
Purdue University

Purdue e-Pubs

Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

2-1-1987

Efficient Parallel Algorithm for Robot Forward
Dynamics Computation
C. S. G. Lee
Purdue University

P. R. Chang
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

Lee, C. S. G. and Chang, P. R., "Efficient Parallel Algorithm for Robot Forward Dynamics Computation" (1987). Department of
Electrical and Computer Engineering Technical Reports. Paper 552.
https://docs.lib.purdue.edu/ecetr/552

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages

E ffic ien t P a ra lle l

A lg or ith m fo r R o b o t

F o rw a rd D y n a m ics
C o m p u ta tio n

C. S. G. Lee
P. R. Chang

T R -E E 8 7 -1

F eb ru a ry 1 9 8 7

S ch o o l o f E lec tr ica l E n g in eer in g

P u rd u e U n iv ersity

W est L a fa y ette , In d ia n a 4 7 9 0 7

Efficient Parallel Algorithms

For Robot Forward Dynamics Computation

C. S. G. Lee and P. R. Chang

School of Electrical Engineering

Purdue University

West Lafayette, Indiana 47907

TR-EE 87-1

February 1987

A B S T R A C T

Computing the robot forward dynamics is important for real-time computer simu­

lation of robot arm motion. Two efficient parallel algorithms for computing the for­

ward dynamics for real-time simulation were developed to be implemented on an

SIMD computer with n. processors, where h is the number of degrees-of-freedom of the

manipulator. The first parallel algorithm, based on the Composite Rigid-Body

method, generates the inertia matrix using the parallel Newton-Euler algorithm, the

parallel linear recurrence algorithm, and the row-sweep algorithm, and then inverts

the inertia matrix to obtain the joint acceleration vector desired at time t . The time

complexity of this parallel algorithm is of the order 0(n2) with 0(n) processors.

Further reduction of the order of time complexity can be achieved by implementing

the Cholesky’s factorization procedure on array processors. The second parallel algo­

rithm, based on the conjugate gradient method, computes the joint accelerations with

a time complexity of 0(n) for multiplication operation and 0(nlogn) for addition

operation. The proposed parallel computation results are compared with the existing

methods.

T h is w o rk w a s su p p o rted in p a rt b y th e N a tio n a l S c ien ce F o u n d a tio n E n g in eer in g R esea rch C en ter

G ra n t C D R -8 5 0 0 0 2 2 . A n y o p in io n s, fin d in g s, a n d co n c lu sio n s o r reco m m en d a tio n s ex p ressed in th is

a rticle a re th o se o f th e a u th o rs a n d d o n o t n ecessa r ily reflect th e v iew s o f th e fu n d in g a g en cy .

-2 -

1 . In tro d u ctio n

Manipulator dynamics plays a major role in the analysis, design, and synthesis of

control law for the manipulator, as Well as computer simulation of robot arm motion.

Recent research focuses more on the former problem than the latter problem. How­

ever, real-time computer simulation of robot arm motion with manipulator dynamics

taken into consideration offers an effective way of testing and verifying proposed con­

trol strategies without the expense and mechanical problems of working with the

actual manipulator. This paper focuses on real-time computer simulation of robot

arm motion and proposes efficient parallel algorithms for computing the joint

acceleration vector of the manipulator which can be integrated to obtain the time his­

tory of the robot motion.

The simulation problem may be formulated as the forward (or direct) dynamics

problem which can be stated,as: Given an input force/torque vector r(f) and a vector

of external forces/torques exerted on the last link of the manipulator k(t), compute

the joint acceleration vector q(i), based on an appropriate manipulator dynamic

model, from values of r[t), k(f), the joint position q(f), and the joint velocity q(f).

The resultant q (f) is then integrated to give new values of q(t) and q (i); and the pro­

cess is repeated for the next input force/torque vector.

Computationally, the dynamic equations of motion as derived from the

Lagrange-Euler formulation are very inefficient and result in the order of O (n4) arith­

metic operations [l] for computing the joint torques, where n is the number of

degrees-of-freedom of the manipulator. The Newton-Euler formulation [2] was util­

ized as an alternative to deriving more efficient equations of motion for computing the

joint torques. Because of the recursive structure in the Newton-Euler equations of

motion, the number of arithmetic operations for computing the joint torque is linearly

proportional to the number of degrees-of-freedom of the manipulator. Furthermore,

Lee and Chang [3] have shown that by reformulating the Newton-Euler equations of

motion in a linear homogeneous recurrence form and utilizing the “recursive dou­

bling” [4,5] technique to compute the joint torques, the computation has been shown

to achieve the time lower bound of 0([log2n]). In addition to being fast and

efficient in computing the joint torques, the Newton-Euler equations of motion have

also been utilized by Walker and Grin [6] to compute the joint acceleration vector for

computer simulation of robot arm motion. This paper focuses on extending their

work by taking advantages of parallel algorithms running on a single-instruction-

multiple-data-stream (SIMD) computer.

The dynamic equations of motion of a manipulator can be written as

H (q)q (f) + C (q ,q)q (t) + G (q) = r(f). (l)

They can be rewritten as

H (q)q(0 = 7(0-b

where H (q) is an nxn symmetric

gravity G(q) and velocity terms C(

(2.a)

C iq .l'|!< '|i< I • < I(q ! (2-b)

inertia matrix, b is the bias torque vector due to

q, q), and r{t) is a generalized applied force/torque

vector. Utilizing the Newton-Euler equations of motion, Walker and Orjn [6] con­

sidered four methods for providing solutions to the forward dynamics problem. The

nt ways of computing the symmetric nxu, inertia

matrix, Bt(q), which is then inverted to yield q(i) directly. The fourth method is an

iterative procedure based on the conjugate-gradient technique to estimate the joint

acceleration vector q(t) in less than n iterations. The advantage of the conjugate-

gradient method is that ‘the computation of H(q) can be avoided and at the order of

0(»2) is theoretically the most efficient. But when n — 6 (pr n < 12), methods 1-3

are more efficient because of their smaller coefficients on the complexity polynomial.

For n =6, method 3 and method 4 have, respectively, 1629 scalar multiplications and

1255 scalar additions and 3435 scalar multiplications 2532 scalar additions. The com­

putational complexity of these four methods is tabulated in Table 1 for comparison.

A different approach is proposed by Featherstone [7] who introduced a spatial

notation to provide a pleasingly uniform combined representation of rotational and

translational quantities. Based on the so-called articulated-body method, the joint

acceleration vector q(£) can be computed in O (n) steps. The evaluation is performed

in two stages: First, homogeneous articulated-body inertias are calculated for each

link using a fixed-step iteration that starts at the end-effector and works toward the

base; second, the joint acceleratiors are calculated in another fixed-step iteration, this

time working from the base toward the end-effector. Although the computational

complexity of the method is proportional to 0{n), the coefficient of n is quite large.

Thus, for n = 6, there are 2250 scalar multiplications and 1816 scalar additions. The

computational complexity of this method is also tabulated in Table 1 for comparison.

From Table 1, one can realize that the forward dynamics problem is more computa­

tional intensive than the inverse dynamics problem. Thus, for real-time simulation of

robot arm motion, a further substantial improvement in the computational efficiency

of forward dynamics computation is required.

