Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
2-1-1987

Ethcient Parallel Algorithm for Robot Forward
Dynamics Computation

C.S.G.Lee
Purdue University

P.R. Chang
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Lee, C. S. G. and Chang, P. R., "Efficient Parallel Algorithm for Robot Forward Dynamics Computation’ (1987). Department of
Electrical and Computer Engineering Technical Reports. Paper 552.
https://docs.lib.purdue.edu/ecetr/552

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages

Efficient Parallel
Algorithm for Robot
Forward Dynamics
Computation

C. S. G. Lee
P. R. Chang

TR-EE 87-1
February 1987

- School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

Efficient Parallel Algorithms

For Robot Forward Dynamics Computation

| C. S. G. Lee and P. R. Chang

Schbol of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

TR-EE 87-1

February 1987

 ABSTRACT

Computing the robot forward dynamics is important for real-time computer simu-
lation of robot arm motion. Two efficient paraliel algorithms’ for computing the for-
ward dyiiamics for real-time simulation were developed to. be ‘itnpl‘emented on an
SIMD computer with n processors, where n is the number of degrees-of-freedom of the
manipulator. The first parallel algorithm, based on the C‘ompo‘site Rigid-Body
method, éenerates the inertia matrix using the parallel Newton-Euler algorithm, the
parallel linear recurrence algorithm, and the row-sweep algorithm, and then inverts
the inertia matrix to obtain the joint acceleration vector desired at time £. The time
complexity of this parallel algorithm is of the order O(n_2) with O(n) Processors.
Further reduction of the order of time complexity can be acbhibew_ad by »imp‘lerr»i‘enting
the (jholesky’s factorization procedure on array processors'.v The'second parallel algo-
rithm, based on the conjugate gradient method, c'f'ompuvtes the joint accelerations with
a time complexity of O(n) for multiplication operation and O(nlogn) for addition
operation. The proposed parallel computation results are compared with the existing
methods. ' S ’

This work was 'sﬁpﬁorted' in part by the Natidnal'Science Fouhdetioh'_E_n_gihezering Res'earch’Center_
Grant CDR-8500022. Any opinions, findings, and conclusions or recommendations-expressed in this
~ article are those of the authors and do not necessarily reflect the views of the funding agency. '

1. Introduction

‘Manipulator dynamics plays a major role in the analysis, design, and synthesis of
control law for the manipulator, as well as computer simulation of robot arm motion.
Recent research focuses more on the former problem than the latter problem. How-
ever, real-time computer simulation of robot arm motion with manipulator dynamics
taken into consideration offers an effective way of testing and verifying proposed con-
trol strategies without the expense and mechanical problems of working with the
actual manipulator. This paper focuses on real-time computer simulation of robot
arm motion and proposes efficient parallel algorithms for computing the joint
acceleration vector of the manipulator which can be integrated to obtain the time his-
tory of the robot motion. A

. The simulation problem may be formulated as the forward (or direct) dynamlcs
problem which can be stated as: Given an input force/torque vector 7(t) and a vector
of external forces /torques exerted on the last link of the manipulator k(t), compute
the joint acceleration vector q(t), based on an appropriate manipulétor dynamic
model, from values of 7(t), k(t), the joint position q(t), andbth\e joint velocity q(t).
The resultant q(t) is then integrated to give new values of q(t) and q(t); and the pro-
cess is repeated for the next input force/torque vector. '

Computationally, the dynamie equations of motion as derived from the
Lagrange-Euler formulation are very inefficient and result in the order of O(n4) arith-
metic operations [1] for computing the joint torques, where n is the number of
degrees-of-freedom of the manipulator. The Newton-Euler formulation 2] was util-
ized as an alternative to deriving more efficient equations of motion for computing the
joint torques. Because of the recursive structure in the Newton-Euler equations of
motion, the number of arithmetic operations for computing the joint torque is linearly
proportional to the number of degrees-of-freedom of the manipulator. Furthermore,
Lee and Chang (3] have shown that by reformulating the Newton-Euler equations of
motion in a linear homogeneous recurrence form and utilizing the ‘‘recursive dou-
bling” [4,5] technique to compute the joint torques, the computation has been shown
to achieve the time lower bound of O([logsn]). In addition to being fast and
efficient in computing the joint torques, the Newton-Euler equations of motion have
also been utilized by Walker and Orin [6] to compute the joint acceleration vector for
computer simulation of robot arm motion. This paper focuses on extending their
work by taking advantages of parallel algorithms running on a single-instruction-
multiple-data-stream (SIMD) computer.

The dynamic equations of motion of a manipulator can be written as

H(q)d(t) + C(q,a)a(t) + Gla) = (t)- | (1)

They can be rewritten as

~H

where H(q) is an nxn symmetric
gravity G(q) and velocity terms C

vector. Utlhzmg the Newton-Eul

»s1dered four methods for prov1d1ngf

first three methods involve. differe
matrix, H(q), which is then invert
iterative procedure based on the
acceleration vector q(t) in less th
gradient method is that ‘the compu
O(n) is theoretlcally the most effi
are more efficient because of their
For n=6, method 3 and method 4
1255 scalar additions and 3435 sca

putational complexity of these four

A different approach is propd

b Cladilt) + Gla) *

er equa

.' (2.2)
(2b)

(a)d(t) = () —

inertia matrix, b is the bias torque.vector due to.
q,q), and 7{t) is a generalized applied foree /torque
tions. of motion, \/Valker and Orin ' [6] con-
solut1ons to the. forward dynam1cs problem ‘The

nt ways of computing the symmetric nxn .inertia
ed to yield q(t) directly.. The fourth method is an
"onjugzite—grad_ient technique_ﬁc esl}lrﬁaté, the joi‘ht
an n -iterations.. The advantage of the conjugate-
utation of H(q) can be{‘avolid‘ed and at the order of
icient. But when n =6 (or n < 12), methods 1-3
smaller coefficients on the complex1ty polynomlal
have, respectlvely, 1629 scalar multiplications and
lar mult1pl1cat10ns 2532 scalar addltlons The com-

methods is tabulated in. 'I_‘able 1 for comparison.

sed by Featherstone [7] who introduced a spatial

notation to provide a pleasmgly uniform combmed representation of rotational and

translational quantltles
acceleration vector g(¢) can be cor
First, 'homogeneou

Based o1

in two stages:
link using a fixed-step iteration th
base; second, the joint acceleration

) the S0- called articulated- body method, the _]omt

nputed in O() steps. The evaluation is performed

s articulated-body inertias are calculated for each

at starts at the end-effector and works toward the
s are calculated‘in another fixed-step iteration, this

time working from the base toward the end—effector

Although the computational °

complexity of the method is prop<lrt1onal to O(), the coeflicient of n is quite large.

Thus, for n = 6, there are 2250 sc

The

lar multiplications and 1816 scalar additions.

computational cdmplexity of this method is also tabulated in Table 1 for comparison.
From Table 1, one can realize that the forward dynamics problem is more computa-
fional intensive than the inverse dynamics problem. 'Thus for real-time simulation of
‘robot-arm metion, a further subst

antial 1mprovement in the computatmnal efficiency
of forward dynamics computation :

s required.

