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ABSTRACT 

Parallelizable optimization techniques are applied to the problem of 

learning in feedforward neural networks. In addition to having supe

rior convergence properties, optimization techniques such as the Polak

Ribiere method are also significantly more efficient than the Back

propagation algorithm. These results are based on experiments per

formed on small boolean learning problems and the noisy real-valued 

learning problem of hand-written character recognition. 

1 INTRODUCTION 

The problem of learning in feedforward neural networks has received a great deal 

of attention recently because of the ability of these networks to represent seemingly 

complex mappings in an efficient parallel architecture. This learning problem can 

be characterized as an optimization problem, but it is unique in several respects. 

Function evaluation is very expensive. However, because the underlying network is 

parallel in nature, this evaluation is easily parallelizable. In this paper, we describe 

the network learning problem in a numerical framework and investigate parallel 

algorithms for its solution. Specifically, we compare the performance of several 

parallelizable optimization techniques to the standard Back-propagation algorithm. 

Experimental results show the clear superiority of the numerical techniques. 

2 NEURAL NETWORKS 

A neural network is characterized by its architecture, its node functions, and its 

interconnection weights. In a learning problem, the first two of these are fixed, so 

that the weight values are the only free parameters in the system. when we talk 

about "weight space" we refer to the parameter space defined by the weights in a 

network, thus a "weight vector" w is a vector or a point in weightspace which defines 

the values of each weight in the network. We will usually index the components of 

a weight vector as Wij, meaning the weight value on the connection from unit i to 

unit j. Thus N(w, r), a network function with n output units, is an n-dimensional 

vector-valued function defined for any weight vector wand any input vector r: 

N( w, r) = [Ol(W, r), D2(w, r), ... , on(w, r)f 
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where 0. is the ith output unit of the network. Any node j in the network has input 

ij(w,r) = E'efanin; o.(w,r)wij and output oj(w,r) ;: I;(ij(w,r», where 1;0 is 

the node function. The evaluation of NO is inherently parallel and the time to 

evaluate NO on a single input vector is O(#layers). If pipelining is used, multiple 

input vectors can be evaluated in constant time. 

3 LEARNING 

The "learning" problem for a neural network refers to the problem of finding a 

network function which approximates some desired "target" function TO, defined 

over the same set of input vectors as the network function. The problem is simplified 

by asking that the network function match the target function on only a finite set of 

input vectors, the "training set" R. This is usually done with an error measure. The 

most common measure is sum-squared error, which we use to define the "instance 

error" between N(w, r) and T(r) at weight vector wand input vector r: 

eN,T(w, r) = E ! (Ta(r) - o.(w, r»2 = !IIT(r) - N(w, r)1I2. 

ieoutputs 

We can now define the "error function" between NO and TO over R as a function 

ofw: 

EN,T,R(w) = I: eN,T(w, r). 
reR 

The learning problem is thus reduced to finding a w for which EN T R(w) is min-, , 
imized. If this minimum value is zero then the network function approximates the 

target function exactly on all input vectors in the training set. Henceforth, for no

tational simplicity we will write eO and EO rather than eN TO and EN T RO. 
, .» , 

4 OPTIMIZATION TECHNIQUES 

As we have framed it here, the learning problem is a classic problem in optimization. 

More specifically, network learning is a problem of function approximation, where 

the approximating function is a finite parameter-based system. The goal is to find 

a set of parameter values which minimizes a cost function, which in this case, is a 

measure of the error between the target function and the approximating function. 

Among the optimization algorithms that can be used to solve this type of problem, 

gradient-based algorithms have proven to be effective in a variety of applications 

{Avriel, 1976}. These algorithms are iterative in nature, thus Wk is the weight 

vector at the kth iteration. Each iteration is characterized by a search direction dk 

and a step ak. The weight vector is updated by taking a step in the search direction 

as below: 

tor(k=o; evaluate(wk) != CONVERGED; ++k) { 

dk = determine-.eearch_directionO; 

ak = determine-.etepO; 

Wk+l = wit; + akdk ; 

} 
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If dk is a direction of descent I such as the negative of the gradient, a sufficiently 

small step will reduce the value of EO. Optimization algorithms vary in the way 

they determine Q and d, but otherwise they are structured as above. 