Our present approach to the forward dynamics problem is to implement existing

forward dynamics methods on parallel-computer systems to achieve the real-time

requirements. Due to its recursive nature and the low order in computational com­

plexity, Featherstone’s articulated-body method was first considered for parallel com-

ately, the recursive equations in Featherstone’s

ce (equation (38) in [7]) and Kung [8] showed that

sequential algorithm by any para

puter implementation. Unfortun

method have a nonlinear recurren

the parallel evaluation of a nonlinear recurrence cannot be faster than the obvious

llel algorithm using any number of processors. In

other words, the nonlinear recurrence in Featherstone’s method cannot be parallel­

ized.

Excluding Featherstone’s method, one may consider the parallelization of the

four methods proposed by Walker and Orin. Among these four methods, method 4 is

theoretically the most efficient while method 3 is the most efficient for a reasonable n

(i.e. for most industrial robot, n < 12). Thus, this paper focuses on parallelizing these

two methods. For method 3 (also called the Composite Rigid-Body method), our pro­

posed parallel algorithm reduces the computational complexity from O (n3) to 0(n2),

using 0(n) number of processors, and from O (n2) to 0(n), using O (n2) number of

processors. For the 0(n) number of processors case, the parallel Newton-Euler algo­

rithm and the row-sweeping algorithm are, respectively, used to compute the bias vec­

tor b and the matrix H(q) at O (n) time complexity, then the set-ordering technique

and the parallel Cholesky factorization and the column-sweeping algorithm are pro­

posed to solve the linear system 1 of equations H(q)q(i) = T — b at O (n2) time com­

plexity. The bottleneck of the above parallel computation is the inversion of the iner­

tia matrix H(q) to obtain q(i) in Eq. (2.a). So, an array processor-based VLSI archi­

tecture with 0(n2) processors can be used to solve the inversion problem at O(n)

time complexity [9]. Furthermore, it should be noted that the coefficients of the com­

plexity polynomials on both methods are quite small. There are 0([(n2 — l)/6l)

scalar multiplications and 0([(n2 — l)/2]) scalar additions for using 0{n) processors

and 0(7n + 9 [(n. — l)/2]) multiplications and 0(8n + 5 [(ra — l)/2]) scalar addi­

tions for using O (n2) processors.

For the conjugate-gradient method (method 4), the finite-step iterative procedure

can be parallelized to achieve a faster computation. The proposed parallel

conjugate-gradient method requires 0(1) scalar multiplications and 0([log2n]) scalar

additions per iteration, giving 0(n) scalar multiplications and 0(n [log2n]) scalar

additions for n iterations. The computational complexity of the proposed parallel

composite rigid-body method and the parallel conjugate-gradient method is tabulated

in Table 1 for comparison.

2 . P a ra lle l C o m p o site R ig id -B o d y M eth o d

In this section, efficient parallel algorithms based on the Composite Rigid-Body

method (See Appendix A) will be discussed. The method involves first obtaining the

bias vector b from the parallel Newton-Euler computation, then the computation of

the matrix H(q) is based on the equations in Appendix A which requires the parallel

linear recurrence algorithms and the row-sweeping algorithm. Finally, a parallel

linear system solver is proposed to solve for the q(£) in Eq. (2.a)'. The parallel

Newton-Euler computation, the parallel linear recurrence algorithms,, the row-

sweeping algorithm, and the parallel Cholesky factorization are discussed in the fol­

lowing subsections.

- 4 -

2.1. Parallel Newton-Euler Computation

The bias vector b in Eq. (2.a) can be computed from the Newton-Euler equations

of motion by setting the joint acceleration vector q(£).’=.0. The efficient parallel

algorithm proposed by Lee and Chang [3] can be used to compute the Newton-Euler

equations of motion to achieve the time lower bound of 0([log2rc]). This parallel

Newton-Euler algorithm, can be denoted by a subroutine NE^P\q, q, q, r) where q, q,

and q are, respectively, the input joint position, velocity, and acceleration, and r is

the resultant joint torque vector which is the desired bias vector b.

2 .2 . P a ra lle l L in ear R ecu rren ce A lg o r ith m s

From the equations in Appendix A, one finds that Eqs. (A.l) and (A.3) are in

homogeneous linear recurrence form while Eq. (A.2) for computing Cy is in an inhomo­

geneous linear recurrence form. These linear recurrence problems can be solved by

the “recursive doubling” technique [4,5]. In general, the first-order linear recurrence

problem can be stated as: Given z(G) ^ identity and a(i), 6 (f), 0 < f < n, and the

recursive equation X{i) = < r(f) * x(i—l) + 6 (f), where * and + may be scalar (or

matrix) multiplication and scalar (or vector Or matrix) addition, respectively, find

s(l), s(2), ... , x(n). If a (f) and 6 (f) are both not identities, then this is the first-

order inhomogeneous linear recurrence problem. If a(i) or 6 (f) is identity, then it

becomes the first-order Homogeneous linear recurrence problem. A parallel solution,

called “recursive doubling” [4,5], is especially suited for solving the linear recurrence

problems in SIMD computers. The homogeneous linear recurrence problem can be

solved by the first-order homogeneous linear recurrence algorithm (FOHRA) [3], while

the inhomogeneous linear recurrence problem can be solved by the first-order inhomo­

geneous recurrence algorithm (FOIHRA) which is stated here for convenience:

A lg o r ith m F O IH R A . (F irst-O rd er In h o m o gen eo u s R ecu rren ce A lg o ­

r ith m) Given a-(f), 6 (f), 0 < f < n, this algorithm computes the first-order inhomo­

geneous linear recurrence equation using the recursive doubling technique.

Step 1. [Initialization] Given a (i), b(i), 0 < i < n, let A fif), F' '(f) ^e the fth
sequences at the kth level, and let -X^(f) = a (f), T^(f) = 6(f), for

0 < f < n, and 5 = flog2(«--+-1)1-

Step 2. [Compute x(i) parallelly]

FOR k = 1 step 1 until s, DO

JfW(f)

^-i)(j_2fc-l) '*JE<fc-1)(f j, if 2k~l < f < n

^-^(f), if 0 < f < 2k 1
(3)

- 6 -

* Y^'Xi-2k~l) + .if 2

if 0 ■< * <2

k — 1 < i < n

ifc-i (4)

End JDO

Set x{i) = Y(s)(0, 1 < t < n .

E n d F O IH R A

The ■“*” in Step 2 denotes an associative operator. Both FOHRA and FOIHRA algo­

rithms have a computational complexity of O (log2n) which is the time lower bound

of the linear recurrence problem. Equations (A.l) and (A.3) in Appendix A can be

solved by the subroutine FOHRA in [3], while Eq. (A.2) by the subroutine FOIHRA.