Our present approach to the forward dynamics problem is to implement existving

forward dynamics methods on parallel-computer systems to achieve the real-time
nature and the low order in computational com-

aY

body method was first considered for 'vparallel com-

requirements. Due to its recursiv
plexity, Featherstone’s articulated
puter implementation. Unfortun
method have a nonlinear recurrence (equatlon (38) in [7]) and Kung [8] showed that

the parallel evaluation of a nonlinear recurrence cannot be faster than the obvious

ately, - “the recursive equations in Featherstone’s

sequential algorithm by any parallel algorithm using any number of processors.

In

-4 -

other words, the nonlinear recurrence in Featherstone’s method cannot be parallel-

ized.

Excluding Featherstone’s method, one may consider the parallelization of the
four methods proposed by Walker and Orin. Among these four methods, method 4 is
theoretically the most efficient while method 3 is the most efficient for a reasonable n
(i.e. for most industrial robot, n < 12). Thus, this paper focuses on pafallelizing these
two methods. For method 3 (also called the Composite Rigid-Body method), our pro-
posed parallel algorithm reduces the computational complexity from O(ng) to O(n’2),
using O (n) number of processors, and from O (n?) to O(n), using O(n*) number of
processors. For the O(n) number of processors case, the parallel Newton-Euler algo-
rithm and the row-sweeping algorithm are, respectively, used to compute the bias vec-
tor b and the matrix H(q) at O(n) time complexity, then the sét—ordering teéhniqu'e
and the parallel Cholesky factorization and the column-sweeping algorithin_are pro-
posed to solve the linear system of equations H(q)q(t) =7 — b at O (n?) time com-
plexity. The bottleneck of the above parallel computation is the inversion of the iner-
tia matrix H(q) to obtain q{¢) in Eq. (2.2). So, an array processor-based VLSI archi-
tecture with O(n?) processors can be used to solve the inversion problem at 0O(n)
time complexity [9]. Furthermore, it should be noted that the coefficients of the com-
plexity polynomials on both methods are quite small. There are O([(n® —1)/6])
scalar multiplications and O ([(n* — 1)/2]) scalar additions for using O (n) processors
and O(7n + 9 [(n — 1)/2]) multiplications and O(8n + 5[(n — 1)/2]) scalar addi-
tions for using O (n?) processors. | o

For the conjugate-gradient method (method 4), the finite-step iterative procedure -
can be parallelized to achieve a faster computa‘t-ion. The proposed parallel
conjugate-gradient method requires O (1) scalar multiplications and O [loan]) scalar
additions per iteration, giving O(n) scalar multiplications and O (n [logyn]) scalar
additions for n iterations. The compuf,ational complexity of the proposed parallel
composite rigid-body method and the parallel conjugate-gradient method is tabulated

in Table 1 for comparison.

2. Parallel Composite Rigid-Body Method

In this section, efficient parallel algorithms based on the Composite Rigid-Body
method (See Appendix A) will be discussed. The method involves first obtaining the
bias vector b from the parallel Newton-Euler computation, then the computation of
the matrix H(q) is based on the equations in Appendix A which requires the parallel
linear recurrence algorithms and the row-sweeping algorithm. Finally, a parallel
linear system solver is proposed to solve for the q(t) in Eq. (2.a). The parallel
Newton-Euler computation, the parallel linear recurrence algorithms, the row- "
sweeping algorithm, and the parallel Cholesky factorization are discussed in the fol-

lowing subsections.

2.1. Parallel Newton-Euler Computa.tion' ‘

The blas Vector b in Eq (2.2) can be computed from the Newton-Euler oquat1ons
of motron by settlng the joint - acceleratlon vector q(t) = 0. “The efﬁcrent parallel
algorlthm proposed by Lee and. Chang (3] can be used to compute the Newton -Euler
K equat1ons of motlon to achleve the time lower bound of O [logznl) l‘hls parallel
Newton-Euler algorlthm can be denoted by a subroutlne NEY ()(q, q, q, 7) where d; q,

and q are, respectwely, the input- joint posrtlon, veloclty, and. accclcratlon, and 7 is
the resultant Jomt torque vector whrch is the. desrred bias vector b.. -

2 2. Pa.rallel Lmear Recurrence Algorlthms

From the equatlons in Appendlx A .one; ﬁnds that Eqs (A 1) and (A 3) are in
 homogeneous linear recurrence form Whlle Eq (A 2) for computlng c; is in an inhomo-
_geneous linear recurrence form. These linear recurrence. problems can be solved | by \
the ¢ recurswe doubling” techmque 4, 5] In general the ﬁrst-order lrnear recurrence
problem can be stated as: leen z(O) # Ldentlty and a (i), b(), 0 <1 <, ‘and the

recursive ‘equation z(z) = a(¢) * z(¢—1) +:5(¢), where * and + may be scalar (or
matrlx) multlpllcatlon and: scalar (or vector or matrlx) addltlon, respectlvely, find
z(1), £(2), ..., z(n): I a() and b(z) are both not ‘identities, then this is the frst-

order mhomogencous linear. recurrence problem. If a(:) or b(¢) is identity, ‘then it
becomes the ﬁrst—order homogeneous llnear recurrence problem.. A parallel solutlon,
called “recursive doubling” [4 5], is especlally suited for solvrng the linear recurrence
problems in ‘SIMD. computers. The homogeneous linear recurrence problem can be
solved by the first-order homogeneous lmear recurrence algorlthm (FOHRA) (3], while
the 1nhomogeneous linear recurrence problem can be solved by the first-order 1nhomo—
geneous recurrence algorithm (FOIHRA) which is stated here for convenience: '

Algorithm FOIHRA. (Flrst-Order Inhomogeneous ‘Recurrence Algo-
rlthm) Given a(i), b(¢), 0 <1 < mn, this algorlthm computes the first- order 1nhomo- ;
geneous l1near recurrence equation using the recursive doubhng technlque

Step 1. [Inztzalzzatzdn] Given a(s), b(i), 0<i<n, let X(k)() Y (z) e the ith -
~ sequences at the kth level, and let Xlo() = a() (z) (z), for
0<7 <, and s = [logz(n+1)-| ‘ S

Step 9. [Compute :c{z) parallelly] |
- FORk 7—v1step1untrls DO , o
R [xE1G k1) X(kl(),.1f2kl<z<n
- () xk- 1)(2) o o 1f0<z<2k oo . '-»(3) |

-6 -

Yy ®)(5) =

{X(k_l)(i) * Y(k*l)(z‘—Qk_l) + Y(kWI)(i), if zkh,l St <n (4)

y®-UE) ifo <0 < 2kt

End_DO :
Set z(1) = Y)(1), 1 <1 < n.

End FOIHRA

The “*” in Step 2 denotes an associativé operator. Both FOHRA and FOIHRA algo-
rithms have a computational complexity of O (logsn) which is the time lower bound

of the linear recurrence problem. KEquations (A.1) and (A.3) in Appendix A can be
solved by the subroutine FOHRA in 3], while Eq. (A.2) by the subroutine FOIHRA.

