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Abstract Medical imaging is fundamental for improve-

ments in diagnostic accuracy. However, noise frequently

corrupts the images acquired, and this can lead to erro-

neous diagnoses. Fortunately, image preprocessing algo-

rithms can enhance corrupted images, particularly in noise

smoothing and removal. In the medical field, time is always

a very critical factor, and so there is a need for imple-

mentations which are fast and, if possible, in real time. This

study presents and discusses an implementation of a highly

efficient algorithm for image noise smoothing based on

general purpose computing on graphics processing units

techniques. The use of these techniques facilitates the

quick and efficient smoothing of images corrupted by

noise, even when performed on large-dimensional data

sets. This is particularly relevant since GPU cards are

becoming more affordable, powerful and common in

medical environments.

Keywords GPGPU � CUDA � Image processing �
Multiplicative noise

1 Introduction

Computational image processing is a field that has seen

tremendous advances in recent years. These advances are

the result of huge demands coming from areas such as

medicine [1], agriculture [2], security [3], traffic and satellite

data analysis [4] and industry [5]. These fields require image

processing tasks such as noise and artifact removal and

smoothing [6], geometrical correction [7], contrast

enhancement [8], image restoration, [9] and illumination

correction [10]. Briefly, the use of image processing tech-

niques, particularly of image preprocessing, is mainly

intended to enhance the data presented in the original images

so that the processed data can be analyzed more easily using

higher-level techniques of computational image analysis,

such as image segmentation [11] or image registration [12].

However, many of the original images that need to be

enhanced have large dimensions [13] and need to be pro-

cessed in real time or near real time [14]. This is the case, for

example, in the fields of robotic navigation or assisted sur-

gery, or even when the input data are long sequences of 2D

or 3D images, such as in ultrasound imaging [15]. Addi-

tionally, to obtain more robust and efficient results, the

computational complexity of the more recent methods has

considerably increased, leading to slower runtimes. There-

fore, the use of parallel computing strategies has attracted

attention, and this has led to higher speeds, particularly in

time-constrained applications for medical diagnosis [17].

Frequently, noise corrupts images, and this may be due

to the image acquisition procedure involved or to artifacts

generated by data transmission or other processes [17]. The

image smoothing method proposed by Jin and Yang [18]

has obtained very promising results, particularly when

applied to medical images. However, a long computational

time when performing several iterations on the input image
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is required by this method, especially when applied to

large-scale images; as a result, its use has become less

attractive for some potential applications. Additionally,

there is a frequent and increasing demand for fast responses

from computational methods in high-resolution image

processing, and real time is preferable due to the severe

time constraints that characterize medical imaging.

Therefore, we have developed a parallel implementation

of the smoothing method proposed by Jin and Yang [18]

using general purpose computing on graphics processing

units (GPGPU) [19] and compute unified device architec-

ture (CUDA) [20] in order to speed up its runtime. We have

assessed the performance of this strategy by comparing the

runtime of parallel implementation (GPU) against that of

sequential implementation (CPU).

The method adopted for image smoothing selects each

pixel from the input image and thus requires a large number

of calculations; this leads to the long runtime mentioned.

Briefly, the method involves the use of an m� nð Þ matrix,

which is processed for T iterations. Thus, the computational

complexity of the processing of the input image is equal to

O m� n� Tð Þ, where m and n are the number of rows and

columns of the input image, respectively.

In our parallel implementation, the input image data are

stored in the GPU’s memory, where the highest number of

accesses occurs, in order to eliminate as many data

accesses as possible within the main memory system

[19, 21]. Hence, input image processing is executed in

parallel in the GPU. The experimental findings confirmed

that the combination of the CUDA architecture and

GPGPU techniques was very promising in terms of

speeding up the runtime of image processing and compu-

tational analyses. These approaches led to high processing

performance at a low cost, mainly when compared with

parallel implementations in multicomputers.

As far as the authors known, this was the first time that

the smoothing method adopted was parallelized using

CUDA architecture and GPGPU techniques. The findings

are of great interest for image processing and analysis,

mainly within the medical community. In this case, med-

ical images of ever higher resolution need to be smoothed

as fast as possible in real clinical scenarios. Nowadays,

computers with GPUs are commonly available in medical

environments and, although these computers are not always

the most up-to-date models, their computational power is

still sufficient to achieve efficient fast results.

