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This paper presents a novel algorithm, the particle-based, rapid incremental smoother (PaRIS), for efficient
online approximation of smoothed expectations of additive state functionals in general hidden Markov mod-
els. The algorithm, which has a linear computational complexity under weak assumptions and very limited
memory requirements, is furnished with a number of convergence results, including a central limit theorem.
An interesting feature of PaRIS, which samples on-the-fly from the retrospective dynamics induced by the
particle filter, is that it requires two or more backward draws per particle in order to cope with degeneracy
of the sampled trajectories and to stay numerically stable in the long run with an asymptotic variance that
grows only linearly with time.
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1. Introduction

This paper deals with the problem of state estimation in general state-space hidden Markov
models (HMMs) using sequential Monte Carlo (SMC) methods (also known as particle filters),
and presents a novel online algorithm for the computation of smoothed expectations of additive
state functionals in models of this sort. The algorithm, which copes with the well-known problem
of particle ancestral path degeneracy at a computational complexity that is only linear in the
number of particles, is provided with a rigorous theoretical analysis establishing its convergence
and long-term stability as well as a simulation study illustrating its computational efficiency.

Given measurable spaces (X,X ) and (Y,Y), an HMM is a bivariate stochastic process
{(Xt , Yt )}t∈N (where t will often be referred to as “time” without being necessarily a temporal
index) taking its values in the product space (X × Y,X � Y), where the X-valued marginal pro-
cess {Xt }t∈N is a Markov chain (often referred to as the state sequence) which is only partially
observed through the Y-valued observation process {Yt }t∈N. Conditionally on the unobserved
state sequence {Xt }t∈N, the observations are assumed to be independent and such that the condi-
tional distribution of each Yt depends on the corresponding state Xt only. HMMs are nowadays
used within a large variety of scientific and engineering disciplines such as econometrics [6],
speech recognition [36] and computational biology [27] (the more than 360 references in [2] for
the period 1989–2000 gives an idea of the applicability of these models).
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Any kind of statistical inference in HMMs involves typically the computation of conditional
distributions of unobserved states given observations. Of particular interest are the sequences of
filter distributions, that is, the conditional distributions of Xt given Y0:t := (Y0, . . . , Yt ) (this will
be our generic notation for vectors), and smoothing distributions, that is, the joint conditional
distributions of X0:t given Y0:t , for t ∈ N. We will denote these distributions by φt and φ0:t |t ,
respectively (precise definitions of these measures are given in Section 2.2). In this paper, we are
focusing on the problem of computing, recursively in time, smoothed expectations

φ0:t |t ht =
∫

ht (x0:t )φ0:t |t (dx0:t ) (t ∈ N), (1.1)

for additive functionals ht of form

ht (x0:t ) :=
t−1∑
�=0

h̃�(x�:�+1)
(
x0:t ∈ Xt+1). (1.2)

Expectations of the form (1.1) appear naturally in the context of parameter estimation using the
maximum-likelihood method, for example, when computing the score-function (the gradient of
the log-likelihood function) via the Fisher identity or when computing the intermediate quantity
of the expectation-maximization (EM) algorithm. Of particular relevance is the situation where
the HMM belongs to an exponential family. We refer to [5], Sections 10 and 11, for a compre-
hensive treatment of these matters. Moreover, online implementations of EM (see, e.g., [3,29])
require typically such smoothed expectations to be computed in an online fashion. In the case
of marginal smoothing, the interest lies in computing conditional expectations of some state Xŝ

given Y0:t for t ≥ ŝ, which can be cast into our framework by letting, in (1.2), h̃� = 0 for � �= ŝ and
h̃ŝ (xŝ:ŝ+1) = h̃ŝ (xŝ ). Nevertheless, since exact computation of smoothed expectations is possible
only in the cases of linear Gaussian HMMs or HMMs with finite state space, we are in general
referred to finding approximations of these quantities, and the present paper focuses on the use of
SMC-based techniques for this task. A particle filter approximates the flow {φt }t∈N of filter dis-
tributions by a sequence of occupation measures associated with samples {(ξ i

t ,ω
i
t )}Ni=1, t ∈ N, of

random draws, particles (the ξ i
t ’s), with associated non-negative importance weights (the ωi