2.3. Row-Sweeping Algorithm |

Equation (A.7) in Appendix A can be conveniently expressed as a set of linear
recurrence equations which can be efficiently computed by a technique called “row-
sweeping” [10]. The row-sweeping algorithm is a parallel solution for solving the
upper triangular linear recurrence equation system on an SIMD computér. The prob-
lem of solving a set of linear recurrence equations can be stated as: Given
4;,1<i<(5-1),1<j<n,and z;; =z),1<j<n, find z;, 1<i<(-1),
1 < j < n, on an SIMD machine of n processors, based on the equation E

xz'j = I(i+1),j + aij - ' ‘ ’ (5)

Equation (5) can be conveniently rewritten in a matrix form,

Tig Ty3 ° "7 " Tyn ZTgg Tog " "7 Tgg Gy G13 " ° 7 Q1
0 zp3 ~ * 1 Ty, 0 xg3 -t x| |0 agy c o ag,
0 0 - - - z3, 0 0 - =z, 0 0 -+ a3,
= |+ (6)
© Tty C g, TR,
For the ith row, there are (n—t) undetermined variables, i.e., % ;11 , Zij105 ...) Tin

which can be evaluated from the resultant (¢4+1)th row variables, i.e.
T(i 41),(i+2), T(i+1),(i+3)-- 2T +1)n and = the given constants @, ;,..,8;, and
T(i41)(i+1) = :z:ﬁrl. The computation starts from the bottom row and ‘‘sweeps” to the
upper row. In each sweeping, a specified row is evaluated; thus, the technique is
called the row-sweeping algorithm. If one assigns the (j—1)th processor to deal with
the computation of the variables, z,;, T jre.oT(j-1),7 in the (7—1)th column, where
2 < 3 < n, then the problem can be solved in (n—1) steps. Based on the above con-
.cept, the row-sweeping algorithm may be stated as follows: '

=T

Algorithm @ Row-Sweep. (Row-Sweeping Algorithm) - Given

a;, 1 <1 < (j—1),1<3<n, and 0 ,1<.3<mn, this: algorithm computes
5, 1 <1 <j4,1<j<n,based on equatlon (5). : ' ' T

Step 1. [Initialization] Let xU) () be the result of the jth equatlon at the (-—z)t,h
~ iteration and X\ () = 0 where 1 <7< n. : SRR

Step-2. [Parallel Compute xt)(]),z < j,in back_ward]
FOR 7 = (n—1) step -1 until 1, DO
The (j—1)th processor computes x) (7), 2 <7< n, accordlng to Eq (7):

| X"*l()+azg,,,1f(z+1)<a<n
) X-((.7) = {X(z+1()’ if 2 < i< Z) “ o R (7)
" End_DO SR - L o

Step 3. [Output the results] Let z;; <-—Xl (5) 1< < 7,1 < J < n and return.
End Row-Sweep o C - .
The row- sweeplng algorlthm is used to solve Eq. (A 7) that is, .
f,; = f,+m I (Sa)
n; ;=NG4T P X f(i+1), 5 ’ v o (‘8_~__'b')
Where1<z<(—1),1<j<n,and _ = - ') ,
’ fj, =F; ' o) ’. (9.a)
'—N-+ch1<]<n S f' (9.b)

where F N], c; ’vare given parameters From Egs. (8 a) and (9 a), one ﬁnds that

£, ;= f,+1]~ = FJ, and a;j = P; X F may be evaluated - for -

1<e<(J 1) 1<] < n. Using these results, Eq. (8:b) becomes - _
’J#n(,+1) +azj,1<z<(] 1)1<_7<n' (10)

and n,; =N; +¢; xF 1< j<n may be evaluated before solvmg Eq (10).

Equatlon (10) is an upper triangular linear recurrence equatlon system and can be._ o

solved by the row- sweeplng algorlthm in (n 1) steps

2.4. Paralleliied Linear Systern Solvei'

The above parallel linear recurrence algorlthms and the row—sweeplng algorlthmo
are used to efficiently compute the equations in Appendix A to obtain the 1nert1a
‘matrix H(q). Thus, given the input force/torque vector 7(t) and the bias vector b
computed from the parallel Newton-Euler computation, Eq. (2.2) becomes a set of
linear system of equations in the form of H(q)q(t) =y, where y =7 — b. This set of
linear system of equations. can be efficiently solved by the Cholesky factorization [11].

- 8—

This method solves the equations by factorizing the nxn 'symmetric"miatrix H(q) into
LLT, Where L is a lower triangular matrix and the superscript “7T’’ denotes matrix
transpose, then it solves the subsystems in two steps: First, the eqliation Lx =y is’
solved by back substitution; then, the resultant subsystem LT q(t) = x is solved by
another back substitution. ' '

- Since we are interested in the inversion of an nxn symmetric matrix H(q), a
parallel computation of the Cholesky factorization has been developed and can be
divided into two parts: First is the parallel computation of the off-diagonal loWer-ele‘-

ments [;, where

= Lmﬁmﬁwﬁz<k<n2<z<n
cg=1
'lhzl%ﬁuﬁm~wMM)ﬂpil<k<n I

and the second is the parallel-computatlon of the dlagonal elements [, that is -

(hyg— Zmﬂ if2<k<n

7=1 ‘ - o ’

where h;; and [;; are the (¢,7) component of the matrices H and L, respectii}ely.
Basically, the elements Ly ,' i > 2, in Eq. (11), can be obtained in three steps: The
parallel computation of the product terms (—h;; hy;) for 1 < 5 < (¢ —1), ¢ <k <n,
2 <1 < n; the summation of the resultant product terms; and then the computation
of I;;. Similarly, the element b k > 2, in Eq. (12), can be obtained in the same pro-
cedure. In vevaluating a specified {j;, = > 2, there are (¢ —1) necessary product terms.

. n. n .
So, the total number of necessary product terms is 31 %) (1—1) = (n3 —~n)/6.
k=1 1=2 i

Because the evaluations of these product terms are identical, it is easy to show that '
. the computational complexity of the parallel computation »usmg n processors is

[(nz—l)/ﬂ scalar multiplications. For convenience, we let h;; = —h;; hy; and the
next goal is how to parallelly compute the summation [; = hkz + }_J hzﬂc?
i=]

1 <k < n,2<1 <n. Obv1ously, the computatlons for l,cz and l,ao, 21#22, or in

different columns are not identical. So, there is no easy way to compute l,m parallelly
More arrangements on the parallel algorithm are necessary. A parallel algorithm
based on the set-ordering technique is proposed to solve the summation problem -

efﬁc1ently and is described below:

The parameters used in the set-ordering procedure are:

1) lkz = h'kz + Z isk Where hijkv = -~ h’z] hk;j! for 1 S] S 2—1, 1§ k S n,
j=1 ‘ . i

3)

2<i<n.
NA(S;) & number of additions needed to evaluate ¥ a; = [—1, where S is a set
: ’ : o ’ i=1 _ -
' consisting‘of a collection of terms a,a,, . . ., q;.
ag E ay/’, where Cj; is the counter for indicating the length of summa-
2o ' . _ S
tion in Sy;.

vProcedure Set-Ordermg H, i\b) ~ Given hy; for 1," <k<n,1<i< n, and

h,

ik T

—hj gy for 1 < 5 <i-1, 7 <k <n, 2<: < n, where hkn 1sthe(kz)com—

ponent of the inertia matrlx H()y this procedure computes lk.‘ based on the set-

ordering technique.