This paper is organized as follows: Sect. 2 introduces

the image smoothing method proposed by Jin and Yang

[18]; Sect. 3 describes the metrics of structural similarity

(SSIM), peak signal-to-noise ratio (PSNR) and normalized

cross-correlation (NCC), all of which are used to assess the

quality of the smoothing results; Sect. 4.3 presents the

parallel implementation of the image smoothing method;

the computational runtimes demanded by the CPU- and

GPU-based implementations are discussed in Sect. 5; and

finally, Sect. 6, presents the concluding remarks.

2 Image smoothing method

Images frequently have multiplicative noise, which comes

from multiplying an original image I by a noisy image In
[22]. This type of noise is present, for example, in micro-

scopy, ultrasound and infrared imaging [23]. Multiplicative

noise is usually more difficult to remove than additive

noise [24]. Therefore, to overcome this problem, varia-

tional models for multiplicative noise removal have been

integrated into smoothing methods specially developed for

such images [24, 25]. In 2011, Jin and Yang [18] proposed

a very promising method for removing and smoothing

multiplicative noise from corrupted images using the

variational model for additive noise removal proposed by

Rudin et al. [26], as shown here:

min
u

J uð Þ þ k

Z

X

ðf � uÞ2
9

=

;

8

<

:

; ð1Þ

where X is a closed area belonging to R2, f is the image

corrupted by additive noise, u is the image in the current

smoothing iteration, J(u) is a regulator term and k is a

weight parameter. Jin and Yang designed the method

specifically to remove multiplicative noise from ultrasound

images, and they concluded that the function proposed by

Krissian et al. [27] could be adopted to solve the variational

model of Eq. (1), using:

E uð Þ ¼
Z

X

ðf � uÞ2
u

; ð2Þ

where u is the original image, f ¼ uþ ffiffiffiffiffi

ug
p

is now the

input image corrupted by multiplicative noise and g is a

Gaussian variable with a nonzero mean. Thus, the varia-

tional model adopted by Jin and Yang [18] is:

min
u

J uð Þ þ k

Z

X

f � uð Þ2
u

" #

8

<

:

9

=

;

; ð3Þ

where k[ 0 is a weight parameter. As such, the model

given by Eq. (3) deals with the problem of multiplicative

noise removal by adopting:

otu ¼ div
ru

ruj j

� �

þ k
f 2

u2
� 1

� �

; ð4Þ

where r and div are the gradient and divergent operators,

respectively. In order to discretize the continuous part of

Eq. (4), Rudin et al. [26] used the finite difference scheme,
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adopting h = 1 for the step size and Dt for the time

interval, which leads to:

A ¼ D
x
þ ui;j
� �

¼ uiþ1;j � ui;j;

B ¼ D�x ui;j
� �

¼ ui;j � ui�1;j;

C ¼ D
y
þ ui;j
� �

¼ ui;jþ1 � ui;j;

D ¼ D�y ui;j
� �

¼ ui;j � ui;j�1;

Dx ui;j
� ��

�

�

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ ðm C;D½ �Þ2 þ d

q

;

Dy ui;j
� ��

�

�

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2 þ m A;B½ �ð Þ2þd

q

;

ð5Þ

where the parameter d[ 0 is a constant defined close to

zero, and term m is defined as:

m a; b½ � ¼ sign að Þ þ sign bð Þ
2

min aj j; bj jð Þ; ð6Þ

where min aj j; bj jð Þ is a function that returns the smallest

absolute value between a and b and sign að Þ is a function that
determines the sign of a, returning 1 if a is positive,-1 if it is

negative and 0 if a is equal to 0. Assuming the iterations of

the model k = 1, 2, …, Eq. (4) can be rewritten as:
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where f is the input image affected by multiplicative noise.

In this method, the k parameter is automatically calculated

for each new iteration as:

kk¼ 1
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where r2 is the variance of the image at iteration k. As an

example, Fig. 1 shows the result of the smoothing method

when applied to ultrasound images.

3 Assessment metrics

The comparison between two images is a natural task for

the human visual system, but it is not so natural for

computer systems. Therefore, various authors have pro-

posed different solutions which assess the similarities

between two images and, in particular, evaluate the

performance of image preprocessing methods [28–32].