2.3. Row-Sweeping Algorithm

Equation (A.7) in Appendix A can be conveniently expressed as a set of linear

recurrence equations which can be efficiently computed by a technique called “row-

sweeping” [1 0]. The row-sweeping algorithm is a parallel solution for solving the

upper triangular linear recurrence equation system on an SIMD computer. The prob­

lem of solving a set of linear recurrence equations can be stated as: Given

a{j, 1 < i < (j—1), 1 < j < n, and = x°, 1 < j < n, find x{], 1 < i < (j—1),

1 < j < n, on an SIMD machine of n processors, based on the equation

x i j = x { i+ \) , j +

Equation (5) can be conveniently rewritten in a matrix form

(5)

* 1 2

0

* 1 3 '

* 2 3 '

* 1 ,n

* 2 ,n

* 2 2

0

* 2 3

* 3 3

■
c

C

c
T

c
o
"

a 1 2 a 1 3

0 ^ 2 3

' ’ a l,n

a 2 ,n

0 o • ' ‘ ’ * 3 ,n

=

0 o • • ' * 3 ,n

+

0 0 -
a 3 ,n

• • • * (n — l) ,n x n ,n a (n — l) ,n

(6)

For the *th row, there are (n—i) undetermined variables, i.e., xi/i+1 ,'3^+2 > ... > xi,n

which can be evaluated from the resultant (z‘+l)th row variables, i.e.

-{-!),(* +2), x(i+i),(» +3)’• ••>*(» +i),»t and the given constants and

£(t-+1) (,-+i) = ^+1 - The computation starts from the bottom row and “sweeps” to the

upper row. In each sweeping, a specified row is evaluated; thus, the technique is

called the row-sweeping algorithm. If one assigns the (j— l)th processor to deal with

the computation of the variables, x1]-, the {j~l)th column, where

2 < j < n, then the problem can be solved in (n— l) steps. Based on the above con­

cept, the row-sweeping algorithm may be stated as follows:

- 7. -

Algorithm Row-Sweep. (Row-Sweeping Algorithm) Given

aip 1 <i < (J-J),l. < j < n, and xy*, 1 < j < n, this algorithm computes

Xij, 1 < i < j, 1 < j <n ,- based on equation (5).

Step 1. [/ra'te'affizate'on] Let be the result of the jth equation at the (h-:i')th

iteration and X^3\j) = xf, where 1 < j < n.

Step 2. [Parallel Compute X^\j),i < j, in backward]

FOR i — (n—1) step -1 until 1, DO

The (j—l)th processor computes X^\j), 2 < j < n , according to Eq. (7):

^+l)(i) + d-j,, if (t+1) < j < n
, ^ ~ 1a ^+1)(j), if 2 < j<i ^

End_DO

Step 3. [Ouipuii/ie results] Let x-j «— 1 < i < j, 1 < j <n and return.

End Row-Sweep

The row-sweeping algorithm is used to solve Eq. (A.7), that is,

■ f. , — f. ' (8.a)

p * ,y ^ (j+ i),/ P t * ^ (* + i),y (8 .b)

where 1 < (< (j—l), 1 < j < n, and

f., r, (9.a)

II „ N, • <•; • F, I J ■ n ; (9.b)

where Fy, N^-, cy, are given parameters. From Eqs. (8.a) and (9.a), one finds that

f f> y :r = F j> and a fy = p / x F y may be evaluated for

1 < i < (/-!■)» 1 < J < n- Using these results, Eq. (8.b) becomes

A ,y = h (t+ i)S + a ip 1 - V - (7- 1), 1 < 3 < n (1 0)

and, n, , =N,+cixF.',l<J<« may be evaluated before solving Eq. (10).

Equation (1 0) is an upper triangular linear recurrence equation system and can be

solved by the row-sweeping algorithm in (n—l) steps.

2.4. Parallelized Linear System Solver

The above parallel linear recurrence algorithms and the row-sweeping algorithm

are used to efficiently compute the equations in Appendix A to obtain the inertia

matrix H(q). Thus, given the input force/torque vector n\t) and the bias vector b

computed from the parallel Newton-Euler computation, Eq. (2.a) becomes a set of

linear system of equations in the form of H(q)q(f) = y, where y = r - b. This set of

linear system of equations can be efficiently solved by the Cholesky factorization [llj.

- 8 -

This method solves the equations by factorizing the nxn symmetric matrix H(q) into

LLT, where L is a lower triangular matrix and the superscript “T ” denotes matrix

transpose, then it solves the subsystems in two steps: First, the equation Lx = y is

solved by back substitution; then, the resultant subsystem LT q(t) = x is solved by

another back substitution.

Since we are interested in the inversion of an nxn symmetric matrix H(q), a

parallel computation of the Cholesky factorization has been developed and can be

divided into two parts: First is the parallel computation of the off-diagonal lower ele­

ments Zfe-, where

l fd

ihki - '£hijhkj)/hiii if * < k < n, 2 < i < n

hkl/hn (first —column), if 1, 1 < k < n
(1 1)

and the second is the parallel computation of the diagonal elements lkk, that is

hk

(ha~e VA if 2 < * < n

i=i

(hnf\ if fc= 1

where h and /t-y are the (i,j) component of the matrices H and L, respectively.

(1 2)

Basically, the elements /fa-, i > 2, in Eq. (ll), can be obtained in three steps: The

parallel computation of the product terms (—h^ hkj) for 1 < j < (z—1), i. < k < n,

2 < i < n; the summation of the resultant product terms; and then the computation

of Ifa. Similarly, the element lkk, k > 2, in Eq. (12), can be obtained in the same pro­

cedure. In evaluating a specified Zfa-, % > 2, there are (*—l) necessary product terms.
n n 3

So, the total number of necessary product terms is J] S (l—1) = (n^ — n)/&-
k=ii=2

Because the evaluations of these product terms are identical, it is easy to show that

the computational complexity of the parallel computation using n processors is

[(n2—1)/6] scalar multiplications. For convenience, we let hijk ■= —h^ hkj and the
_ i-1

next goal is how to parallelly compute the summation /fa- = + Yj ^ijky
i =1

/\ y v
i < k < n, 2 < i < n. Obviously, the computations for Zfai and ZfaoJ or in

different columns are not identical. So, there is no easy way to compute /fe- parallelly.

More arrangements on the parallel algorithm are necessary. A parallel algorithm

based on the set-ordering technique is proposed to solve the summation problem

efficiently and is described below:

The parameters used in the set-ordering procedure are:

/v t '-l
1) Ik = hu + Y, hijk where hijk = - % hkj, for 1 < J < t-1,

j=i

1 < k < n,

- 9 -

2 < ? < n. ' •
■ ./■ . ' l ■ >: • ■■' ■■■■ • ■ :

2) NA(Si) = number of additions needed to evaluate at- = /—l, where S[is a set
■ . v": ■ : ••• . *=i ■

consisting of a collection ofterms ava2, ... ,ai-

3) ^ a^, where Cfa is the counter for indicating the length of summa-
Ca

tion in 5^-.
j=o

Procedure Set-Ordering (H , /^). Given for ?</;< n, 1 < z. < n, and

~ —h{j hkj for 1 < j < i— 1, i < k < n, 2 < t < n, where is the (fc,i) com­

ponent of the inertia matrix H (q), this procedure computes based on the set-

ordering technique.

Step 1 . [Initialization]

(i) Set for 1 < j <i — 1., t < k < ft, 2 < t.< n.