Step

 Step

. (Initialization] _ o .
(i) Set a,m)+—h,cz a,c(,)f—hzk for1<j<i—1,i<k<n,2<i <mn.
(ii) Set Sy = {a» Jald 'aklo}forz'<k<n' 2<i<n
(iii) Set Cp; = 0, a()——a,‘g)forz<k<n 2<1.<n
(iv) Set N = n(n—1)/2

2. [Set Ordering| Order .Sy; in a descendlng order according to NA(S}a), and let
the sets Sk(z), 1<I <N, correspond to. the ordered set sequence Sk i

Step 3. |[Compute the n (or N) Hzghest Ordered Set SY) Parallelly] If N >n. (or

Step
- Step

N < n), the computatlon of the set S,c(l) can be evaluated by the l[th proces—

sor,1<l<n(orN)

. (G +1) . (C0)y
) i) sl ol) ol

11) ‘l_k(LCH +1,0) - ak(‘Ch + 1) n ak(icl‘_,,o)
(C,, +1,0)
}.

(
(
(i))« S U {a
(
(v) NA(Sg) = NA(S{) = NA(Sy)-1

4. [De ’Ordem'ng} Sk = Sk(f) - 1‘§> | < N.

5. [Check for Termznatzon] v v
(1) Let N1 be the number of the current Skis whose NA(S,cz)=0.

| (ii) The sets Sy whose NA(Sk,)¢O will be con51dered in the next 1terat10n,
' otherw1se, go to Step 6. :

(i) N =N — N1
(iv) If N _> 0, Go to Stv.ep 2; otherwise continue

- 10 -~

Step 6. [Output Result|

C, .0 il : -
Output, a,c(l- w0 —‘quj), 1 <k <n,1<1 <n, and terminate.

7=0

End Set-Ordering

The time complexity of the set-ordering procedure is (n(n — 1))/2 scalar adds using n
processors. An example illustrating the use of set-ordering procedure is given in

Appendix C. Based on the above discussion and procedure, a parallelized version of
the Cholesky factorization is summarized below: '

Procedure Parallel-Cholesky-Factorization. This procedure is used to com-
pute the lower triangular matrix L of a given nxn symmetric matrix H(q)
(H(q) = LLT). ' '

Step 1. [Compute hijk] Compute
hijk :——hi]’hkj;lgjgi_L nggnazéz <n
pafallelly using n processors.
Step 2. [Compute I};] Call the Procedure Set-Ordering (H, [,;) and obtain I,
i <k<n,2<i<n ‘ : ' '
Step 3. [Compute Diagonal Elements hy, Using n Processors]

by = Vhu, by —Vig for2 <k <n

Step 4. [Compute O ff-Diagonal Elements of L]
by «— b /hy for 2<i <k, 2<k<n

Step 5. [Output and Termination
Output ; fore <k < n,1 <1 < n and return.

End Parallel-Cholesky-Factorization.

The computational complexity of the Parallel-Cholesky-Factorization is analyzed
below: -

(a) The parallel evaluation of h;j in Step 1 takes ([(n®—1)/6]) scalar mults.

(b) The parallel evaluation of l’\kz by the Set-Ordering method takes [(n*—1)/2] scalar
adds. ' : '

(¢) The parallel evaluation of the diagonal elements [, and the off-diagonal elements
'l;; in Step 3 and Step 4 takes one square root and [(n—l,)/Z] scalar mults respec-
tively. ' '

S11 -

After performing the Parallel-Cholesky- Factorization procedure, a lower triangu-
lar matrix L is obtained. The linear system equation H(q) 1(¢) =y could be solved By ‘
the followmg two subsystems,. that is, Lx =y and LT¢ q(t) = x.. Fortunately, an
efficient parallel algorithm exists (called the column-sweeping algorithm [10]) that can-
solve the ‘upper (or lower) linear system in 2n — 1 scalar multiplications and n — 1
additions.- Hence, the total computatlonal complexxty of the parallel computatlon for
solving the linear system H(q)q(t) =y is [(n®-1)/6] +4n + [(n —1)/2] - 2 scalar
multlphcatlons [—1 /2] + 2n — 2 scalar addltxons and 1 square root.

2.56. Computing the Joint Acceleration Vector

The basic idea of the Comp051te ngld Body method is to. ﬁnd the elernents of the
upper right triangular matrix of H(q) Three 1mportant parameters, the composite
mass M;, the location of the composite center of mass c], ‘and the composite inertia

E;, from'links 7 through n, may be computed recursively. Next, the force/torque at

joint j is propagated backward to obtain the force/torque at joint (j—1);, - - - ,1. The -
(¢,7) component h;; “of the H(q) are then found by prOJectlng the resultant joint
force /torque onto the joint ¢ axis of motion; where 1 <1 < (y—1), that.is, the column
of the upper trrangular matrix of H(q). The procedure is repeated n times to obtain
all the elements of the upper triangular matrix of H(q). The procedure can be paral--
lelized by applymg.the parallel algorithms discussed above and the joint acceleration
vector q(t) can be solved by the parallel ~linear_, system solver.

Prior to evaluating the equations; some ‘necessary parameters are given or
evaluated in advance. » ' | ' |
(a) The 3x3 rotation matrices ’_.’,*IR 1=1,2, - -+ ,n, which 1nd1cate the orientation of

link ¢ coordinates referenced to link (z —1) coordinates, need to be evaluated in
advance ' |

(b) * pi denotes the origin of link ¢ coordinate frame from the origin of link (1—1)
coordinate frame, expressed with respect to link 1 coordinates is- denotes the
location of the center of the mass of link 1 from the origin of link 2 coordinate
frame, expressed with respect to link 7 coordlnates J denotes the inertia matrix
of link ¢ about its center of mass, expressed with respect to link coordlnates
Note that p,, isz, and J must be glven in advance and are constants when
referred to. thelr own link coordxnates » S B '

(c) Let wy=wy = 0 po = [gz,gy,gz] “and |g |’='9.869621m/s»2§ T denotes the
‘torques (forces) of eachi _]omt q,q denote, respectively, th’e,' given joint .positions
‘and velocities. o - | s ,

(d) The para-llel Newton-Euler computation isused to generate the bias vector b. The
position-dependent parameters z;, p;, s and J; are used repeatedly in the

. Newton-Euler computation and ‘other computations in the Composite Rigid-Body -

- 12 -

method. In order to avoid these redundant evaluations, these essential parameters
are calculated in the initial step. A new parallel Newton-Euler subroutine which is
similar to the parallel Newton-Euler subroutine discussed in Section 2.1 except the
parameters z,;, p;, s;, J; are evaluated before the calculation starts has been
developed, i.e., .NEl(P)(q ,4d,4q, %;, p:, s;, ¥;, 7), where q, q, q, %;, p;, 8;, J; are
known input vectors and 7 is the resultant output. With this new parallel
Newton-Euler subroutine, the computation of the composite-rigid-body method can
be summarized in the following algorithm.

