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ABSTRACT

Queuing systems are an important building block for perfor-

mance evaluation in various application areas, due to their

powerful, yet simple nature. Although it is often possible

to perform an analytical evaluation of a queuing model,

simulation of queuing systems remains an important tech-

nique in the context of performance evaluation. In order

to speed up queuing simulation executions, parallel and

distributed simulation techniques have been devised. Un-

fortunately, existing methods are complex in nature, leading

to increased development costs. Moreover, most of these

approaches have been developed for tightly coupled paral-

lel processing machines. Consequently, they are not suited

for a distributed computing environment. This paper in-

vestigates an alternative approach based on the technique

of time-parallel simulation with fix-up computations. The

salient features of this novel approach are its simplicity and

its suitability for execution in a distributed environment.

1 INTRODUCTION

Queuing systems are an important tool in the area of perfor-

mance evaluation of computer and communication systems,

especially as the building blocks of queuing networks. Al-

though many queuing systems can be solved analytically,

simulation remains an important tool for the computation

of various statistics of queuing systems.

Parallel and distributed simulation techniques (Fujimoto

2000) are applied to decrease the run times of sequential

simulation algorithms. This is desirable in cases, where

the efficiency of sequential algorithms is not sufficient due

to economical reasons or real-time constraints. Generally,

there are two different approaches to exploit parallel pro-

cessing power for a simulation problem: Parallel replicated

simulation performs multiple replications of the same simu-

lation model in parallel, model parallelization decomposes

a simulation task in multiple subtasks for parallel or dis-

tributed simulation. Parallel replicated simulation is easy

to implement, but its applicability is restricted, depend-
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ing on the strength of the initial transient, the variability

of the simulation, and the available simulation run length

(Heidelberger 1986).

Furthermore, the execution of a parallel replicated sim-

ulation or of a parallelized model is classified by the utilized

processing hardware. Parallel simulation can be performed

on a tightly coupled parallel computer (e.g., employing

shared memory) or on a number of independent computing

resources communicating by the use of standard intercon-

nection networks (e.g., clusters of workstations or grid

computing; see Foster, Kesselman, and Tuecke 2001). This

distinction is reasonable due to significant differences in the

characteristics of the corresponding hardware. Distributed

systems are characterized by high communication latencies

and a general lack of shared memory. This has a significant

impact on the applicability of various parallel algorithms.

In the field of parallel discrete-event simulation (Fu-

jimoto 2000), the classical method for the parallelization

of a model is a spatial model decomposition. The state

space of the model is divided into a number of substates

to be simulated concurrently by parallel processes. This

requires decomposability of the model state space. Unfor-

tunately, in many cases a model exhibits only a limited

amount of decomposability. A single queuing system has a

very simple state space, often consisting only of the num-

ber of jobs currently present. Furthermore, even in queuing

networks with a more complex state space, the amount of

parallelism achievable with spatial model decomposition is

limited (Wagner and Lazowska 1989).

An alternative to spatial decomposition is a temporal

decomposition of the simulation task (Chandy and Sherman

1989). The simulated time is split into a number of slices

and the responsibility for the calculation of state changes

inside each slice is assigned to a separate parallel process.

This technique of time-parallel simulation is promising for

the simulation of queuing systems, as the achievable degree

of parallelism is not limited by the decomposability of the

model state space. Therefore, all of the approaches for

efficient queuing system simulation that have been devel-

oped, use a variant of time-parallel simulation. Greenberg,
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Lubachevsky, and Mitrani (1991) use parallel prefix compu-

tations (Kruskal, Rudolph, and Snir 1985) to calculate G/G/1

queuing system dynamics via recurrence relations. Further-

more, they investigate techniques to apply this approach

to several different types of queuing networks, including

acyclic fork-join networks, series of queues with bounded

buffers, closed cyclic networks, and several types of acyclic

networks of G/G/1 queues. They also introduce the method

of iterative folding, which can be used to simulate arbitrary

G/G/1 queuing networks, albeit with varying efficiency. An-

dradóttir and Ott (1995) introduce a complex algorithm for

the simulation of queuing networks with either loss or com-

munication blocking. The structure of supported queuing

networks is not restricted, but only markovian queues with

bounded buffers are supported. Wang and Abrams (1992)