t ’s).
Particle filters revolve around two operations: a selection step duplicating/discarding particles
with large/small importance weights, respectively, and a mutation step evolving randomly the
selected particles in the state space. The first and most basic implementation, the so-called boot-
strap particle filter [21] (see also [25]), propagates, in the mutation step, the particles according
to the dynamics of the hidden Markov chain and selects the same multinomially according to
importance weights proportional to the local likelihood of each particle given the current obser-
vation. This scheme imposes a dynamics of the particle cloud that resembles closely that of the
filter distribution flow. Due to its very strong potential to solve non-linear/non-Gaussian filtering
problems, SMC methods have been subject to extensive research during the last two decades, re-
sulting in a broad range of developments and variations of the original scheme; see, for example,
[4,5,15,17] and the references therein.

Interestingly, the particle filter provides, as a by-product, approximations also of the joint
smoothing distributions in the sense that for each t ∈ N, the occupation measure associated with
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the ancestral lines of the particles {ξ i
t }Ni=1 forms, when the lines are assigned the corresponding

weights {ωi
t }Ni=1, an estimate of φ0:t |t . Unfortunately, this poor man’s smoother (using the termi-

nology of [14]) has a major flaw in that resampling systematically the particles leads to signifi-
cant depletion of the trajectories and the existence of a random time before which all the ancestor
paths coincide. In fact, [24] established, in the case of a compact state space X, a bound on the
expected height of the “crown” of the ancestral tree, that is, the expected time distance from the
last generation back to the most recent common ancestor, which is proportional to N log(N) and
uniform in time. Thus, the ratio of the length of the “crown” to that of the “trunk” tends to zero
when time increases, implying that the Monte Carlo approximation obtained through this naive
approach will, for long observation records, be based on practically a single draw, leading to a
severely depleted estimator.

Haplessly, the particle path degeneracy implies that the variance of estimates produced using
the poor man’s smoother grows quadratically with t . To illustrate this phenomenon, let η and h

be a probability measure and a measurable function, respectively, on some state space (X,X ),
and consider the problem of estimating expectations mt = ∫

ht (x1:t )η�t (dx1:t ), where ht (x1:t ) =∑t
s=1 h(xs) and η�t = η � · · · � η (t times) denotes the product measure on (Xt ,X �t ). Assume

that σ 2 = Varη(h) = ∫ {h(x) − m1}2η(dx) < ∞. For this purpose, we consider two different
approaches, namely

(1) The standard Monte Carlo approach, which generates a sample {ξ̂ i
1:t }Ni=1 of i.i.d. random

variables from η�t and provides the estimator m̂N
t = ∑N

i=1 ht (ξ̂
i
1:t )/N . The estimator m̂N

t

is unbiased for all N and has, straightforwardly, the variance σ̂ N
t = σ 2t/N , which is linear

in t .
(2) A selection and sampling approach with genealogical tracing, which resembles closely the

poor man’s smoother and proceeds recursively as follows: given a sample {ξ̌ i
1:s}Ni=1 of ran-

dom variables such that the estimator m̌N
s = ∑N

i=1 hs(ξ̌
i
1:s)/N approximates ms , (i) draw

a set {I i}Ni=1 of i.i.d. indices from the uniform distribution on {1,2, . . . ,N}, (ii) draw a

set {ξ̌s+1}Ni=1 of i.i.d. variables from η and (iii) set ξ̌ i
1:s+1 = (ξ̌ I i

1:s , ξ̌
i
s+1). In other words,

at each step of this procedure, each draw ξ̌ i
1:s+1 is formed by selecting an ancestor with

uniform probability among {ξ̌ i
1:s}Ni=1 and extending the same by a draw from η. The proce-

dure, which is initialized by letting {ξ̌ i
1}Ni=1 be i.i.d. draws from η, is repeated recursively

for s ∈ {1,2, . . . , t − 1}. For each s, the estimator m̌N
s is unbiased w.r.t. ms for all N .

