
Efficient Parallel Computation of PageRank

Christian Kohlschütter, Paul-Alexandru Chirita, and Wolfgang Nejdl

L3S Research Center / University of Hanover
Deutscher Pavillon, Expo Plaza 1

30539 Hanover, Germany
{kohlschuetter,chirita,nejdl}@l3s.de

Abstract. PageRank inherently is massively parallelizable and distribu-
table, as a result of web’s strict host-based link locality. In this paper we
show that the Gauß-Seidel iterative method for solving linear systems
can be successfully applied in such a parallel ranking scenario in order to
improve convergence. By introducing a two-dimensional web model and
by adapting the PageRank to this environment, we present and evaluate
efficient methods to compute the exact rank vector even for large-scale
web graphs in only a few minutes and iteration steps, with intrinsic
support for incremental web crawling, and without the need for page
sorting/reordering or for sharing global information.

1 Introduction

Search engines are the enabling technology for finding information on the In-
ternet. They provide regularly updated snapshots of the Web and maintain a
searchable index over all retrieved web pages. Its size is currently reaching sev-
eral billions of pages from about 54 million publicly accessible hosts, but these
amounts are rapidly increasing [17]. When searching such huge datasets, one
would usually receive quite a few pages in response to her query, some of them
being much more relevant than others. This gave birth to a lot of ordering (or
ranking) research, the most popular algorithm being Google’s PageRank [18],
which recursively determines the importance of a web page by the importance
of all the pages pointing to it.

Although improvements for a centralized computation of PageRank have
been researched in detail [1, 9, 11, 5, 12, 20, 15], approaches on distributing it over
several computers have caught researchers’ attention only recently. In this paper
we introduce a new approach to computing the exact PageRank in a parallel
fashion. We obtain exact results faster than all the other existing algorithms,
improving by several orders of magnitude over the other algorithms generat-
ing exact PageRank scores. We achieve this by modeling the web graph in a
two-dimensional fashion (with the URL’s hostname as the primary criterion),
thus separating it into reasonably disjunct partitions, which are then used for
distributed, incremental web crawling [6] and PageRank computation.

The remainder of the paper is organized as follows. After reviewing the
PageRank algorithm, common web graph representation techniques and exist-
ing parallel versions of PageRank in Section 2, we introduce our two-dimensional

web graph model in Section 3. We then present a refined PageRank algorithm
in Section 4, and show that the convergence improvements of the Gauß-Seidel
method for solving linear systems can also be efficiently applied in a parallelized
PageRank scenario. Experimental results are discussed in Section 5. Finally,
Section 6 concludes with discussion of further work.

2 Background and Previous Work

2.1 Web Graph Representation

Computing the PageRank vector using a materialized in-memory adjacency ma-
trix for a large web graph is definitely not feasible. A common solution is to
store the links in a format like “Destination Page ID, Out-degree, Source Page
IDs...” (which resembles L). Because pages only link to a few others (the link
matrix is sparse), this results in much lower memory requirements of the link
structure, in the magnitude of | L | · n −1 (n = average outdegree). Of course,
compression techniques [14] or disk-based “swapping” [9, 5] can improve the
space requirements even further. But with the permanent growth of the web,
even such techniques will soon hit memory limits of a single computer, or un-
acceptably slow down the computation process. In this paper, we thus propose
a new storage format for the adjacency matrix of the web graph, based on the
separation between global (host) and local information about each page.

2.2 PageRank

The main concept behind the PageRank paradigm [18] is the propagation of
importance from one Web page towards others, via its out-going (hyper-)links.
Each page p ∈ P (P is the set of all considered pages) has an associated rank
score r(p), forming the rank vector r. Let L be the set of links, where (s, t) is
contained iff page s points to page t and L(p) be the set of pages p points to (p’s
outgoing links). The following iteration step is then repeated until all scores r
stabilize to a certain degree:

∀t ∈ P : r(i)(t) = (1 − α) · τ(t) + α
∑

(s,t)∈L

r(i−1)(s)

|L(s)| (1)

The formula consists of two portions, the jump component (left side) and the
walk component (right side), weighted by α (usually 0.85). r(i−1)(s) · |L(s)|−1

is the uniformly distributed fraction of importance a page s can offer to one of
its linked pages t for iteration i. Intuitively, a “random surfer” will follow an
outgoing link from the current page (walk) with probability α and will get bored
and select a random page (jump) with probability (1 − α). The main utility of
α is however to guarantee convergence and avoid “rank sinks” [3].