modify the approach of Greenberg et al. for the simulation

of bounded G/G/1/K queuing systems. Their approximate

algorithm estimates the correct results in two phases: First,

the G/G/1 algorithm of Greenberg et al. is applied. Then, the

resulting trajectory of simulation states is transformed into

an approximate G/G/1/K trajectory. Chen (1997) presents

an approach for the parallel simulation of G/G/1 queues

and certain networks of these queues, including systems

with loss or communication blocking. Instead of using re-

cursive equations, longest-path distances in directed graphs

are utilized to compute queuing system statistics.

All of the mentioned approaches for parallel or dis-

tributed queuing system simulation are rather complex and

thus difficult to be implemented efficiently on all types of

parallel processing architectures. Furthermore, they have

been designed for an execution on tightly coupled multipro-

cessor machines, thus not being well suited for execution on

a distributed system (e.g., using grid computing resources).

With the rising significance of distributed processing ar-

chitectures, this happens to be a serious impediment for

parallel or distributed queuing simulation. Therefore, an

alternative approach for G/G/1 queuing system simulation

based on time-parallel simulation with fix-up computations

(Heidelberger and Stone 1990) is introduced in this paper.

The salient features of this method are its simplicity and

its suitability for distributed simulation.

The rest of the paper is structured as follows. Section 2

introduces the method of time-parallel simulation with fix-

up computations. The central part of this paper is the

definition of an efficient state match criterion and the proof

of its correctness in Section 3. Section 4 gives indications on

the performance of the introduced approach by the example

of M/M/1 queues. Finally, Section 5 concludes the work.

2 TIME-PARALLEL SIMULATION

The basic idea of time-parallel simulation is the temporal

decomposition of the simulation task, as introduced above.

However, without further mechanisms, the final and initial
1021
states of adjacent time intervals do not necessarily coin-

cide at interval boundaries, possibly resulting in incorrect

state changes. Several different solutions of this problem

have been proposed. Lin and Lazowska (1991) introduce

the notion of regeneration points, which are states that

keep reoccurring throughout a simulation execution. Hei-

delberger and Stone (1990) introduce another solution using

fix-up computations. Compared to the approach utilizing

regeneration points, fix-up computations are a more general

construct, as they can be applied to almost any simulation

model. Therefore, the rest of the paper is only concerned

with time-parallel simulation using fix-up computations.

Let T = [0,τ] be the interval of the whole simulation

time. T is decomposed into the time intervals T1, . . . ,Tm,

where Tk = [τk,τk+1], with τ1 = 0 < τ2 < .. . < τm < τm+1 =
τ , such that every point in simulated time is contained in

some interval and the intervals overlap only at boundaries

τ2, . . . ,τm.

Now, simulations of time intervals are executed concur-

rently by corresponding processes p1, . . . , pm in the initial

simulation phase. Unfortunately, the correct states at time

interval boundaries τ2, . . . ,τm are unknown prior to the simu-

lation. Therefore, these states are guessed and used as initial

states z2, . . . ,zk of the simulation processes. However, if

the simulations are executed with these (possibly incorrect)

states, the situation may occur, that the final state Zk of a

simulation execution for time interval Tk does not match the

initial state zk+1 that has been used for the simulation of

the following time interval Tk+1. Figure 1 illustrates these

issues.

Figure 1: Time-Parallel Simulation with Guessed States

If it is the case that zk+1 6= Zk for at least one time

interval Tk, overall simulation results might be incorrect.