5 CONVERGENCE CRITERION 

The choice of convergence criterion is important. An algorithm must terminate 

when EO has been sufficiently minimized. This may be done with a threshold on 

the value of EO, but this alone is not sufficient. In the case where the error surface 

contains "bad" local minima, it is possible that the error threshold will be unattain

able, and in this case the algorithm will never terminate. Some researchers have 

proposed the use of an iteration limit to guarantee termination despite an unattain

able error threshold {Fahlman, 1989}. Unfortunately, for practical problems where 

this limit is not known a priori, this approach is inapplicable. 

A necessary condition for W* to be a minimum, either local or global I is that the 

gradient g(w*) = V E(w*) = o. Hence, the most usual convergence criterion for 

optimization algorithms is Ilg(Wk)11 ~ l where l is a sufficiently small gradient 

threshold. The downside of using this as a convergence test is that, for successful 

trials, learning times will be longer than they would be in the case of an error thresh

old. Error tolerances are usually specified in terms of an acceptable bit error, and 

a threshold on the maximum bit error (MBE) is a more appropriate representation 

of this criterion than is a simple error threshold. For this reason we have chosen 

a convergence criterion consisting of a gradient threshold and an M BE threshold 

(T), terminating when IIg(wk)1I < lor M BE(Wk) < T, where M BEO is defined as: 

M BE(w,,) = max (. max (!(Ti(r) - Oi(Wkl r))2)) . 
reR leoutputs 

6 STEEPEST DESCENT 

Steepest Descent is the most classical gradient-based optimization algorithm. In 

this algorithm the search direction d" is always the negative of the gradient - the 

direction of steepest descent. For network learning problems the computation of 

g(w), the gradient of E(w), is straightforward: 

where 

where for output units 

while for all other units 

g(W) = VE(w) 

Ve(w, r) 

8e(wlr) 

8W ij 

6j(w, r) 

6j(w, r) 

[ d~ 2:e(Wlr)]T = 2: Ve(w, r), 
reR reR 

[8e(Wlr), 8e(w,r) , ... , 8e(w, r)]T 
8wn 8W12 8wmn 

,; (ij (w, r))(oj(w, r) - Tj(r)), 

,;(ij(w, r)) L 6j (w, r)Wjk. 

kefanout; 



Efficient Parallel Learning Algorithms 43 

The evaluation of g is thus almost dual to the evaluation of N; while the latter feeds 

forward through the net, the former feeds back. Both computations are inherently 

parallelizable and of the same complexity. 

The method of Steepest Descent determines the step Ok by inexact linesearch, mean

ing that it minimizes E(Wk - Okdk). There are many ways to perform this com

putation, but they are all iterative in nature and thus involve the evaluation of 

E(Wk - Okdk) for several values of Ok. As each evaluation requires a pass through 

the entire training set, this is expensive. Curve fitting techniques are employed to 

reduce the number of iterations needed to terminate a linesearch. Again, there are 

many ways to curve fit . We have employed the method of false position and used 

the Wolfe Test to terminate a line search {Luenberger, 1986}. In practice we find 

that the typical linesearch in a network learning problem terminates in 2 or 3 iter

ations. 

7 PARTIAL CONJUGATE GRADIENT METHODS 

Because linesearch guarantees that E(Wk+d < E(Wk), the Steepest Descent algo

rithm can be proven to converge for a large class of problems {Luenberger, 1986}. 

Unfortunately, its convergence rate is only linear and it suffers from the problem 

of "cross-stitching" {Luenberger, 1986}, so it may require a large number of iter

ations. One way to guarantee a faster convergence rate is to make use of higher 

order derivatives. Others have investigated the performance of algorithms of this 

class on network learning tasks, with mixed results {Becker, 1989}. We are not 

interested in such techniques because they are less parallelizable than the methods 

we have pursued and because they are more expensive, both computationally and 

in terms of storage requirements. Because we are implementing our algorithms on 

the Connection Machine, where memory is extremely limited, this last concern is 

of special importance. We thus confine our investigation to algorithms that require 

explicit evaluation only of g, the first derivative. 