(ji)'.Set % - • i <k<n, 2 < t < »

(iii) Set — 0, a$’0^ — affl for i < k < n, 2 < t'•<, n

(iv) Set iV = n(n—1)/2

5tep 2. [5e2 Ordering] Order in a descending order according to NA(Ski)> and let

the sets S$, 1 < / <N, correspond tp the ordered set sequence Ski:

Step 3. [Compute the n (or N) Highest Ordered Set sjp Parallelly] If IV > n (or

N < n), the computation of the set sj^ can be evaluated by the /th proces­

sor, 1 </< n (or A^),

(i) ;#^s£l-{a^*'+1),af'"0)>.

(n) aU
{cH + i,o)

a k i + a k i

(iii) s|> — s f u {4!
(C;.t + 1,0)

'}•

(iv) Cu ■*— Cu + 1.

(v) N A (S h) = NA(S^) =M(Sm)-1.

S te p 4. [D e -O r d e r in g \ , 1 < / < N .

Step 5. [Check for Termination]

(i) Let iVy be the number of the current S ^ , whose N A (%)= o .

(ii) The sets %■ whose NA(Sj^)9^) will be considered in the next iteration;

otherwise, go to Step 6.

(iii) N = N - Nv

(iv) If N > 0, Go to Step 2; otherwise continue

- 1 0 -

Step 6. [Output Result]
(C o) 2 —1 ' .. .

Output aH l" = Y,akJ ’ * <A;<n,l<z<rc, and terminate.
y = o

End Set-Ordering

The time complexity of the set-ordering procedure is (n(n — l))/2 scalar adds using n

processors. An example illustrating the use of set-ordering procedure is given in

Appendix C. Based on the above discussion and procedure, a parallelized version of

the Cholesky factorization is summarized below:

Procedure Parallel-Cholesky-Factorizatiom This procedure is used to com­

pute the lower triangular matrix L of a given nxn symmetric matrix H (q)

(H (q)sL L T).

Step 1. [Compute hijk] Compute

hijk ^ ~ hijhkj ; 1 < j < i~1, i < k < n, 2 < i < n

parallelly using n processors.

5iep 2. [Compute /^] Call the Procedure Set-Ordering and obtain

i < k < n, 2 < i < n

Step 3. [Compute Diagonal Elements hkk Using n Processors]

ln*~ VSi » VS for 2 < * < n

Step 4. [Compute Off-Diagonai Elements of E]

h-A <— hk\/h\\ for 1 <k<n

Ife ■*— Ifa/ha for 2 < * < k, 2 < k < n

iSiep 5. [Output and Termination]

Output for i<k<n,l<i<n and return.

End Parallel-Cholesky-Factorization.

The computational complexity of the Parallel-Cholesky-Factorization is analyzed

below:

(a) The parallel evaluation of hi:jk in Step 1 takes ([(n2—1)/6]) scalar mults.

(b) The parallel evaluation of /fa- by the Set-Ordering method takes [(n2—1)/2] scalar

adds.

(c) The parallel evaluation of the diagonal elements lkk and the off-diagonal elements

in Step 3 and Step 4 takes one square root and [(n—1)/2] scalar mults respec­

tively.

After performing the Parallel-Cholesky-Factorization procedure, a lower triangu­

lar matrix L is obtained. The linear system equation H (q)q (F) = y could be solved by

the following two subsystems, that is, Lx = y and L3 q (£) = x. Fortunately, an

efficient parallel algorithm exists (called the column-sweeping algorithm [10]) that can

solve the upper (or lower) linear system in 2n — 1 scalar multiplications and n — 1

additions. Hence, the total computational complexity of the parallel computation for

solving the linear system H (q)q (t) = y is [(n2—1)/6] + 4n -{- [(n — l)/2] — 2 scalar

multiplications, [(ra2 — l)/2] T 2n — 2 scalar additions/and 1 square root.

2 .5 . C o m p u tin g th e J o in t A cce lera tio n V ecto r

The basic idea of the Composite Rigid-Body method is to find the elements of the

upper right triangular matrix of H (q). Three important, parameters, the composite

mass M j, -the location of the composite center of mass cy , and the composite inertia

E j, from links y through n, may be computed recursively. Next, the force/torque at

joint y is propagated backward to obtain the force/torque at joint (j—1), • • • ,1. The

(t,y) component h^- of the H(q) are then found by projecting the resultant joint

force/torque onto the joint i axis of motion; where 1 <C i < (j—1), that is, the column

of the upper triangular matrix of H(q). The procedure is repeated n times to obtain

all the elements of the upper triangular matrix of H (q). The procedure can be paral­

lelized by applying the parallel algorithms discussed above and the joint acceleration

vector q(t) can be solved by the parallel linear system solver.

Prior to evaluating the equations, some necessary parameters are given or

evaluated in advance.

(a) The 3x3 rotation matrices *~1Rt-,- z =1,2, • • • \n, which indicate the orientation of

link i coordinates referenced to link (z—1) coordinates, need to be evaluated in

advance. ■

(b) 'p ,* denotes the origin of link % coordinate frame from the origin of link .'(*— l)

coordinate frame, expressed with respect to link i coordina.tes. ! s i denotes the

location of the center of the mass of link i from the origin of link i coordinate

frame, expressed with respect to link i coordinates. * J , denotes the inertia matrix

of link i about its center of mass, expressed with respect to link i coordinates.
° * *■ * '

Note that *p-, ?st-, and *Jt- must be given in advance and are constants when

referred to their own link coordinates.

(c) Let u)0 = Uq = 0, p 0 = [gx,gy,gz]T and jg | ■= 9.869621m/s2. r denotes the

torques (forces) of each joint. q ,q denote, respectively, the given joint positions

and velocities.

(d) The parallel Newton-Euler computation is used to generate the bias vector b. The

position-dependent parameters z2-, p ?-, s, and are used repeatedly in the

Newton-Euler computation and other computations in the Composite Rigid-Body

- 1 2 -

method. In order to avoid these redundant evaluations, these essential parameters

are calculated in the initial step. A new parallel Newton-Euler subroutine which is

similar to the parallel Newton-Euler subroutine discussed in Section 2.1 except the
*

parameters zt-, p i , s^, 5 i are evaluated before the calculation starts has been

developed, i.e., iVEl^q , q , q, z {, p*, a i f J if r), where q, q, q, z,-, pr, sz-, J2- are

known input vectors and r is the resultant output. With this new parallel

Newton-Euler subroutine, the computation of the composite-rigid-body method can

be summarized in the following algorithm.

P ro ced u re P C R B M (P a ra lle l Composite-Rigid-Body Method). Given r ,

q, q, rr\, tp i , * s t-, 1J ,- , and ,_ 1R t , for 1 < i < n, this procedure computes the joint

acceleration vector q(t) parallelly.

Step 1. Parallel compute

% = 0Rt-_i*'-1Rf-., 1 <i<n

by calling the subroutine FOHRA.
$

Step 2. Parallel compute Zj , Pj-, 8^,and J,, according to

= °Rjz0 , = °Ri.'P; , s,- = °Rf lsi ,and

Jf = 0Ri*JiiR0= 0Ri*Ji(.°Ri)T:

where 1 < i < n and z0. — (0,0, l)T

Step 3. Initialize — mn and compute

M y = M y + 1 + m y , 1 < j < (n — 1),

by calling the subroutine FOHRA.