Procedure PCRBM (Parallel Composite-Rigid-Body Metho&). Given 'r*,

Q q m;, 'p;, 's;, ‘., and *T'R;, for 1 < i < n, this procedure computes the joint

acceleration vector §(t) parallelly. '
Step 1. Parallel compute .

| OR' - ORi

1

1<7<n (13)
by caliing the subroutine FOHRA. o |
Step 2. Parallel compute z;, p,-*, s;,and J;, according to
Ziv= °R;zo, pi = "R;'pi 8 = "R;'s; and (14)
J; = "R;'J, 'R = R "J,(°R,)T
Wherelgignandzoz(O,O,I)T
Step 3. Initialize M, = m, and compute
My =My +m; , 1< 5 < (n) (1)
by calling the subroutine FOHRA.

Step 4. (i) Initialize

n =5, P | - (16)
(ii) Parallel compute |
a5 = M1/ M;, - Bt
b; = Mij(mj(sj +p,) + Mup;) 1< <n—,
(iii) Parallel c_o_mpute' |
| c; — a;ei1+bj, 1< 5 <n-, - (18) |

by calling the subroutine FOIHRA.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

- 13 -

(i) Initialize B, = J,
(i) Parallel compute

bj =]M.j+1[(cj+1 + p] - cj)T (°j+1 + PJ _.cj)I3;,¢3
— (cj+l -+ pJ — c]~)(cj+1 -I— pJ-. — c]-)T] -+ J].
-+ mj[(sj + P; — cj) (Sj + pP; — cj)I3:<3
~(s; +p; —¢;)s; +P; — cj)T]
(iii) Parallel compute
E; =Ej; +b; , 1< 5<n~1
by calling the subroutine FOHRA.

Parallel co‘mpute

Fj=z;x(Me;) ; Nj=Eja;, , 1<5<

(i) Initialize

(iii) Parallel compute
bij=pi xF; , 1<i<j-1,1<7<n,
(iv) Parallel compute using the row-sweeping algorithm

n; =ng; +by , 1<i<7-1,1<7<n,

Parallel compute h,-j

T
: 2, 1y
he. = T

I z;_; f;; , if joint ¢ is translational

j » i joint ¢ is rotational

where1 <1 < 3,1 <3 <n.

Parallel compute the bias vector b

b = C(q,q)q(t) + G(q)

Next, parallel compute y = r —b.

(19)

(20)

- (29)

| (55)

(26)

(27)

by calling the subroutine NEI(P)(q, q,9=0,z,;, p;,s,- ,J;,7) and let b = .

- 14 -

Step 10. Solve the system equation ‘
| H(q)q(t) =y =1 —b | | (28)

by the Parallel-Cholesky-Factorization algorithm.

Step 11. ‘Termination and output the result g(¢).
End PCRBM |

Prev1ously undeﬁned terms, expressed in the base coordmates, are given as follows:

m; is the mass of link 7, f~ is the force exerted on link 7 by link] —1, n, is the
moment exerted on link 7 by link] —1, M is the total mass of links] through n,c,

is the location of the center of mass of the composite rrgrd body of links 7 through n’
with respect to the origin of link 7—1 coordinates, E is the moment of inertia matrix
of the composite system of links 7 through n, F] is the total force exerted on the
composite system of links j through n, N, is the total moment exerted on the compo-

site system of links j through =, n;; is the moment exerted on joint ¢ due to the

1
motion of the composite system of links j through n, f;; is the force exerted on joint

due to the motion of the composite system of links j through n.

The evaluation of the total computational complex1ty of the Parallel Composite-
Rigid-Body method can be derived as follows:

(a) The parallel evaluation of Eq. (13) Which is a recursive matrix product form indi-
cates (27 [logzn] — 19) scalar multiplications and (18[logyn] — 14) scalar additions.

(b) Eq. (15) is a recursive scalar addition form and requires [log,n] additions. Eq. (20)
is recursive matrix addition form and requires 9[logyn | scalar additions. ‘Eq. (18)
is an inhomogeneous linear recurrence in vector form and requlres 4[logyn] — 1
scalar multiplications and 3[logyn] scalar additions.

(c) Eq. (25) is an upper triangular linear recurrence equation system and can be
solved by applying the row-sweeping algorithm. It requires 3(n — 1) scalar addi-
tions.

(d) Eq- (27) is used to generate the bias vector b by calling the Parallel Newton-Euler
subroutine and requires 84 scalar multiplications and »15[10g2n]+63 scalar addi-

tions.

(e) Eq. (28) is used to solve the vector q(t) by calling the parallel linear system solver
and requires |(n? —1)/6] +4n + [(n—1)/2] —2 scalar = multiplications,
[(n® — 1)/2}4+2n — 2 scalar additions, and 1 square root. :

(f) The parallel evaluation of other equations can be calculated by simple parallel
computations, yielding 9[(n — 1)/2]+48 scalar multlphcatlons and 3n +
5[(n —1 /2] + 42 scalar additions.

Comblnlng the results of (a) (f), the total computatxonal complexrty of the Parallel-
Composite R1g1d—Body ‘method apphed to ~an - n-link mampulator results .in
[(n —1)/6] 4+ 2n + 10[—-—1)/2] + 31[10g2n] + 170 scalar rnultlphcatlons,
[(n? — 1)/2] 50+ 5[(n——1)/2l + 45[logyn] + 125 scalar addltlons,,and 1
square root..- If n=6, it gives 334 mults, 328 adds, and 1 square root as ‘compared with
the. complex1ty of the Composrte-ngld Body method running. on a- unlprocessor [6]
1627 mults and 1255 adds :

2.8. ,Triangular Arr.a;y' Processor for Choles‘ky’s- FactoriZation .

Last sect1on 1nd1cates that the bottleneck of" the parallel computatlon of forward
dynamics depends ‘on factorizing the symmetrlc inertia matrix H(q) by Choleskysb
method and the proposed parallel Cholesky factorlzatlon procedure has a time com-
plexity: of O(2) by using O(n) processors. It is possible to’ reduce the tlme complex—

. ity further if the Cholesky’s method is implemented on VLSI array processors. |
- Ahmed, Delosme, and Morf [12] described a triangular array of n(n-+1)/2 CORDIC
» (COordlnate Rotation DIgital Computer) processrng elements for the lmplementatlon ‘

of hyperbolic Choleskys method for a symmetrlc matrix with a computation time of

(2n — 1) units. Later, Liu and Young [9] used (n —)n /2 scalar multlply-and-add

processors and n square root processors to compute the ‘Cholesky’s factorization pro- -

cedure with a computatlon time of O(n). The following trlangular array processor for

Cholesky s factorlzatlon is based on the modification of Liu and Young s scheme [9].