This “random-walk” is in fact the interpretation of the Markov chain asso-
ciated to the web graph, having r as the state vector and A (see Equation 2)
the transition probability from one page to another. We can therefore also write
Equation 1 in matrix terms as follows:

r = (1 − α) · τ + α Ar (2)

Equation 1 also represents the linear system representation of this compu-
tation using the Jacobi method. This enables the consideration of using other
stationary iterative solvers, such as the Gauß-Seidel method, which was said
not to be efficiently parallelizable here [1, 5]. Actually, there already are parallel
Gauss-Seidel implementations for certain scenarios such as the one described
in [13], using block-diagonally-bordered matrices; however, they all admit their
approach was designed for a static matrix; after each modification, a specific
preprocessing (sorting) step is required, which can take longer than the real
computation. Because the web is highly dynamic, almost 40% of all links change
in less than one week [6]. Thus, disregarding this preparation step veils the real
overall processing time. Steady reorganization of coordinates in a huge link ma-
trix simply imposes an unjustified management overhead.

2.3 Other Parallel PageRank Algorithms

Existing approaches to PageRank parallelization can be divided into two classes:
Exact Computations and Approximations.

Parallel Computations. In this scenario, the web graph is initially parti-
tioned into blocks: grouped randomly (e.g., P2P PageRank [19]), lexicographi-
cally sorted by page (MIKElab PageRank [16] and Open System PageRank [21])
or balanced according to the number of links (PETSc PageRank [8]). Then, stan-
dard iterative methods such as Jacobi (Equation 1) or Krylov subspace [8] are
performed over these pieces in parallel. The partitions periodically must ex-
change information: Depending on the strategy this can expose suboptimal con-
vergence speed because of the Jacobi method and result in heavy inter-partition
I/O (e.g., in MIKELab PageRank, computing the rank for a page t requires
access to all associated source page ranks r(s) across all partitions).

PageRank Approximations. The main idea behind these approaches is
that it might be sufficient to get a rank vector which is comparable, but not
equal to PageRank. Instead of ranking pages, higher-level formations are used,
such as the inter-connection/linkage between hosts, domains, server network
addresses or directories, which is orders of magnitudes faster. The inner structure
of these formations (at page level) can then be computed in an independently
parallel manner (“off-line”), as in BlockRank [10], SiteRank [24], the U-Model
[4], ServerRank [23] or HostRank/DirRank [7].

In our approach, we will try to take the best out of both approaches: the ex-
actness of a straight PageRank computation but the speed of an approximation,
without any centralized re-ranking.

3 The Two-Dimensional Web

3.1 Host-based Link Locality

Bharat et al. [2] have shown that there are two different types of web links
dominating the web structure, “intra-site” links and “inter-site” ones. A “site”
can be a domain (.yahoo.com), a host (geocities.yahoo.com) or a directory

on a web server (http://www.geocities.com/someuser/). In general, we can
define a site as an interlinked collection of pages identified by a common name
(domain, host, directory etc.), and under the control of the same authority (an
authority may of course own several sites).

Due to web sites’ hypertext-navigable nature, it is supposable that a site
contains more internal than external links. In fact, about 93.6% of all non-
dangling links are intra-host and 95.2% intra-domain [10]. This assumed block
structure has been visualized by Kamvar et al. [10] using dotplots of small parts
(domain-level) of the ”LargeWeb” graph’s link matrix [22]. In these plots, the
point (i, j) is black, if there is a link from page pi to pj , clear otherwise.

We performed such a plot under the same setting, but on whole-graph scale.
The outcome is interesting: a clear top-level-domain (TLD) dominant structure
(see Figure 1a). For example, the .com TLD represents almost 40% of the com-
plete structure and has high connectivity with .net and .org, whereas the .jp
domain shows almost no interlinkage with other TLDs. However, if we only in-
spect the .com domain (see Figure 1b, the dotplot depicts a diagonally dominant
structure. The diagonal represents links from target pages near by the source
page (which are inter-host pages). Both results are primarily caused by the lex-
icographical order of URLs, where hostnames are reversed.