Step 4. (i) Initialize

c n = a n + P n

(ii) Parallel compute

a y - M y + 1/M y ,

b ;.T = + P y) + M j+ iP j) 1 < j < n -l>

(iii) Parallel compute

C y — flyC y + 1 + b y , 1 < j < h ~ 1 ,

by calling the subroutine FOIHRA.

(13)

(14)

(15)

(16)

(17)

(1 8)

■■■ - 13 -

Step 5. (i) Initialize E^ Jn

(ii) Parallel compute

b y = M y+ 1 [(cy + 1 + p /-C y)T (cy + 1 + p /- c y)l3 x 3 (1 9)

— (c y + i + P j ~ c y)(c y + i + P j c j) T) + J y

+ m y [(S y + p / - c y)T (S y + p / - G y)^

- (S y + p / “ C;)(S y + P / - C y)T]

(iii) Parallel compute

Ey - Ey+1 + b y , 1 < j< n ~ 1 (20)

by calling the subroutine FOHRA.

Step 6. Parallel compute

Fy = Zy_! X (MyCy) J Ny = EyZy^ , 1 < j < » (2l)

Step 7. (i) Initialize

%=Fy , 1<* <i,l<i.<n (22)

(ii) Parallel compute

n y y = N y+ C y X F y , 1 <j<U (2 3)

(iii) Parallel compute

' by-p/xF/, l<*<i-l,l<y<», (24)

(iv) Parallel compute using the row-sweeping algorithm

n ,y = n (i+ 1) y + b jy ,!< ? '< j — 1 , 1 < j < n , (2 5)

Step 8. Parallel compute /i,y

(

%7-i nij f ^ joint i is rotational
^ _ -< f 26l

tJ if-x ?ij > if joint i is translational

\

where 1 < i< j, 1 < j < n.

Step 9 . Parallel compute the bias vector b

b = ■ C (q ,q)q (£) + G (q) (2 7)

by calling the subroutine iV E l^ q ,q ,q = 0,zt ,p/,st-, J,- ,r) and let b = r.

Next, parallel compute y = r — b .

- 1 4 -

Step 10. Solve the system equation

H(q)q(i) = y = T* - b (28)

by the Parallel-Cholesky-Factorization algorithm.

Step 11. Termination and output the result q(£).

E n d P C R B M

Previously undefined terms, expressed in the base coordinates, are given as follows:

my is the mass of link j, fy is the force exerted on link j by link j—1, ny is the

moment exerted on link j by link j— 1, Mj is the total mass of links j through n, cy

is the location of the center of mass of the composite rigid-body of links j through n

with respect to the origin of link 'j—1 coordinates, Ey is the moment of inertia matrix

of the composite system of links: j through h, Fy is the total force exerted on the

composite system of links j through n, Ny is the total moment exerted on the compo­

site system of links j through n, nty is the moment exerted on joint i due to the

motion of the composite system of links j through n, fty is the force exerted on joint i

due to the motion of the composite system of links j through n.

The evaluation of the total computational complexity of the Parallel-Composite-

Rigid-Body method can be derived as follows:

(a) The parallel evaluation of Eq. (13) which is a recursive matrix product form indi­

cates (27 [log2n] — 19) scalar multiplications and (l8[log2n] — 14) scalar additions.

(b) Eq. (15) is a recursive scalar addition form and requires [log2n] additions. Eq. (20)

is recursive matrix addition form and requires 9[log2n] scalar additions. Eq. (18)

is an inhomogeneous linear recurrence in vector form and requires 4 [log2n] — 1

scalar multiplications and 3 [log2n] scalar additions.

(c) Eq. (25) is an upper triangular linear recurrence equation system and can be

solved by applying the row-sweeping algorithm. It requires 3(n — l) scalar addi­

tions.

(d) Eq. (27) is used to generate the bias vector b by calling the Parallel Newton-Euler

subroutine and requires 84 scalar multiplications and 15 [log2n]+63 scalar addi­

tions.

(e) Eq. (28) is used to solve the vector q(t) by calling the parallel linear system solver

and requires [(n2 — l)/6] + An + [(n—1)/2] — 2 scalar multiplications,

[(n2 — l)/2]+2n — 2 scalar additions, and 1 square root.

(f) The parallel evaluation of other equations can be calculated by simple parallel

computations, yielding 9[(n — l)/2]+48 scalar multiplications and 3n +

5[(n — l}/2] + 42 scalar additions.

- 1 5 -

Combining the results of (a)-(f), the total computational complexity of the Parallel-

Composite Rigid-Body method applied to an n-link manipulator results in

\{n2 - i)/6] 2n + 10[(n—1)/2] -f- 31 [iog2n] + 170 scalar multiplications,

[(n2 — l)/2] + 5n + 5[(n.—1)/2] + 45 [log2n] + 125 scalar additions, and 1

square root. If n=6, it gives 334 mults, 328 adds, and 1 square root as compared with

the complexity of the Composite-Rigid-Body method running on a uniprocessor [6]:

1627 mults and 1255 adds.

2 .6 . T r ia n g u la r A rra y P rocesso r fo r C h o lesk y ’s F a cto r iza tio n

Last section indicates that the bottleneck of the parallel computation of forward

dynamics depends on factorizing the symmetric inertia matrix H(q) by Cholesky’s

method and the proposed parallel Cholesky factorization procedure has a time com­

plexity of 0(n2) by using O (n) processors. It is possible to reduce the time complex­

ity further if the Cholesky’s method is implemented on VLSI array processors.

Ahmed, Delosme, and Morf [12] described a triangular array of n(n-fl)/2 CORDIC

(Coordinate Rotation Digital Computer) processing elements for the implementation

of hyperbolic Cholesky’s method for a symmetric matrix with a computation time of

(2n — 1) units. Later, Liu and Young [9] used (n — l)n/2 scalar multiply-and-add

processors and n square root processors to compute the Cholesky’s factorization pro­

cedure with a computation time of 0(n). The following triangular array processor for

Cholesky’s factorization is based on the modification of Liu and Young’s scheme [9].

Equations (11) and (12) can be rewritten in a recursive procedure which is better

for array processor implementation and may be expressed as:

Step 1: Initialization:

/ y j<k<n (29)

Step 2: Recursive Computation:

Form =1 Step 1 until (i—l), Do

c£“+l) = c t } , i < k < n !>0)

End_do

Step 3: Results:

lkk=VcS]>1<k<n (3H

, i<k<n

The above recursive procedure can be implemented on the triangular array pro­

cessor as shown in Figure 1, which consists of two types of processing elements and

-1 6 -

latches. The circular cell Pkk (See Figure 2) performs the division and will perform

the square root operation when it receives a flag signal which is denoted by the nota­

tion At the same time, it also passes uin upward and uin will be stored in the

latch Lfa. The square cell Pm (See Figure 2) performs Cout = Cin — u uin, and it per­

forms Gout — Cin — u2 when it receives a flag signal. Cout will be stored in the latch

Lj. It should be noted that will be stored in the internal register u of the cell Pfc

at the appropriate cycle time when (utn)jy = h^, i < k. Otherwise, it is then moved

upward and stored in the latch above the cell.