Therefore, a fix-up phase is utilized after the initial simu-

lation phase to amend these illegal state changes. Fix-up

computations for an interval Tk+1 (see Figure 2 for an il-

lustration) are just a continuation of the simulation of the

preceding interval Tk by process pk until a time τ ′

k, where

the state of the initial simulation performed by process pk+1
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Figure 2: Time-Parallel Simulation with Fix-Up Computa-

tions

matches the corresponding state calculated during the fix-up

computations by process pk. As can be noted in Figure 2,

the correct sequence of states results from a concatenation

of the sequences of states of intervals T ′

k = (τ ′

k,τ
′

k+1] cal-

culated by process pk for all k ∈ {1, . . . ,m}. An interval

[τk,τ
′

k] can be interpreted in two ways: as the fix-up phase

of process pk−1 and as a warm-up phase of process pk.

Figure 2 also shows the case, where state matching

does not occur during the fix-up computations of process

p2 for interval T3. In that case, process p2 continues fix-up

computations beyond τ4. State matching is now attempted

against the sequence of states calculated by process p3 for

interval T4. The fix-up phase [τ3,τ
′

3] of process p2 now

overlaps with the warm-up phases of p3 as well as p4, and

three different sequences of states have been calculated for

the interval [τ4,τ
′

3].
The amount of fix-up computations depends on the state

calculations done by the corresponding processes. Hence,

the length of interval T ′

k handled by a process pk, is not

known a priori and does not necessarily have the same length

as the intervals of the other processes. The computational

overhead O of the parallel simulation can be defined as the

lengths of fix-up phases of processes. It can be measured

as the sum of the lengths of fix-up phases and expressed

relative to the length τ of the whole simulation:

O :=
1

τ

m∑

k=2

(τ ′

k − τk) . (1)

For equidistant process start times τk, i.e., τk = (k− 1) τ
m

,

(1) can be simplified to

O =
1

τ

m∑

k=2

(
τ ′

k − (k−1)
τ

m

)
=

1

τ

m∑

k=2

τ ′

k −
m−1

2
. (2)
1022
The worst case for the overhead is that all processes perform

fix-up computations until the end of the simulation time,

i.e., for all k ∈ {2, . . . ,m} : τ ′

k = τ . The overhead Õ in this

case can be calculated from (2):

Õ :=
1

τ

m∑

k=2

τ −
m−1

2
=

m−1

2
. (3)

As an example, consider a simulation with τ = 100 and

four parallel processes (m = 4). In the worst case, Õ = 1.5,

i.e., the computational overhead for the parallel calculation

is 1.5 times the length of the overall simulation interval.

The total work done is 2.5 times the work in the sequential

case. To determine the overall efficiency of the parallel

algorithm, additional knowledge about the communication

and synchronization overheads is necessary.

During the fix-up phase, fix-up computations are per-

formed until the simulation state matches the corresponding

state that had been calculated in the initial simulation phase.

Therefore, a central aspect of fix-up computations is the

detection of state matching. State matching might occur in

both deterministic and stochastic simulation models, but in

the latter case it is harder to anticipate and sometimes leads

to obscure results. Fortunately, it is easy to transform a

stochastic simulation model into an equivalent deterministic

one by pre-sampling of random numbers. This leads to a

trace-driven simulation, where the now repeatable simula-

tion executions enable a direct comparison of the simulation

states of initial simulation and corresponding fix-up compu-

tation. The details how this presampling can be performed

depend on the specificities of the simulation model.

3 PARALLEL QUEUING SYSTEM SIMULATION

Using the method of time-parallel simulation with fix-up

computations for the simulation of G/G/1 queuing systems is

straightforward: Job arrival and service times are presampled

and stored in an input trace. The trace is split into a number

of subtraces to be simulated concurrently. For each parallel

process, it is supposed that the system is empty just before

the first job arrival of the corresponding subtrace occurs.

Simulation is executed as usual until the end of the subtrace is

reached. Now, each process performs fix-up computations

by continuing the simulation with the input subtrace of

the following parallel process until state matching occurs.

Afterwards, the simulation results are collected from the

processes and the overall simulation result is calculated. Two

open issues still remain: the detection of state matching and

the efficient collection of results from the parallel processes.

The rest of this section is concerned with the detection

of state matching. In fact, state matching occurs exactly at

the time when a process performing fix-up computations

encounters an empty queue. It is easy to see that after this

time, states will be identical. However, it can be shown
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that this is also the earliest time, when the state of the

process performing fix-up computations matches the state

calculated by the following process in the initial simulation

phase. This result is stated by Theorem 1, which is derived

hereafter.

