
Parallel Computing 32 (2006) 415–440

www.elsevier.com/locate/parco
Efficient parallel LAN/WAN algorithms for optimization.
The MALLBA project

E. Alba c,*, F. Almeida b, M. Blesa a, C. Cotta c, M. Dı́az c, I. Dorta b, J. Gabarró a,
C. León b, G. Luque c, J. Petit a, C. Rodrı́guez b, A. Rojas b, F. Xhafa a

a ALBCOM, LSI, Universitat Politècnica de Catalunya, Campus Nord X, 08034 Barcelona, Spain
b EIOC, Universidad de La Laguna, Edificio Fı́sica/Matemáticas, 38271 La Laguna, Spain

c Dpto. de Lenguajes y Ciencias de la Computacion, LCC, Universidad de Málaga, E.T.S.I. Informática,

Campus de Teatinos s/n, 29071 Málaga, Spain

Received 15 December 2004; received in revised form 25 September 2005; accepted 30 June 2006
Abstract

The MALLBA project tackles the resolution of combinatorial optimization problems using generic algorithmic skeletons
implemented in C++. A skeleton in the MALLBA library implements an optimization method in one of the three families of
generic optimization techniques offered: exact, heuristic and hybrid. Moreover, for each of those methods, MALLBA provides
three different implementations: sequential, parallel for Local Area Networks, and parallel for Wide Area Networks. This
paper introduces the architecture of the MALLBA library, details some of the implemented skeletons, and offers computational
results for some classical optimization problems to show the viability of our library. Among other conclusions, we claim that
the design used to develop the optimization techniques included in the library is generic and efficient at the same time.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Combinatorial optimization; Software engineering; MALLBA library; Exact techniques; Metaheuristics; Hybridization; Local
and wide area implementations; Parallel algorithms
1. Introduction

Combinatorial optimization problems arise naturally in many scientific areas such as Control Theory,
Operations Research, Biology, Telecommunications and Computer Science. The MALLBA project is an effort
to develop an integrated library of skeletons for combinatorial optimization including exact, heuristic and
hybrid techniques. Sequential and parallel execution environments are supported in a user-friendly and, at
the same time, efficient manner. Concerning parallel environments, both Local Area Networks (LANs) of
workstations and Wide Area Networks (WANs) are considered.

Due to the growing park of available computers in the Internet, we include in our library the new scenario
of WAN computing, in contrast to the traditional libraries targeted to parallel LAN environments. The WAN
0167-8191/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2006.06.007

* Corresponding author.
E-mail address: eat@lcc.uma.es (E. Alba).

mailto:eat@lcc.uma.es

416 E. Alba et al. / Parallel Computing 32 (2006) 415–440
environments have some characteristics different from LAN ones. The main features of WAN networks are:
higher communication overhead, heterogeneity, unstable behavior of the links, security restrictions, and fre-
quent faulty scenarios.

The three main features to highlight in the MALLBA library are the integration of all the skeletons under the
same design principles, the facility to switch from sequential to parallel environments, and the cooperation
among skeletons to provide new powerful hybrid skeletons.

In this work we describe the design, implementation and evaluation of a project that accomplishes all these
goals. The resulting set of software techniques and numerical studies account for the results of the MALLBA

project. The contributions of this paper are manifold. First, we test several algorithms provided by the MAL-

LBA project. Second, we want to find out the expected and actual outcomes of solving optimization problems in
LAN and WAN environments. Third, we are interested in showing significant results, and thus we include a
mixed set of algorithms and optimization problems showing some difficulties usually found in real-world
tasks. The current version of the MALLBA library works on clusters of PCs under Linux. However, from the
software point of view, the architecture is flexible and extensible since new skeletons can be added, alternative
communication layers can be used, etc. We refer the reader to [4] for a quick introduction into MALLBA.

Several tools offering parallel implementations for generic optimization techniques such as simulated
annealing, branch-and-bound or genetic algorithms have been proposed in the past (see, e.g. [22,37,38,46]).
Also, some existing frameworks, such as Local++, its successor EasyLocal++ [27], Bob++ [18], and the
IBM COIN open source project [34] provide sequential and parallel generic implementations for some exact,
heuristic and hybrid techniques (see [48] for a review). However, these frameworks and implementations do
not integrate several optimization techniques together, and they do not offer the possibility of both sequential
and parallel environments to coexist transparently together. Several frameworks, such as OpenBeagle [25] or
DREAM project [6] have similar goals, although they are mainly oriented to evolutionary computation. Paradi-

sEO [13] provides a more general framework for parallel metaheuristics and has an approach similar to the
library that we present in this paper. Other libraries are out of this scope; for example Sutherland [39] and
LEAP [23] are not parallel, while PISA [12] is too specific (multi-objective optimization).

To the best of our knowledge, there is no previous work considering all these optimization techniques and
problems and, at the same time, extending their analysis to LAN and WAN environments.

The outline of this work is the following. We first present the architecture of MALLBA (Section 2) and its
advantages for developing new algorithms and fast prototyping. In Sections 3–5 we provide working examples
plus numerical and time analysis of exact, heuristic and hybrid algorithms, respectively; they all follow the
basic MALLBA architecture for sequential, LAN and WAN platform execution. In Section 6 we summarize
our work and present some conclusions and possible future work. Finally, we have added two appendixes
to this paper, that list all the problems and pseudo-codes of the algorithms addressed in this study.

2. The MALLBA architecture

Concerning hardware, the MALLBA infrastructure is composed of computers and communication networks
from the Universities of Málaga (UMA), La Laguna (ULL) and Barcelona (UPC), all of them in Spain. These
three universities are connected through RedIRIS, the academic and scientific spanish computer network. This
network is managed by CSIC (Consejo Superior de Investigaciones Cientı́ficas, the Spanish High Council of
Scientific Research) that connects the main universities and research centers in Spain. RedIRIS is a WAN with
ATM technology (ATM accesses of 34/155 Mbps). The current version of the MALLBA library works on clus-
ters of PCs under Linux, which are located in each of the three participant universities.

Concerning software, all algorithms in the MALLBA library are implemented as software skeletons (similar to
strategy pattern [26]) with a common internal and public interface. A skeleton is an algorithmic unit that, in a
template-like manner, implements a generic algorithm. The algorithm will be made particular to solve a con-
crete problem by fulfilling the requirements specified in its interface. This permits fast prototyping and trans-
parent access to parallel platforms. In the MALLBA library, every skeleton implements a resolution technique
for optimization, taken from the fields of exact, heuristic and hybrid optimization.

All this software has been developed in C++. We chose this language because it provides a high-level ori-
ented-object set of services and, at the same time, it generates efficient executable files what is an important

E. Alba et al. / Parallel Computing 32 (2006) 415–440 417
issue in this library. The skeleton design in MALLBA is based on the separation of two concepts: the features of
the problem to be solved and the general resolution technique to be used. While the particular features related
to the problem must be given by the user, the technique and the knowledge needed to parallelize the execution
of the resolution technique is implemented in the skeleton itself, and is completely provided by the library.
Thus the user does not program neither the resolution technique nor its parallelization. It is very common that
the problem is represented by a complex function to be optimized and the details on how to manipulate ten-
tative solutions (e.g. merge, cut, or interpret parts of them). Basically, the resolution technique is the algorithm
defining the steps to proceed to the optimization of the problem. Almost every optimization technique exhibits
a traditional three stage process, namely: (1) generating initial solutions (2) an improvement loop and (3) test-
ing a stop condition. The way in which different skeletons do this work is really different and varied in the
actual spectrum of optimization research.

Skeletons are implemented as a set of required and provided C++ classes which represent object abstrac-
tions of the entities participating in the resolution technique (see Fig. 1a). The provided classes implement
internal aspects of the skeleton in a problem-independent way. We call this internal set of classes the Solver

part of the skeleton. In general, for each algorithmic technique several sequential resolution patterns are pro-
vided, all of them grouped in the class Solver_Seq (for example, the iterative and recursive patterns showed
in the figure). The parallel patterns are grouped in the classes Solver_Lan and Solver_Wan. In the figure
are depicted resolutions patterns which uses the Master–Slave paradigm, independent runs and replicate data.
Those classes are completely implemented and provided in the respective skeletons. The required classes spec-
ify information related to the problem. For the whole skeleton to work, it is required that these classes get
completed with problem-dependent information. This conceptual separation allows us to define required clas-
ses with a fixed interface but without an implementation, so that provided classes can use required classes in a
generic way. The fulfillment of the required classes would make the skeleton applicable to the problem
specified.

The fact that the user of a MALLBA skeleton only needs to implement the particular features of the problem
to be solved, i.e., to fill in the required classes with an specific problem-dependent implementation, helps the
creation of new programs with less effort.

Next, we will introduce and discuss the external interface of a skeleton. Two kinds of users work with this
interface: the user who wants to instantiate a new problem, and the user who wants to implement a new skel-
eton and incorporate it to the MALLBA library. Also in the next subsections, we will discuss the communication
and the hybridization interfaces. The aim is to explain firstly what a final user must consider, then what a skel-
eton programmer needs to know about the parallel issues and, finally, how to merge skeletons to yield new
optimization procedures. Descriptions from these different points of view are needed since the potential users
and researchers using the library will have a different level of interaction with our software (see Fig. 1b),
depending on his goal (e.g., to instantiate a problem, to change the communication layer, or to create new
skeletons for new techniques).
2.1. Skeleton interfaces

From the user’s point of view, two major aspects must be considered: the problem to be solved, and the
resolution technique to be used. The user will be responsible for adequately describing the former. As to
the latter, rather complete descriptions are provided by the library. The user addresses these two aspects by
selecting the skeleton and implementing its problem-dependent aspects. Later, since LAN and WAN imple-
mentations exist, the user will be able to execute the resulting program on sequential or parallel environments.
Notice however that the same unique description made by the user will be used in any of the environments.
Fig. 1b shows the interaction of different kinds of users (namely, final user, programmer and internal filler)
with the different parts conforming a skeleton. Although there are three profiles, this does not mean that it
is needed three different users to use MALLBA library. The same user can take care of the tasks at any profile
level.

MALLBA already includes a large set of solvers ready for utilization. Extending them is quite direct, and cre-
ating new solvers is conceptually guided by the class hierarchy design. Parts of existing skeletons can be easily

Fig. 1. MALLBA skeleton: structure and interaction.

