this result, we perform an amortized analysis over all the O(logn)

levels in Tc, in order to bound the total work of our algorithm. Since the work in the top-down

stage dominates the work in the bottom-up stage, we only need to analyze the work in the top

down stage. Recall that the total number of artificial vertices (between which we compute shortest

path lengths) is O(n) and the work to compute the shortest path lengths between the boundary

vertices of two regions R' and RIl
, such that R' (resp., RIl

) has kl (resp., k//) boundary vertices,

is O(ek"). Then, the work in this stage (over all the O(logn) levels in Ta) is OCEiJ=l,#jkjkj),

where Ei=l ki = O(n) and Ei=l kj = O(n). Since O(Ei,j=l,i,i'i kikj) = O((Ei=l kiHEi=l kj)) =
O(n2

), it follows that the work in the top-down stage is O(n2).

Once the all-pairs path lengths are available, the actual single-source shortest path tree SPTu,

for every source vertex u E G, is easy to generate in O(logn) time and O(n) work. This computation

is based on the fact that, for every vertex v with Length(SPc(u, v)) f +00 (thus, v E SPTu), the

equality Length(SPc(u,v)) = Length(SPc(u,w)) + Length(w,v) holds for at least one vertex w,

such that (w, v) is an incoming edge of the vertex v.

Note that our parallel all-pairs shortest path algorithm on planar st~graphs, when applied to

computing all-pairs shortest paths in the planar directed acyclic grid graphs considered in [1, 2],
yields an O(log2 n) time, O(n2) work CREW PRAM solution.

4 Single-Source Shortest Paths in Planar Layered st-Graphs

This section presents our O(log2 n) time, O(nlogn) work CREW PRAM algorithm for computing

single-source shortest paths in planar layered st-graphs. As the all-pairs algorithm in Section 3,

our parallel single-source algorithm uses a divide-and-conquer approach. A key to this divide-and

conquer algorithm is a partitioning scheme that makes use of one-way separators (rather than the

strict one-way separators in Section 3).

One might wonder why we use one-way separators instead of strict one-way separators to com

pute in parallel single-source shortest paths in planar layered st-graphs. Recall from Lemma 3 that

the size of a strict one-way separator SR for a subgraph R of a planar st-graph can be proportional

to the size of R. This leads to a parallel shortest path algorithm whose work bound is at least

quadratic. Such a parallel algorithm would certainly be too expensive for the single-source problem

on planar layered st-grapbs, whose sequential time bound is only linear.

The one-way separators we use in this section are a modified version of those used in [28]. The

size of such a one-way separator for a graph region is proportional to the square-mot of the size

of the region. Hence, these one-way separators are more likely to yield an efficient parallel single

source algorithm. On the other hand, as discussed in Section 2, one-way separators do not ensure as

much locality as strict one-way separators for shortest path computation (Le., true shortest paths

14

may go outside a region bounded by one-way separators). Therefore, shortest path computation

based on one-way separators must be done with much more care in order to achieve the desired

efficiency.

Lemma 6 ([28]) Every n-vertex planar layered st-graph G has a one-way separator X such that

(1) IXI ::; c..,fii Jor some positive constant c, and

(2) X partitions G - X into at most four regions, such that the number oj vertices oj each region

is no bigger than 2n/3.

Furthermore, such a separator can be computed in O(logn) time and O(n) work on the EREW

PRAM if a k-line embedding of G is given.

Proof. See Theorems 2 and 3 in [28J. 0

We modify the algorithm for computing a one-way separator in [28] to generate a slightly

different one-way separator as shown in the next lemma.

Lemma 7 Given a k-line embedding oj an n-vertex planar layered st-graph G, a one-way .o;eparator

X' oj G can be obtained in O(logn) time and O(n) work on the EREW PRAM, such that

(1') IX'I ::; c..,fii for some positive constant c, and

(2') X' partitions G - X' into exactly two regions A' and B' , such that neither A' nor B ' has more

than 2n/3 vertices.