3.1 Foundations

In the following, the problem of queuing simulation is

reduced to the problem of determining the departure times

of a number of jobs with associated arrival instants and

service times. Based on this sequence of departure instants,

the trajectory of the number of jobs in the system over time

can be reconstructed easily (Greenberg, Lubachevsky, and

Mitrani 1991). The calculation of the job departure instants

of a G/G/1 queue can be represented by a recursive function

that relates a job with its departure time (Krivulin 1994).

The basic observation underlying this formulation is, that

the departure instant d( j) of job j is determined by its own

service time s( j) and either its arrival instant a( j) or the

departure instant of the previous job d( j− 1) (depending

on which occurs later in time):

d( j) = max(a( j),d( j−1))+ s( j) . (4)

This recursive formula for the calculation of departure times

is easily understandable and can be implemented efficiently

as a sequential computer program. In the following, (4)

is modified to support the parallel calculation of departure

times, defined later.

Definition 1 (departure function) Let the set of

jobs to simulate be represented by N := {1, . . . ,n}. Let

s : N → R
+ be a positive function of job service times.

Let a : N → R
+
0 be a stricly monotonic increasing func-

tion of job arrival instants. The departure function

di
u : {i− 1, . . . ,n} → R

+
0 for u ∈ R

+
0 and i ∈ N, is defined

as follows:

di
u( j) :=

{
u , if j = i−1
max(a( j),di

u( j−1))+ s( j), otherwise.

The parameter i is used to restrict the domain of the

function to the set {i−1, . . . ,n}, starting at job i, which is

a part of the overall simulation domain. The function is

defined for job i−1, as well. However, this value is only to

be used as the basic case of the recursion. The parameter

i is relevant in the context of time-parallel simulation of

the queuing system, where the simulation of a parallel

process is started with an initial job representing the time

interval boundary. The case i = 1 is used for a sequential

calculation of departure times as well as for the first process

in a time-parallel simulation execution. The parameter u of

the departure function is used to indicate an initial delay for

the queuing system. In a sequential queuing system which
102
is typically empty at the beginning of the observed time,

u = 0. However, if there is an initial load of the system, the

queue starts with at least one existing job. This property

can be captured by introducing an initial delay with u > 0
that must pass until the first job can be served. This is

used in Section 3.2 to represent the performance of fix-up

computations in a time-parallel simulation, where a process

starts its fix-up computation phase with a number of jobs

in its queue, which has been determined during its initial

simulation phase. As can easily be seen, di
u is a strictly

monotonic increasing function for all parameters i and u.

In time-parallel queuing simulation, it is necessary to

compare the calculations of two adjacent processes to decide

on the termination of fix-up computations. The following

lemmata provide the foundation for the following formal-

ization of time-parallel queuing simulation.

Lemma 1 Let i ∈ N and u,v ∈R
+
0 with u ≥ v. Then

for all j ∈ {i−1, . . . ,n}

di
u( j) ≥ di

v( j) .

Proof: Proof by induction over j with the basic case

j = 0 trivially met.

Let di
u( j−1) ≥ di

v( j−1) hold.

Case 1 (di
u( j−1) ≤ a( j)(⇒ di

v( j−1) ≤ a( j))):
di

u( j) = a( j)+ s( j) = di
v( j) ⇒ di

u( j) ≥ di
v( j)

Case 2 (di
u( j−1) > a( j) and di

v( j−1) ≤ a( j)):
di

u( j) = di
u( j−1)+ s( j) > a( j)+ s( j) = di

v( j)
Case 3 (di

u( j−1) > a( j) and di
v( j−1) > a( j)):

di
u( j) = di

u( j−1)+ s( j) ≥ di
v( j−1)+ s( j) = di

v( j)
Case 4 (di

u( j−1) ≤ a( j) and di
v( j−1) > a( j)):

Cannot occur due to di
u( j−1) ≥ di

v( j−1). 2

Lemma 1 indicates that for two simulation executions

starting with different initial delays, the departure times

of all jobs of the simulation with the lower initial delay

are always dominated by the departure times of jobs in the

other execution. However, it is still unknown how departure

functions with different parameters i can be compared. The

following lemma shows how this can be done.