AlgorithmicTechnique.hh

Required

Provided

Problem

Solution

Specific
Classes

Setup

Solver

Problem methods

Solution methods

Specific Classes
methods

AlgorithmicTechnique.req.cc

Main.cc

Instance of
Solver

AlgorithmicTechnique.pro.cc

Solver::run()

Solver_Seq

Solver_Lan

Solver_Wan

Solver_Seq_Recursive Solver_Seq_Iterative

Solver_Lan_Master_Slave Solver_Lan_Independen_Runs Solver_Lan_Replicated

(a) Architecture of a MALLBA skeleton. The horizontal line stands for the separation between the C++ classes the user must fulfill (upper
part) and the classes that the skeleton already includes in a fully operational form (lower part).

Skeleton
Programmer

Final
User

Execute

Skeleton.pro.cc

Auxiliar
Libraries

Skeleton.hh

Skeleton.req.cc

Skeleton
filler

MainSkeleton.cfg +

(b) Interaction of the different user types and the files conforming a MALLBA skeleton. Usually, the skeleton filler and the final user are the
same.

418 E. Alba et al. / Parallel Computing 32 (2006) 415–440
reused to construct new ones. Each skeleton could have its own configuration file to avoid recompilation when
parameters change.

Apart from some illustrative examples, MALLBA does not contain any complete implementation of specific
problems. On the contrary, it provides the generic code the user has to customize. In this way, a single imple-

E. Alba et al. / Parallel Computing 32 (2006) 415–440 419
mentation – abstract yet efficient – can be reutilized in different contexts. The user do not need to have a deep
knowledge about parallelism or distributed computing; these aspects are already included in the library. Let us
get deeper in our understanding of the provided and required C++ classes conforming a skeleton.

Provided classes: they implement internal aspects of the skeleton in a problem-independent way. The most
important provided classes are Solver (the algorithm) and SetUpParams (setup parameters). Provided clas-
ses are implemented in the files having the .pro.cc extension (see Fig. 1b).

Required classes: they specify information related to the problem. Each skeleton includes the Problem and
Solution required classes that encapsulate the problem-dependent entities needed by the solver method.
Depending on the skeleton other classes may be required. Required classes are implemented in the files having
the .req.cc extension (see Fig. 1b).

2.2. Communication interface

Providing a parallel platform has been one of the central objectives in MALLBA. Local networks of comput-
ers are nowadays a very cheap and popular choice in laboratories and departments. Moreover, the available
computational power of Internet is allowing the interconnection of these local networks, offering a plethora of
possibilities for exploiting these resources.

To this end (i.e., using MALLBA onto a network of computers), it is necessary to have a communication
mechanism allowing executing skeletons both in LAN and WAN. Since these skeletons are implemented in
a high-level language, it is desirable for this communication mechanism to be also high-level; besides, some
other network services could be needed in the future would be needed such as the management of parallel
processes.

The needed set of services is generically termed middleware, and it is responsible for all basic communica-
tion facilities. Several steps were followed to construct this system: first, related existing systems were studied
and evaluated; then, a service proposal was elaborated; finally, the middleware was implemented in C++.

The detailed review of existing tools included both systems based in the message-passing paradigm and sys-
tems for the execution and management of distributed objects and programs. We evaluated PVM, MPI, Java
RMI, CORBA and Globus, as well as some other specific libraries [1]. Our main conclusion was the need for
our own system, adapted to the necessities of our library, but based on an efficient standard, capable of being
valid in the future.

Meeting all these criteria can be, almost exclusively, possible by using MPI as the base for developing a
communication library. Efficiency was a major goal in this work, and hence this decision; besides, MPI (in
both MPICH and LAM/MPI, the two well-known implementations of the standard) is becoming increasingly
popular, and has been successfully integrated in new promising systems such as Globus.

Although there is no theoretical drawback in using MPI directly, we developed a light middleware layer
termed NetStream (see Fig. 2). With this tool, a MALLBA programmer can avoid the large list of parameters
and interact with the network in the form of stream modificators, that allows advanced input/output
Skeleton

NetStream

MPI

Send(msg)
Receive(msg)

Skeleton

NetStream

MPI

Send(msg)

Receive(msg)

NETWORK

Fig. 2. NetStream communication layer on top of MPI.

420 E. Alba et al. / Parallel Computing 32 (2006) 415–440
operations to look like basic data exchanges with streams. By using << and >> operators the programmer can
develop LAN and WAN skeletons by feeding data and net operations in a easy way.

Then, NetStream allows skeletons exchanging data structures efficiently, keeping a high abstraction level
and ease of use. For this latter purpose, the number of parameters in the resulting methods has been mini-
mized, and a large number of services has been implemented. These services can be classified into two groups:
basic services, and advanced services. Among the basic ones we can mention:

• Send-reception of primitive data types: int, double, char, strings, etc. both in raw format and packed
(for efficiency purposes when used on a WAN). This can be done using input/output streams from/to
the network.

• Synchronization services: barriers, broadcasts, checking for pending messages, etc. As in the C++ standard,
these services are available by means of manipulators, i.e., methods that alter the behavior of a stream,
feeding it as if they were data.

• Basic management of parallel processes: querying a process ID or the number of processes, establishing and
retrieving the IDs of processes at the ends of a stream, etc.

• Miscellaneous: starting and stopping the system (using static class methods (singleton pattern [26]) rather
than instances methods), etc.

Among the advanced services implemented we can cite the following:

• Management of groups of processes: this allows skeletons to be arranged in parallel optimization regions.
Available methods allow manipulating communicators and intercommunicators between groups, in the
MPI sense. This organization could be important for certain distributed algorithms, especially in the case
of hybrid algorithms.

• Services to acquire the on-line state of the network: this C++ methods are provided to allow working with a
model of both communication links and the state of machines involved in the execution, all this under a real
time basis, during the run of a skeleton. Basically, these services endow the skeleton programmer with C++
methods to check the delays in any link of the LAN or WAN for different packet sizes, plus the error rate
(noise) in the link, and the load of a workstation in the net. Furthermore, independent clients in C, C++
and Java have been developed in addition to the mentioned one in order to make NetStream a stand
alone communication layer for optimization and other applications at a minimum complexity and
overhead.

All these services provide high-level programming and will ease taking on-line decisions in WAN algo-
rithms, although we are still at the stage of developing ‘‘intelligent’’ algorithms that use this information to
perform a more efficient search.

2.3. Hybridization interface

In this section we discuss the mechanisms available in MALLBA to foster combinations of skeletons in the
quest for more efficient and accurate solvers. This raises the question of constructing efficient hybrid algo-

rithms. In its broadest sense, hybridization [20] refers to the inclusion of problem-dependent knowledge in
a general search algorithm in one of two ways [16]:

• Strong hybridization: problem knowledge is included as specific non-conventional problem-dependent rep-
resentations and/or operators.

• Weak hybridization: several algorithms are combined in some manner to yield the new hybrid algorithm.

The term ‘‘hybridization’’ has been used with diverse meanings in different contexts. Here, we refer to the
combination of different search algorithms (the so-called weak hybridization). As it has been shown in theory
[49] and practice [20], hybridization is an essential mechanism for obtaining effective optimization algorithms
for specific domains. For this reason, there exist in MALLBA several tools for building such hybrid skeletons.

E. Alba et al. / Parallel Computing 32 (2006) 415–440 421
This contrasts with other optimization libraries that let the programmer alone when building new algorithms
from existing ones.

Due to the fact that the algorithmic skeletons will be reutilized and combined both by MALLBA end-users
and by specialists, it is necessary to specify in a standard and unified fashion the way these skeletons can inter-
act. For this reason, we propose the notion of a skeleton state. The state of skeleton is its connection point with
the environment. By accessing this state, one can inspect the evolution of the search, and take decisions
regarding future actions of the skeleton. For this latter reason, it is mandatory to have not only the means
for inspecting the state, but also for modifying it on the fly. Thus, either a user or another skeleton can control
the future direction of the search. This is done with independence of the actual implementation of the skeleton,
a major advantage in any large-scale project.

The advantages of using a state is that combining skeletons has a low cost, despite the fact that uniformly
defining the state is not trivial, and constitutes an open research topic [19]. Our proposal is articulated around
the two basic classes we mentioned before: StateVariable and StateCenter. The StateVariable

class allows defining and manipulating any information element within the algorithm skeleton. The latter is
the connection point that provides access to the state itself.

On the basis of these classes, constructing a hybrid algorithm is very easy: one has to simply specify the
behavior pattern by means of the appropriate manipulation of the states of the skeletons being combined.
As an example of the flexibility of this model we have developed meta-algorithms that define the way in which
n component skeletons interact each other. One simply has to specify the precise algorithm involved to
instance this meta-algorithm to a concrete working hybrid skeleton; the behavior pattern is the same no matter
which these component algorithms are. This philosophy of ‘‘make once instance many’’ can serve to produce
different algorithms with the same underlying search pattern at a minimum cost.

3. Exact optimization techniques

This section is devoted to explain the structure of the exact skeletons provided in MALLBA, namely branch-
and-bound and dynamic programming. Branch-and-bound and dynamic programming are two major enu-
merative methods used to solve combinatorial optimization problems. Both methods devise intensive search-
ing on the state space representation and are, usually, very time consuming. We introduce the techniques using
the problem definition established in Appendix A. Examples using the 0–1 Knapsack problem and the single
resource allocation problem have been provided.

3.1. Branch-and-bound

During the branch-and-bound [32] computation, subproblems are continuously generated and tested. Given
a subproblem Pi, it can be decomposed into Pi1,Pi2, . . . ,Pik by a branching operation where Si ¼

Sk
j¼1Sij.

Thus any feasible solution r 2 Si belongs to some Sij and conversely any r 2 Sij belongs to Si. Let Q denote
the set of subproblems currently generated. A subproblem Pi 2 Q that is neither decomposed or tested yet is
called alive. The set of alive subproblems is denoted by L. For each tested subproblem in Q its lower bound

and upper bound are computed. The greatest lower bound obtained so far is called the best solution value

and denoted by bs. The solution realizing bs is called the best solution and is stored in T. Algorithm 1 in
Appendix B shows the pseudo-code of the branch-and-bound algorithm for a maximization problem.

Fig. 3 shows the UML diagram of the classes that implement the branch-and-bound skeleton. The only
required classes specific of this paradigm is the one which represents the subproblems described in the above
paragraphs. Two different parallel implementations will be presented in the next subsection.