Proof. We first review briefly the properties of the one-way separator used in [28J (the reader is

referred to [28] for more details). The one-way separator X computed in Theorem 3 of [28J consists

of two layers Li and Ll of the graph G, and possibly a special directed path p in the portion M of

G between Li and L1 (see Figure 7). The two layers Li and Ll together partition G into at most

three regions A, B, and M. If M has less than 2n/3 vertices, then no path p is needed, and X =

L i UL l . If M has at least 2n/3 vertices, then a path p in M is computed as follows: Transform M

into a planar layered st-graph (by mainly adding a source and a sink to M); let m be the "middle"

vertex of the vertices of M in the left sequence of M; obtain a path p by going up from m and

following the leftmost outgoing edges until Lj is reached, and by going down from m and following

the rightmost incoming edges until L i is reached. The path p partitions M into two regions C and

D, each with the same number of vertices (see Figure 7). Let X = L j U £1 Up. X so obtained is a

one-way separator with the following properties:

• None of A and B has more than 2n/3 vertices, and none of G and D has more than n/2

vertices.

• IXI = IL, UL1 upl::; c..,fii for some positive constant c.

15

A.............. <, < Dr l,y"l

C m. M, j\-P

\, - - layer i

B

Figure 7: Illustrating the one-way separator.

We modify the algorithm in [28] so that it computes a one-way separator X' that paditions G

into two regions A' and Sf, Our algorithm consists of the following steps: (a) Use layers Li and Ll

to partition G into A, B, and M as in Figure 7. (b) If either A or B has at least n/3 vertices (say,

A has ~ n{3 vertices), then let A' = A and B' = M U B. (e) Otherwise (none of A and B has ~

n/3 vertices), usc the path p to partition Minto C and D, and let A' = AU D and B' = B U C.

The parallel complexity bounds of our algorithm are just the same as those in Lemma 6. We

now claim that (i) the "common boundary" X' between A' and B ' is a one-way separator with IX'I
::; cvn, and (ii) none of Al and B' has morc than 2n/3 vertices.

Proof of the Claims: It is clear that X' separates G - X' into two regions A' and

B' . Claim (i) follows from the proof of Theorem 2 of [28], because X' ~ Li U L1 Up.

We now prove Claim (ii). Note that A' and B ' are obtained from Steps (b) or (c). In

Step (b), suppose A has 2: n/3 vertices; then Claim (ii) easily follows because A = A'

and A has S 2n/3 vertices. In Step (c) (none of A and B has ;::: n/3 vertices), let 2neD

be the number of vertices in M and let nA (resp., nB) be the number of vertices in A

(resp., B). Then, (nA +neD) + (ns + neD) S n. Assume that A' has more than 2n/3

vertices (the proof for B' is similar), that is, nA + nOD> 2n/3. Then, since none of

A and B has ;::: n/3 vertices, (nA + neD) + (nn + neD) > n, which is a contradiction.

Thus, Claim (ii) follows.

This completes the proof of this lemma. 0

Note that although the algorithm in [28J finds a one-way separator that partitions the graph

G into at most four regions (each of which has no more than 2n/3 vertices), every such region

may have as few as 0(1) vertices. In contrast, we compute a one-way separator that partitions the

graph G into exactly two regions, whose sizes are nicely bounded from above and from below. This

simplifies the subsequent shortest path computation.

Based on our one-way separators, we obtain a graph partitioning scheme. As in Section 3, we

maintain explicitly a partition tree Ta that captures the partitioning process on the graph G.

The main steps of our single-source shortest path algorithm are as follows:

16

1. A bottom-up stage on the partition tree TG. In this stage, when the level-by-Ievel computation

reaches a node of TG that is associated with a graph region R of G, we do the following:

(a) Compute the all-pairs shortest path lengths between all boundary vertices of the region

R that do not go outside R.

(b) Compute the all-pairs shortest path lengths between all boundary vertices of the region

R which may go through a neighboring region of R.

The computation in this stage is based on the parallel algorithms in [1, 2] for multiplying

monotone matrices of sizes Oem) x Oem).