Lemma 2 Let i, i′ ∈ N0 with i ≤ i′ and u ∈R
+
0 . Let

u′ := di
u(i

′− 1). Then the following equality holds for all

j ∈ {i′−1, . . . ,n}:

di
u( j) = di′

u′( j)

Proof: Proof by induction over j with the base case

j = i′− 1 met due to Definition 1. Suppose, that for any

j ∈ Ni′ , di
u( j) = di′

u′
( j) holds.

Then di
u( j + 1) = max(a( j + 1),di

u( j)) + s( j + 1) =

max(a( j +1),di′

u′
( j))+ s( j +1) = di′

u′
( j +1). 2

Lemma 2 shows, that a departure function di
u is equiv-

alent to a function di′

u′
with another parameter i′ > i for all

j ≥ i′−1. This can be achieved by a simple adjustment of

the initial delay u. Hence, if two departure functions with
3
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differing parameters i and i′ are to be compared, the function

with the smaller parameter can be adjusted properly.

Now, a strong relationship between simulation execu-

tions with the same parameter i has been established and it

has been shown how departure functions with different pa-

rameters i and i′ can be compared. The purpose of the next

section is to show how state match detection in time-parallel

queuing simulation can be performed. State matching oc-

curs if the states of adjacent simulations are identical. In

fact, it is shown in Section 3.2, that matching between the

states calculated by two processors pk and pk+1 occurs

exactly when the queuing system gets empty the first time

during the fix-up computations of pk. In the case of calcu-

lation of departure times, as presented in Definition 1, the

property of an empty queue is represented by the expression

di
u( j−1) ≤ a( j), in which case the service of job j is not

influenced at all by the history of the queuing system, as

job j−1 departs from the system before job j arrives. The

following lemma is an important step to the property of

match detection discussed above. It gives a characterization

of the state match time for two simulations with differing

initial delays, but the same domain.

Lemma 3 Let i ∈ N0 and u,v ∈ R
+
0 with u ≥ v.

Then for all j ∈ {i−1, . . . ,n}, the following two statements

are equivalent:

(i) di
u( j) = di

v( j) ,

(ii) di
u( j−1) = di

v( j−1)∨di
u( j−1) ≤ a( j) .

Proof: Let i ∈ N be an arbitrary natural number.

Furthermore, choose an arbitrary j ∈ {i−1, . . . ,n}.

Case 1 (di
u( j−1) ≤ a( j) and di

v( j−1) ≤ a( j)):
di

u( j) = max(a( j),di
u( j−1))+ s( j) = a( j)+ s( j)

= max(a( j),di
v( j−1))+ s( j) = di

v( j)
⇒ (i) always holds.

(ii) trivially holds due to di
u( j−1) ≤ a( j).

Case 2 (di
u( j−1) > a( j) and di

v( j−1) ≤ a( j)):
di

u( j) = max(a( j),di
u( j−1))+ s( j) = di

u( j−1)+ s( j)
> a( j)+ s( j) = max(a( j),di

v( j−1))+ s( j) = di
v( j)

⇒ (i) never holds.

(ii) never holds due to di
u( j−1) > a( j) ≥ di

v( j−1).
Case 3 (di

u( j−1) > a( j) and di
v( j−1) > a( j)):

(i) is reduced to di
u( j−1) = di

v( j−1).
di

u( j) = max(a( j),di
u( j−1))+ s( j) = di

u( j−1)+ s( j)
di

v( j) = max(a( j),di
v( j−1))+ s( j) = di

v( j−1)+ s( j)
Thus, di

u( j) = di
v( j) ⇔ di

u( j−1) = di
v( j−1), which

settles Case 3.