But is this costly sorting over all URLs necessary at all? To further analyze
the impact of hostname-induced link locality, we redraw the LargeWeb dotplot
in a normalized (histographical) fashion, where a dot’s greyscale value depicts
the cumulative percentage of links in a specific raster cell. In addition, we do not
sort the pages lexicographically, but only group them per host and permute all
hosts randomly to exclude any lexicographical relationship between them. The
clear diagonal dominance now also becomes visible on whole-graph scale (Figure
1c).

(a) LargeWeb (b) .com subgraph (c) LargeWeb, normalized

Fig. 1. Linkage dotplots, sorted by URL.

3.2 From Numbers to Tuples

It should be obvious that the web was already designed to be two-dimensional:
Hostnames are “namespaces” aimed to disambiguate different local contexts (i.e.,
paths like “/dir/ index.html”). Previous approaches to web graph partitioning
always resulted in having one unique ID associated to each page. Such a single
page ID provides a very compact representation of the web graph, which can be
visualized in a matrix dotplot as shown above. But it also requires continuous
reorganization (resorting) for newly added pages. Otherwise, a mixture of hosts
along the URL IDs would render a host no longer characterizable by a closed
interval of IDs, thereby losing the advantage of link locality. One may introduce
gaps in the numbering to reduce the sorting costs, but still, all subsequent pages
will have to be renumbered once the gap is filled. In a distributed scenario, this
can cause extensive network I/O by repeatedly moving pages from one partition
to another.

We therefore propose a different page identification scheme, based on the
affiliation of each page to a specific host and independently of pages from other
hosts. More specifically, we propose using a tuple consisting of two independent,
positive integers, a HostID (only dependent on the URL’s hostname) and a
LocalID (only identifying the remaining local components – path and query
string). The addition of new local pages to a specific host, as well as of new
hosts, is very easy, since renumbering is no longer necessary.

As an implementation-specific note, we expect that for current web graphs,
it is sufficient to store the tuples as two uint32 four-byte integers. We then can
address a maximum of 4.29 billion hosts and a maximum of 4.29 billion pages
per host in 8 bytes. For small hosts, we could even reduce the local part to 16
bit, thereby further cutting down memory footprint.

4 Partitioned PageRank

We will now consider the impact of such a partitioning scheme on the PageRank
algorithm. We will first present an analysis that unifies two of the most common
algorithms for solving linear systems, Gauß-Seidel and Jacobi. Then, we will
apply this analysis to propose an improved parallel PageRank algorithm, and
finally we will discuss several optimization issues.

4.1 Unifying Jacobi and Gauss-Seidel

It has been observed that the Gauß-Seidel iteration method compared to the
Jacobi method can speed-up PageRank convergence by a factor of 2, as it uses
scores of the current iteration as soon as they become available [1]:

∀(s, t) ∈ L : r(i)(t) = (1 − α) τ(t) + α

(∑
s<t

r(i)(s)

|L(s)| +
∑
s>t

r(i−1)(s)

|L(s)|

)
(3)

As opposed to the Jacobi iteration, the Gauß-Seidel variant requires iterating
over the links (s, t) ∈ L in a strictly ascending order. At first glance, this seems
to be a major drawback when we want to apply it to a distributed, partitioned
web graph. To clarify the impact of the restriction of link order, we derive a
common base algorithm for both, Jacobi (equation 1) and Gauß-Seidel (equation
3) algorithms: We define an intermediate ranking vector r(i−1,i) that combines
the vectors of the previous and the current iteration, depending on the state of a
ranked page p in the set of available pages P (P = P ′∪P ′′; @ p : p ∈ P ′∧p ∈ P ′′;
P ′ contains all pages which have already been ranked for iteration i; P ′′ contains
all other pages, whose score has not been touched since iteration i− 1):

r(i−1,i)(p) :=

{
r(i)(p) if p ∈ P ′

r(i−1)(p) if p ∈ P ′′ ; r(i)(t) = (1 − α) τ(t) + α
∑

(s,t)∈L

r(i−1,i)(s)

|L(s)| (4)