3.2. Dynamic programming

The underlying idea of dynamic programming (DP) [33] is to avoid duplicate calculations, usually by keep-
ing a table of known results that fills up as the subproblems are solved. Branch-and-bound is a top-down
method, when a problem is solved by branch-and-bound, it is divided into smaller and smaller subproblems
as the algorithm progress. Dynamic programming on the other hand is a bottom-up technique. Usually it

Solution Problem SetUpParams SubProblem
+lower_bound()
+upper_bound()
+branch()

«interface»
BnBSolver

Solver_Seq Solver_Lan Solver_Wan

Solver_Centralized Solver_Distributed

Fig. 3. UML diagram of the Branch-and-Bound skeleton.

422 E. Alba et al. / Parallel Computing 32 (2006) 415–440
starts with the smallest, and hence the simplest subproblems. By combining their solutions, the answers to sub-
problems of increasing size are obtained until finally the solution of the original instance is computed.
Dynamic programming is an algorithm design method that can be used when the solution to a problem
can be viewed as the result of a sequence of decisions. The method enumerates all decision sequences and pick
out the best. The time and space requirements may be prohibitive. Dynamic programming often drastically
reduces the amount of enumeration by avoiding the consideration of some decision sequences that cannot pos-
sibly be optimal. An optimal sequence of decisions is arrived by making explicit appeal to the principle of opti-
mality. First, every subproblem that can be solved involving one decision {P11, . . . ,P1n(1)} is generated. Then
the set of subproblems comprising two decisions {P21, . . . ,P2n(2)} is generated. To obtain the best solutions of
the subproblems involving two decisions, is necessary the consideration of every feasible combination of sub-
problems involving one decision and to take the best decision on any subproblem. This approach admits a
general recurrence formula where the optimal values for subproblems involving i decisions are computed in
terms of subproblems involving i � 1 decisions. Algorithm 2 in Appendix B shows a pseudo-code for a
dynamic programming algorithm.

3.2.1. Parallel implementations

Concerning the branch-and-bound skeleton, two different parallel implementations are provided both of
them based on the Master–Slave paradigm: one centralized and another distributed.

3.2.1.1. Centralized Master–Slave model. The Master has a local queue to store the generated subproblems.
The Master extracts a subproblem from its queue and sends it to the first idle slave. The slave receives prob-
lems, best solutions, or an ending signal. If it receives a best solution value which improves the current one,
then an update operation is performed. When a slave receives a problem, it calculates the new lower and the
upper bounds. If the problem is not solved, then the slave branches it and sends the newly generated subprob-
lems to the Master.

3.2.1.2. Distributed Master–Slave model. The Master sends the problems to the first idle slave and receives the
slave request. The Master verifies the best value of the objective function has not been changed, and checks if
there are free slaves to help in the search task. In this case it sends the number of idles slaves to the sender.
When the number of idle slaves is equal to the initial value of slaves the search process finish. On the other
hand, a slave works bounding the problem received. New subproblems are generated calling to the branch
method. The slave asks for help to the master. If no free slaves are provided, the slave continues working
locally. In other case, it removes subproblems from its local queue and sends them directly to other slave.
The algorithm described is studied deeply in [21].

E. Alba et al. / Parallel Computing 32 (2006) 415–440 423
Concerning the dynamic programming skeleton, the MALLBA library provides a parallelization for multi-
stage problems. The parallelization is obtained by assigning the computation of a column on the dynamic pro-
gramming table (a stage) to a different processor to perform the computation in parallel. Since there are
dependencies among consecutive stages, the parallel execution follows a pipeline scheme where the processors
are activated as the computation in the former stages proceeds. The evaluation of a state by a processor
involves the reception of information computed in previous processors in the pipe. After a state has been com-
puted, it is sent to the next processor in the pipe. Typically, in a dynamic programming computation the num-
ber of stages involved is in the order of hundreds or even thousands. However, in practice, the number of
physical processors available is not so big. Several strategies have been proposed to distribute the set of stages
among the current set of processors [29]. The MALLBA engine for the parallel dynamic programming skeleton
develops a cyclic assignment of the stages to the processors following a round robin scheme. The size of the
buffer can be used to tune the application according to the characteristics of the network platform. A known
drawback of the dynamic programming technique arises when the size of the problem is increased. The result-
ing algorithm may be very time and space consuming. The parallel approximation used not only reduces the
running time of the sequential algorithm but it distributes the table amongst the set of processors also. This
contributes to increase the size of the problem to be solved.

3.2.2. Instantiation examples and results

3.2.2.1. Branch-and-bound for the 0–1 Knapsack problem. The algorithm for the resolution of the classic Knap-
sack 0/1 problem described in Appendix A has been implemented using the branch-and-bound skeleton. In
this section we analyze the experimental behavior for this algorithm on several sets of randomly generated test
problems. Since the difficulty of such problems is affected by the correlation between profits and weights, we
considered the strongly correlated ones. The experiments have been done on an heterogeneous cluster of PCs,
which was configured with four 800 MHz AMD Duron Processors, seven 500 MHz AMD-K6 3D processors,
256 MB of memory each. The software used was Debian Linux version 2.2.19 (herbert@gondolin), the C++
compiler was GNU gcc version 2.7.2.3 and the MPICH version was 1.2.0.

Table 1 shows the speedup results of 10 executions of a randomly generated problem instance of size 1000.
The first column contains the number of processors. The second column shows the average time in seconds.
The column labeled Speedup-Av presents the speedup for the average times. The third and sixth columns
give the minimum times (seconds) and the associated speedup, whereas the fourth and seventh columns show
the maximum. The reason for the limited performance for a two processor system is that the Master/Slave
paradigm is not suitable for a scenario where there is only a single slave. In this case, one of the processors
is the Master and the others are the workers and furthermore, communications and work are not overlapped.
Notice that there is no increase of the speed up with more than three processors, this is due to the problem has
not enough grain and the inclusion of processors do not help to increase the performance only add overhead
to it.

3.2.2.2. Dynamic programming for the resource allocation problem. We have instantiated the dynamic program-
ming MALLBA skeleton for the single resource allocation problem described in Appendix A. We analyze the
performance of the skeleton on a series of randomly generated problems. The serial algorithm considers
Table 1
Linux-PC cluster. Speedups for 10 executions of an instance of the 0/1 Knapsack problem randomly generated. The number of objects is
1000. The pure sequential time is 356.54

Procs Average Min Max SpeedUP-Av SpeedUp-Max SpeedUp-Min

2 686.86 680.88 712.57 0.52 0.52 0.5
3 223.86 186.62 284.02 1.59 1.91 1.26
4 166.11 147.94 192.67 2.15 2.41 1.85
5 171.91 151.48 185.03 2.07 2.35 1.93
6 165.79 140.06 205.79 2.15 2.55 1.73
7 158.16 146.15 174.89 2.25 2.44 2.04

Table 2
Results for the resource allocation problem using the DP skeleton, over a network of 13 PCs (4 AMD K6 750 MHz and 9 AMD K6
500 MHz) connected through a Fast Ethernet network

Stages Seq. time (s) on fastest machine SpeedUp

States 2 procs. 750 MHz 4 procs. 750 MHz 4 procs. 750 MHz 4 procs. 750 MHz

4 procs. 500 MHz 9 procs. 500 MHz

1000–2000 457.79 1.97 3.92 4.12 6.01
1000–2500 714.87 1.98 3.94 4.30 6.02
1000–4000 1828.22 1.99 3.96 4.31 6.41
1000–5000 2854.04 1.99 3.97 4.24 6.42
1000–7000 5594.74 1.99 3.97 4.22 6.41
1000–10,000 11,422.60 1.98 3.97 4.18 6.38

424 E. Alba et al. / Parallel Computing 32 (2006) 415–440
instances with a fixed number of tasks (N = 1000) and different units of resources (M = 2000,
2500,4000,5000, 7000, 10,000). Table 2 shows the speedup obtained from an instantiation of the dynamic pro-
gramming skeleton for the resource allocation problem. We consider an heterogeneous cluster of 13 PCs, four
of the processors are faster than the others. The parallel code shows a good scalability until four processors.
Between four and eight processors performance decreases due to the slower machines introduced, however, it
remains increasing when introducing more processors.

4. Heuristic optimization techniques

In this section we explain some heuristic techniques included in the MALLBA library. We consider two dif-
ferent families of heuristics: local search based methods and population based methods. These two families
cover most of the spectrum of heuristics existing nowadays.

4.1. LS-based heuristic techniques

We address now the design and implementation of skeletons for several local search heuristics [41].
Local search (LS) heuristics make use of a basic local search method that iteratively improve a feasible
solution by applying elementary perturbations or moves to it. In order to apply local search heuristics
to a combinatorial optimization problem P with set of feasible solutions S and cost function f (see
Appendix A for a formal definition), any feasible solution s 2 S is associated with a set of neighborhood
solutions N(s). A solution s 0 is in the neighborhood of solution s if it can be obtained from s by applying
a move to it. For example, if the solution is a permutation and the move the swap of two items in the
permutation then the neighborhood of a permutation is the set of permutations obtained from it by swap-
ping any two items. Note that, for efficiency reasons, the neighborhood of a solution s is usually main-
tained as the set of all elementary moves applied to s. The basic local search procedure can be
described as in Algorithm 3 in Appendix B. Observe that this is a generic algorithm that must be
particularized.

Starting from the basic local search, different local search heuristics have been defined by introducing other
features such as acceptance criteria for a candidate solution, stopping condition for the procedure, criteria to

avoid cycling between local optima, etc.
We consider the following local search heuristics: hill climbing, metropolis, simulated annealing (SA) and

tabu search (TS). Notice that the first three heuristics generalize the local search method by introducing new
acceptance criteria while the latter heuristic introduces criteria to avoid falling into local optima as well as new
stopping condition criteria.

4.1.1. Hill climbing
Hill climbing heuristic is the simplest local search method. It only accepts solutions that improve the cost

function. The heuristic ends in a locally optimal solution.

E. Alba et al. / Parallel Computing 32 (2006) 415–440 425
4.1.2. Metropolis

This local search heuristic was proposed by Metropolis et al. [40]. The basic idea is to accept, additionally,
with low probability, solutions that worsen the objective function. To this end, the heuristic is parameterized
by a temperature t where a move producing a gain d = f(s 0) � f(s) in the cost function is accepted with prob-
ability min{1, exp(�d/t)}. Observe that hill climbing is a particular case of Metropolis by setting t = 0.