Case 4 (di
u( j−1) ≤ a( j) and di

v( j−1) > a( j)):
Cannot occur due to Lemma 1. 2

3.2 Time-Parallel Queuing Simulation

With the foundations defined in the previous section, it is

now possible to define time-parallel queuing system sim-
1024
ulation. Let N := {1, . . . ,n} be the set of jobs to simu-

late with corresponding arrival instants a : N → R
+
0 and

service times s : N → R
+. The responsibility for the cal-

culation of departure times of jobs is assigned to m pro-

cesses p1, . . . , pm, assigning start job jk ∈ {1, . . . ,n} to ev-

ery process pk ( j1 = 1 < j2 < .. . < jm ≤ n). Furthermore,

each logical process pk is assigned a simulation interval

Nk := { jk −1, . . . ,n} and an initial delay uk := a( jk). This

value of the initial delay represents an empty queue at the

beginning of the simulation of each simulation interval,

as the departure time of the first job jk is in any case

a( jk)+ s( jk) and the job is not influenced by any of the

preceding jobs in the system.

The following lemma is given to simplify the proofs

of Lemma 5 and Theorem 1.

Lemma 4 Let k, l ∈ {1, . . . ,m} with k < l and z :=

d
jk
uk

( jl − 1). Then the following implication holds for all

j ∈ { jl , . . . ,n}:

z ≤ ul ⇒ d jk
uk

( j) = d jl
ul

( j) .

Proof: First of all, note that k < l directly leads to jk <
jl due to definition, which is silently exploited in all of the

following proofs. Due to definition, it holds that ul = a( jl)

and d
jl
z ( jl −1) = z. Hence, d

jl
z ( jl −1) ≤ a( jl). Therefore,

d
jl
z ( jl) = a( jl) + s( jl) = d

jl
ul

( jl). Repeated application of

Lemma 3 leads to d
jl
z ( j) = d

jl
ul

( j) for all j ∈ { jl , . . . ,n}. An

application of Lemma 2 settles the proof. 2

The value a( jl) of the initial delay ul of a process pl

is reasonable, as it leads to the domination of d
jl
ul

by d
jk
uk

for every k < l. This property is shown in the following

lemma and can be exploited later for the determination of

the match detection criterion.

Lemma 5 Let k, l ∈ {1, . . . ,m} with k < l. Then the

following inequality holds for all j ∈ Nl:

d jk
uk

( j) ≥ d jl
ul

( j) .

Proof: Let z := d
jk
uk

( jl −1). There are two cases for

the value of z:

Case 1 (z > ul):

Then, due to Lemma 1, d
jl
z ( j)≥ d

jl
ul

( j) for all j ∈ Nl .

With an application of Lemma 2, this translates directly

to d
jk
uk

( j) ≥ d
jl
ul

( j) for all j ∈ Nl .
Case 2 (z ≤ ul):

Follows directly from Lemma 4. 2

Every one of the functions d
jk
uk

has a domain that extends

up to the last job n. It is not possible to reduce the domain

further, as for any process pk, fix-up computations might

be necessary up to n. However, it is not necessary for every

process pk to perform fix-up computations up to job n, but

only until a job arrives after the previous job departed, i.e.,
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until the process has an empty queue. This is formalized

in the following theorem.

Theorem 1 Let k, l ∈ {1, . . . ,m} with k < l. Then

for all j ∈ { jl , . . . ,n}, the following two statements are

equivalent:

(i) d jk
uk

( j) = d jl
ul

( j) ,

(ii) d jk
uk

( j−1) = d jl
ul

( j−1)∨d jk
uk

( j−1) ≤ a( j) .

Proof: Choose an arbitrary j ∈ { jl , . . . ,n}. Let

z := d
jk
uk

( jl −1). There are two cases for z:

Case 1 (z > ul):

Due to Lemma 3, d
jl
z ( j) = d

jl
ul

( j) is equivalent to

(d
jl
z ( j − 1) = d

jl
ul

( j − 1))∨ (d
jl
z ( j − 1) ≤ a( j)). An

application of Lemma 2 settles the proof of this case.