Equations (11) and (12) can be rewrltten in a recursive procedure whlch is bettery '
- for array processor 1mplementatlon and may be expressed as:

Stepl Inltlahzatlon P o IR -
Step 2: Recurswe Computat1on » ‘ - ’ V
| C Form =1 Step 1 until (1 —1) Do
o) - O —hin b, i <k<n o (30)

End_do"
“Step 3: Results‘v-:" o S R ' o o
| e =VCOF ,1<k<a (61

“ The above recursive procedure can be irnplemented'jon the triangular ArTay pro-
cessor as shown in Figure 1, which consists of two types of proces.sin’g_eleme‘nts and

- 16 -

latches. The circular cell Py (See Figure 2) performs the division and will perform
the square root operation when it receives a flag signal which is denoted by the nota-
tion "*". At the same time, it also passes u;,, upward and wu,;, will be stored 'in"_thé
latch L. The square cell P; (See Figure 2) performs C,y; = Cipy — u 14, and it per-
forms C,, = C;, — u” when it receives a flag signal. C,,, will be stor'ed in the latch
LZ. Tt should be noted that ky; will be stored in the internal reglster u of the cell Py
at the approprlate cycle time when (usp,);a = h,m, ! < k. Otherw1se, it is then moved
upward and stored in the latch above the cell.

Assuming that ¢, is the time for performing multiplication and addition, #; is
the time for performing division, and i, is the time for performlng square root opera-
tion, it is known that the global system clock or cycle time for the synchronization of
the array archltecture will be t, = max(t,,, tg, tsq) There are two input data
streams coming from the stack memory modules and are piped one row (or column)
deeper into the array in every cycle time. The 1nput data streams from the bottom of
the array processor provide the »mput data U, of processmg cells and will be stored in
the internal registér u of an assigned cell at an appropriate cycle. The input data
streams from the left of the arréy processor are the initial values of the recursive
computation. The value will be accumulated when the data propagates through the
processing cells from left to right. That is, the recursive computation is executi'ng and
traveling from left to right through the processor array. After (2n — 1) cycles, the
input data streams from the bottom sweep through all the cells and are stored in the
assigned cells. The flag 81g11a1 (i.e. “*”) will change the operation of assigned process-
ing cells and be used to obtain the diagonal components ;. It is known that h, and
the flag signal are piped into the processing cell P,; at 2n(=8) cycles simultaneously.
Thus, (Coy)ay = hag — b2 is compute'd and stored in the latch L} . The computé-
tional activity then propagates to the nelghbormg cell Py, which will execute (Cout)az
— (Cout)a1 — by = hyy — h}i — hjy. The computational activity will propagate the
next neighboring cell and so on. Once the data sweeps through the circular cell Py,
the square root operation is executed and the recursion is over. The total computa-

tion time is equal to (3n — 1) cycles.

3. Parallel Conjugate Gradient Method.

The conjugate gradient method is an iterative procedure for solving the joint
accelerations and, at O(nz) time complexity, is theoretically the most efficient scheme
given in [6]. The method requires an initial estimate for the joint accelerations and
successive adjustments to these estimates will be made until they converge to the
correct solution in less than n iterations. The detailed procedure of the conjugate
gradient method can be found in Appendix B. A parallel algorithm is proposed here
to improve the time complexity from O (n?) to O (n) for multiplication operations and

- 1’74

from O (n) to O(nlog2n) for add1t1on operatlons One observes that Step 5 in
Appendix B, ie., t = H(q)u;, can be evaluated by the Newton-Euler subroutme once
- for each 1terat10n However, the pOS1t10n-dependent parameters z,; pz 5 sl and J; w1ll‘: '
be evaluated in. -each iteration. Thus, in order to avoid these redundant evaluatlons, |
these parameters should be evaluated before the 1terat10n starts, and we shall use the
» parallel Newton—Euler subroutlne NEl()\qy,c'l,fci, Z;, p,, s,, Jis 'r) for it, where q, q, q,
%, P, 8 i» J; are known lnput Vectors and Tis the resultant output For example, to
evaluate t = H()u by subroutlne NEl() one sets q= uz, qa=20 and gravrty con-
stant = 0 in the subroutine NE1%),l and the resultant. output T wrll equal to the
desired t. The evaluation takes only 42 multiplications and 12[log2n]+26 additions.
The proposed parallel conjugate gradient method consists of two parts, the linear
recurrence part and the inner product part and is descrlbed as follows: :

Procedure PCGM (Parallel—Conjugate-Gradlent Method) leen T , qQ, q,'
zpz, s, 3., and i-lR,, for 1 <4 < n, “this procedure computes q(t) parallelly

1’
based on the conJugate gradlent method glven in Appendix B
Step 1. Parallel compute 0R = 0Rz 1 - 1R,, 1 <) < n, by calhng the subroutlne

Step 2. Parallel compute T, p,, s,, and J,, accordlng to
o ._zi"i=" OR, i %05 p, = %R;! p.,,s 'f—‘OR s; and
J; = "R;'J,'Ry = °R OR)T.

» jwhere1<z<nandz0—-[001]T o v o o
~ Step 3. Parallel compute b C(q, q)4q (t) + G() by _callingﬁ;l\lEl(f)_(q,(i,' q= 0, z;,
o phsn 310 IR I e
Step ‘4. Estlmate Xg = q() and compute each component of T(l 7 =49 per;pro.-’
- cessor, and let Uy = wp = AV, R

Step 5. |Starts the iteration] o
- Parallel compute the inner product e; = wlw;

'Step 6. If e; = 0, then stop; else contlnue . s

Step 7. Parallel compute t = (q)u by calhng NEI()(q,&=l)€, q=ul ,zz, p/,s,, 'J;,v
_'r)andletxl—'r : . _ IR

Step 8. Parallel compute’ the inner product u; t and then ’y, € ; Ju; Tt

Step 9. .Compute each component of x1+1 = x; + '7,u per processor, respectlvely

Step 10. It (i =m —1), then stop; else contlnue S)

Step 11. Compute each component of Wiy = W; — ~;t per pro’c'es:s;or', rESpectivelv.

Step 12. Parallel compute the inner product ez_H = WZHWHI o o

Step 13. If eip1 = O then stop, else contrnue

18-

Step 14. - Compute B; = e;.1/ei
Step 15. Compute each component of uz+1 = werl —i— Biu; per processor

Step 16. Set 1 =1 + 1, and go to Step 5
End PCGM

The evaluation of the total computational complex1ty of the PCGM algorithm can be
derived as: : : : :

(a) The parallel computation of Step 1 by calling the subroutine FOHRA- re'quires
(27[logyn] — 19) scalar multiplications and (18[logyn| — 14) scalar additions.”
(b) The parallel 'cornpnt.ation of b in Step 3 by calling NEI(__P) requires 84 scalar multi-
plications and 15{log,n] + 63 scalar additions. However, the parallel computation
of t = H(q)u; in Step 7 is much easier since the ignorance of the effects due to
the velocity terms, the gravitation, and external forces and moments. It requires

42 scalar multiplications and 12[log,n | + 26 scalar additions.