Moreover, the variance can be shown to satisfy the recursion

σ̌ 2
s+1,N = 1

N
Varη�(s+1) (hs+1) + σ̌ 2

s,N

(
1 − 1

N

)
= 1

N
σ 2(s + 1) + σ̌ 2

s,N

(
1 − 1

N

)
(1.3)

(with σ̌ 2
1,N = σ 2/N ) implying that

σ̌ 2
t,N = σ 2 1

N

t∑
s=1

s

(
1 − 1

N

)t−s

. (1.4)

When N tends to infinity, the sum in (1.4) tends to a quadratic function in t ; indeed, en-
tering the asymptotic regime, the normalized estimator can be shown to satisfy the central
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limit theorem (CLT)
√

N
(
m̌N

t − mt

) D−→ σ̌t,∞Z,

where Z has standard Gaussian distribution and the asymptotic variance

σ̌ 2
t,∞ = σ 2

t∑
s=1

s = σ 2 t (t + 1)

2

is indeed quadratic in t .

As clear from (1.3), the quadratic variance growth of the second procedure comes from the fact
that the multinomial selection step adds, at iteration s, when followed by the subsequent sam-
pling step, an O(s) variance term equal to the variance of the state functional under the target
distribution restricted to the first s + 1 components of the path space. As the same principle
applies generally to path-space applications of the standard SMC method with multinomial re-
sampling (see [12], Theorem 4, for a single-step analysis in the general case and treatments of
alternative resampling strategies), this toy example pinpoints the crux of the poor man’s smoother
from a variance point of view; see also [35] for a discussion. On the contrary, as the components
of the target measure η�t are independent in this simple model, the naive Monte Carlo sam-
pler in Procedure 1, where the draws do not interact, attains the optimal linear variance growth.
However, this does not hold in the general case, involving typically dependent components and
non-uniform particle weights, where particle interaction is crucial for preserving the numerical
stability of the algorithm.

1.1. Previous work

In the case of additive state functionals, it is possible to cope partly with the degeneracy problem
described above by means of a fixed-lag smoothing technique [26,30,32]. This approach avoids
the particle path degeneracy by “localizing” the smoothing of a certain state around observations
that are only significantly statistically dependent of the state in question and discarding remote
and weakly influential observations, that is, subsequent observations located at a time distance
from the state exceeding a lag chosen by the user. The method is expected to work well if the
mixing properties of the model allow the lag to be smaller than the length of the “crown” of the
ancestral tree. Still, such truncation introduces a mixing-dependent bias, and designing the size
of the lag is thus a non-trivial task.

A completely different way of approaching the problem goes via the so-called forward-
filtering backward-smoothing decomposition, which is based on the fact that the latent process
still satisfies the Markov property when evolving backward in time and conditionally on the ob-
servations. Consequently, each smoothing measure φ0:t |t can be represented as the joint law of
this inhomogeneous backward chain with initial distribution given by the corresponding filter
φt . Since the transition kernels of the backward chain depend on the filter distributions, which
may be estimated efficiently by a particle filter, a particle-based approximation of the smoothing
distribution can thus be naturally obtained by running, in a prefatory filtering pass, the parti-
cle filter up to time t (if φ0:t |t is the distribution of interest) and, in a backward pass, forming
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particle-based estimates of the backward kernels (and consequently the smoothing distribution)
by modifying the particle weights computed in the forward pass. This scheme, which avoids
completely the path degeneracy problem at the cost of a rather significant computational com-
plexity, is referred to as the forward-filtering backward smoothing (FFBSm) algorithm [16,23,
25]. As an alternative, the forward-filtering backward simulation (FFBSi) algorithm [20] gener-
ates, in order to reduce the computational overhead of FFBSm, trajectories being approximately
distributed according to the smoothing distribution by simulating transitions according to the
backward dynamics induced by the particle filter approximations produced by the forward pass;
as a consequence, FFBSm can be viewed as a Rao–Blackwellized version of FFBSi. These two
algorithms correspond directly to the Rauch–Tung–Striebel smoother [37] for linear Gaussian
HMMs or the Baum–Welch algorithm [1] for HMMs with finite state space. FFBSm and FFBSi
were analyzed theoretically in [11] (see also [9]), which provides exponential concentration in-
equalities as well as CLTs for these algorithms. Since each backward draw of FFBSi requires a
normalizing constant with N terms to be computed, the overall complexity of the algorithm is
O(N2). Under the mild assumption that the transition density of the latent chain is uniformly
bounded, this complexity can be reduced to O(N) by means of simple accept–reject approach.
The latter technique, which was found in [11], will play a key role also in the development of
the present paper. Since the Markov transition kernels of the backward chain depend on the filter
distributions, the FFBSm and FFBSi algorithms require in general batch mode processing of the
observations. This is the case also for the O(N) smoother proposed in [19], which is based on
the two-filter representation of each marginal smoothing distribution.