2. A top-down stage on the partition tree TG. In this stage, when the level-by-Ievel computation

reaches a node of TG that is associated with a graph region R of G, the shortest paths from

the source s of G to all boundary vertices of R are computed. This computation is based on

the parallel algorithm of Atallah and Kosaraju [3] for searching monotone matrices of sizes

O(m) x O(m).

Note that the shortest path algorithm in [28] also uses a bottom-up procedure (but not a top

down one) for computing a source-to-sink shortest path in G. Although the bottom-up procedure

in [28] is based on one-way separators (which may allow true shortest paths to go outside a region

bounded by such separators), it is able to compute correctly the SOUICe-to-sink shortest path in

G. The reason for this is that such a bottom-up procedure can correctly compute shortest paths

between boundary vertices of a graph region provided that the shortest paths do not go outside

that region. Observe that the source-to-sink shortest path in G is eventually computed between

two boundary vertices of a graph region that is G itself.

Our single-source algorithm also hinges on computing shortest paths between boundary vertices

of the graph regions that are generated by our graph partitioning scheme based on one-way separa

tors. However, in the single-source case, we must compute the "true" shortest paths from s to all

vertices of G. Consider a region R I generated by our partitioning scheme such that R' is a proper

subregion of G. In order to compute the l'true" shortest paths from s to all the boundary vertices

of R I
, we need to compute correctly and efficiently the "true" shortest paths between the boundary

vertices of R I
• But, some of these shortest paths may go outside R' (even though these paths are

still inside the largest region G). See Figure 8 for an example. Our single-source algorithm must

handle this difficulty carefully.

Our idea for resolving this difficulty is to divide the "candidate" shortest paths into several

groups, such that the computation on each group of paths can be done by using the monotone

matrix searching or multiplication algorithms in [1, 2, 3]. The correct shortest paths are then

selected among their "candidate" paths.

Let M[R, R] denote the matrix of shortest path lengths between the boundary vertices of a

region R in TG and let M[s, R] denote the matrix of shortest path lengths from s to the boundary

vertices of R.

17

,-_-R

R'

Figure 8: A shortest path PR goes outside R1 through R/I.

We compute the shortest path lengths between boundary vertices in the bottom-up stage.

Suppose that the bottom-up computation reaches a node u of To that is associated with a graph

region R. Let Xn be the one way separator associated with R, and let £i and £, be the two

horizontal layers of X R (see Figure 8). The difficulty with our one-way separator arises when

XR = L i U L j Up, that is, when the subgraph region M R of R between Li and £1 has more than

2r/3 vertices, where r is the number of vertices in R. To see why this is the case, let 'U and w

be the left and right children of u in Ta• associated with regions R' and R'I respectively. Then,

the shortest paths between the vertices on the boundary of R' (resp., R II
) which stay inside R'

(resp., R") are already computed at v (resp., w). However, some shortest paths from vertices on

the boundary of R' to vertices on the directed path p of XR may go through R II (e.g., the path PR

in Figure 8). To compute these shortest paths, we do the following:

1. From the shortest path matrix stored at R II
, select the submatrix of shortest paths between

pairs of vertices on p.

2. Use the shortest paths between vertices on p to compute the correct shortest paths (which

may go through R") between the vertices on the boundary of R' and the vertices on p, and

update the shortest path information at v. This computation can be done as a monotone

matrix multiplication between M[R,pJ and M[P,pJ.

3. Choose the "better" path lengths for M[R', R1J from those staying inside R' and from those

going through R".

Finally, the shortest paths between vertices on R are computed. This shortest path computation

can be done as a monotone matrix multiplication between M[R',Rf
] and M[RfI,RIfJ.

After the first stage reaches the root of TG, the second stage takes over. The computation of

the second stage proceeds downward level by level on TG, at each level computing the shortest path

lengths from s to the boundary vertices of each region on that level.