Case 2 (z ≤ ul):

(i) holds due to Lemma 4. If j > jl , (ii) holds due

to Lemma 4. Hence, let j = jl . Due to z ≤ ul ,

d
jl
z ( jl −1) ≤ ul = a( jl). Thus, (ii) holds because of

Lemma 2. 2

Theorem 1 has three implications:

• Once the departure times of a job match between

initial simulation and corresponding fix-up com-

putation, the departure times of all following jobs

match as well.

• If in the fix-up computations, a job i arrives after

or at the time when the previous job departs, the

departure times of the job match between initial

simulation and corresponding fix-up computation.

• State matching cannot occur before in the fix-up

computations, a job arrives at or after the time

when the previous job departs, in which case the

queue is empty.

4 COMPUTATIONAL OVERHEAD

The previous section introduced an alternative parallel pro-

cessing scheme for queuing system models. An important

property of that approach is the simple state match criterion,

which allows for an efficient state match detection. How-

ever, as discussed in Section 2, a large part of the overall

overhead of a time-parallel simulation execution is deter-

mined by the amount of fix-up computations that have to be

performed. These in turn depend on the times of state match

occurences in the time intervals. The aim of this section

is to exemplarily investigate the computational overhead O

of the novel queuing system simulation approach. This is

done by an examination of the expectation of (the random

variable) O in case of an M/M/1 queue with parameters λ
and µ representing arrival and service rates and under the

restriction λ < µ .
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4.1 Facts on M/M/1 Queues

In this section we review some formulas concerning M/M/1
queues, which are needed in the considerations of Sec-

tion 4.2.

Let N(t) be the random number of customers in an

M/M/1 queuing system at time t. We consider for all

i = 1,2, . . . the busy period initiated by i customers at time

t = 0 (cf. Prabhu 1965)

T (i) := inf{t ≥ 0 : N(t) = 0 and N(0) = i}

and define T (0) := 0. We obtain for the expectation of T (i)
in case of λ < µ (see Saaty 1961, p. 128, problem 16)

ET (i) =
i

µ −λ
, i = 0,1, . . . . (5)

To calculate the computational overhead of the parallel

simulation, we need a further definition. For i = 0,1,2, . . .
and given τ2, . . . ,τm, let

Tk(i) := inf{t ≥ τk : N(t) = 0 and N(τk) = i} , k = 2, . . . ,m

be the busy time initiated by i customers at time τk. Since

{N(t) : t ∈ R
+
0 } is a continuous time Markov chain (see

Prabhu 1965), it follows that T (i) and Tk(i) (k = 2, . . . ,m)

have the same distribution. Therefore we obtain with (5)

in case of λ < µ for the expectation of Tk(i)

ETk(i) = τk +ET (i) = τk +
i

µ −λ
, k = 2, . . . ,m . (6)

In case of λ < µ we know, that for all i, j ∈ {0,1, . . .}

Pi j(t) := P(N(t) = j|N(0) = i) → π j :=

(
1−

λ

µ

) (
λ

µ

) j

for t →∞ (cf. Prabhu 1965). We now suppose that t0 is

sufficiently large to allow the assumption, that the system

is encountered in steady state. Referring to this time point

t0, we obtain with (6) for the expectation of the busy time

T
(s)

k in steady state

ET
(s)

k =

∞∑

j=0

π j ETk( j) = τk +
λ

(µ −λ )2
, k = 2, . . . ,m .

(7)

4.2 Expectation of the Computational Overhead

In Section 2 we introduced the computational overhead O

for the parallel simulation of general systems. We now

want to specialize our considerations by considering the
5
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computational overhead O
(s)

M/M/1 of an M/M/1 queue in

steady state.