4.1.3. Simulated annealing

Simulated annealing (SA), proposed by Kirkpatrick et al. [36], is a generalization of the Metropolis heuris-
tic. Indeed, simulated annealing consists of a sequence of executions of Metropolis with a progressive decre-
ment of the temperature starting from a high temperature, where almost any move is accepted, to a low
temperature, where the search resembles hill climbing. In fact, it can be seen as a hill-climber with an internal
mechanism to escape local optima (see a pseudo-code in Algorithm 4 in Appendix B). In SA, the solution s 0 is
accepted as the new current solution if d 6 0 holds, where d = f(s 0) � f(s). To allow escaping from a local opti-
mum, moves that increase the energy function are accepted with a decreasing probability exp(�d/T) if d > 0,
where T is a parameter called the ‘‘temperature’’. The decreasing values of T are controlled by a cooling sche-

dule, which specifies the temperature values at each stage of the algorithm, what represents an important deci-
sion for its application (a typical option is to use a proportional method, like Tk = a Æ Tk�1). Simulated
annealing usually gives better results in practice, but uses to be very slow. The most striking difficulty in apply-
ing SA is to choose and tune its parameters such as initial and final temperature, decrement of the temperature
(cooling schedule), equilibrium detection, etc.

4.1.4. Tabu search

The tabu search heuristic [28] maintains some historical information related to the search process, that is,
history on already visited solutions. This information is later used to guide the search in order to avoid cycling.
Once a move is applied to a solution, it is considered tabu for some time, that means, it cannot be applied
again during the exploration process for that time, unless it satisfies certain aspiration condition. Hence, a list
of already applied moves, called the tabu list, is kept; before applying a move, the algorithm checks whether
the move is tabu or not. Typically there are two kinds of tabu lists: the first, called long term memory, main-
tains history on the whole exploration process and, the second, called short term memory, maintains the his-
tory on most recently visited solutions. Additionally, the tabu search method incorporates two other features:
intensification and diversification. Intensification is used to concentrate the search in regions of the solution
space when there is evidence that the region contains good solutions and the latter is used to escape from local
optima, that is, when the search gets trapped in a local optimum.

Regarding the stopping conditions, apart from standard stopping conditions, tabu search introduces other
criteria based on the neighborhood structure. Note that by forbidding tabu moves from being applied, the
neighborhood structure changes dynamically in the course of exploration process. Hence, we may derive other
related stopping conditions. Fig. 4 depicts the UML diagram of the tabu search skeleton. The specific classes
of this algorithm are Movement and TabuStorage, which were described in the precedent paragraphs. Also,
there are several specializations of the Solver_Lan class which will be presented in Section 4.3.

4.2. Population-based heuristic techniques

Apart from LS-based heuristics, the MALLBA library also includes population-based heuristics. These tech-
niques are inspired by the genetic mechanisms of natural species evolution, including the important concept of
population. Three main natural processes are performed in a population to evolve: selection, mutation, and
recombination of its individuals.

4.2.1. Evolutionary algorithms

Evolutionary algorithms (broadly called EAs) are stochastic search techniques that have been successfully
applied in many real and complex applications (epistatic, multi-modal, multi-objective and highly constrained
problems). Their success in solving difficult optimization tasks has promoted the research in the field known as
evolutionary computing (EC) [7]. An EA is an iterative technique that applies stochastic operators on a pool of

Solver_Lan Solver_Wan

Solver_Lan_IR

Solver_Seq

Solver_Lan_IRAS Solver_Lan_MSNPSolver_Lan_MS

SetUpProblemSolution

Movement

TabuStorage

-End11 -End2*

NetStream

«interface»
TSSolver

Fig. 4. UML diagram of the Tabu Search skeleton.

426 E. Alba et al. / Parallel Computing 32 (2006) 415–440
individuals (the population) (see Algorithm 5). Every individual in the population is the encoded version of a
tentative solution. Initially, this population is generated randomly. An evaluation function associates a fitness
value to every individual indicating its suitability to the problem.

The MALLBA library also includes genetic algorithms (GAs) [31]. GAs are a very popular class of EAs. Tra-
ditionally, GAs are associated to the use of a binary representation, but nowadays GAs use other types of
representations too. A GA usually applies a recombination operator on two solutions, plus a mutation oper-
ator that randomly modifies the individual contents to promote diversity.

A CHC (Cross generational, elitist selection, Heterogeneous recombination and Cataclysmic mutation) [24]
is a non-traditional GA which combines a conservative selection strategy (that always preserves the best indi-
viduals found so far) with a highly disruptive recombination (called HUX) that produces offsprings that are
maximally different from their two parents. The traditional thought of preferring a recombination operator
with a low disrupting properties may not hold when such a conservative selection strategy is used. On the con-
trary, certain highly disruptive crossover operator provide more effective search in many problems, which rep-
resents the core idea behind the CHC search technique (see Algorithm 6 in Appendix B). This algorithm
introduce a bias against mating individuals who are too similar (incest prevention). Mutation is not performed,
instead, a restart process re-introduces diversity whenever convergence is detected.

Another EA family we have studied in this work is an evolution strategy (ES, see Algorithm 7) [44]. This
algorithm is very well suited for continuous optimization. In ES, the individual is made of the objective vari-
ables plus some other parameters guiding the search. Thus, a ES facilitates a kind of self-adaption by evolving
the problem variables as well as the strategy parameters at the same time. Hence, the parameterization of an
ES is highly customizable.

4.3. Parallel implementations

Finding good solution to combinatorial optimization problems by local search heuristics usually requires a
considerable amount of computation time. Specifically, simulated annealing and tabu search are time

E. Alba et al. / Parallel Computing 32 (2006) 415–440 427
consuming heuristics; SA needs many iterations to converge to a good solution and TS needs extra time to
efficiently manage the tabu list as well as to intensify and diversify the search. Parallelism can help with this
respect, at least, in two directions: reducing the computation time and providing a better exploration of solu-
tion space.

4.3.1. Parallelization of LS-based heuristics

Local search heuristics can be parallelized in different ways [17], usually classified in: (a) low-level parallel-
ism, that is, parallelization of computation within an iteration of the search, for example computing in parallel
the cost function. This kind of parallelism aims to speed up the computations but the search process, and con-
sequently, the solution found is as in the sequential case; (b) domain decomposition, that is, we try to split the
original problem or its subproblems into smaller problems solved in parallel; for example, if we could partition
the neighborhood of a solution into different parts then exploring them could be done in parallel by different
processors; (c) multi-thread searches (or independent runs), that is, we compute in parallel the same task by
different threads; for example, we may explore the same neighborhood by different threads and since the explo-
ration is not deterministic, we are exploring different search paths leading to a better solution. Next, we may
consider different degrees of synchronism/asynchronism yielding to other possibilities of performing the par-
allel computations.

Different parallel models can be considered to accomplish the parallel strategies mentioned above. We have
considered two basic models: independent runs (IR) and Master–Slave (MS) and two implementations for
each of them, namely, IR and IR with Autonomous Strategies, and MS and MS with neighborhood partition
as explained next. In Fig. 4 we depicted how those parallel implementations of the core of the tabu search
method are represented by classes and how they relate each other.

4.3.1.1. Independent runs model. The independent runs model (IR) consists of simultaneous and independent
executions of the same program. In this model, there is a processor doing the coordination task that consists
in, at the beginning, sending the problem instance as well as the values for the parameters to the rest of pro-
cessors and receiving the results upon termination of all the processors execution. At the end, the coordinator
processor computes the best solution and may show other relevant statistics. In this model, each processor
runs the same instance of the program on the same input data and the communication time is almost irrele-
vant. Observe that this model makes sense as far as the program is non-deterministic, which is precisely the
case of meta-heuristic implementations that take random decisions. Note that running the same implementa-
tion in different processors usually leads to exploring different areas of the solution space via different search
paths. In general, running the parallel IR implementation on p processors is essentially equivalent to running
the program p times sequentially since the overhead due to the parallelism (distributing the input and recol-
lecting the results) is very small.

4.3.1.2. Independent runs with autonomous strategies. The independent runs with autonomous strategies model
(IRAS) is a generalization of the IR. In the IRAS model, a processor is given, additionally, a strategy to be
used for its own search. A strategy consists of an initial solution and values for parameters that control the
algorithm. Now, the coordinator processor, at the beginning, sends to any processor a strategy and the prob-
lem instance and receives the results upon termination of all the processors execution. Again, at the end, the
coordinator processor computes the best solution, the best corresponding strategy and may show other rele-
vant statistics.

4.3.1.3. Master–Slave model. In the Master–Slave model (MS) there are two distinguished types of processors:
a master processor and slave processors. The control is performed by the master and the slaves are subordi-
nated to it. The master processor spawns slaves processors, initializes them, assigns subtasks and collects their
results. Then, it computes a result from the results obtained by the slaves and uses it for its own work and so
on. In our case, the master processor runs the main algorithm and uses slaves to choose the best movement
that leads to the best solution in the neighborhood of the current one. To this end, each slave processor
explores the neighborhood by its own and comes up with its best movement. Clearly, the task of exploring
the neighborhood in parallel makes sense as far as the neighborhood exploration is not deterministic.

428 E. Alba et al. / Parallel Computing 32 (2006) 415–440
4.3.1.4. Master Slave with neighborhood partition. The Master Slave with neighborhood partition model
(MSNP) is derived from the MS model by specifying the type of the task accomplished by the slave processors.
In contrast to the MS, in this model each processor explores just a portion of the neighborhood. Thus,
through this model, we can reduce the time needed to perform a complete neighborhood exploration.

4.3.2. Parallelization of population-based heuristics

Parallelism arise naturally when dealing with populations, since each of the individuals belonging to it is an
independent unit [14]. Due to this, the performance of population-based algorithms is specially improved
when running in parallel. Two parallelizing strategies are specially focused on population-based algorithms:
(1) parallelization of computation, in which the operations commonly applied to each of the individuals
are performed in parallel; and (2) parallelization of population, in which the population is split in different
parts that can be simply exchanged or evolve separately and be joined later. MALLBA implements two well-
known models applying this last strategy: the split and the island model.