Under this setting, for the Gauß-Seidel method, P ′ = { p | p < k } and
P ′′ = { p | p ≥ k }, with k ∈ {1, 2, ..., |P |}, whereas for the Jacobi method, we
have P ′ = ∅ and P ′′ = P . Both iteration methods, Jacobi and Gauß-Seidel, can
then be simplified to this joint formula:

r(?)(t) = (1 − α) τ(t) + α
∑

(s,t)∈L

r(?)(s)

|L(s)| , with r(?)(t) = r(i−1,i)(t) (5)

From Equation 4, we know that before each iteration i, r(?) = r(i−1) and after
the iteration r(?) = r(i). The state of r(?) during the iteration then only depends
on the order of links (s, t) ∈ L (the way how P ′ and P ′′ are determined). This
iteration method has worst-case convergence properties of Jacobi and best-case
of Gauß-Seidel, depending on the order of elements, random order vs. strictly
ascending order, while always providing the same per-iteration running time as
the Jacobi iteration.

We further generalize the impact of the rules for P ′ and P ′′: We argue that
if only a small fraction F of all links concerned (|F | � | L |) is not in strictly
ascending order, the overall convergence speed still remains in the magnitude of
standard Gauß-Seidel. In our case, in order to be able to parallelize the Gauß-
Seidel algorithm, we will assign inter-host/inter-partition links (about 6%) to
this small fraction.

4.2 Reformulating PageRank

For such an optimization, let us reformulate our above mentioned unified PageR-
ank equation using our new two-dimensional page numbering scheme. Thus, page
variables “p” will be replaced by page tuples “(px, py)”, with px representing the
page’s HostID and py its LocalID. Also, to account for the separation of inter-
and intra-host links, the formula becomes:

r(?)(t) = (1 − α) τ(t) + α
(
v
(?)
I (t) + v

(?)
E (t)

)
v
(?)
I (t) =

∑
(s,t)∈L

r(?)(s)

|L(s)| ∀ host(s) = host(t)

v
(?)
E (t) =

∑
(s,t)∈L

r(?)(s)

|L(s)| ∀ host(s) 6= host(t)

(6)

Since v
(?)
I (t) solely requires access to local rank portions of host(t), it can

efficiently be computed from scores stored in RAM. The local problem of ranking
intra-host pages is solvable via a fast, non-parallel Gauß-Seidel iteration process.
There is no need for intra-host vote parallelization – instead, we parallelize on
the host-level, thus necessitating only inter-host communication, which is limited
to the exchange of external votes.

Our approach produces the same ranks as the original PageRank, while being
more scalable than the other parallel PageRank algorithms. This is mainly due
to the parallelization of the Gauß-Seidel algorithm, in which we take advantage
of web’s host-oriented block structure.

4.3 Reaching Optimal Performance

Optimizing Communication Cost. While votes between hosts of the same
partition (server) can easily be conveyed in RAM, votes between hosts of differ-
ent partitions require network communication. The gross total for exchanging
external votes over the network must not be underestimated. In our setup with
the LargeWeb graph, almost 33 million votes must be exchanged between par-
titions. For bigger web graphs, this could rise up to a few billion and can easily
lead to network congestion if too much information is transmitted per vote.

As opposed to other approaches, where a vote consisted of target page ID
(sometimes along with source page ID) and score, we simply reduced this to
transmitting a single score value per page, because in a static graph, the link
structure itself does not change during the iteration cycle. More generally, the
link structure of all the pages that exchange votes between two partitions pages
only needs to be determined whenever the graph changes (in the case of in-
cremental web crawling) and then to be sent to the specific target partition.
Moreover, the source page does not need to be specified in order to compute the
PageRank score (see Equation 6), but only the target page ID. Additionally, by
grouping the list of target pages by host, we need to transmit each HostID only
once.

Most notably, each partition has to transmit only one single value per target
page, not per link to thatpage, since all votes from local pages that link to a
specific page can be aggregated to a single value (surprinsingly, this simple, but
very effective approach did not appear in any previous work):

v
(?)
E (t) =

∑
β∈Π

∑
(s,t)∈Lβ

r(?)(s)

|L| =
∑
β∈Π

v
(?)
β (t) ∀ host(s) 6= host(t) (7)

with Π being the set of partitions containing links towards t, and β each of
these partitions.