(c) The parallel computat1on of the inner product between two n- vectors can be
obtained in two steps: First, compute the product between components of both
n-vectors per processor. Then, parallel compute the snmmation of those product
terms. by calling the subroutine FOHRA. So, the total parallel computation
requires 1 scalar multiplication and flogznl scalar additions. In the parallel algo-
rithm, Step 5, Step 8, and Step 12 perform the inner product operation. ‘ ‘

(d) It should be noted that the steps between 5 and 16 form an n-iteration loop, and
the parallel computation of the steps inside the loop requires 49 scalar multiplica-
tions and 14[logyn| + 30 scalar additions. Since the loop is terminated after n
times in the worst case, the total computation inside the loop, in general requires
49n scalar multipllcations and 14n [log2n1+30n scalar additions '

(e) Step 1, Step 2, and Step 3 are outside the loop and require 27 [logzn] + 124 multi-
plications and 34 [log,n]+ 87 additions.

Based on the evaluations in (a)-(e), the total computational complexity of the parallel

conjugate-gradient method is 49n + 27 lloan] + 124 scalar multiplications and

14n [log,n] + 30n + 34 [log,n |+ 87 scalar additions. For a six-link PUMA mampula-

tor, it takes 499 scalar multiplications and 621 scalar additions

4. Conclusion

We have shown that the efficient computation of forward dynamics can be
achieved by taking advantages of parallelism in the Composite Rigid-Body method
and the Conjugate Gradient method. We developed an efficient parallelalgorithm\for
the Comp051te Rigid-Body method with the time complexity of O (n*) with O(n) pro-
cessors. Further reduction of the order of time complex1ty ‘was achieved by

19 -

o 1mplement1ng the Cholesky’s factorlzatlon procedure on array processors This
reduces the time complexity from O(2) to O(logzn), but the number of processors is

1
1ncreased from n to .’l(’;i)_ The second parallel algorlthm, based on the conjugate

3 gradlent method, computes the joint accelerations with a time complexxty of O(n) for

multiplication operatlon and O(nlogn) for addltlon operatlon For a small n (i.e. B
n <.12), the parallel computation of the’ Composxte Rigid- Body method in an- SIMD
machine is found to be superior than the Conjugate Gradient method. The inheresit -
.sequentlal property of the ConJugate Gradient method makes it difficult to obtain the
necessary speed-up for practlcal use. Both the parallel Composite Rigid- Body method
with and Wlthout VLSI array processors. and the Congugate Gradrent method are also
tabulated in Table 1 for comparlson : ‘

_20 xY
Appendix A
The Composite Rigid-Body Method [6]

e Backward Recurrence

cj:ﬁj,{_.(s +p])+ (]+1+p1)}~ | o _ o (A2)

E' = E_7+1 + M [(Cjir1 + p] v ')T (cvj+1“ + p;v,— cj»)I3,>;3
~(ejor P — ¢;)eji +p; — ;) |+,
+mj[(s'+pj '_ cj)T.(sj +pj fc]'.)13>:3 ‘
(s +p])(S +p] — ¢y)T] ’ : (AB)
Wher‘elgj‘gn—l, and M, = n,cn=sn+pn, E, =17, o
e Compute F;, N; | '

) Zjq X (J\chj) , if joint 7 is rotational '
Fj= M;z;_4 , if joint j is ‘translational (A4)
Ej;z; 1 | if joint jis rotational ' '
N, = o s .. . (A5)
J 0 : , if joint j is translational
. fi;=Fj nj=N;+e¢;xF; 1<j5j<n ' o (A.6)
e Linear equation system
L w iy 1<i<y-1, 1<5<n (A.7)
== f
Dy = Miyy,g + pz X IG+1),5
T' p ¢ s .. .
Zi-1 n; i,j» . , if joint 7 is rotational
hij = 2, 1 T f PR if joint 7 is translational (A-8)

where 1 <i<j,1<j<n.

Step
Step

Step:

Step
Step
Step

Step -

Step
Step
Step
St'e'p

Step
Step

© © N e ook W

O S S
I

91
‘Appendix B
‘ The‘Conjugate Gfadieht Method [6]

Estimate s_Oluf‘ion X
Seti=0,ug=wyg=7—b

Set e; =»szw,.

If e; =0, then stop; else continue

Set t = H(q)u;

. Set k)'z' = ez-/uz-Tt

Set x; 11 = x; + %y

~If (1 = N —1), then stop; else continue

Set Wiy = w; — Yt
' T
Set €;3 = Wi 1 Wi
If e;,; = 0, then stop; else continue -
Set B = e;p1/e;

Set w4 = wiyy + G

. Set ¢ =1+1; go to Step 5.

S -929 -
- Appendix C

An Example for Evaluating the Set-Ordering Method

A i—1 . :) - : : o
Assume Iy = hy + 3 hg, ¢ <k<n, 2<17 <n, where n =4, and let
H r's] 1
ak(io) — hy; a,é) «— h g for 1 < 7 < (z—l), 1 <k<4,2<:< 4 then the correspond-

ing sets s = {a) ak(f 2) e a,a } 1 <k <420 < 4. The evaluation of lkz by
using the set-ordering .techn_ique can be described as follows:

Step 0 (i) Let Gy =0, 200 — oD fori <k<4,2<i<4
() N=n(n—1)/2=6
(iii) NA(Sy) =3, S NA(S,3) = NA(S3;3) =2,
NA(S4) = NA(S3y) = NA(Sg) =1 -
Step 1 [Set Ordering]

sty 9, ald)
Sﬁ,) =843 = { i .0«53) aig)}
Ség) = S33 = { “§3) aég), aég)}
Sg) =Sy { ' ag): C’ug(z))}
S:g) = 83 =1 'a:g), aég)}
Sf9 =Sy ={ afy, af))

Step 2 N(—6)>n 4, thus parallel compute the n{=4) high’est ordered sets
5’44 , S/S é 42 , respectively, and de-order the sets Then, the results

would be:

() Cu=1,C=10C5=10C4=1,

(if) NA(Sy4) = 2, NS(S43) =1, NA(S33) = 1, NS(Sy) =0

(iii) The resultant set in a descending order as:
544 - {a 4 a§ a,‘gzlx’o
Sp=1{ i, é

S33 = { aé

S3p = { ; aéz)a a§3
Sgp = { ag)7 aég
| Sp=1{ a3’
where afi® = aff +afd, aff? = afy +afy, oV = aff) +off and afl? =

aff +aff.

Step 3 (i) It is known that NA(S,,) =0, then N; = 1 and S,y will wait in out-
put step.