The computation at a node u E TG that is associated with a graph region R uses the parallel

algorithm in [3] to compute M[s, R]. Let M[s, R'J be the shortest path length matrix for the region

R', associated with the parent of u in TG. From M[s, R1J, we only need the submatrix of shortest

18

path lengths from s to the boundary vertices of R' that are also boundary vertices of R. It is

straightforward to extract this submatrix once M[s, R '] is available. We refer to this submatrix as

M'[s,R']. Note that, if M[R, R] is an mxm matrix, then M'[s,R'J is a 1 xm matrix. Then, M[s,R]

can be computed in O(logm) time, with Oem) EREW PRAM processors [3], by multiplying the

matrix M'[s, R'] with the matrix M[R, RJ.

We now analyze the work performed by our algorithm.

1. For the bottom-up phase. In this phase, for each region R on every level k in TG , we compute

the shortest path lengths between boundary vertices of R. At level k, there are 21.: regions

and the number of boundary vertices (which are vertices on some one-way separators) for

each region is O(..,fii/2k/2). Then, the work at level k is O(n). Summing over all O(logn)

levels in Ta, the work of our algorithm in the bottom-up phase is O(nlogn).

2. For the top-down phase. In this phase, for each region R on every level k in Ta, we com

pute the shortest path lengths from s to the boundary vertices of R. The work at level

k is O(2kvn/2k/2Iog(vn/2k/2)). Summing over all O(logn) levels in Ta, the work of our

algorithm in the top-down phase is bounded from above by O(nlogn).

Thus, our parallel single-source shortest path algorithm takes altogether O(log2 n) time and

O(nlogn) work on the CREW PRAM.

5 Depth-First Search in Planar st-Graphs

Most known parallel depth-first search algorithms on planar graphs are hinged on some kinds of

separator results [10, 13, 15, 16, 17, 18, 19, 29, 30]. However, the task of computing in parallel

useful separators for planar graphs is quite nontrivial (9, 19, 24). In contrast, our optimal parallel

depth·first search algorithm on planar st-graphs does not rely on any separator result and is actually

very simple.

Let s' be the root of the depth-first search tree on G. WLOG, we assume that Sl is the source

s of G (other cases can be handled easily). Suppose that, for every vertex v of the planar st-graph

G = (V, E), the cyclic ordering of v's outgoing edges is given in clockwise direction, starting from

its leftmost outgoing edge. Let incominYlm(V) be the leftmost incoming edge of each vertex v of G

(incomin9lm(s) is empty for the source s of G). Let INCXJMINGlm(V) = {incominYlm(V) Iv E V}.

Lemma 8 The subymph T = (V,INCXJMING1m(V)) of the planar st-graph G = (V, E) is a depth~

first search tree of G rooted at the source s of G.

Proof. We first prove that T is a spanning tree of G rooted at the source s of G, and then that it

is a depth-first search tree of G. As previously, we assume that the embedding of G is such that

all edges are oriented upward.

From the construction of T, each vertex u has an unique parent purent(u) (the end vertex of

incomin9Im(U) which is different from u). Then, to prove that T is a spanning tree for G rooted

19

,,'-,,

,
,,
,,,
,,

,

w

,
,,,,
,,,,

Figure 9: The path between 11.' and 'Of crosses the path between ull and '0
'
/ at a vertex z.

at S, we only need to show that for every vertex 11., there is a unique directed path from s to 11. in

T. To prove this, for every vertex 11. E G, we construct a path P as follows: 1) Let P be initially

empty. 2) Add to P the edge incominglm(u) (which is an edge in T). 3) Repeat the previous step,

with u replaced by the other end vertex of incominglm(u), until a vertex v is reached such that v

bas no incoming edges. Such a vertex v must exist and it can only be s (since only incomin9/m(S)

is empty). This completes the proof that T is a spanning tree of G rooted at s.