Transferring vβ(t) (the sum of votes from partition Lβ to t) as a single value
will then reduce the network load dramatically. Using this optimization, we can
show a reduction of vote exchanges by 89% with the DNR-LargeWeb graph.
Table 1 depicts the difference between inter-partition links and votes and their
quota of all links.

Type Amount Percent

Total Links 601,183,777 100%
Inter-Partition Links 32,716,628 5.44%
Inter-Partition Votes 3,618,335 0.6%

Table 1. LargeWeb Inter-Partition links and votes

Computational Load Balancing. In order to keep the convergence be-
havior of the centralized PageRank in our parallel scenario, inter-partition votes
must be exchanged after every iteration (see [16] for a discussion of conse-
quences of not doing so). To keep the overall computation time still low, all
intra-partition computations and after that all network communication should
terminate isochronously (at the same time). Because intra-partition computa-
tion is directly proportional to the number of pages per partition (see Equation
6), this either means that all available servers must be equally fast, or the graph
has to be at least partitioned adequately to the performance of the servers.
Moreover, other slow-down factors could also influence the running time, such
as different network throughput rates of cheap NICs and system boards (even
with the same nominal speed).

A good strategy to load-balancing Parallel PageRank in a heterogeneous
environment could be running a small test graph on all new servers, measure
computation speeds, and balance the real graph accordingly. In any case, memory
overflows due to bad balancing parameters like in PETSc PageRank are avoided,
and no manual interaction to find these parameters is necessary.

5 Experiments

We first converted the Stanford DNR-LargeWeb graph [22] into the new tuple
representation, resulting in 62.8M pages and 601M links distributed over 470,000
hosts with averaged 137.5 pages each (maximum was 5084 pages per host); the
inter-host link percentage1 is 6.19% (see Table 2).

For our PageRank experiments, we sorted sorted the available hosts by their
page count in descending order and distributed the pages host-wise in a round-
robin manner over 8 partitions of equal size (1

8 of the graph just fitted into our
smallest server’s RAM).
1 Unfortunately, the last 8 million pages of DNR-LargeWeb could not be converted,

since there was no URL associated with them – thus, our numbers slightly differ
from the ones in [10].

Although the pages-per-host distribution was not strictly exponential, it re-
sulted in an equal page and link distribution (see Figures 2, 3, 4, 5). Remarkably,
the intra-partition ratio (inter-host links inside the same partition) is negligible,
as the inter-partition link rate nearly equals to the inter-host ratio. This means
that hosts can arbitrarily be shifted from one partition to another one (which is
necessary for fast re-balancing with incremental web crawling).

Type Amount Percent

Total 601,183,777 100%
Intra-Host 563,992,416 93.81%
Inter-Host 37,191,361 6.19%

Inter-Partition 32,716,628 5.44%
Intra-Partition 4,474,733 0.74%

Table 2. LargeWeb link distribution

Fig. 2. Partitioned, normalized LargeWeb-
Dotplot

 1

 10

 100

 1000

0 % 25 % 50 % 75 % 100 %

N
u
m

b
e
r

o
f
p
a
g
e
s
 o

n
 h

o
s
t

Top-k% hosts (sorted by size)

Global
Partition 1
Partition 2
Partition 3
Partition 4
Partition 5
Partition 6
Partition 7
Partition 8

Fig. 3. Partitioned Host Distribution

5.1 Implementation

We have implemented Partitioned PageRank in Java using a P2P-like network
with a central coordinator instance. This coordinator is only responsible for
arranging the iteration process at partition-level and does not know anything
about the rank scores or the link structure. Before the computation, all nodes
announce themselves to the coordinator, communicating the hosts they cover.
The iteration process is started as soon as all nodes are ready. The coordina-
tor then broadcasts the global host structure to all known nodes and instructs
them to iterate. Whenever a node’s subgraph changes, it sends lists of external
outgoing link targets to the corresponding nodes.