Basically, there are two classes of solutions: One is

based on intensity error and the other on structural

information.

3.1 Based on intensity error

For image smoothing, the comparative solutions or simi-

larity indices use intensity error in order to estimate the

error between the enhanced image, i.e., the smoothed

image, and the original image before noise corruption.

The main disadvantage of these similarity indices is the

possibility of failure where there are displacements

between the images under comparison. Moreover, these

indices compare the intensity variation of each pixel of

the input images, which can lead to similar results for

images with different types of geometrical distortions

[29]. Nevertheless, indices based on intensity error are

frequently used to compare the performance of image

enhancement [33–35] and smoothing [13, 17] methods,

due to their simplicity.

In particular, the peak signal-to-noise ratio (PSNR)

index has been widely used to assess the performance of

image restoration and smoothing methods. This index

determines the ratio between the highest possible strength

of a signal, which in the case of images is the highest

intensity value, and its strength as affected by noise

[15, 17]. For simplicity, the PSNR is represented according

to a logarithmic scale (base 10), since some signals can

have very high values.

The PSNR can be calculated from the mean squared

error (MSE), which is computed as:

Fig. 1 Original, noisy and smoothed (128 9 128 pixels) images, respectively
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MSE ¼ 1

m� n

X

m�1

i¼0

X

n�1

j¼1

I i; jð Þ � Ir i; jð Þ½ �2; ð9Þ

where m and n are the dimensions of the images I and Ir to

be compared, as follows:

PSNR ¼ 10 log10
MAX2

I

MSE

� �

; ð10Þ

where MAXI is the maximum intensity value that a pixel

can assume, which is equal to 255 for 8-bit grayscale

images. Thus, the higher the PSNR value is, the more

efficient the performance of the preprocessing algo-

rithm is. The two images are considered identical, when

the MSE value is 0 (zero), and the PSNR value is

undefined.

Normalized cross-correlation (NCC) is another metric

based on pixel intensity. It is widely used in image regis-

tration [30, 36] to compare the degree of similarity between

two input images. NCC is as follows:

NCC ¼
Pm�n

i¼1 xiyi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm�n

i¼1 x2i
Pm�n

i¼1 y2i

p ; ð11Þ

where xi and yi denote the intensity values of each pixel of

the m� nð Þ images under comparison, leading to values in

the interval ½0; 1�, where 1 (one) indicates a best match

[37].

3.2 Based on structural information

In this class of quality metrics, the goal is to find changes in

the structural information of the images under comparison.

The analysis of the structural information represented in

the input images assumes that the human vision system is

adapted to extract, i.e., segment, structural information

from what is seen, and to search for changes in the struc-

tures detected. In other words, any possible differences,

such as those due to artifacts generated by noise processes

[37], are quantified.

The structural similarity index (SSIM) is the main index

in this category which analyzes the performance of com-

putational image processing methods [13, 38]. Wang et al.

[29] proposed this similarity index in an attempt to prevent

images with very different visual qualities ending up with

high similarity values, as can happen when the similarity

indices are based on intensity error. The index measures

the change in three components of each image under

comparison: luminance, contrast and image structure. The

former is defined as average pixel intensity. The contrast

component is modeled using the standard deviation of the

intensity, while image structure comes from the normalized

image using the standard deviation of images under com-

parison. The SSIM is as follows:

SSIM x; yð Þ ¼ lðx; yÞa � cðx; yÞb � sðx; yÞc; ð12Þ

where l refers to luminance, c to contrast and s to structure,

and a[ 0, b[ 0 and c[ 0 are weights. These three

components are relatively independent, and therefore,

modifying one of them does not affect the others. More

details of the calculation of these components, as well as a

detailed analysis of them, are presented in [29].

The SSIM is an index which applies to each pixel of the

input image, and for convenience, the mean SSIM is usu-

ally adopted. The mean structure similarity index (MSSIM)

is the average of all the SSIM values obtained. For iden-

tical images, this index is equal to 1 (one). As the images

become different, the index becomes lower until it is equal

to -1 when the images are exactly opposite, i.e., one is the

negative of the other.