Step 4

Step 5

Stép 6

-23-

(i) N*——N N1=*N—5 _ o

Similarly, we order the remalndered sets and pick up n(= 4) hlghest ordered
sets as considered (because N(=5) > n(=4)). There are Sy, Sy3 Sa3, Saz
which can be evaluated parallelly in the same procedure in Step 2. We have

(i) Cyu=20Cp=2C0C3=2Chp=1
(i) NA(S4) =1, NA(S43) =0, NA(S33) =0, NA(S33) =0
(iif). . The resultant sets in a descending'order as.

vS44 = {"' gﬁo

Sgy = {‘122), afy

Sz = { a f3’ - : o -
where, aft) = aff +af) +af), ot = off + af) +aff), 80 =
aff +af) +af), and s{O = sf) + 5§ B |
() It can be shown that NA(S,s) =0, NA(S3;) = 0 and NA(Sz) =0

then Nl = 3 and Sg3, S33, S35 would wait in output step.
(ii) "N «— N — N1=tN——2 '
The remaindered sets now are Sy, Sip. In this case, N(= 2) < n(= 4).
Thus any two processors are actlve and assigned to evaluate S it 5'22, respec—

tively. And the resultant sets are S, = {a& by Sap = {a } Where

off) = of) +aff +af) +af) andofi? = of) +af).

- 94 -

5. References

[1]

2]

3]

[4]

K S. Fu, R C Gonzalez, and C. S. G. Lee, Robotzcs Control Sensmg, stzon,
and Intellzgence McGraW-Hﬂl September 1986 : '

J..Y. S. Luh M. W. Walker, andR P. Paul “On line Computatlonal Scheme for
Mechanical Manlpulator,” Trans. ASJ\/IE J. Dynam Syst Meas and Contr vol
102, pp. 69-76, June 1980 ' -

C. S G. Lee and P. R Chang, “Efﬁaent Parallel Algorlthm for Robot Inverse
Dynamics ‘Computations,” IEEE T'rans. Syst Man Cybern vol SMC 16 no. 4,
pp 532-542, July/August 1986.- RENCE

P. M. Kogge, “Parallel Solutlon of Recurrence Problems,” IBM J. Res. Develop 2,

‘-ﬂ,vol 18, pp- 138 148 Ma.r 1974."

5]
(6]

[7]

8]

9
10]
1)

[12]

P. M Kogge and H S. Stone, “A Parallel Algorlthm for the Efﬁc1ent Solutlon of a

" General Class of Recurrence Equations,” IEEE Trans. Comput vol. C-22, pp.

789-793, Aug. 1973

L

M. W. Walker and D. E. Orln, “Efficient Dynamic Computer Slmulatlon of Robot
Mechanlsms,” Trans. ASME J. Dynam.. Syst., Meas. and Contr., vol. 104, pp.
205-211, 1982 ‘

R. Featherstone, “The Calculatlon of Robot Dynamlcs Usmg Artlculated Body
Inertia,” The Int’l J. of Robotics Res., vol. 2, no. 1, pp. 13-30, 1983.

H. T. Kung, “New Algorithm and Lower Bounds for the Parallel Evaluation of
Certain Rational Expressions and Recurrence,” J. of Association for Computing
Machinery, vol. 23, no. 2, pp. 252-261, April 1976. :

P. S. Liu and T. Y. Young, “VLSI Array Design Under Constraint of Limited 1/0
Bandwidth,” IEEE Trans. Comput., vol. C-32, no. 12, pp. 1160—1170 Dec. -1983.

D. J. Kuck The Structure o f Computers and Computatzons volume 1, pp. 44- 45

‘Wlley, 1978.

J. R. Rice, Matriz Computations and Mathematical So ftware McGraW Hlll, PP
46-48, 1981.

H. M. Ahmed, J. M. Delosme, and M. Morf, “nghly Concurrent Computing
Structures for Matrix Arithmetic and Signal Processing,” IEEE Computer, vol. 15,
no. 1, pp. 65-82, January 1982.

. Figui'e» 1.

225 ' o

Triangular Array Pi’béeSsor for Cholesky's “’Fa;gtoi'i»Zai;ioq '

- Initial: u = 0

U = Uy, Upy = Coyp = null, when the cell is actlvated
In the remalmng cycles S L
If u,, = %, then u;y, — Uins Cout — Cm, and ka — “out o
If uy, # *, then uyy «— Uy, Copr < Cm/u and Lk — uyye -
Note that_P,m, performs the square root: operation only:

‘ Imtlal ' 0 - . , L
Iy, = h,a, then U — um, uout «— null Cout - C — U Uy, .

. .k 2
If Uy, = then Uout Ui s Yoyt < Cm u Lla = Uguts a'nd Lla Rt Cout
Otherw1se, uout — um, Yout Cin = U Uin, Lh — Upyty and L,u «— Cout

Flgure 2. | Processmg Cells
- (a) Circular Processing Cell
" (b) Square Processing Cell..

Table 1.

o 2‘7,-

Comparlson of the Number of Computatlons of Forward Dynamlcs F or- ’," e
mulations and Parallel Forward Dynamlcs Formulatlons '

s N.umber-'of .

I B S . LT |Square|
.- . Methods " Multiplication -Addition Root | . . Processors
NI | 1 5.1 4 L s oo R
Walker and Orin’s —6-nv’+7»5;n. g™ +55n° 0 1
“Method 1- +114%—n—'—22 +82"5—n»-—?11' A .
- (3418) (2502) - L
Wa.lker and Orm s B +38;n P +28n 0- 1.
:'-Method2 ’+151—1—n 22 : 7+1(_)9-2-n—1>1_;'. | o
' (2308) o (1692). o
T -2 vt 1 galis L s
Walker a.nd’,()r‘m s ‘En +13;n -6—n +8n° S
‘Method 3 v+192.§n?-49,_ - _ v+165%n'~64> e 1
' (1627) (1255) s
:Walker and’ Orm s 1 76-;—n2+1-2n—"21 »56n +87n 6 0. 1
‘Method 4. (3435) (2532)
Featherstone - 380n—198f soen—173t | 0 1
| - " (2280) (1816) 0 BT
‘ S 2 SRS L .
Parallel Composite [(n -.11+1o[- (n2_1)1+4n [-(——)‘]—1—5 +5[_(n_1)_]+ N | n
Rigid-Body Method 431[logn |+170 , 45[log2n]+125 R
S (334) - - o (328) 1Ty - 6 -
Pé.rallel‘Composite CTn+9 -(ﬁ—ll] 8n+5[-(%l)-] 1 _ gfnz_—l-l)_ array
Rigid-Body Method | = -~ ' . ' BN proce_’sso'.rs'
(with VLSI +31 [loggn]+169 +45 [logon |+124 | n general-purpose
array processors) ’ . : e processors
' (331) (322) 1 | 21 array processors.
- -~ | and 6 g-p processors |-
‘| Parallel 1 - 49n+27 [logon]+124 - 14n [loggn]+30n+ 0 VIn' ,
.| Conjugate-Gradient | - , L 34[logsn |+87 mmE LT
Method (499) (621) 0 6

The number 1ns1de the parenthesxs indicates number of computatlons

when n =6.

t In 7], Featherstone excludes the evaluations of computmg the blas a
vector b. Here, we include the bias vector evaluations. IR

iﬂThis ‘indicates that the method cannot be‘parallelizgd.

	Purdue University
	Purdue e-Pubs
	2-1-1987

	Efficient Parallel Algorithm for Robot Forward Dynamics Computation
	C. S. G. Lee
	P. R. Chang

	tmp.1542052450.pdf.w1gIz