Assuming that is the time for performing multiplication and addition, td is

the time for performing division, and is the time for performing square root opera­

tion, it is known that the global system clock or cycle time for the synchronization of

the array architecture will be tc,-=ma.x{tmaytd,'tsq). There are two input data

streams coming from the stack memory modules and are piped one row (or column)

deeper into the array in every cycle time. The input data streams from the bottom of

the array processor provide the input data uin of processing cells and will be stored in

the internal register u of an assigned cell at an appropriate cycle. The input data

streams from the left of the array processor are the initial values of the recursive

computation. The value will be accumulated when the data propagates through the

processing cells from left to right. That is, the recursive computation is executing and

traveling from left to right through the processor array. After (2n — 1) cycles, the

input data streams from the bottom sweep through all the cells and are stored in the

assigned cells. The flag signal.(i.e. “*”) will change the operation of assigned process­

ing cells and be used to obtain the diagonal components lkk. It is known that /i44 and

the flag signal are piped into the processing cell P41 at 2n(=8) cycles simultaheously.

Thus, (Cout)u = h44— h\x is computed and stored in the latch L41. The computa­

tional activity then propagates to the neighboring cell P42, which will execute (Cout)42

— (^0^)41 ~ ^42 = ^-44 ~ ^41 — h%2. The computational activity will propagate the

next neighboring cell and so on. Once the data sweeps through the circular cell P44,

the square root operation is executed and the recursion is over. The total computa­

tion time is equal to (3n — l) cycles.

3 . P a ra lle l C o n ju g a te G ra d ien t M eth o d

The conjugate gradient method is an iterative procedure for solving the joint

accelerations and, at 0 (n2) time complexity, is theoretically the most efficient scheme

given in [6]. The method requires an initial estimate for the joint accelerations and

successive adjustments to these estimates will be made until they converge to the

correct solution in less than n iterations. The detailed procedure of the conjugate

gradient method can be found in Appendix B. A parallel algorithm is proposed here

to improve the time complexity from 0(n2) to O (n) for multiplication operations and

from 0(n2) to 0(nlog2n) for addition operations. One observes that Step 5 in

Appendix B, i.e., t =. H(q)u*, can be evaluated by the Newton-Euler subroutine once

for each iteration, However, the position-dependent parameters Zj, pt, Sj and J, will

be evaluated in each iteration. Thus, in order to avoid these redundant evaluations,

these parameters should be evaluated before the iteration starts, and we shall use the

parallel Newton-Euler subroutineNEl^(q,q,q, Zj, pj, Sj, J,, r) for it, where q, q, q,

z£, p2, Sj, J, are known input vectors and r is the resultant output. For example, to

evaluate t = H(q)u, by subroutine jVET(P\ one sets q — ut, q = 0 and gravity con­

stant = 0 in the subroutine NE1^P\ and the resultant output r will equal to the

desired t. The evaluation takes only 42 multiplications and 12 [log2ral-f26 additions.

The proposed parallel conjugate gradient method consists of two parts, the linear

recurrence part and the inner product part, and is described as follows:

Procedure PCGM (Parallel-Conjugate-Gradient Method). Given t , q, q,

*p/) * Jj, and for 1 < i < n, this procedure computes q(£) parallelly

based on the conjugate gradient method given in Appendix B.

Step 1. Parallel compute °R,- = dRi_1 1 < i < n, by calling the subroutine

■ . FOHRA... ■ '• ; : '■ ■ -

Step 2. Parallel compute Z j, p t- , S j, and J ,-, according to

Z j — ^Rj z q , p j- = R , P i, s i = " si a n d

/ .. J; - ^U^Ro^

where 1 < i < n and z0 — [0,0,l]2.

Step 3. Parallel compute b = C(q,q)q(i) + G(q) by calling iVEl^(q,q, ,q = 0, z^,

P - , S i , 7 ^)

Step 4. Estimate x0 = q^ and compute each component of 7^ — t — 7^ per pro­

cessor, and let u0 = w0 =

Step 5. [Starts the iteration]

Parallel compute the inner product e,- ~ w,- w;

Step 6. If et- = 0, then stop; else continue.

Step 7. Parallel compute t = H(q)ut by calling . NEl^(q,q=0, q=Uj, zt-, p,-, si? Jt-,

r) and let xx = r.

Step 8. Parallel compute the inner product t, and then % = ea /ii2 t.

Step 9. Compute each component of xi+1 — x$ + li^i per processor, respectively.

Step 10. If (i = m — 1), then stop; else continue.

Step 11. Compute each component of wi+1 — wt - 7,-t per processor, respectively.

T
Step 12. Parallel compute the inner product e*+i = wt+iWJ+1.

Step 13. If ei+1 = 0, then stop; else continue.

-.1 .8-

Step 14. Compute f3i = e i + \J e i

Step 15. Compute each component of u!+1 = wJ+1 + ^u; per processor.

Step 16. Set i — i + 1, and go to Step 5.

E n d P C G M

The evaluation of the total computational complexity of the PCGM algorithm can be

derived as:

(a) The parallel computation of Step 1 by calling the subroutine FOHRA requires

(27[log2n] — 19) scalar multiplications and (18 [log2n] — 14) scalar additions.

(b) The parallel computation of b in Step 3 by calling NEl^ requires 84 scalar multi­

plications and l5flognn] + 63 scalar additions. However, the parallel computation

oft = H(q)Uj in Step 7 is much easier since the ignorance of the effects due to

the velocity terms, the gravitation, and external forces and moments. It requires

42 scalar multiplications and 12 [log2n] + 26 scalar additions.

(c) The parallel computation of the inner product between two n-vectors can be

obtained in two steps: First, compute the product between components of both

n-Vectors per processor. Then, parallel compute the summation of those product

terms by calling the subroutine FOHRA. So, the total parallel computation

requires 1 scalar multiplication and [log2n] scalar additions. In the parallel algo­

rithm, Step 5, Step 8, and Step 12 perform the inner product operation.

(d) It should be noted that the steps between 5 and 16 form an n-iteration loop, and

the parallel computation of the steps inside the loop requires 49 scalar multiplica­

tions and 14[log2n] + 30 scalar additions. Since the loop is terminated after n

times in the worst case, the total computation inside the loop, in general, requires

49n scalar multiplications and 14n [log2n]+30n scalar additions.

(e) Step 1, Step 2, and Step 3 are outside the loop and require 27[log2n] + 124 multi­

plications and 34[log2n] + 87 additions.

Based on the evaluations in (a)-(e), the total computational complexity of the parallel

conjugate-gradient method is 49n + 27 [log2n] + 124 scalar multiplications and

14n [log2n] + 30 n + 34flog2n] + 87 scalar additions. For a six-link PUMA manipula­

tor, it takes 499 scalar multiplications and 621 scalar additions.