4.3.2.1. Split model. In the split model the master process does not evolve a population through a generational
loop but perform successive send/receive operations of parts of the population to its slaves. The slave pro-
cesses receive their part of the population from a unique origin (the master), evolve it through a generational
loop and after a few loops they send the resulting population back to the master. The master builds the next
population from the parts received from the slaves.

4.3.2.2. Island model. In this model, the role of the master process is only to initialize the slaves, to let them
know their neighbors processes and collect the post-execution informations before the slaves stop. Each slave
process (or island) evolves a whole population and this includes to exchange, from time to time, parts of its
population with its neighbors.

Other models have also been applied to parallelize the population-based algorithms included in the MALLBA

library. We detail them in Section 5 since they are specially related and oriented to the hybrid algorithms we
propose.

4.4. Instantiation examples and results

In the following we explain more in detail how the tabu search skeleton has been internally parallelized.
Other heuristic skeletons follow a similar pattern. Tabu search can be parallelized in multiple ways. We have
implemented four different parallel versions of the skeleton: (1) a direct parallelization by independent runs;
(2) a classical Master–Slave model; (3) independent runs with different search strategies; and (4) a Master–
Slave model in which the work performed by a slave is to search a portion of the neighborhood of the current
solution. Fig. 4 shows the UML diagram of the classes that implement the tabu search skeleton. All these par-
allel schemes have been implemented and tested over an homogeneous PC cluster using Linux as Operating
System and NetStream using the MPI communication library.

4.4.1. Tabu search for 0–1 multidimensional Knapsack problem (0–1 MKNP)

We have instantiated the tabu search skeleton for the 0–1 multidimensional Knapsack problem (see Appen-
dix A for more details). We give in Table 3 some experimental results for the independent runs model with
search strategies. These results are obtained for six middle-sized instances from the OR-Library [8]. Results
for the same problem and the same instances for the Master–Slave model with neighborhood partition are
given in Table 4 (for more detail, see [9,10]). The execution is done with different maximum execution times
and different number of processors. In the table, instance refers to the instance name, n and m are respectively
the number of variables (items) and the number of restrictions; best known cost column gives the best known
cost in the literature [15] for the instance obtained by other specific implementations and best obtained cost
indicates the best cost found by our parallel implementation. The column dev indicates the deviation of the
best found cost w.r.t. the best known cost, computed as (best known cost-best obtained cost)/(best known cost).

The results we obtained did not improve the best results known so far, but they are a considerably accurate
approach if we take into account the reduced time (900 s) invested in their resolution (in the literature, the

Table 3
Results for 0–1 MKNP under an independent runs model with Autonomous Strategies using 4 (up) and 8 (low) processors

Instance n m Best cost known Best obtained cost Average cost obtained dev. w.r.t. best known Iterations (average)

OR5x250-00 250 5 59,312 58,417 57,698.8 0.0151 3192.0
OR5x250-29 250 5 154,662 153,666 153,297.0 0.0064 1360.6
OR10x250-00 250 10 59,187 56,376 55,757.0 0.0475 1566.4
OR10x250-29 250 10 149,704 14,8077 147,831.6 0.0109 1152.8
OR30x250-00 250 30 56,693 55,412 55,055.2 0.0226 1575.6
OR30x250-29 250 30 149,572 148,010 147,720.4 0.0104 398.0

OR5x250-00 250 5 59,312 58,106 57,713.2 0.0203 8922.8
OR5x250-29 250 5 154,662 154,188 153,972.0 0.0031 4407.8
OR10x250-00 250 10 59,187 56,496 56,198.8 0.0455 4435.4
OR10x250-29 250 10 149,704 149,030 148,840.2 0.0045 3762.8
OR30x250-00 250 30 56,693 55,725 55,494.6 0.0170 4764.8
OR30x250-29 250 30 149,572 149,034 148,969.6 0.0036 2231.4

Instances solved with max_time = 900 s.

E. Alba et al. / Parallel Computing 32 (2006) 415–440 429
execution times vary roughly from 700 s to 2500 s, see [15]). By comparing parallel models (see Tables 3 and 4)
we can observe that the Independent Run model gets slightly better results than the Master–Slave with neigh-
borhood partition. The reason for that lays on the communication necessities. A Master–Slave model, espe-
cially when including a neighborhood partition and distribution, requires much more communication among
processes than an independent runs approach, in which the processes work independently and do not
exchange any information. Another reason for the better performance of the independent runs model in com-
parison to the Master–Slave model can be found in the fact that in the former much more work is done.

4.4.2. Simulated annealing for minimum linear arrangement

The parallel skeletons for simulated annealing have also been used to find good solutions for the minimum
linear arrangement problem (see Appendix A for more details). In this work we study the airfoil1 instance
having a 2D-mesh graph typically used in FE methods. It is made up of 4253 nodes, 12,289 edges and has
diameter 64. The best layout found has cost 285,31. In this case, two alternative parallel models have been
considered (see [43] for details). In the accurate version, all the processors cooperate to maintain a correct
value of the objective function. In the chaotic version, processors do not cooperate, and thus their individual
estimation of the objective function may contain some errors; periodic synchronizations are performed to
maintain these errors small. For the accurate version, important time reductions are observed but quality
Table 4
Results for 0–1 MKNP under a Master–Slave model with neighborhood partition using 4 (up) and 8 (low) processors

Instance n m Best cost known Best obtained cost Average cost obtained dev. w.r.t. best known Iterations (average)

OR5x250-00 250 5 59,312 57,838 57,059.6 0.0249 747.2
OR5x250-29 250 5 154,662 153,518 153,079.8 0.0074 484.4
OR10x250-00 250 10 59,187 55,352 54,912.8 0.0648 278.4
OR10x250-29 250 10 149,704 147,865 147,771.0 0.0123 363.6
OR30x250-00 250 30 56,693 55,082 54,112.4 0.0284 142.8
OR30x250-29 250 30 149,572 148,142 148,019.2 0.0096 129.6

OR5x250-00 250 5 59,312 58,085 57,923.0 0.0207 1223.8
OR5x250-29 250 5 154,662 153,636 153,283.2 0.0066 746.4
OR10x250-00 250 10 59,187 55,374 54,941.8 0.0644 505.4
OR10x250-29 250 10 149,704 148,220 147,954.2 0.0099 669.2
OR30x250-00 250 30 56,693 54,951 54,386.4 0.0307 269.0
OR30x250-29 250 30 149,572 148,424 148,099.2 0.0077 221.4

Instances solved with max_time = 900 s.

Fig. 5. Accurate (up) and chaotic (down) parallel SS+SA on the airfoil1 graph: cost in function of time depending on the number of
processors.

430 E. Alba et al. / Parallel Computing 32 (2006) 415–440
degrades as the number of processors increases. On the contrary, the chaotic version obtains an excellent
speedup and maintains the solution quality (see Fig. 5).

5. Hybrid optimization techniques

Many studies have been done to design new techniques aimed at improving the quality of the results
obtained with pure algorithms. One of these techniques consists in making several algorithms work together
in order to profit from the best characteristics of each of them. The resulting algorithm is then called a hybrid
algorithm. In the most general framework, algorithms can be hybridized with any other algorithm, even
belonging to a quite different optimization family.

In our project, we naturally deal with several optimization techniques or solvers. We have built hybrid skel-
etons by combining evolutionary algorithms,1 in particular genetic algorithms, a CHC algorithm, and an evo-
lution strategy. Also, a local search technique like simulated annealing (SA) has been included. See Sections
4.1, 4.2 and Appendix B for a detailed definition these methods.

In this work we have implemented two hybrid algorithms, namely GASA and CHCES; they are two dif-
ferent instances of the weak hybrid scheme mentioned. The first of them (GASA) is made of a genetic algo-
rithm and a simulated annealing; the second one uses this same scheme to combine CHC and ES. The
rationale for this selection of algorithms is that, while the GA/CHC locates ‘‘good’’ regions of the search space
(exploration), the SA/ES allows for exploitation in the best regions found by its partner.

We have implemented two main classes of hybrids in our research project:
1 A hybrid algorithm that uses both traditional LS-based methods and evolutionary techniques is sometimes refereed to as a Memetic
Algorithm (see [11,42]).

GENETIC ALGORITHM

HYBRID ALGORITHM

Initial
Population

Selection

SIMULATED
ANNEALING

Improve

Replace

Reproduction
CHC

ES

ES

ES

ES

ES
T
O
U
R
N
A
M
E
N
T

2.1

CHC

ES

ES

ES

ES

ES

R
A
N
D
O
M

2.2

Fig. 6. Models of Hybridization: (left) Model of Hybridization 1 (GASA1) and (right) Model of Hybridization 2 (CHCES2/3).

E. Alba et al. / Parallel Computing 32 (2006) 415–440 431
• A first hybrid schema (GASA1/CHCES1) where a GA/CHC algorithm uses the other algorithm (SA/ES) as
an evolutionary operator; the local search algorithm is applied in the main loop after the traditional recom-
bination and mutation operators. See an example for GASA1 in Fig. 6 (left).

• A second hybrid schema executes a GA/CHC until the algorithm completely finishes. Then the hybrid
selects some individuals from the final population and executes a SA/ES algorithm over them. We have
implemented two variants whose only difference is the selection method. Concretely, we analyze a first ver-
sion (GASA2/CHCES2) that uses a tournament selection (model 2.1 of Fig. 6 right), and another version
(GASA3/CHCES3) that uses a random choice of individuals (model 2.2 of Fig. 6 right).

5.1. Parallel implementations

As we noted earlier, the parallelism does not only allow to reduce the execution time but it also allows to
improve the quality of the solutions. Even when the parallel algorithms are executed in a single processor, they
can improve the behavior of the serial ones. We will also improve the performance of our hybrid algorithms by
making their components run in parallel. Thus all techniques composing our hybrid algorithms have been pre-
viously parallelized for LAN and WAN platforms. Moreover to explore the behavior of parallel hybrids is
doubly interesting for the MALLBA project since we want to conduct our research in LAN and WAN platforms.
For the present study we implemented three parallel distributed EAs, whose component sub-algorithm is a
GA, an ES or a CHC. Different implementations can be obtained by creating separate subclasses of the Sol-
ver abstract class (see Fig. 1a). At present, we are using our own middleware layer NetStream implemented
on top of MPI to ease communications.