Conjugate gradient techniques take advantage of second order information to avoid 

the problem of cross-stitching without requiring the estimation and storage of the 

Hessian (matrix of second-order partials). The search direction is a combination of 

the current gradient and the previous search direction: 

There are various rules for determining 13k; we have had the most success with the 

Polak-Ribiere rule, where 13k is determined from gk+l and gk according to 

a _ (gk+l - gk)T . gk+l 
}Jk - T . 

gk . gk 

As in the Steepest Descent algorithm, Ok is determined by linesearch. \Vith a sim

ple reinitialization procedure partial conjugate gradient techniques are as robust as 

the method of Steepest Descent {Powell, 1977}; in practice we find that the Polak

Ribiere method requires far fewer iterations than Steepest Descent. 
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8 BACKPROPAGATION 

The Batch Back-propagation algorithm {Rumelhart, 1986} can be described in 

terms of our optimization framework. Without momentum, the algorithm is very 

similar to the method of Steepest Descent in that dk = -gk. Rather than being 

determined by a linesearch, a, the "learning rate", is a fixed user-supplied constant. 

With momentum, the algorithm is similar to a partial conjugate gradient method, 

as dk+l = -~+l + ,Bkdk, though again (3, the "momentum term", is fixed. On-line 
Back-propagation is a variation which makes a change to the weight vector following 

the presentation of each input vector: dk = V'e(wk' rk). 

Though very simple, we can see that this algorithm is numerically unsound for sev

eral reasons. Because,B is fixed, d k may not be a descent direction, and in this 

case any a will increase EO. Even if dk is a direction of descent (as is the case 

for Batch Back-propagation without momentum), a may be large enough to move 

from one wall of a "valley" to the opposite wall, again resulting in an increase in 

EO. Because the algorithm can not guarantee that EO is reduced by successive 

iterations, it cannot be proven to converge. In practice, finding a value for a which 

results in fast progress and stable behavior is a black art, at best. 

9 WEIGHT DECAY 

One of the problems of performing gradient descent on the "error surface" is that 

minima may be at infinity. (In fact, for boolean learning problems all minima 

are at infinity.) Thus an algorithm may have to travel a great distance through 

weightspace before it converges. Many researchers have found that weight decay is 

useful for reducing learning times {Hinton, 1986}. This technique can be viewed as 

adding a term corresponding to the length of the weight vector to the cost function; 

this modifies the cost surface in a way that bounds all the minima. Rather than 

minimizing on the error surface, minimization is performed on the surface with cost 

function 

C(W) = E(w) + 211wll2 
2 

where I, the relative weight cost, is a problem-specific parameter. The gradient for 

this cost function is g( w) = V' C( w) = V' E( w) + IW, and for any step o'k, the effect 

of I is to "decay" the weight vector by a factor of (1 - O'ey): 

10 PARALLEL IMPLEMENTATION ISSUES 

We have emphasized the parallelism inherent in the evaluation of EO and gO. To 

be efficient, any learning algorithm must exploit this parallelism. Without momen

tum, the Back-propagation algorithm is the simplest gradient descent technique, as 

it requires the storage of only a single vector, gk. Momentum requires the storage of 

only one additional vector, dk-l. The Steepest Descent algorithm also requires the 

storage of only a single vector more than Back-propagation without momentum: 
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dk, which is needed for linesearch. In addition to dk, the Polak-Ribiere method 

requires the storage of two additional vectors: dk-l and gk-l. The additional stor

age requirements of the optimization techniques are thus minimal. The additional 

computational requirements are essentially those needed for linesearch - a single dot 

product and a single broadcast per iteration. These operations are parallelizable 

(log time on the Connection Machine) so the additional computation required by 

these algorithms is also minimal, especially since computation time is dominated 

by the evaluation of EO and gO. Both the Steepest Descent and Polak-Ribiere 

algorithms are easily parallelizable. We have implemented these algorithms, as well 

as Back-propagation, on a Connection Machine {Hillis, 1986}. 