4 Parallelization of the smoothing method

Studies have shown that GPU-based parallel methods have

focused on massively parallel programming [40], and most

common image processing methods can operate with par-

allelization strategies based on the data decomposition

technique. This section describes the steps involved in the

GPU-based parallel implementation, which was developed

in order to optimize the runtime performance of the

adopted smoothing method.

The smoothing method adopted in this study, as

described in Sect. 2, made use of four fundamental equa-

tions to find a solution for the multiplicative noise

smoothing process given by Eq. (4). The method starts by

solving the finite difference scheme adopted in Eq. (5).

Then, Eq. (7) obtains the final value for each pixel

according to the ongoing iteration, and Eq. (8) finds the

associated weight parameter. Thus, Eqs. (4), (5), (7) and

(8) define a sequence of steps for the parallelization of the

smoothing method. The implementation procedure was

based on the NVIDIA programming best practices guide

[19].

The CUDA architecture was developed with the objec-

tive of using data parallelism, by establishing a new model

named single instruction multiple thread (SIMT). In this

model, data are represented as a stream, which is structured

as an array, and when running one or more instructions

using this array, the instructions are defined as a kernel

[17, 19]. A kernel performs operations in parallel along the

entire stream, using it as both input and output [19, 39].

In the SIMT model, the calling of multiple kernels fol-

lows a hierarchy of thread groups. This feature divides each

kernel into independent blocks, and as a result, the efficient

threading support in the GPUs ensures transparency,

portability and scalability, besides allowing a CUDA
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program to be executed in any number of processor cores.

Threads are used for fine-grained parallelism; groups of

threads, defined as ‘‘blocks,’’ are used for coarse-grained

parallelism; groups of blocks are placed in a grid which

represents a kernel call. As illustrated in Fig. 2, this hier-

archy allows each thread within a block and each block in a

grid to have a unique identifying index [39].

4.1 Setting the occupancy level

The setting of each kernel must be adjusted to use the

correct number of blocks and threads in order to optimize

the occupancy of the CUDA cores (code lines in Fig. 3);

i.e., if the number of blocks and threads is not sufficient,

some cores will not be able to execute the code, wasting

some of the processing power. In our implementation, we

used 256 threads per block in all the kernels. The number

of blocks B is given by:

B ¼ Tpx þ TTb � 1

TTb
; ð13Þ

where Tpx is the total number of pixels of the input image

and TTb is the number of threads per block. In this case, we

defined one two-dimensional variable (numBlocks), which

has the image height (HImage) as the first dimension (Tpx)

and the image width as the second dimension (Tpx). These

calculations determine the settings used to perform one

thread per pixel. When there are excess threads, a stopping

criterion discards them.

Applications developed for massively parallel architec-

tures achieve greater performance when the graphics card

resources are used efficiently. The occupancy level of the

GPU measures the proportion of active processors in the

graphics card during a kernel execution. This calculation

takes into account the following specification query attri-

butes acquired from the CUDA device: the maximum

number of threads per block, the number of blocks per

multiprocessor, the number of registers per multiprocessor

and the shared memory per multiprocessor. Increasing the

number of concurrent threads is a good strategy for the

purpose of making full use of the GPU, and the limit of

threads is defined by the architecture. However, a high

level of GPU occupancy does not guarantee an additional

performance gain [19] because there is a problem of

memory latency, and a high level of occupancy may reduce

the overall performance [40].

4.2 Optimizing the memory hierarchy in CUDA

As shown in Fig. 4, each multiprocessor can use four types

of memory: a set of registers for each stream multipro-

cessor (SM), a shared memory between the SMs, a constant

cache shared between the SMs, and a texture cache which

optimizes the bandwidth of the texture memory. Registers

have the largest bandwidth, and like other kinds of mem-

ory, threads can access them; threads can also access data

in different memory spaces. Each SM used in the experi-

ments has 256 kB worth of memory registers [19].

In the case of shared memory, the bandwidth is similar

to the registers, and threads can cooperate to load and

compute data shared by them. Each memory module has a

set of 32-bit registers, which makes the threads access

consecutive positions of a data vector more efficiently. A

module can receive multiple requests for the same data, but

this creates conflicts. However, automatic serialization

satisfies all memory access requests. As this serialization

can reduce bandwidth performance, a broadcast device is

set up to prevent the reading of all the threads at the same

memory address [19]. On the other hand, all threads can

access the GPU global memory (GDRAM) simultaneously.