When the objective consists in online smoothing of additive state functionals (1.2), recursive
approximation of the forward-filtering backward-smoothing decomposition can be achieved by
introducing the auxiliary statistics

Tt ht (xt ) = E
[
ht (X0:t ) | Xt = xt , Y0:t

]
(t ∈N, xt ∈ X),

where E denotes expectation associated with the law of the canonical version of the HMM (more
precisely, in the previous expression Tt is a normalized transition kernel which will be defined
in Section 2.2). This auxiliary statistic can be updated online according to

Tt+1ht+1(xt+1) = E
[
Tt ht (Xt ) + h̃t (Xt , xt+1) | Xt+1 = xt+1, Y0:t

]
(1.5)

(t ∈ N, xt+1 ∈ X);
see [3,9,29]. In this recursive formula, the expectation is taken under the backward kernel de-
scribing the conditional distribution of Xt given Xt+1 and Y0:t . On the basis of the auxiliary
statistics, each smoothed additive functional may be computed as

φ0:t |t ht =
∫

Tt ht (xt )φt (dxt ) (t ∈N).

Following [9], a particle representation of the recursion (1.5) is naturally formed using the esti-
mates of the retrospective dynamics provided by the FFBSm algorithm. Interestingly, this yields a
procedure that estimates, as new observations become available, the smoothing distribution flow
in a forward-only manner while avoiding completely any problems of particle path degeneracy.
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However, since the method requires the normalizations of the backward kernels to be computed
for each forward particle, the overall complexity of this algorithm is again O(N2), which is
unrealistic for large particle sample sizes.

1.2. Our approach

Our novel algorithm, which we will refer to as the particle-based, rapid incremental smoother
(PaRIS), is, similarly to the forward-only implementation of FFBSm proposed in [9], based on
(1.5) and can be viewed as an adaptation of the FFBSi algorithm to this recursion. It also shares
some similarities with the ancestor sampling approach within the framework of particle Gibbs
sampling [28]. Appealingly, we are able to adopt the accept-technique proposed by [11], yielding
a fast algorithm with O(N) complexity. PaRIS differs from the forward-only implementation of
FFBSm in the way the update (1.5) of the auxiliary function is implemented; more specifically,
instead of computing each subsequent auxiliary statistic as the expected sum of the previous
statistic and the incremental term under the retrospective dynamics induced by the particle filter,
PaRIS simulates Ñ such sums using the backward kernel and updates each statistic by taking
the sample mean of these draws. Thus, as for the FFBSi algorithm, forward-only FFBSm can
be viewed as a Rao–Blackwellization of PaRIS. Interestingly, the design of the sample size Ñ is
ultimately critical, as the naive choice Ñ = 1 leads to a degeneracy phenomenon that resembles
closely that of the Poor man’s smoother and, consequently, a variance that grows quadratically
with t ; on the other hand, for all Ñ ≥ 2 the algorithm stays numerically stable in the long run
with a linearly increasing variance. The main objective of the present paper is to investigate theo-
retically this phase transition by, first, deriving, via a non-asymptotic Hoeffding-type inequality,
the asymptotic (as N tends to infinity) variance of the Monte Carlo estimates produced by the
algorithm (which is highly non-trivial due to the complex dependence structures induced by the
backward simulation) and, second, verifying that this asymptotic variance is, for any Ñ ≥ 2,
of order O(t) and O(1) in the cases of joint smoothing and marginal smoothing, respectively.
The authors are not aware of any similar analysis in the SMC literature. The stability results are
obtained under strong mixing assumptions that are standard in the literature of SMC analysis
(see, e.g., [5,8,10]). Also the numerical performance of algorithm is investigated in a simulation
study, comprising a linear Gaussian state space model (for which any quantity of interest may be
computed exactly using the Rauch–Tung–Striebel smoother) and a stochastic volatility model.