11 EXPERIMENTAL RESULTS - BOOLEAN LEARNING 

We have compared the performance of the Polak-Ribiere (P-R), Steepest Descent 

(S-D), and Batch Back-propagation (B-B) algorithms on small boolean learning 

problems. In all cases we have found the Polak-Ribiere algorithm to be significantly 

more efficient than the others. All the problems we looked at were based on three

layer networks (1 hidden layer) using the logistic function for all node functions. 

Initial weight vectors were generated by randomly choosing each component from 

(+r, -r). '1 is the relative weight cost, and f and r define the convergence test. 

Learning times are measured in terms of epochs (sweeps through the training set). 

The encoder problem is easily scaled and has no bad local minima (assuming suf

ficient hidden units: log(#inputs)). All Back-propagation trials used Q' = 1 and 

(3 = OJ these values were found to work about as well as any others. Table 1 sum

marizes the results. Standard deviations for all data were insignificant « 25%). 

TABLE 1. Encoder Results 

Encoder num Parameter Values A verage Epochs to Convergence 

Problem trials r 1 '11 r/ f P-R 1 S-D / B-B 

10-5-10 100 1.0 1e-4 1e-1 1e-8 63.71 109.06 196.93 

10-5-10 100 1.0 1e-4 2e-2 1e-8 71.27 142.31 299.55 

10-5-10 100 1.0 1e-4 7e-4 1e-8 104.70 431.43 3286.20 

10-5-10 100 1.0 1e-4 0.0 1e-4 279.52 1490.00 13117.00 

10-5-10 100 1.0 1e-4 0.0 1e-6 353.30 2265.00 24910.00 

10-5-10 100 1.0 1e-4 0.0 le-8 417.90 2863.00 35260.00 

4-2-4 100 1.0 1e-4 0.1 1e-8 36.92 56.90 179.95 

8-3-8 100 1.0 1e-4 0.1 1e-8 67.63 194.80 594.76 

16-4-16 100 1.0 1e-4 0.1 1e-8 121.30 572.80 990.33 

32-5-32 25 1.0 1e-4 0.1 1e-8 208.60 1379.40 1826.15 

64-6-64 25 1.0 1e-4 0.1 1e-8 405.60 4187.30 > 10000 
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The parity problem is interesting because it is also easily scaled and its weightspace 

is known to contain bad local minima.. To report learning times for problems with 

bad local minima, we use expected epochs to solution, EES. This measure makes 

sense especially if one considers an algorithm with a restart procedure: if the algo

rithm terminates in a bad local minima it can restart from a new random weight 

vector. EES can be estimated from a set of independent learning trials as the 

ratio of total epochs to successful trials. The results of the parity experiments are 

summarized in table 2. Again, the optimization techniques were more efficient than 

Back-propagation. This fact is most evident in the case of bad trials. All trials used 

r = 1, "y = 1e - 4, T = 0.1 and f = 1e - 8. Back-propagation used a = 1 and f3 = o. 

TABLE 2. Parity Results 

II Parity alg trials I %"uee I avg"uee (s.d.) I avgun, (s.d.) I EES 11 

2-2-1 P-R 100 72% 73 (43) 232 (54) 163 

S-D 100 80% 95 (115 3077 (339) 864 

B-B 100 78% 684 (1460 47915 (5505) 14197 

4-4-1 P-R 100 61% 352 (122 453 J}17 641 

S-D 100 99% 2052 (1753 18512 (- 2324 

B-B 100 71% 8704 (8339 95345 (11930 48430 

8-8-1 P-R 16 50% 1716 (748 953 (355 2669 

S-D 6 - >10000 >10000 >10000 

B-B 2 - >100000 >100000 >100000 

12 LETTER RECOGNITION 

One criticism of batch-based gradient descent techniques is that for large real-world, 

real-valued learning problems, they will be be less efficient than On-line Back

propagation. The task of characterizing hand drawn examples of the 26 capital 

letters was chosen as a good problem to test this, partly because others have used 

this problem to demonstrate that On-line Back-propagation is more efficient than 

Batch Back-propagation {Le Cun, 1986}. The experimental setup was as follows: 