Fig. 2 Representation of the single-instruction multiple-thread model

(adapted from [30])

Fig. 3 Definitions for the settings of each kernel used in the

experiments
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However, there are some restrictions which improve the

bandwidth. Global memory has the lowest bandwidth but

has the largest storage capacity. In order to obtain the

maximum possible speedup, a group of threads are used

which has consecutive indices and is bundled into a unit

named a warp. Thus, a single SM can run multiple warps

simultaneously. The size of a warp depends on the GPU

specification [19, 40].

All threads have read-only access to the GPU memory

cache, which has 48 kB for each SM; moreover, the

threads of a half-warp can read only one memory address.

Only instructions from the GPU can write into this kind of

memory, and these processes persist throughout the exe-

cution of multiple kernel calls [19].

All threads can also access the texture memory, which is

only read by kernels. This kind of memory uses a separate

cache with a capacity of 32 kB per SM and provides high-

performance access when all threads perform operations on

memory addresses close to them [40]. The types of access

of on-chip memory for Compute 3.5 and later devices are

indicated in Table 1.

4.3 Implementation of kernels in CUDA C

Tasks of computational image processing and analysis

usually involve a large amount of data processing. Thus,

the first strategy is to allocate the required space in the

GDRAM and then copy the input image as a data matrix

from the host memory (RAM) to the device’s memory

(GDRAM); this process allows data to be managed directly

in the GPU. Accesses to the coalesced memory are per-

formed in contiguous segments; half-warps access the

segments simultaneously. Such accesses are known as

coalesced memory accesses, and they enable parallel

operations, thereby reducing the number of memory

transactions [19, 39]. The data are then loaded into con-

tiguous segments, and this allows a thread block to process

an input image more efficiently; moreover, both the global

memory and the texture memory are used.

Equations (5), (7) and (8) were implemented in the

kernels called kDiFinitas, kVariancia and kFinal, respec-

tively. The threads from the kDiFinitas kernel perform the

computations in Eq. (5) in each image pixel independently.

This kernel has several threads, each of which represents a

matrix index and processes a specific image pixel. Thus, to

manage access to a set of image pixels in the ‘‘for-loops,’’

each pixel has an access condition.

First of all, in the kDiFinitas kernel, each pixel from the

input image is associated with a thread, and then the thread

blocks are stored in the texture memory. After running the

kDiFinitas kernel, the kVariancia kernel performs the

parallelized computation of the k parameter according to

Eq. (7). In the parallel implementation, an auxiliary vector

stores the values of the operations involved in each itera-

tion, i.e., each thread calculates the resultant value of each

Fig. 4 Memory spaces

accessed by each thread

(adapted from [41])

Table 1 Types of memory access in CUDA [42]

Memory Location Access Cached Scope

Register INT r/w No One thread

Local INT r/w Yes One thread

Shared INT r/w N/A All threads in a block

Global EXT r/w Yes All threads ? host

Constant EXT r Yes All threads ? host

Texture EXT r/w Yes All threads ? host

r Reading access, w writing access, INT internal memory space

location, EXT external memory space location
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iteration. Figure 5 presents the pseudocode of the devel-

oped algorithm.

The kFinal kernel computes the weight parameter, used

previously in the kVariancia kernel, and then applies it to

each image pixel, giving access to the texture cache and

coalesced access to the global memory. Each thread attri-

butes the resulting value to the corresponding memory,

providing the data needed to calculate the final sum of each

image pixel. Finally, the SomaElem kernel assists with the

calculation of the vector values. The vector is divided into

two equal parts, their values are summed, and each thread

sums two values and keeps them in the lowest available

vector position. This procedure continues until only one

vector position remains for the storage of the resulting sum.

In the case of a vector with an odd number of elements, an

extra element with a zero value is added. This procedure

uses the partitioning strategy of the global memory to

optimize the bandwidth of the active warps during memory

access; the warps are organized into partitions. This is the

slowest kernel used, and this is because the memory blocks

become less contiguous while the elements are processed.

Figure 6 illustrates the implemented parallelization

technique.