Let τk (k = 2, . . . ,m) be given. Then [N(τk)|N(0) = i]
is the random number of customers in the system at time

τk if the system had started with i customers at time τ1(=
0). Therefore, T ([N(τk)|N(0) = i]) is the random variable

representing the first occurrence of state 0 after time τk under

the condition N(0) = i. Using the total law of expectation

(see Rohatgi 1976) we obtain with (6) for k = 2, . . . ,m

ET ([N(τk)|N(0) = i]) =

∞∑

j=0

ETk( j)Pi j(τk)

=

∞∑

j=0

(τk +ET ( j))Pi j(τk)

= τk +

∞∑

j=0

ET ( j)Pi j(τk) . (8)

Together with (1), the definition of T ([N(τk)|N(0) = i])
leads to

OM/M/1(i) =
1

τ

m∑

k=2

(T ([N(τk)|N(0) = i])− τk)

for all i = 0,1, . . . and finally with (8) to

EOM/M/1(i) =
1

τ

m∑

k=2

(ET ([N(τk)|N(0) = i])− τk)

=
1

τ

m∑

k=2

∞∑

j=0

ET ( j)Pi j(τk) .

Note that EOM/M/1(i) does not depend on the time in-

terval boundaries τk with the exception of the transition

probabilities Pi j(τk).
If we assume that τ2 is sufficiently large to allow

for Pi j(τ2) ≈ π j then this relation holds also for every τk

(k = 3, . . . ,m). With (7) we get for the expectation of the

computational overhead in steady state O
(s)

M/M/1

EO
(s)

M/M/1 =
1

τ

m∑

k=2

(
ET

(s)
k − τk

)

=
1

τ

m∑

k=2

(
τk +

λ

(µ −λ )2
− τk

)

=
m−1

τ

λ

(µ −λ )2
.

The most important observation regarding the expected over-

head is a strong dependency on the distance between the

arrival rate λ and the service rate µ . The expected overhead
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tends to grow quadratically with a decreasing distance. Fur-

thermore, increasing λ and µ while keeping a fixed distance

between both of the parameters also increases the expected

overhead. Finally, as could have been guessed, the overhead

tends to grow linearly in the number m of time intervals.

These observations can be used to evaluate the intended

application of the parallel simulation approach to a given

queuing system model.

Note that in order to provide a confidence interval

for the overhead, the calculation of the variance of O is

necessary. Unfortunately, this calculation is a complex task

which cannot be easily solved.

5 CONCLUSIONS

Queuing networks and their building blocks, the atomic

queuing systems are an important tool in the area of perfor-

mance evaluation of computer and communication systems.

Although analytic solutions exist for many types of queu-

ing networks, simulation remains an important tool in this

area. Parallel and distributed simulation methods can be

applied to queuing simulation models if there are time

constraints on the execution of the simulations. Efficient

parallelization approaches exist for various types of queuing

networks. Unfortunately, these are complex and difficult to

be implemented on parallel and distributed computing sys-

tems. Moreover, they rely on a tight coupling of processing

nodes, thus being unsuited for execution in a distributed

environment. Therefore, this paper introduces a new ap-

proach for parallel G/G/1 queuing system simulation based

on time-parallel simulation with fix-up computations.

In time-parallel queuing system simulation, job arrival

instants and service times are presampled and stored in an

input trace. The trace is decomposed into a number of

subtraces to be assigned to parallel processes. Processes

start simulation of the corresponding subtraces, supposing

that the system is empty at simulation start. This produces

incorrect simulation results, being corrected by the use of

fix-up computations. The central aspect of the approach is

the detection of state matching, i.e., the time when fix-up

computations of a process can be stopped. It turns out that

state matching is easy to detect in G/G/1 queuing systems,

as it occurs exactly at the time a process performing fix-up

computations finds the system empty.

An analytical evaluation of the computational overhead

of the parallel processing of an M/M/1 queuing system

model reveals the relationship between the simulation effi-

ciency and the arrival and service rates of the model. The

expected computational overhead due to fix-up computa-

tions tends to grow quadratically with a decreasing difference

between the arrival rate λ and the service rate µ . Hence,

the utilization of the novel approach is reasonable with a

sufficiently large distance between arrival and service rates.
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In contrast to the other approaches for parallel queuing

simulation, time-parallel queuing system simulation is a

simple method, which can be easily implemented and is

also suited for execution on a distributed system. Another

advantage is the possibility of an application of approximate

simulation techniques, which have been developed for time-

parallel simulation with fix-up computations (Kiesling 2005,

Kiesling and Pohl 2004).
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