4 . C o n c lu sio n

We have shown that the efficient computation of forward dynamics can be

achieved by taking advantages of parallelism in the Composite Rigid-Body method

and the Conjugate Gradient method. We developed an efficient parallel algorithm for

the Composite Rigid-Body method with the time complexity of 0(n2) with O(n) pro­

cessors. Further reduction of the order of time complexity was achieved by

■ - 19- '

implementing the Cholesky’s factorization procedure on array processors. This

reduces the time complexity from 0(n2) to 0(Iog2ra), but the number of processors is
Tl (ft

increased from n to “ ; The second parallel algorithm, based on the conjugate

gradient method, computes the joint accelerations with a time complexity of 0(n) for

multiplication operation and 0{n\ogn) for addition operation. For a small n (i.e.

n < 12), the parallel computation of the Composite Rigid-Body method in an SIMD

machine is found to be superior than the Conjugate Gradient method. The inherent,

sequential property of the Conjugate Gradient method makes it difficult to obtain the

necessary speed-up for practical use. Both the parallel Composite Rigid-Body method

with and without VLSI array processors and the Conjugate Gradient method are also

tabulated in Table 1 for comparison.

- 2 0 -

A p p en d ix A

T h e C o m p o site R ig id -B o d y M eth o d [6]

• Backward Recurrence

My = My+1 + my

Cj = + Py) + cy+i + Py)}

E y = E y + 1 + My[(cy+1 + p / - Cy)T-(cy,j + P/ ~ Cy)I3 x 3

Hcy+il;+py:-ey)^

+ m y [(sy + p /- cy)T -(S y + p /- C y)I3 x 3

~ (S y -h p ^ - C y K sy + p y -C y)7 ']

' *
where 1 < j < ra — 1, a n d = m n , c n = s ra .+ pn, En == J n

• Compute Fy, Ny

(zy_i x (MjCj) } if joint j is rotational

F • = 1
•? iMyZy^ , if joint j is translational

f
Eyzy-r , if joint j is rotational

. .. ■

0 , if joint j is translational

* fy y F y > n y y -^ y c j x F y , ^ — 7 — n

• Linear equation system

h,■tj

* .y *+ V i < y < y — i, i < j < n

n*,y — ®*+i,y d- P* ^'*(*+i),y

T
zi-i , if joint j is rotational

T f. j} , if joint j is translational

where 1 < Jr 1< j < n.

(A.1)

(A.2)

(A3)

(4-4)

(A.5)

(A.6)

(A7)

(A.8)

■■■. - 2 1 -

A p p en d ix B

T h e C o n ju g a te G ra d ien t M eth o d [6]

S te p 1 . Estimate solution x0

S te p 2. Set % = 0 , u 0 = w 0 = T — b

S te p 3. Set e,- = W; wt-

S te p 4. If e i = 0, then stop; else continue

S te p 5. Set t = H (q)U j

S te p 6. Set % = ej/uft

S te p 7. Set xi+1 = xt- + liUi

S te p 8. If (z — N — l), then stop; else continue

S te p 9. Set w i+ 1 = w t- - 7t t

S te p 10. e*+i = wi+iw*+i

S te p 11. If et+1 = 0, then stop; else continue

S te p 12. Set /?j-

S te p 13. Set ui+i = wi+i + &ut-

S te p 14. Set i = t‘+l; go to S te p 5.

- 2 2 -

Appendix C

An Example for Evaluating the Set-Ordering Method

* -l
Assume lu = + Y, hijk, i < k < n, 2 < i < n, where n = 4, and let

/-i

<— hi}k for 1 < j < (i— l), i <k < 4, 2 < r < 4, then the correspond­

ing sets su — ajg~2\ ..., agg, i < k < 4, 2 < i < 4. The evaluation of lu by

using the set-ordering technique can be described as follows:

Step 0 (i) Let Cu .■= 0, ajg® = a$ for * < k < 4, 2 < i < 4

(ii) N = n(n - l)/2 = 6

(hi) NA{Su)=3y NA{SiZ) = NA(S33) = 2,

NA(S42) = NA(SS2)=NA{S22) = 1

Step 1 [Set Ordering]

sli>=s„= { af.olLd?}

— S33 = { ag), a|^}

S® =S42 = { a®, a®}

S ® = $ 3 2 = {

^ = ^22 = {

Step 2 N(=6) > n(=4), thus parallel compute the n(=4) highest ordered sets

sgg 'Sgg T>gg sgg respectively, and de-order the sets. Then, the results

would be:

(i) C44 = 1, C 4 3 = 1, C 3 3 = 1, C 42 =1,

(ii) NA(S44) = 2, NS(S43)A= 1, jVA(S33) = 1, NS{S42) - 0

(iii) The resultant set in a descending order as:

S44={a®, afiU&°>.}

^ 4 3 ■= { '

S3Z={ a$, ag'0)}

*$32 “I a$ y ag^ }

*^22 = { agg al2^ }

^ 4 2 = ■ { < 4 '°)}

w h ere a g ’°) = a g ^ + a g g . a g ’0 ^ = a g ^ + a g) , a g ’0 ^ = a g ^ + a n d =

ag) + aj$

Step 3 (i) It is known that NA(S42) = 0, then N4 =. 1 and S42 will wait in out­

put step.

S te p 4

S te p 5

S te p 6

- 2 3 -

(ii) N 4 — N - N x = * N = 5 '

Similarly, we order the remaindered sets and pick up n(= 4) highest ordered

sets as considered (because N (= 5) > n(= 4)). There are 544, 543, S33, S 3 2

which can be evaluated parallelly in the same procedure in Step 2. We have

(i) ^44 = 2 , C43 = 2 , C33 = 2,(732= 1 .

(ii) iW L (5 4 4) = 1 , N A (S A 3) = 0 , NA(S33) = 0 , JVA(532) = 0 : ;

(iii) The resultant sets in a descending order as

;l; ^44 = {“IJ, «ii’0)}

522 al$}

*^43 — { ® ^ }

£33 — { 0ll’°^}

S32

where, alf) = 0$'+*® + «$,= 'a]$ + af + a®, =

ali' + j an(iT

(i) It can be shown that NA(Si3) = 0 , NA(S33) = 0 a,nd NA[S32) = 0,

then iVj = 3 and 543>. 533, £>32 would wait in output step.

(ii) W-1V! =^JV = 2 ,

The remaindered sets now are S44, S32. In this case, N(= 2) < n{ — 4).

Thus any two processors are active and assigned to evaluate S^ S22, respec­

tively. And the resultant sets are S44 = ^22 — {al2°^}> where
af/} — a$ + aj$ - + a$ + aj$ and a|2’°) = a$ + a!$.

- 2 4 -

5 . R eferen ces

[1] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing, Vision,

and Intelligence, McGraw-Hill, September 1986.

[2] J. Y. S. Luh, M. W. Walker, and R. P. Paul, “On-line Computational Scheme for

Mechanical Manipulator,” Trans. ASME J. Dynam. Syst., Meas. and Contr., vol.

102, pp. 69-76, June 1980.

[3] C. S. G. Lee and P. R. Chang, “Efficient Parallel Algorithm for Robot Inverse

Dynamics Computations,” IEEE Trans. Syst. Man, Cyberm, vol. SMC-16, no. 4,

pp. 532-542, July/August 1986.