An image corrupted by multiplicative noise is used as

input (step 1), and after running the kernels described

previously in steps 4–8, the result will be a new noise-

smoothed image. Steps 4, 6 and 7 perform the reading of

data in the texture memory. On the other hand, the results

of each step of memory writing go into the global memory,

where the output images are stored.

Equations (5), (7) and (8) were implemented as a nested

‘‘for-loop.’’ A CPU-based implementation was also

developed as a comparison with the GPU-based imple-

mentation. The main memory system was accessed con-

tiguously for all of these loops in order to optimize

execution, and the GDRAM was accessed contiguously as

well, creating a fair comparison [19] between the

implementations.

5 Experiments and discussion

This section describes the infrastructure used to perform

the experiments and also discusses the results.

5.1 Test infrastructure

The used test infrastructure includes a desktop computer

equipped with an Intel(R) Core(TM) i7-4790 3.60 GHz

processor, 16 GB of RAM (DDR3—1600 MHz), Linux

Ubuntu 14.04 operating system, CUDA1 nvcc release 7.5

compiler driver and GNU gcc/g?? compiler version 4.8.4.

Additionally, there was a GPU NVIDIA Tesla K20c, with

2496 CUDA cores and 5 GB of GDRAM.

5.2 Results and discussion

In this section, we present results of experiments aimed at

evaluating the performance of the method adopted. The

runtime performance of GPU-based implementation is the

1 Input: Noisy image 

2 /* Host program executed on CPU */

3 Allocate CPU and GPU memory

4 Store image to CPU memory

5 Copy image from CPU memory to GPU memory

6 Set the number of threads per blocks

7 /* kDiFinitas: Kernel program executed on each thread block */

8 Parallel each image pixel

Compute the finite difference using Eq.(5)

9 /* kVariancia: Kernel program executed on each thread block */

10 Parallel each image pixel

Compute weight parameter by Eq.(8)

Call kFinal kernel

11 /* kFinal: Kernel program executed on each thread block */

12 Parallel each image pixel

Create a new vector with zeros to store the smoothed image

Compute the new pixel values for each new iteration using Eq.(7)

13 Copy image from GPU memory to CPU memory

14 Output: Smoothed image

Fig. 5 Pseudocode of the

developed parallel

implementation

1 CUDA compiler and development suite are available to download

through the NVIDIA Web site https://developer.nvidia.com/cuda-

downloads.
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focus of this study; however, the PSNR, SSIM and NCC

metrics were used to confirm the smoothing method’s

accuracy. In the tests, 15, 25 and 50 smoothing iterations

were adopted.

We used a set of six images with different resolutions

(128 9 128, 256 9 256, 512 9 512, 1024 9 1024,

2048 9 2048 and 4096 9 4096 pixels) built synthetically

with an image editor software and then corrupted with

synthetic multiplicative noise of a variance equal to 0.3.

There were 100 iterations for each test, and the mean and

the standard deviation values of the time spent smoothing

each input image were calculated. The total time spent

(Table 2) was computed from the moment the data were

loaded into the main memory system until the end of the

smoothing process when the resultant image was produced.

The function cudaThreadSynchronize was performed after

each kernel call, forcing the CPU to wait for the complete

kernel execution, and the sdkResetTimer, sdkStartTimer

and sdkStopTimer timing functions were used to obtain the

kernel execution time. The execution times of each kernel

were added together to obtain the total execution time.

Table 2 shows that the execution times of the CPU-based

implementation were longer than those of the GPU-based

implementation except in the case of the smallest test

image (128 9 128 pixels). This distinct behavior occurred

because the speedup achieved with the data processed in

Fig. 6 Parallel CUDA-based

implementation of the adopted

image smoothing method

Table 2 Comparison between the computational time (in millisec-

onds) required by the CPU- and GPU-based implementations to

smooth the test static images with 50 iterations

Images Tesla CPU

128 9 128 30.41 ± 0.81 14.08 ± 0.10

256 9 256 36.72 ± 0.20 56.37 ± 0.26

512 9 512 59.04 ± 0.96 225.90 ± 1.17

1024 9 1024 133.38 ± 1.86 944.99 ± 18.34

2048 9 2048 423.94 ± 1.23 3761.56 ± 32.18

4096 9 4096 1617.16 ± 7.09 15,180.35 ± 26.22
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the CUDA cores did not justify the computational effort