Let TVFS be the depth-first search tree of G rooted at s, constructed by first visiting the leftmost

edge of a vertex 11. of G, and assume that there is a vertex wE G such that the path pi from s to w

in T is different from the path pll from s to w in TDFS' Then, there exist two vertices u (possibly

s) and v (possibly w) such that u,v E P', U,v E pl/, and the path p~v from u to v in T is vertex

disjoint from the path P::1J from u to v in TDFS. Let u' (resp., ul/) be the vertex succeeding u in

pi (resp., pll), and let Vi (resp., v") be the vertex preceding v in pi (resp., Pll) (see Figure 9). We

denote the directed edge from vertex x to vertex y as edge(x, y). Then, edge(u, u /) is to the right of

edge(u, u") (edge(u, u") is an edge on the leftmost path starting at u and passing through v) and

edge(v', v) is to the left of edge(v ll , v) (edge(v l ,v) is the leftmost incoming edge of v). Due to the

planarity of G, it results that P~1J and P:1J must intersect at a vertex z (z i- u and z i- v) which

contradicts the assumption that p~v and F::v are vertex disjoint. This completes the proof of this

lemma. 0

Figure 10 gives an example of the depth-first search tree T of a planar sf-graph (the edges of T

are dotted, and the integers are the depth-first search numbers of the vertices of the graph).

Our parallel depth-first search algorithm consists of the following steps:

20

.•...-'

j

8

Figure 10: The depth-first search tree T of a planar st-graph.

1. For every vertex v of G, identify the edge incominO/m(v).

2. For every vertex v, find all its outgoing edges ew = (v, w), such that ew = incoming/m(w) for

some outgoing neighboring vertex w of v.

3. Form the tree T = (V, INCXJMINGlm(V» (rooted at the source s).

4. Assign preorder numbers to the vertices ofT.

By Lemma 8, the preorder numbers of the vertices of the tree T are the depth-first search

numbers of the vertices of G. The analysis of the above algorithm is simple. Step 1 can be easily

done in D{logn) time and D(n) work. Step 2 takes D(logn) time and D(n) work by applying

parallel list ranking technique [14] to the list of outgoing edges of every vertex v. Step 3 obtains

the tree T from the outcome of Step 2. Step 4 uses the Euler tour technique [14] to compute

the preorder numbers of the vertices of T. The parallel depth-first search algorithm hence takes

altogether D(logn) time and D(n) work on the EREW PRAM.

References

[1] A. Aggarwal and J. Park, "Notes on searching in multidimensional monotone arrays," Pmc. 29th Annual
IEEE Symp. on Foundations of Computer Science, 1988, pp. 497-512.

[2] A. Apostolico, M. J. Atallah, L. L. Larmore, and H. S. McFaddin, "Efficient parallel algorithms for
string editing and related problems," SIAM J. Comput., 19 (5) (1990), pp. 968-988.

[3] M. J. Atallah and S. R. Kosaraju, "An efficient parallel algorithm for the row minima of a totally
monotone matrix," J. of Algorithms, 13 (3) (1992), pp. 394-413.

[4] R. P. Brent, "The parallel evaluation of general arithmetic expressions," J. of tlie ACM, 21 (2) (1974),
pp. 201-206.

[5] E. Cohen, "Efficient parallel shortest-paths in digraphs with a separator decomposition," J. of Algo
rithms. 21 (2) (1996), pp. 331-357.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-Hill, 1990.

[7] G. Di Battista and E. Nardelli, "An algorithm for testing planarity of hierarchical graphs," Pmc. of
International Workshop on Graph-Theoretic Concepts in Computer Science, 1986, Bernierd, pp. 277
289.

[8] M. L. Fredman and R. E. Tarjan, "Fibonacci heaps and their uses in improved network optimization
algorithms," J. of the ACM, 34 (1987), pp. 596---615.

21

[9] H. Gazit and G. Miller, "A parallel algorithm for finding a separator in planar graphs," Pmc. 28th
Annual IEEE Symp. on Foundations of Computer Science, 1987, pp. 238-248.

[10] T. Hagerup, "Planar depth·first search in O(logn) parallel time," SIAM J. Comput., 19 (1990), pp. 678
704.

(11] Y. Han, V. Y. Pan, and J. H. Reif, "Efficient parallel algorithms for computing all pair shortest paths
in directed graphs," Algorithmica, 17 (4) (1997), pp. 399-415.

[12] X. He, "Efficient parallel algorithms for series parallel graphs," J. of Algorithms, 12 (1991), pp. 409-430.