Characters were hand-entered in a 80 x 120 pixel window with a 5 pixel-wide brush 

(mouse controlled). Because the objective was to have many noisy examples of the 

same input pattern, not to learn scale and orientation invariance, all characters were 

roughly centered and roughly the full size of the window. Following character entry, 

the input window was symbolically gridded to define 100 8 x 12 pixel regions. Each 

of these regions was an input and the percentage of "on" pixels in the region was 

its value. There were thus 100 inputs, each of which could have any of 96 (8 x 12) 

distinct values. 26 outputs were used to represent a one-hot encoding of the 26 

letters, and a network with a single hidden layer containing 10 units was chosen. 

The network thus had a 100-10-26 architecture; all nodes used the logistic function. 
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A training set consisting of 64 distinct sets of the 26 upper case letters was created 

by hand in the manner described. 25" A" vectors are shown in figure 1. This 

large training set was recursively split in half to define a series of 6 successively 

larger training sets; Ro to Ro, where Ro is the smallest training set consisting 

of 1 of each letter and Ri contains Ri-l and 2i - 1 new letter sets. A testing set 

consisting of 10 more sets of hand-entered characters was also created to measure 

network performance. For each Ri, we compared naive learning to incremental 

learning, where naive learning means initializing w~i) randomly and incremental 

learning means setting w~i) to w~i-l) (the solution weight vector to the learning 

problem based on Ri-d. The incremental epoch count for the problem based on 

Ri was normalized to the number of epochs needed starting from w~i-l) plus! the 

number of epochs taken by the problem based on Ri-l (since IRi-ll = !IRd). This 

normalized count thus reflects the total number of relative epochs needed to get 

from a naive network to a solution incrementally. 

Both Polak-Ribiere and On-line Back-propagation were tried on all problems. Table 

3 contains only results for the Polak-Ribiere method because no combination of 

weight-decay and learning rate were found for which Back-propagation could find a 

solution after 1000 times the number of iterations taken by Polak-Ribiere, although 

values of "y from 0.0 to 0.001 and values for 0' from 1.0 to 0.001 were tried. All 

problems had r = 1, "y = 0.01, r = Ie - 8 and € = 0.1. Only a single trial was done 

for each problem. Performance on the test set is shown in the last column. 

FIGURE 1. 25 "A"s TABLE 3. Letter Recognition 

prob Learning Time .r epochs) Test 

set INC I NORM I NAIV % 

RO 95 95 95 53.5 

R1 83 130 85 69.2 

R2 63 128 271 80.4 

~ -!j. :11;; H·-:' ·r::. f"t 
' ~:!'!I .. ....:I I .. · ... M ... ~ r ~ , . . ..... ~ ~ .: 

R3 14 78 388 83.4 

R4 191 230 1129 92.3 

R5 153 268 1323 98.1 

R6 46 180 657 99.6 
F": 1'\ .r .,. :'1'''' r! 1 
~ " ,:: HI .•. ;: '1 .. ,l'1 J.'1 .. .~ ;i....J _ •• 
. I. t· '. I! = t· ! , ., 

The incremental learning paradigm was very effective at reducing learning times. 

Even non-incrementally, the Polak-Ribiere method was more efficient than on-line 

Back-propagation on this problem. The network with only 10 hidden units was 

sufficient, indicating that these letters can be encoded by a compact set of features. 

13 CONCLUSIONS 

Describing the computational task of learning in feedforward neural networks as 

an optimization problem allows exploitation of the wealth of mathematical pro

gramming algorithms that have been developed over the years. We have found 



48 Kramer and Sangiovanni-Vincentelli 

that the Polak-Ribiere algorithm offers superior convergence properties and signif

icant speedup over the Back-propagation algorithm. In addition, this algorithm is 

well-suited to parallel implementation on massively parallel computers such as the 

Connection Machine. Finally, incremental learning is a way to increase the efficiency 

of optimization techniques when applied to large real-world learning problems such 

as that of handwritten character recognition. 
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