We finally point out that the PaRIS algorithm was outlined by us in the conference note [33]
without any theoretical support; in the present paper we are able to confirm, through a rigor-
ous theoretical analysis, the conjectures made in the note in question concerning the stability
properties of the algorithm.

To sum up, the smoothing algorithm we propose:

• is computationally very efficient and easy to implement,
• does not suffer from particle lineage degeneracy,
• allows the observed data of the HMM to be processed online with minimal memory require-

ments, and
• is furnished with rigorous theoretical results describing the convergence and numeric sta-

bility of the same.
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1.3. Outline

After having introduced some kernel notation, HMMs, and the smoothing problem in Section 2,
we describe carefully, in Section 2.3, particle filters, FFBSm (and its forward-only implemen-
tation), and FFBSi. Section 3.1 contains the derivation of our novel algorithm as well as some
discussion of the choice of the design parameter Ñ . Our theoretical results are presented in
Section 3.2, including a Hoeffding-type inequality (Theorem 1) and a CLT (Theorem 3). Sec-
tion 3.2.3 is devoted to the numerical stability of PaRIS in the case Ñ ≥ 2, and Theorem 8 and
Theorem 9 provide variance bounds in the cases of joint and marginal smoothing, respectively.
In Section 4, we test numerically the algorithm and some conclusions are drawn in Section 5.
Finally, Appendix A and Appendix B provide all proofs and some technical results, respectively.

2. Preliminiaries

2.1. Notation

Before going into the details concerning HMMs and particle filters we introduce some nota-
tion. For any measurable space (X,X ), where X is a countably generated σ -algebra, we denote
by Fb(X ) the set of bounded X /B(R)-measurable functions on X. For any h ∈ Fb(X ), we let
‖h‖∞ := supx∈X |h(x)| and osc(h) := sup(x,x′)∈X2 |h(x) − h(x′)| denote the sup and oscillator
norms of h, respectively. Let M(X ) be the set of σ -finite measures on (X,X ) and M1(X ) ⊂ M(X )

the probability measures. Given n ∈ N, we will denote product sets and product σ -fields by
Xn := X ×· · ·× X and X n := X � · · · � X (n times), respectively. For real numbers and integers,
we define the sets R+ := [0,∞), R∗+ := (0,∞), N := {0,1,2, . . .}, and N

∗ := {1,2,3, . . .}. For
any quantities {a�}n�=m, we denote vectors as am:n := (am, . . . , an) and for any (m,n) ∈ N

2 such
that m ≤ n we denote �m,n� := {m,m + 1, . . . , n}. The cardinality of a set S is denoted by #S.

An unnormalized transition kernel K from (X,X ) to (Y,Y) induces two integral operators,
one acting on functions and the other on measures. More specifically, let h ∈ Fb(X � Y) and
ν ∈ M(X ), and define the measurable function

Kh : X  x �→
∫

h(x, y)K(x,dy),

and the measure

νK : Y  A �→
∫

K(x,A)ν(dx),

whenever these quantities are well-defined. Moreover, let K be defined as above and let L be
another unnormalized transition kernel from (Y,Y) to a third measurable space (Z,Z); we then
define two different products of K and L, namely

KL : X ×Z  (x,A) �→
∫

K(x,dy)L(y,A)
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and

K � L : X × (Y � Z)  (x,A) �→
∫

1A(y, z)K(x,dy)L(y,dz),

whenever these are well-defined. Note that the previous products form new transition kernels
from (X,X ) to (Z,Z) and from (X,X ) to (Y × Z,Y � Z), respectively. We also define the �-
product of a kernel K and a measure ν ∈ M(X ) as the new measure

ν � K : X � Y  A �→
∫

1A(x, y)K(x,dy)ν(dx).

The concept of reverse kernels will be of importance in the coming developments. For a kernel
K from (X,X ) to (Y,Y) and a probability measure η ∈ M1(X ), the reverse kernel

←−
K η associated

with (η,K) is a transition kernel from (Y,Y) to (X,X ) satisfying, for all h ∈ Fb(X � Y),

(η � K)h = (ηK) �
←−
K ηh.