5.1.1. Parallel EAs
A parallel EA (PEA) is an algorithm having multiple components EAs, regardless of their population struc-

ture. Each component (usually a canonical EA) sub-algorithm includes an additional phase of communication

with a set of neighboring sub-algorithms [5]. Different parallel algorithms differ in the characteristics of their
elementary skeletons, and in the communication details.

As an example parallel skeleton we have chosen a distributed GA (dGA) because of its popularity and
because it can be readily implemented in clusters of machines. In such a distributed GA (or EA) there exists
a small number of islands performing separate GAs, and periodically exchanging individuals after a number of
isolated steps (migration frequency).

The migration policy must define the island topology, when migration occurs, which individuals are being
exchanged, the synchronization among the sub-populations, and the kind of integration of exchanged individ-
uals within the target sub-populations. Concretely, we use a static ring topology, select random migrants and
include them in the target populations only if they are better than the worst-existing solutions.

432 E. Alba et al. / Parallel Computing 32 (2006) 415–440
5.1.2. Parallel SAs

For the parallel SA (PSA) there also exist multiple component SAs. Each component SA periodically
exchanges the best solution found after a number of isolated steps (cooperation phase) with its neighbor in
the ring.

5.1.3. Parallel hybrids

The hybrid versions apply, in the parallel case, SA (ES) as an operator in the basic loop of every island in
the GA (CHC) algorithm. The result is a parallel version of what we will call GASA1 (CHCES1).

5.2. Instantiation examples and results

In this section we include the analysis of the performance of sequential, LAN and WAN hybrid skeletons
for four problems: two of them have a combinatorial nature (MaxCut and MTTP) and the two others are
representatives of the continuous optimization domain (RAS and FMS). See the details on these problems
in the Appendix A at the end of the paper. Our goal with the upcoming results is to compare hybrid and pure
search schemes in all these platforms and also to show that the underlying philosophy of MALLBA is efficient
and accurate, as least as compared against the alternative of making separated and unstructured ad hoc

implementations.
In Table 5 we provide the parameters used for the non-hybrid (basic) skeletons, while in Table 6 we include

the parameters used for the incorporated operators. We tend towards a low-cost utilization of SA/ES in the
hybrid skeletons to promote gradual exploitation of solutions during the search.

We show the results for the sequential, LAN and WAN platforms in Tables 7–9, respectively. Results are
the average values of 30 independent runs for each problem, in each one of the three platforms. Since we want
a fair comparison we begin with a canonical having one workstation in each of the three geographically sep-
arated sites.
Table 5
Parameters of the algorithms

Problem Popsize Cross. prob. Mut. prob. Others

MaxCut (GA) 100 0.8 0.01 –
MTTP (GA) 200 0.6 0.02 –
RAS, FMS (CHC) 100 0.8 – 35% population restart

Table 6
Parameters of the hybrid operators

Algorithm Probability #Max iteration Others

SA 0.1 100 MarkovChainLen = 10
Temperature decay factor = 0.99

ES 0.01 50 (1 + 10)-ES, mutation prob. = 0.8

Table 7
Average results in the sequential platform

Problem Algorithm Opt. #Evals Time (s) Hits (%)

MaxCut GA 1008 33,794 68.2 3.3
GASA1 1030 48,823 96.3 9.9

MTTP GA 219 42,017 5.8 66.6
GASA1 200 38,297 5.5 100

RAS CHC 0 9634 4.15 100
CHCES1 0 14,413 4.82 100

FMS CHC 3.095 32,270 19.65 100
CHCES1 2.078 17,962 26.62 100

Table 8
Average results for the LAN platform

Problem Algorithm Opt. #Evals Time (s) Hits (%)

MaxCut GA 1031 23,580 49.1 16.6
GASA1 1038 40,682 89.6 16.6

MTTP GA 201 40,002 5.2 96.6
GASA1 200 25,601 5.8 100

RAS CHC 0 7591 3.33 100
CHCES1 0 13,048 3.73 100

FMS CHC 3.079 27,341 9.2 100
CHCES1 1.692 16,558 11.45 100

Table 9
Average results for the WAN platform

Problem Algorithm Opt. #Evals Time (s) Hits (%)

MaxCut GA 1014 14,369 89.1 9.9
GASA1 1031 28,956 298.5 9.9

MTTP GA 200 32,546 25.7 100
GASA1 200 34,952 45.62 100

RAS CHC 0 7606 32.7 100
CHCES1 0 13,681 10.0 100

FMS CHC 2.929 29,743 17.25 100
CHCES1 1.341 17,816 26.69 100

E. Alba et al. / Parallel Computing 32 (2006) 415–440 433
After observing these results, we can conclude that LAN and WAN enhance the percentage of hits (number
of times locating an optimum) of the sequential platform, especially for the discrete problems. The LAN skel-
etons provide the best execution times for all the problems, but the speedup is sub-linear. An interesting result
occurs for the FMS problem in which the WAN skeletons outperform the sequential and LAN ones in accu-
racy (opt. column) with similar times than the sequential time (LAN is faster), and with an equivalent number
of evaluations than sequential and LAN. Therefore, although the reductions in time are important (especially
for LAN skeletons), the most relevant conclusions focus in the numerical results, since the WAN skeletons are
competitive in this sense with sequential and LAN versions. We have also obtained similar results for other
problems (not only for FMS). For example, in [3], results for the VRP are showed where the WAN configu-
ration outperform (in time and in solutions quality) the LAN one. These are great news for our intended
future work on aggregating a high number of computers in WAN.

Now let us compare our results with results in the literature. Some up-to-date results on the same instances of
MaxCut and MTTP can be found in [2], where the authors analyze three types of sequential and distributed
EAs. Our results in MALLBA clearly outperform those of [2] for MaxCut, whose best percentage of hits is 5%,
while ours are between around 10% and 16% in LAN and WAN, with an additional reduction in the whole
search effort. For MTTP, we offer an almost constant 100% of hits with pure and hybrid skeletons with below
40,000 evaluations (with the exception of our 66% for sequential GA); however, in [2] the authors report similar
hits percentages, but with a number of evaluations (specially for their LAN algorithms) well above 100,000.
Similarly, all our hybrid versions outperform any of their evaluated pure algorithms in efficiency clearly.

For our two continuous optimization problems (RAS and FMS) the results reproduce other existing values
within a lower run time (in LAN); RAS has been optimized quite accurately in all our skeleton versions, while
FMS admits clear improvements in accuracy that are only possible with specialized operators just like the ones
investigated in [30].
6. Concluding remarks and future work

We have sketched the architecture of the MALLBA library, including its design goals, skeleton implementa-
tion, available resources and communication issues for parallelizing then in LAN and WAN platforms. Also,

434 E. Alba et al. / Parallel Computing 32 (2006) 415–440
we have presented and evaluated a large set of exact, heuristic, and hybrid algorithms on a benchmark show-
ing many different difficulties. Our goal in this paper has been to design, implement and evaluate most popular
classes of skeletons for optimization targeted to the three platforms more readily accessible for researchers:
sequential, LANs and WANs.

Our experience after conducting this work indicates that these skeletons can be easily instantiated for a
large number of problems. Sequential instantiations provided by the users are ready to use in parallel; also,
the parallel implementations are scalable, and the evaluated skeletons have provided solutions whose quality
is comparable to ad hoc implementations for concrete problems. The architecture supports easy construction
of hybrid algorithms and a fast prototyping phase.

Our future work will focus on offering a more complete set of skeletons for LAN and WAN, and to export
the whole architecture to be utilized from foreign non-MALLBA environments.
Acknowledgements

This work has been partially supported by the Canarian Government Project PI/2000-60, by the Spanish
projects CICYT TIC-1999-0754 (MALLBA) and MCYT TIC2002-04498-C05-02 (TRACER), and also by
the European project of the IST program IST-2001-33116 (FLAGS).

Additionally, at the time when this research was done, C. León was partially supported by TRACS pro-
gram at EPCC; M. Blesa was partially supported by the Catalan Research Council (grant 2001FI-00659)
of the Generalitat de Catalunya, and G. Luque was partially supported by Andalusian 2002FPDI-43927
grant.

MALLBA is publicly available at the following websites: http://www.lsi.upc.edu/~mallba and
http://neo.lcc.uma.es/mallba/easy-mallba/.

Appendix A. Problems

In this appendix, we present the optimization problems introduced along the paper. Globally stated, a com-
binatorial optimization problem is a tuple P = (I,S, f,g) where:

• I is the set of instances of P. If x 2 I we say that x is an instance (or an input) of P.
• Given an instance x 2 I, S(x) denotes the set of feasible solutions of x.
• For any instance x 2 I and any feasible solution r 2 S(x), f(x,r) represents a real value, the measure (or

cost or fitness) of r with respect to P and x. The function f is called the objective function.
• g 2 {max, min}. The goal of P is to find a feasible solution that optimizes f according to g: given an input

x 2 I, determine an optimal solution r 0 2 S(x) such that f(x,r 0) = g{f(x,r)jr 2 S(x)}.
• A subproblem Pi is a tuple Pi = (I,Si, f,g) where Si(x) is a subset of the underlying space I.

Approximating a problem P for an instance x 2 I means finding a feasible solution r 2 S(x) with a cost as
close as possible to f(x,r 0).
A.1. The frequency modulation sounds problem (FMS)

The frequency modulation sounds [47] has been proposed as a hard real task consisting in adjusting a gen-
eral model y(t) to a basic sound function y0(t). The goal is to minimize the sum of square errors given by Eq.
(1). The problem is to evolve six parameters~x ¼ ða1;w1; a2;w2; a3;w3Þ in order y(t) to fit the target y0(t). The
evolved and target models have the expressions shown in Eqs. (2) and (3). The resulting problem is a highly
complex multimodal function having strong epistasis with minimum value f* = 0. For the experiments, we
consider as an optimum any solution with fitness below 3.1.
FMSð~xÞ ¼
XN

i¼0

ðyðtÞ � y0ðtÞÞ
2 ð1Þ

http://www.lsi.upc.edu
http://neo.lcc.uma.es/mallba/easy-mallba/

E. Alba et al. / Parallel Computing 32 (2006) 415–440 435
yðtÞ ¼ a1 sinðw1thþ a2 sinðw2thþ a2 sinðw3thÞÞÞ ð2Þ
y0ðtÞ ¼ 1:0 sinð5:0thþ 1:5 sinð4:8thþ 2:0 sinð4:9thÞÞÞ ð3Þ
h ¼ 2p=100; ai;wi 2 ½�6:4; 6:35�
A.2. The minimum linear arrangement problem (MINLA)

Given a graph G = (V,E) with n = jVj nodes, a linear arrangement is a bijection u: V! {1, . . . ,n}. The
problem is to find a linear arrangement that minimizes the following objective function:
X

ðu;vÞ2E

juðuÞ � uðvÞj;
which can be viewed as the minimal sum of the edges lengths of the graph.