[4] P. M. Kogge, “Parallel Solution of Recurrence Problems,” IBM J. Res. Develop.,

vol. 18, pp. 138-148, Mar. 1974.

[5] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient Solution of a

General Class of Recurrence Equations,” IEEE Trans. Comput., vol. C-22, pp.

789-793, Aug. 1973.

[6] M. W. Walker and D. E. Orin, “Efficient Dynamic Computer Simulation of Robot

Mechanisms,” Trans. ASME J. Dynam. Syst., Meas. and Contr., vol. 104, pp.

205-211, 1982.

[7] R. Featherstone, ‘‘The Calculation of Robot Dynamics Using Articulated-Body

Inertia,” The Int’l J. of Robotics Res., vol. 2, no. 1, pp. 13-30, 1983.

[8] H. T. Kung, “New Algorithm and Lower Bounds for the Parallel Evaluation of

Certain Rational Expressions and Recurrence,” J. of Association for Computing

Machinery, vol. 23, no. 2, pp. 252-261, April 1976.

[9] P. S. Liu and T. Y. Young, “VLSI Array Design Under Constraint of Limited I/O

Bandwidth,” IEEE Trans. Comput., vol. C-32, no. 12, pp. 1160-1170, Dec. 1983.

[10] D. J. Kuck, The Structure of Computers and Computations, volume 1, pp. 44-45,

Wiley, 1978.

[11] J. R. Rice, Matrix Computations and Mathematical Software, McGraw-Hill, pp.

46-48, 1981.

[12] H. M. Ahmed, J. M. Delosme, and M. Morf, “Highly Concurrent Computing

Structures for Matrix Arithmetic and Signal Processing,” IEEE Computer, vol. 15,

no. 1, pp. 65-82, January 1982.

h 4 4 0 0 0

* 8 f? 15

^33 /1.43 0

0 0

^ 4 ^ 3

0 0

0 0

t 2 * 1

p
■V 4 2

n

2
4 2

->

0 0

L
1

3 1

L
P

3 2 .

3 2
L

1
3 3

h 22 ^42 /132 0 0 0

L
1

2 1

L I
II

Z, 1
2 2

L
"1

1 2

X 1
2 3

L
1

1 3

h
1 1

X41 ^31 4 2 1

hu 0 ® *1

^21 0 0

/131 ^22 0 £3

/l4j /l32 0 14

* ^42 ^33 ^5

* 7*43 *6

F ig u re 1 . T ria n g u la r A rray P ro cesso r fo r C h o lesley ’s F a cto r iza tio n

- 2 6 -

n
L 1

k k

^ o u t

* ^ P o u t

In itia l: u = 0

u = u in , u o u t = C q u t '* r w h en th e ce ll is a c tiv a ted .

In th e rem a in in g cy c les: ' - ;' -

I f u in = * , th en u o u t , u if l,C 6 x d a n d + - u o u t >

If u tn # * , th en u o v i ■«— u in , C o u t C in /u , a n d «— u o u t .

N o te th a t P n n p erfo rm s th e sq u a re ro o t o p era tio n o n ly .

In itia l: u

If u in = /ifa- , th en u < — u ^ , u o v t n u l l , C 0 ta ^ ~ C in - u u in . ^

If u in = * , th en « 0 lrf <— u in > u o u t P in ~ ~ u ’ L id + - u o u t > a n d ^ L fa - + ~ C 0 W t-

O th erw ise , u o trf « — u ,ft, u 0 U t • * — C in u u in, + — u o u t , en d C o v i.

F ig u re d . P ro cessin g C ells

(a) C ircu la r P ro cessin g C ell

(b) S q u a re P ro cessin g C ell

T a b le 1 . C o m p a riso n o f th e N u m b er o f C o m p u ta tio n s o f F o rw a rd D y n a m ics F o r-

-■ ■■■■■ , 2 7 - ■ - ... +

M eth o d s M u ltip lica tio n A d d itio n

S q u a re

R o o t

N u m b er o f
P ro cessors

W a lk er a n d O rin ’s
1 3 , rt r 1 2

— ra ’4 -7 5—n

6 2
— n 3+ 5 5 n 2
6 - ,

0 ■ 1

M eth o d 1 + 1 1 4 — n -2 2
2

+ 8 2 — n — 1 1
6

(3 4 1 8) (2 5 0 2)

W a lk er a n d O rin ’s — n :i+ 3 8 — u 2
6 2

-^ -n 34 -2 8 ra 2

6 - •
0

M eth o d 2 + 1 5 1 — n -2 2
: : . 2

(2 3 08)

4 -1 09 — -n — 1 1

(1 6 9 2)

W a lk er a n d ..O r in ’s' ~ n 3-f-1 3— n 2 — n 34 -8 n 2

6 i 2

+ 1 9 2 y n — 4 9

(1 6 2 7)

® 5
4 -1 6 5 — n --64

6 . .

(1 2 5 5)

M eth o d 3 ■ o

W a lk er a n d O rin ’s 7 6 — n 2+ 1 2 « — 2 1
2

5 6 n 24 -8 7 n -6 : o ;

M eth o d 4 (3 4 3 5) (2 5 32)

F ea th ersto n e 3 8 0 n -19 8 t 3 0 2 n — 1 7 3 f 0 v l .■+ '

(2 2 8 0) : (1 8 1 6) f :^r .

P a ra lle l C o m p o site

R ig id -B od y M eth o d + 3 lflo g o n l+ 1 7 0 4 5 [lo g 9 n]+ 1 2 5

1 •

6(3 2 8) ’ 1 '

P a ra lle l C o m p o s ite

R ig id -B o d y M eth o d

7 « + 9 f-k L-A l 8 n + 5 [-i5 -iil
i:

n (n 4 -l)
— L a rra y

2
p ro cesso rs

(w ith V L S I
a rra y p ro cesso rs)

+ 3 1 flo g 2n]+ 1 6 9 + 4 5 flo g 2n 1 + 1 2 4

' /l ■ ■ •

n g en era l-p u rp o se
p ro cesso rs

(3 3 1) (3 2 2) 2 1 a rra y p ro cesso rs
a n d 6 g -p p ro cesso rs

P a ra lle l 4 9 n + 2 7 [lo g 2n]+ 1 2 4 1 4 n f lo g 2n } -f iO n -4 -' 0 n

C o n j n g a te -G ra d ien t 3 4 flo g 2n]+ 3 7

M eth o d (4 9 9) (6 2 1) 6

T h e n u m b er in sid e th e p a ren th esis in d ica tes n u m b er o f co m p u ta tio n s
w h en n = 6 .

j- In [7], F ea th ersto n e ex c lu d es th e ev a lu atio n s o f co m p u tin g th e b ia s
v ecto r b . H ere , w e in c lu d e th e b ia s v ecto r ev a lu a tio n s.

	Purdue University
	Purdue e-Pubs
	2-1-1987

	Efficient Parallel Algorithm for Robot Forward Dynamics Computation
	C. S. G. Lee
	P. R. Chang

	tmp.1542052450.pdf.w1gIz