For every iteration step, a node will compute its votes using our reformulated
PageRank (Equation 6); the partition itself is again divided in subpartitions pro-
cessed in parallel. The nodes then aggregate all outgoing inter-partition votes by

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3 4 5 6 7 8

A
m

o
u
n
t
o
f
p
a
g
e
s

Partition #

Page Distribution

Fig. 4. Pages per Partition

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

L
in

k
 P

e
rc

e
n
ta

g
e

Partition

Inter-Partition In-Link Percentage
Inter-Partition Out-Link Percentage

Fig. 5. Inter-partition link source/target
distribution

target page and send them directly to the other nodes responsible for these target
pages, in the order specified beforehand. Finally, each node reports its local rank
status (using the sum and number of its PageRank scores) to the coordinator,
in order to compute the global residual δ. As soon as all nodes have succeeded,
the coordinator decides whether to continue iterating, by broadcasting another
“iterate” command unless the residual reached the defined threshold ε.

The addition of new pages during incremental crawling may happen at any
time. If the addition covers new hosts, the coordinator selects a node according
to the current balancing. From then on, this node is responsible for all pages of
that host. The assignment is broadcasted to all nodes in case that there were
dangling links to that (previously uncovered) host.

5.2 Results

We conducted most of the experiments on four Linux machines, an AMD Dual
Opteron 850 2.4 GHz, 10GB RAM (“A”), an Intel Dual Xeon 2.8 GHz, 6GB
RAM (“B”) and two Intel Xeon 3.0 GHz, 1.5GB RAM (“C” and “D”). They
were connected via 100MBit Ethernet LAN and not under load before our ex-
periments. We divided the LargeWeb graph into eight partitions and distributed
them among the four servers according to available memory (Machine A holds
four partitions, B two, C and D one) and performed unbiased PageRank com-
putations.

We examined the convergence behavior, rank distribution and elapsed time
both globally and per-partition. All per-partition results matched almost per-
fectly with the global counterpart and therefore confirmed our assumptions (see
Figure 6). The PageRank computation converged below ε = 10−3 after 17 itera-
tions, and the entire computation took less than 9 minutes, with only 66 seconds
accounted for rank computation, the rest being network I/O. More, with Gigabit-
Ethernet and Java Non-Blocking I/O, network communication costs would prob-
ably go down to the same magnitude as computation costs.

Compared to the running times of a centralized PageRank computation, our
computation is about 10 times faster per iteration, with network I/O included,

and about 75 times faster if network I/O is not counted (when all pages would
fit on one massive parallel machine).

 0.001

 0.01

 0.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
e

s
id

u
a

l

Iteration #

Global residual

 0.001

 0.01

 0.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
e

s
id

u
a

l

Iteration #

Partition 1

Partition 2

Partition 3

Partition 4

Partition 5

Partition 6

Partition 7

Partition 8

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Iteration #

Partition 1 (machine A)
Partition 2 (machine A)
Partition 3 (machine B)
Partition 4 (machine B)
Partition 5 (machine C)
Partition 6 machine A)
Partition 7 (machine A)
Partition 8 (machine D)

 0

 50

 100

 150

 200

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

V
o
te

 P
ro

p
a
g
a
ti
o
n
 T

im
e
 (

s
)

Iteration #

Partition 1 (machine A)
Partition 2 (machine A)
Partition 3 (machine B)
Partition 4 (machine B)
Partition 5 (machine C)
Partition 6 machine A)
Partition 7 (machine A)
Partition 8 (machine D)

Fig. 6. Partitioned PageRank convergence, vote calculation and network communica-
tion times using 8 partitions on 4 machines; ε = 0.001

6 Conclusions and Further Work

We presented an efficient method to perform the PageRank calculation in par-
allel over arbitrary large web graphs. We accomplished this by introducing a
novel two-dimensional view of the web, having the host ID as the only discrimi-
nator, as well as by adapting the Gauß-Seidel method for solving linear systems
to be used with PageRank. Additionally, we also discussed several other pos-
sible applications of our approach, such as a fast re-balancing for incremental
crawling (faster than any other approaches known to us). Our next goal is to ex-
periment with several other PageRank specific enhancements, for example with
extrapolation methods (that reduce convergence time), under extensive memory
demanding scenarios.