A.3. The maximum cut problem (MaxCut)

The maximum cut problem [2] consists in partitioning the set of vertices of a weighted graph into two dis-
joint subsets such that the sum of the weights of edges with one endpoint in each subset is maximized. Thus, if
G = (V,E), denotes a weighted graph where V is the set of nodes and E the set of edges, then the maximum
disjoint sets V0 and V1 such that the sum of weights of E that have one endpoint in V0 and the other in V1 is
maximized. We use a binary string (x1,x2, . . . ,xn) of length n where each digit corresponds to a vertex. Each
string encodes a partition of the vertices. If a digit is 1 then its corresponding vertex is in set V1, if it is 0 then
the corresponding vertex is in set V0. The function to be maximized is
F ð~xÞ ¼
Xn�1

i¼1

Xn

j¼iþ1

wij xið1� xjÞ þ xjð1� xiÞ
� �
For the experiments reported here, we use a scalable problem instance with a graph of size n = 100, ‘‘cut100’’
(f* = 1077).

A.4. The minimum tardy task problem (MTTP)

The minimum tardy task problem is a task-scheduling problem [35]. Each task i from the set of tasks
T = 1,2, . . . ,n has an associated length li, the time it takes for its execution, a deadline di before which the task
must be scheduled and its execution completed, and a weight wi. The weight is a penalty indicating the impor-
tance that a task remain unscheduled. Scheduling the tasks of a subset S of T consists in finding the starting
time of each task in S, such that at most one task at a time is performed, and such that each task finishes
before its deadline. The optimal solution is a feasible schedule S with the minimum tardy task weight W which
is the sum of weights of unscheduled tasks.
min W ¼
X

i2T�S

wi
A feasible solution must satisfy that no task is scheduled before the completion of an earlier scheduled one and
all tasks are completed within its deadline.

For our experiments, we use a scalable problem instance [35] of size 100 task, ‘‘mttp100’’ (f* = 200).

A.5. The 0–1 Knapsack problem

We consider the classical 0–1 Knapsack problem where a subset of N given items has to be introduced in a
knapsack of capacity C. Each item has a profit pi and a weight wi and the problem is to select a subset of items
whose total weight does not exceed C and whose total profit is a maximum. We assume that all input data are
positive integers. Introducing the binary decision variables xi, with xi = 1 if item i is selected, and xi = 0 other-
wise, we can formulate the problem as follows:

436 E. Alba et al. / Parallel Computing 32 (2006) 415–440
max
XN

i¼1

pixi

s:t:
XN

i¼1

wixi 6 C

xk 2 f0; 1g; k 2 f1; . . . ;Ng
A.6. The 0–1 multidimensional Knapsack (0–1 MKNP)

The NP-hard 0–1 Multidimensional Knapsack problem consists in selecting a subset of n given objects (or
items) in such a way that the total profit of the selected objects is maximized while a set of knapsack con-
straints are satisfied. The 0–1 MKNP problem can be stated as maxcx subject to Ax 6 b and x 2 {0,1}n, where
c 2 N�n, A 2 Nmxn and b 2 Nm. The binary components xj of x are decision variables: xj = 1 if the object j is
selected, 0 otherwise. The profit associated to j is denoted by cj. Each of the m constraints Aix 6 bi is called a
knapsack constraint.
A.7. The resource allocation problem

The (single) resource allocation problem can be stated as follows [33]:
max z ¼
XN

j¼1

fjðxjÞ

s:t:
XN

j¼1

xj ¼ M
Namely, it is required to allocate M units of an indivisible resource to N tasks so that the sum of the effective-
ness measured by fj(xj) is maximized.
A.8. The Rastrigin function (RAS)

The generalized Rastrigin function (see below) is a problem with a large search space and a very large num-
ber of local optima [45]. This function is a non-epistatic function representing a typical test for EAs. For the
experiments, we have used a problem instance of 20 variables (fitness values f* = 0).
Rasðxiji¼1;...;nÞ ¼ 10 � nþ
Xn

i¼1

½x2
i � 10 � cosð2 � pxiÞ�; xi 2 ½�5:12; 5:12�:
Appendix B. Pseudo-codes of the methods

In this appendix, we show the pseudo-codes of the methods used along the paper.

Algorithm 1 (Pseudo-code of branch-and-bound method (maximization case)).

L :¼ fP0g; Q :¼ fP0g; bs :¼ �1; T :¼£

while L 6¼£ do
Pi :¼ sðLÞ
if upper_bound(Pi) > bs then

if lower_bound(Pi) > bs then
bs :¼ lower_bound(Pi)
T :¼ frg // r satisfies f(x,r) = lower_bound(Pi)

E. Alba et al. / Parallel Computing 32 (2006) 415–440 437
else

(branch) decompose Pi into Pi1,Pi2, . . . ,Pik

L :¼L [fPi1;Pi2; . . . ;Pikg � fPig
Q :¼Q [fPi1;Pi2; . . . ;Pikg

end if

end if

L :¼L�Pi

end while

return hbs;Ti // T is the best solution and bs its value

Algorithm 2 (Pseudo-code of dynamic programming (maximization case)).

F :¼£

// Loop on the stages
for i :¼ 1;i 6 n do
// Loop on the states
for j :¼ 1;j 6 n(i) do

generate(Pij); bsij :¼ �inf; dij :¼B// Initialize state

// Loop on the decisions
for all d 0 2 R do
evaluate(Pij,s
0,d 0)

if s 0 < bsij then

dij :¼ d 0; bsij :¼ s 0

end if

F :¼F [fPij; bsij; dg
end for

end for

end for

return F // F stores the best solution and the best solution value

Algorithm 3 (Pseudo-code of basic local search (maximization case)).

s :¼ Initial_Solution()
while there exists s 0 2 N(s) with f(s) < f(s 0) do
m :¼ Generate_Move()
s 0 :¼ Apply(m,s) // s 0 is candidate solution

if f(s) < f(s 0) then

s :¼ s 0

end if

end while
return s // s is a locally optimal solution
Algorithm 4 (Pseudo-code of simulated annealing (SA)).

t :¼ 0
Initialize T

s0 :¼ Initial_Solution()
v0 :¼ Evaluate(s0)
while ‘outer-loop stop criterion’ is not satisfied do

438 E. Alba et al. / Parallel Computing 32 (2006) 415–440
while t mod MarkovChainLen 5 0 do

t :¼ t + 1
s1 :¼ Generate(s0,T) //Move

v1 :¼ Evaluate(s1)
if Accept(v0,v1,T) then
s0 :¼ s1
v0 :¼ v1

end if

end while

T :¼ Update(T)
end while

return s0

Algorithm 5 (Pseudo-code of an evolutionary algorithm (EA)).

Generate(P(0))
t :¼ 0
while not Termination_Criterion((P(t)) do
Evaluate(P(t))
P 0(t) :¼ Selection(P(t))
P 0(t) :¼ Apply_Reproduction_Ops(P 0(t))
P(t + 1) :¼ Replace(P(t), P 0(t))
t :¼ t + 1

end while

return Best_Solution_Found

Algorithm 6 (Pseudo-code of the CHC algorithm).

t :¼ 0
d :¼ L/4 // L is the length of a tentative solution

initialize P(t)
evaluate structures in P(t)
while not end do
t :¼ t + 1
select C(t) from P(t � 1)
C 0(t) :¼ HUX(C(t))
evaluate structures in C 0(t)
replace P(t) from C 0(t) and P(t � 1)
if P(t) = P(t � 1) then

d :¼ d � 1
end if

if d < 0 then

diverge P(t) // restart

d :¼ r * (1.0 � r) * L

end if
end while

return Best_Solution_Found

Algorithm 7 (Pseudo-code of an evolution strategy (ES)).

t :¼ 0
initialize P(t)

E. Alba et al. / Parallel Computing 32 (2006) 415–440 439
evaluate structures in P(t) //containing problem variables plus control parameters

while not end do

t :¼ t + 1
C(t) :¼ select_best_from(P(t � 1))
mutate structures in C(t) to yield C 0(t) // crossover could also exist

evaluate structures in C 0(t)
replace P(t) from C 0(t) and/or P(t � 1)

end while

return Best_Solution_Found
References

[1] E. Alba, C. Cotta, M. Dı́az, E. Soler, J.M. Troya. MALLBA: middleware for a geographically distributed optimization system,
Technical report, Dpto. Lenguajes y Ciencias de la Computación, Universidad de Málaga (internal report), 2000.

[2] E. Alba, S. Khuri, Sequential and distributed evolutionary algorithms for combinatorial optimization problemsAdvances in Soft
Computing – Hybrid Information Systems, vol. 113, Physica-Verlag, Heidelberg, 2002, pp. 211–233, Chapter10.

[3] E. Alba, G. Luque, J.M. Troya, Parallel LAN/WAN heuristics for optimization, Parallel Computing 30 (5–6) (2004) 611–628.
[4] E. Alba, the MALLBA Group, MALLBA: a library of skeletons for combinatorial optimisation, in: R.F.B. Monien (Ed.),

Proceedings of the Euro-Par, Lecture Notes in Computer Science, vol. 2400, Springer-Verlag, Paderborn, GE, 2002, pp. 927–932.
[5] E. Alba, M. Tomassini, Parallelism and Evolutionary Algorithms, IEEE Transactions on Evolutionary Computation 6 (5, Oct.)

(2002) 443–462.
[6] M.G. Arenas, P. Collet, A.E. Eiben, M. Jelasity, J.J. Merelo, B. Paechter, M. Preub, M. Schoenauer, A framework for distributed

evolutionary algorithms, in: J.J. Merelo, P. Adamidis, H.G. Beyer, J.L. Fernández-Villacañas, H.P. Schwefel (Eds.), Seventh
International Conference on Parallel Problem Solving from Nature, 2002, pp. 665–675.