[13] X. He and Y. Yesha, "A nearly optimal parallel algorithm for constructing depth first spanning trees in
planar graphs," SIAM J. Comput., 17 (1988), pp. 486-491.

[14] J. JaJa, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, Massachusetts, 1992.

(15] J. Ja.Ja and S. Kosaraju, "Parallel algorithms for planar graphs and related problems," IEEE funs.
on Circuits and Systems, 35 (1988), pp. 304-311.

[16J M. Y. Kao, "All graphs have cycle separators and planar directed depth-first search is in DNC," Lecture
Notes in Computer Science, Vol. 319, VLSI Algorithms and Architectures, Pmc. of 3rd Aegean Workshop
on Computing, Springer-Verlag, New York, 1988, pp. 53-63.

[17] M. Y. Kao, "Planar strong connectivity helps in parallel depth-first search," SIAM J. Comput., 24
(1995), pp. 46-62.

[18] M. Y. Kao and P. N. Klein, "Towards overcoming the transitive-closure bottleneck: Efficient parallel
algorithms for planar digraphs," J. Computer and System Sciences, 47 (1993), pp. 459-500.

[19] M. Y. Kao, S.-H. Teng, and K. Toyama, "An optimal parallel algorithm for planar cycle separator,"
Algorithmica, 14 (1995), pp. 398-408.

[20] P. N. Klein, "Efficient parallel algorithms for chordal graphs," Proc. 29th Annual IEEE Symp. on
Foundations of Computer Science, 1988, pp. 150-161.

[21] P. N. Klein and S. Subramanian, "A linear-processor polylog-time algorithm for shortest paths in planar
graphs," Pmc. the 34th Annual Symp. on Foundations of Computer Science, 1993, pp. 259-270.

[22] R. J. Lipton and R. E. Tarjan, "A separator theorem for planar graphs," SIAM J. Algebmic and Discrete
Methods, 36 (2), 1979, pp. 177-189.

[23] R. J. Lipton and R. E. Tarjan, "Applications of a planar separator theorem," SIAM J. Comput., 9 (3)
(1980), pp. 615-627.

[24] G. Miller, "Finding small simple cycle separators for 2-connected planar graphs," J. Computer and
System Sciences, 32 (1986), pp. 265-279.

[25] V. Pan and J. H. Reif, "Fast and efficient solution of path algebra problems," J. Computer and System
Sciences, 38 (1989), pp. 494-510.

[26] V. Pan and J. H. Reif, "The parallel computation of minimum cost paths in graphs by stream contrac
tion," Information Processing Letters, 40 (1991), pp. 79-83.

[27] J. H. Reif, "Depth-first search is inherently sequential," Infonnation Processing Letters, 20 (1985),
pp. 229-234.

[28J S. Sairam, R. Tarnassia, and J. S. Vitter, "An efficient parallel algorithm for shortest paths in planar
layered digraphs," Algorithmica, 14 (1995), pp. 322-339.

[29J G. E. Shannon, "A linear~processor algorithm for depth-first search in planar graphs," Infonnation
Processing Letters, 29 (1988), pp. 119-123.

[30J J. R. Smith, "Parallel algorithms for depth-first search I. Planar graphs," SIAM J. Comput., 15 (1986),
pp. 814-830.

[31J R. Tamassia and F. P. Preparata, "Dynamic maintenance of planar digraphs, with applications," AIgo
rithmica, 5 (1990), pp. 509-527.

22

[32J R. Tamassia and J. S. Vitter, "Parallel transitive closure and point location in planar structures," SIAM
J. Comput., 20 (4) (1991), pp. 708-725.

[33] J. Valdes, R. E. Tar-jan, and E. L. Lawler, "The recognition of series parallel digraphs," SIAM J.
Comput., 11 (1982), pp. 298-313.

[34] S. Whitesides, "Forms of hierarchy: A selected bibliography," General Systems, 14 (1969), pp. 3-15.

23

	Efficient Parallel Algorithms for Planar st-Graphs
	Report Number:
	

	tmp.1307986960.pdf.wJuSY