A reverse kernel does not always exist; however, if K has a transition density κ with respect to
some reference measure in M(Y), then

←−
K η exists and is given by

←−
K ηh(x) :=

∫
h(x̃)κ(x̃, x)η(dx̃)∫

κ(x̃, x)η(dx̃)

(
h ∈ Fb(X ), x ∈ X

)
(2.1)

(see [5], Section 2.1, for details).
Finally, for any kernel K and any bounded measurable function h we write K2h := (Kh)2 and

Kh2 := K(h2). Similar notation will be used for measures.

2.2. Hidden Markov models

Let (X,X ) and (Y,Y) be some measurable spaces, Q : X × X → [0,1] and G : X × Y → [0,1]
some Markov transition kernels, and χ ∈ M1(X ). We define an HMM as the canonical version
of the bivariate Markov chain {(Xt , Yt )}t∈N having transition kernel

X × Y × (X � Y) : ((x, y),A
) �→ Q � G(x,A) (2.2)

and initial distribution χ � G. The state process {Xt }t∈N is assumed to be only partially ob-
served through the observations process {Yt }t∈N. The dynamics (2.2) imply that (we refer to [5],
Section 2.2, for details)

(i) the state sequence {Xt }t∈N is a Markov chain with transition kernel Q and initial distribu-
tion χ ,

(ii) the observations are, conditionally on the states, independent and such that the conditional
distribution of each Yt depends on the corresponding Xt only and is given by the emission
distribution G(Xt , ·).
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We will throughout the paper assume that G admits a density g (referred to as the emission
density) with respect to some reference measure ν ∈ M(Y), that is,

Gh(x) =
∫

h(y)g(x, y)ν(dy)
(
x ∈ X, h ∈ Fb(Y)

)
.

In the following, we assume that we are given a distinguished sequence {yt }t∈N of observations
of {Yt }t∈N, and will in general omit the dependence on these observations from the notation.
Thus, define gt (x) := g(x, yt ), x ∈ X. For any (s, s′, t) ∈ N

3 such that 0 ≤ s ≤ s′ ≤ t we denote
by φs:s′|t the conditional distribution (posterior) of Xs:s′ given the observations Y0:t = y0:t . This
distribution may be expressed as

φs:s′|t h =
∫ · · · ∫ h(xs:s′)g0(x0)χ(dx0)

∏t−1
�=0 g�+1(x�+1)Q(x�,dx�+1)∫ · · ·∫ g0(x0)χ(dx0)

∏t−1
�=0 g�+1(x�+1)Q(x�,dx�+1)

(2.3)(
h ∈ Fb

(
X s′−s+1))

(assuming that the denominator is non-zero). If s = s′ = t , we let φt be shorthand for φt |t , that is,
the filter distribution at time t . If s = 0 and s′ = t , then φ0:t |t is the joint smoothing distribution.
For t ∈ N, define the unnormalized transition kernels

Lt h(x) := Q(gt+1h)(x)
(
x ∈ X, h ∈ Fb(X )

)
,

with the convention that LsLt ≡ id whenever s > t . In addition, we let L−1 be the Boltzmann
multiplicative operator associated with g0, that is, L−1h(x) ≡ g0(x)h(x) for all h ∈ Fb(X ) and
x ∈ X. By combining this notation with (2.3), we may express each filter distribution as

φt = χL−1 · · ·Lt−1

χL−1 · · ·Lt−11X
(t ∈ N),

which implies immediately the filter recursion

φt+1 = φtLt

φtLt1X
(t ∈ N). (2.4)

In the following, we will often deal with sums and products of functions with possibly different
arguments. Since these functions will be defined on products of X, we will, when needed, with
a slight abuse of notation, let subscripts define the domain and the values of such sums and
products. For instance, ft f̃t : X  xt �→ ft (xt )f̃t (xt ) while ft + f̃t+1 : X2  (xt , xt+1) �→ ft (xt )+
f̃t+1(xt+1).