[7] T. Bäck, D.B. Fogel, Z. Michalewicz (Eds.), Handbook of Evolutionary Computation, Oxford University Press, 1997.
[8] J.E. Beasley, OR-Library: distributing test problems by electronic mail, Journal of Operational Research Society 41 (11) (1990) 1069–

1072. Available from: <http://mscmga.ms.ic.ac.uk/info.html>.
[9] M. Blesa, L. Hernández, F. Xhafa, Parallel skeletons for Tabu Search Method, in: 8th International Conference on Parallel and

Distributed Systems, IEEE Computer Society Press, 2001, pp. 23–28.
[10] M. Blesa, L. Hernández, F. Xhafa, Parallel skeletons for Tabu Search Method based on search strategies and neighborhood partition,

in: M. Paprzycki, J. Dongarra, J. Wasniewski (Eds.), 4th International Conference on Parallel Processing and Applied Mathematics,
Lecture Notes in Computer Science, vol. 2328, Springer–Verlag, 2002, pp. 185–193.

[11] M. Blesa, P. Moscato, F. Xhafa, A memetic algorithm for the minimum weighted k-cardinality tree subgraph problem, in: 4th
Metaheuristics International Conference, vol. 1, Porto, Portugal, 2001, pp. 85–90.

[12] S. Bleuler, M. Laumanns, L. Thiele, E. Zitzler, PISA – a platform and programming language independent interface for search
algorithms.

[13] S. Cahon, E.-G. Talbi, N. Melab, PARADISEO: a framework for parallel and distributed biologically inspired heuristics, in: IPDPS-
NIDISC’03, Nize, France, 2003, p.144.

[14] E. Cantú-Paz, Efficient and Accurate Parallel Genetic Algorithms, Kluwer, Academic Press, 2000.
[15] P.C. Chu, J.E. Beasley. A Genetic Algorithm for the multidimensional knapsack problem, working paper, 1997.
[16] C. Cotta, J.M. Troya, On decision-making in strong hybrid evolutionary algorithms, in: A.P.D. Pobil, J. Mira, M. Ali (Eds.), Tasks

and Methods in Applied Artificial Intelligence, Lecture Notes in Computer Science, vol. 1416, Springer-Verlag, Berlin Heidelberg,
1998, pp. 418–427.

[17] T.G. Crainic, M. Toulouse, Parallel metaheuristics, Technical report, DTpt. des sciences administratives (UniversitT du QuTbec a
MontrTal) and Centre de recherche sur les transports (UniversitT de MontrTal) and School of Computer Science (University of
Oklahoma), 1997.

[18] B.L. Cun, Bob++ library illustrated by VRP, in: European Operational Research Conference (EURO’2001), Rotterdam, 2001, p. 157.
[19] J.M. Daida, S.J. Ross, B.C. Hannan, Biological symbiosis as a metaphor for computational hybridization, in: L.J. Eshelman (Ed.),

Sixth International Conference on Genetic Algorithms, Morgan Kaufmann, 1995, pp. 328–335.
[20] L. Davis (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.
[21] I. Dorta, C. León, C. Rodrfguez, A. Rojas, Parallel skeletons for divide-and-conquer and branch-and-bound techniques, in: 11th

Euromicro Conference on Parallel, Distributed and Network-based Processing, IEEE Computer Society Press, 2003, pp. 292–298.
[22] J. Eckstein, C.A. Phillips, W.E. Hart. PICO: an object-oriented framework for parallel branch and bound, Technical report,

RUTCOR, 2000.
[23] J. Eggermont, A.E. Eiben, J.I. van Hemert, A comparison of genetic programming variants for data classification, in: D.J. Hand, J.N.

Kok, M.R. Berthold (Eds.), Advances in Intelligent Data Analysis, Third International Symposium, IDA-99, 9–11 1999, Amsterdam,
The Netherlands, vol. 1642, Springer-Verlag, 1999, pp. 281–290.

[24] L. Eshelman, The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination,
in: Foundations of Genetic Algorithms, Morgan Kaufmann, 1991, pp. 265–283.

http://mscmga.ms.ic.ac.uk/info.html

440 E. Alba et al. / Parallel Computing 32 (2006) 415–440
[25] C. Gagne, M. Parizeau. Open BEAGLE: a new C++ evolutionary computation framework, in: Proceeding of GECCO 2002, New
York, NY, USA, 2002.

[26] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley,
1995.

[27] L.D. Gaspero, A. Schaerf, EasyLocal++: an object-oriented framework for the flexible design of local search algorithms and
metaheuristics, in: 4th Metaheuristics International Conference (MIC’2001), 2001, pp. 287–292.

[28] F. Glover, M. Laguna, Tabu Search, second ed., Kluwer, Boston, 1997.
[29] D. González, F. Almeida, L. Moreno, C. Rodrfguez, Towards the automatic optimal mapping of pipeline algorithms, Parallel

Computing 29 (2003) 241–254.
[30] F. Herrera, M. Lozano, Gradual distributed real-coded genetic algorithms, IEEE Transactions on Evolutionary Computation 4 (1)

(2000) 43–63.
[31] J.H. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor Michigan, 1975.
[32] T. Ibaraki, Enumerative approaches to combinatorial optimization, Part I, Annals of Operation Research 10 (1987).
[33] T. Ibaraki, Enumerative approaches to combinatorial optimization, Part II, Annals of Operation Research 11 (1988) 1–4.
[34] IBM, COIN: common optimization INterface for operations research, 2000. Available from: <http://oss.software.ibm.com/

developerworks/opensource/coin/index.html>.
[35] S. Khuri, T. Bäck, J. Heitkötter, An evolutionary approach to combinatorial optimization problems, in: 22nd ACM Computer

Science Conference, ACM Press, 1994, pp. 66–73.
[36] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Science 220 (1983) 671–680.
[37] K. Klohs, Parallel simulated annealing library, 1998. Available from: <http://www.uni-paderborn.de/fachbereich/AG/monien/

SOFTWARE/PARSA/>.
[38] D. Levine, PGAPack, parallel genetic algorithm library, 1996. Available from: <http://www.mcs.anl.gov/pgapack.html>.
[39] N.F. McPhee, N.J. Hopper, M.L. Reierson, Sutherland: an extensible object-oriented software framework for evolutionary

computation, in: J.R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, R.
Riolo (Eds.), Genetic Programming 1998: Proceedings of the Third Annual Conference, 22–25 1998, University of Wisconsin,
Madison, WI, USA, Morgan Kaufmann, 1998, p. 241.

[40] W. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calculations by fast computing machines, The
Journal of Chemical Physics 21 (6) (1953) 1087–1092.

[41] Z. Michalewicz, D.B. Fogel, How to Solve It: Modern Heuristics, Springer-Verlag, Berlin, 2000.
[42] P. Moscato, C. Cotta, A gentle introduction to memetic algorithms, in: F. Glover, G. Kochenberger (Eds.), Handbook of

Metaheuristics, Kluwer Academic Publishers, Boston, MA, 2003, pp. 105–144.
[43] J. Petit, Combining spectral sequencing and parallel simulated annealing for the MinLA problem, Parallel Processing Letters 13 (1)

(2003) 77–91.
[44] I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, Fromman-

Holzboog Verlag, Stuttgart, 1973.
[45] A. Töorn, Ž. Antanas, Global optimizationLecture Notes in Computer Science, vol. 350, Springer, Berlin, Germany, 1989.
[46] S. Tschöke, T. Polzer. Portable parallel branch-and-bound library, 1997. Available from: <http://www.uni-paderborn.de/cs/ag-

monien/SOFTWARE/PPBB/introduction.html>.
[47] S. Tsutsui, A. Ghosh, D. Corne, Y. Fujimoto, A real coded genetic algorithm with an explorer and an exploiter populations, in:

T. Bäck et al. (Ed.), Proceedings of the Seventh International Conference on Genetic Algorithms, Morgan Kaufmann, 1997, pp. 238–
245.

[48] S. Voss, D.L. Woodruff (Eds.), Optimization Software Class Libraries, Operations Research and Computer Science Interfaces, vol.
18, Kluwer Academic Publishers, Boston, 2002.

[49] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1)
(1997) 67–82.

http://oss.software.ibm.com/developerworks/opensource/coin/index.html
http://oss.software.ibm.com/developerworks/opensource/coin/index.html
http://www.uni-paderborn.de/fachbereich/AG/monien/SOFTWARE/PARSA/
http://www.uni-paderborn.de/fachbereich/AG/monien/SOFTWARE/PARSA/
http://www.mcs.anl.gov/pgapack.html
http://www.uni-paderborn.de/cs/ag-monien/SOFTWARE/PPBB/introduction.html
http://www.uni-paderborn.de/cs/ag-monien/SOFTWARE/PPBB/introduction.html

	Efficient parallel LAN/WAN algorithms for optimization. The mallba project
	Introduction
	The mallba architecture
	Skeleton interfaces
	Communication interface
	Hybridization interface

	Exact optimization techniques
	Branch-and-bound
	Dynamic programming
	Parallel implementations
	Centralized Master-Slave model
	Distributed Master-Slave model

	Instantiation examples and results
	Branch-and-bound for the 0-1 Knapsack problem
	Dynamic programming for the resource allocation problem

	Heuristic optimization techniques
	LS-based heuristic techniques
	Hill climbing
	Metropolis
	Simulated annealing
	Tabu search

	Population-based heuristic techniques
	Evolutionary algorithms

	Parallel implementations
	Parallelization of LS-based heuristics
	Independent runs model
	Independent runs with autonomous strategies
	Master-Slave model
	Master Slave with neighborhood partition

	Parallelization of population-based heuristics
	Split model
	Island model

	Instantiation examples and results
	Tabu search for 0-1 multidimensional Knapsack problem (0-1 MKNP)
	Simulated annealing for minimum linear arrangement

	Hybrid optimization techniques
	Parallel implementations
	Parallel EAs
	Parallel SAs
	Parallel hybrids

	Instantiation examples and results

	Concluding remarks and future work
	Acknowledgements
	Problems
	The frequency modulation sounds problem (FMS)
	The minimum linear arrangement problem (MINLA)
	The maximum cut problem (MaxCut)
	The minimum tardy task problem (MTTP)
	The 0-1 Knapsack problem
	The 0-1 multidimensional Knapsack (0-1 MKNP)
	The resource allocation problem
	The Rastrigin function (RAS)

	Pseudo-codes of the methods
	References