involved in transferring a small amount of data to the GPU

memory or the latency times necessary for the initialization

of the GPU. For large images, the speedup of the GPU was

around 10, but less for smaller ones. Moreover, the GPU-

based implementation achieved noise smoothing in real

time for all tested images. The parallel implementation had

transparent and portable scalability in GPUs based on

CUDA architecture; besides, the performance scales

increased exponentially, as shown in Fig. 7. Furthermore,

when we considered images with dimensions greater than

256 9 256 pixels, a speedup of the GPU-based imple-

mentation was evident; for example, it was about 10.65

times faster for images with 4096 9 4096 pixels.

As an illustrative example, Fig. 8 shows the results of

the CPU- and GPU-based implementations applied to the

Fig. 7 Processing time of the

proposed GPU-based

implementation, which scales

up exponentially

Fig. 8 Original noisy test image with 4096 9 4096 pixels and the smoothed images obtained by the CPU- and GPU-based smoothing

implementations, respectively

Table 3 NCC and SSIM values

computed for the static test

images using 15, 25 and 50

iterations

Images NCC SSIM

15 25 50 15 25 50

128 9 128 0.99999 0.99996 0.99962 0.99992 0.99869 0.98652

256 9 256 0.99973 0.99884 0.99752 0.99894 0.99612 0.98383

512 9 512 0.99667 0.99679 0.99554 0.99959 0.99932 0.99715

1024 9 1024 0.99664 0.99696 0.99587 0.99967 0.99967 0.99914

2048 9 2048 0.99819 0.99827 0.99798 0.99996 0.99995 0.99988

4096 9 4096 0.99889 0.99894 0.99864 0.99999 0.99999 0.99997
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test images. Figure 8 shows, from left to right, the image

affected by the multiplicative noise and the images

smoothed by the CPU- and GPU-based implementations.

The values listed in Table 3 were computed using NCC

and SSIM metrics in order to confirm that the structural

information resulting from the noise images corresponded

to smoothed images, since all values were close to 1 (one).

As for the smoothing method’s accuracy and time perfor-

mance, the optimal number of iterations for better image

preservation seems to be 15.

The PSNR values were also computed for each static

test image before and after being smoothed by the CPU-

and GPU-based implementations (Table 4). The values

demonstrate the efficiency of the smoothing method and

confirmed that the two implementations smoothed the

images using the method adopted.

We also tested three synthetic videos with 240 frames

and different resolutions (128 9 128, 256 9 256,

512 9 512 pixels) and one real ultrasound video with 255

frames of 320 9 240 pixels. The smoothing method was

applied only once for each video frame.

The average runtime for the real ultrasound video was

5.92 s for the CPU-based implementation and 2.87 s for

the parallel implementation in CUDA. Thus, the processing

time of the parallel implementation was about 2.06 times

faster when processing the entire ultrasound video. Fig-

ure 9 shows an example of the smoothing of a video frame

selected randomly from the tested video.

Table 5 indicates the frame rates of the CPU- and the

GPU-based implementations when smoothing the four test

videos. In this table, the values in bold can be considered in

line with real-time processing ([20 frames per second) and

therefore acceptable for routine medical image processing

[43, 44]. As given in Table 5, the experiments using the

parallel GPU-based implementation revealed an even

higher reduction in the runtime of the smoothing method in

Table 4 PSNR values computed for the static test images before (noisy) and after being smoothed by the CPU- and GPU-based implementations

using 15, 25 and 50 iterations

Images PSNR

Noisy GPU smoothed CPU smoothed

15 25 50 15 25 50

128 9 128 ?16.71226 ?26.45354 ?28.01845 ?27.08323 ?26.45101 ?28.01758 ?27.08876

256 9 256 ?13.63118 ?21.45840 ?21.15450 ?20.48712 ?21.46481 ?21.13883 ?20.51067

512 9 512 ?10.71005 ?11.70306 ?11.84286 ?12.18230 ?11.70372 ?11.84272 ?12.18366

1024 9 1024 ?11.04700 ?14.64996 ?14.63267 ?14.81482 ?14.64584 ?14.63146 ?14.80796