References

1. Arvind Arasu, Jasmine Novak, Andrew Tomkins, and John Tomlin. Pagerank
computation and the structure of the web: Experiments and algorithms, 2001.

2. Krishna Bharat, Bay-Wei Chang, Monika Rauch Henzinger, and Matthias Ruhl.
Who links to whom: Mining linkage between web sites. In Proc. of the IEEE Intl.
Conf. on Data Mining, pages 51–58, 2001.

3. Sergey Brin, Rajeev Motwani, Lawrence Page, and Terry Winograd. What can
you do with a web in your pocket? Data Engineering Bulletin, 21(2):37–47, 1998.

4. Andrei Z. Broder, Ronny Lempel, Farzin Maghoul, and Jan Pedersen. Efficient
pagerank approximation via graph aggregation. In Proc. of the 13th International
World Wide Web Conference, pages 484–485, 2004.

5. Yen-Yu Chen, Qingqing Gan, and Torsten Suel. I/o-efficient techniques for com-
puting pagerank, 2002.

6. Junghoo Cho and Hector Garcia-Molina. The evolution of the web and implica-
tions for an incremental crawler. In Proceedings of the Twenty-sixth International
Conference on Very Large Databases, 2000.

7. Nadav Eiron, Kevin S. McCurley, and John A. Tomlin. Ranking the web frontier.
In Proc. of the 13th Intl. Conf. on the World Wide Web, pages 309–318, 2004.

8. David Gleich, Leonid Zhukov, and Pavel Berkhin. Fast parallel PageRank: A linear
system approach. Technical report, Yahoo! Research Labs, 2004.

9. Taher H. Haveliwala. Efficient computation of PageRank. Technical Report 1999-
31, Stanford Digital Library Technologies Project, 1999.

10. Sepandar Kamvar, Taher Haveliwala, Christopher Manning, and Gene Golub. Ex-
ploiting the block structure of the web for computing PageRank. Technical report,
Stanford University, 2003.

11. Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and Gene H.
Golub. Extrapolation methods for accelerating PageRank computations. In Proc.
of the 12th Intl. Conf. on the World Wide Web, pages 261–270, 2003.

12. Sung Jin Kim and Sang Ho Lee. An improved computation of the PageRank
algorithm. In Proc. of the European Conference on Information Retrieval (ECIR),
pages 73–85, 2002.

13. D. P. Koester, S. Ranka, and G. C. Fox. A parallel gauss-seidel algorithm for sparse
power system matrices. In Proc. of the ACM/IEEE Conf. on Supercomputing,
pages 184–193, 1994.

14. Amy N. Langville and Carl D. Meyer. Deeper inside PageRank, 2004.
15. Chris P. Lee, Gene H. Golub, and Stefanos A. Zenios. A fast two-stage algorithm

for computing PageRank. Technical report, Stanford University, 2003.
16. Bundit Manaskasemsak and Arnon Rungsawang. Parallel PageRank computation

on a gigabit pc cluster. In Proceedings of the 18th International Conference on
Advanced Information Networking and Application (AINA’04), 2004.

17. Netcraft. Web server survey, 2004.
18. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank

citation ranking: Bringing order to the web. Technical report, Stanford Digital
Library Technologies Project, 1998.

19. Karthikeyan Sankaralingam, Simha Sethumadhavan, and James C. Browne. Dis-
tributed pagerank for p2p systems. In Proc. of the 12th IEEE Intl. Symp. on High
Performance Distributed Computing (HPDC), page 58, 2003.

20. Taher H. Haveliwala Sepandar D. Kamvar and Gene H. Golub. Adaptive methods
for the computation of PageRank. Technical report, Stanford University, 2003.

21. Shu-Ming Shi, Jin Yu, Guang-Wen Yang, and Ding-Xing Wang. Distributed page
ranking in structured p2p networks. In Proceedings of the 2003 International Con-
ference on Parallel Processing (ICPP’03), pages 179–186, 2003.

22. Taher H. Haveliwala et al. 2001 Crawl of the WebBase project.
23. Yuan Wang and David J. DeWitt. Computing PageRank in a distributed internet

search system. In Proceedings of the 30th VLDB Conference, 2004.
24. Jie Wu and Karl Aberer. Using SiteRank for P2P Web Retrieval, March 2004.