2048 9 2048 ?10.39326 ?13.64743 ?13.73511 ?14.05504 ?13.64635 ?13.73472 ?14.05501

4096 9 4096 ?9.92586 ?13.15495 ?13.30716 ?13.67279 ?13.15451 ?13.30648 ?13.67202

Fig. 9 Original image and the

image smoothed by the parallel

implementation, respectively

Table 5 Frames per second (FPS) rate obtained in the CPU- and

GPU-based implementations with the smoothing method applied with

15, 25 and 50 iterations

Video resolution Total of FPS rate obtained

GPU CPU

15 25 50 15 25 50

128 9 128 116.60 69.61 34.12 249.79 152.93 76.78

256 9 256 94.23 57.16 28.84 52.73 33.10 16.39

320 9 240 88.61 54.00 27.93 48.16 32.20 16.81

512 9 512 57.79 37.10 19.59 13.75 8.44 4.21

The values in bold can be considered in line with real-time processing
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relation to the CPU-based implementation, confirming

initial expectations.

The CUDA architecture as a computational infrastruc-

ture for image preprocessing has revealed to be a viable,

capable and alternative option to deliver high-performance

processing in many applications; moreover, it can even

provide real-time processing at an affordable cost [40].

Here, the performance gain of the parallel GPU-based

implementation confirms the high processing capacity

available in the CUDA architecture, with all videos used in

the experiments processed in real time. Today, the avail-

able resources in these graphic cards have increased the

performance gain more efficiently, taking into considera-

tion the number of cores and GDRAM memory as well as

the SIMT parallel model associated with memory opti-

mization techniques.

Therefore, the benefit of using GPU-based implemen-

tations can be totally justified since the reduction in the

runtime can minimize or even eliminate the time restric-

tions; such restrictions are common in many applications

(such as in the medical field) that use image processing and

analysis methods, requiring fast or real-time results for

image-based diagnosis [45, 46]. However, optimal imple-

mentation requires maximum efforts, particularly when

using the CUDA architecture.

6 Conclusions

The use of parallel computing techniques to fully explore

the high-performance multiprocessor architecture is not

new. However, the cost of the more traditional hardware

for high-performance computing is not low; thus, more

affordable alternatives such as GPU hardware should be

considered.

The present work has described how to use the high-

performance computing CUDA-based architecture as a

computational infrastructure to accelerate an algorithm for

noise image removal. The parallel GPU-based implemen-

tation developed was compared against the corresponding

sequential CPU-based implementation in several experi-

ments, and image quality metrics confirmed the similarity

of the smoothing results achieved by each implementation.

The parallelization of the image smoothing method based

on a variational model using the CUDA architecture

reduced the runtime by up to 10.65 times in comparison

with the CPU-based implementation.

The novel CUDA-based implementation developed to

smoothing multiplicative noise by using an effective vari-

ational method seems to be a high-performance solution for

applications with images susceptible to this type of noise,

and which have high processing time constraints. More-

over, the proposed GPU-based parallelization approach has

transparency, portability and scalability, thanks to the

adopted SIMT model.

More and more complex methods and larger and larger

data sets are used in the medical imaging domain that has

high time constraints, which makes the use of the CUDA

architecture extremely attractive as the study conducted

here confirms. As a future works, we intend to extend the

proposed CUDA-based implementation to enable it to

perform in multi-GPUs, besides combining it with multi-

thread (OpenMP) and multicomputer (MPI) in order to

achieve higher performances using heterogeneous parallel

computing platforms.
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de Mesquita Filho’’ (UNESP), in Brazil (2012). His main research

areas are high-performance computing, computational vision, edu-

cational technology and virtual learning environments.

1260 J Real-Time Image Proc (2019) 16:1249–1261

123

Author's personal copy



Henrique F. de Arruda is a

Ph.D. student in Computer Sci-

ence and Computational Math-

ematics, Institute of

Mathematical and Computer

Sciences (ICMC) at the

University of São Paulo (USP),

São Carlos-SP, Brazil. He

received his M.Sc. in Computer

Science and Computational

Mathematics, Institute of Math-

ematical and Computer Sci-

ences (ICMC) at the University

of São Paulo (USP), São Carlos-

SP, Brazil; his B.Sc. degree in

Computer Science is from the State University Paulista ‘‘Júlio de
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