We will for simplicity assume that the HMM is fully dominated, that is, that also Q admits a
transition density q with respect to some reference measure μ ∈ M(X ). In this case, the reverse
kernel

←−
Q η of Q with respect to any η ∈ M1(X ) is well-defined and specified by (2.1) (with κ =

q). It may be shown (see, e.g., [5], Proposition 3.3.6) that the state process has still the Markov
property when evolving conditionally on Y0:t = y0:t in the time-reversed direction; moreover, the
distribution of Xs given Xs+1 and Y0:t = y0:t is, for any s ≤ t , given by

←−
Q φs

, which is referred to
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as the backward kernel at time s. Consequently, we may express each joint smoothing distribution
φ0:t |t as

φ0:t |t = φtTt , (2.5)

where we have defined the kernels

Tt :=
{←−

Q φt−1
�

←−
Q φt−2

� · · · �
←−
Q φ0

for t ∈N
∗,

id for t = 0

(which were also introduced in (1.5)).
As discussed in the Introduction, the aim of this paper is, given a sequence {h̃t }t∈N of terms,

to estimate the sequence {φ0:t |t ht }t∈N, where each ht is given by (1.2). By convention, h0 ≡
0 (implying, e.g., that T0h0 = 0). Using (2.5), each quantity of interest may be expressed as
φtTt ht = φ0:t |t ht . In addition, note that {Tt ht }t∈N may be expressed recursively as

Tt+1ht+1 = ←−
Q φt

(Tt ht + h̃t ), (2.6)

a formula that will play a key role in the coming developments.
Finally, define, for (s, t) ∈ N

2 such that s ≤ t , the retro-prospective kernels

Ds,th(xs) :=
∫ ∫

h(x0:t )Ts(xs,dx0:s−1)Ls · · ·Lt−1(xs,dxs+1:t ),

D̃s,th(xs) := Ds,t (h − φ0:t |t h)(xs)
(
xs ∈ X, h ∈ Fb

(
X t+1))

operating simultaneously in the backward and forward directions. Note that the only difference
between Ds,t and D̃s,t is that the latter is centralized around the joint smoothing distribution.

2.3. Particle-based smoothing in HMMs

2.3.1. The bootstrap particle filter

In the following, we assume that all random variables are defined on a common probability space
(�,F,P). The bootstrap particle filter updates sequentially in time a set of particles and asso-
ciated weights in order to approximate the filter distribution flow {φt }t∈N given the sequence
{yt }t∈N of observations. Assume that we have at hand a particle sample {(ωi

t , ξ
i
t )}Ni=1 approxi-

mating the filter distribution φt in the sense that for all h ∈ Fb(X ),

φN
t h =

N∑
i=1

ωi
t

�t

h
(
ξ i
t

) N→∞� φth, (2.7)

where �t := ∑N
i=1 ωi

t denotes the weight sum. To form a weighted particle sample {(ωi
t+1,

ξ i
t+1)}Ni=1 targeting the subsequent filter φt+1, we simply plug in the approximation φN

t into the
filter recursion (2.4), yielding the approximation of φt+1 by a mixture distribution proportional
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Algorithm 1 Bootstrap particle filter

Require: A weighted particle sample {(ξ i
t ,ω

i
t )}Ni=1 targeting φt .

1: for i = 1 → N do
2: I i

t+1 ∼ Pr({ω�
t }N�=1);

3: draw ξ i
t+1 ∼ Q(ξ

I i
t+1

t , ·);
4: set ωi

t+1 ← gt+1(ξ
i
t+1);

5: end for
6: return {(ξ i

t+1,ω
i
t+1)}Ni=1.

to
∑N

i=1 ωi
t Lt (ξ

i
t , ·), and aim at updating the particle cloud by sampling from this mixture. How-

ever, since Lt is generally intractable, we augment the space by the index i and apply importance
sampling from the extended distribution proportional to ωi

t Lt (ξ
i
t , ·) using the distribution pro-

portional to ωi
t Q(ξ i

t , ·) as instrumental distribution. This yields a sampling schedule comprising
two operations: selection and mutation. In the selection step, a set {I i

t+1}Ni=1 of indices are drawn
multinomially according to probabilities proportional to {ωi

t }Ni=1. After this, the mutation step
propagates the particles forward according to the dynamics of the state process and assigns the
mutated particles importance weights given by the emission density, that is, for all i ∈ �1,N �,

ξ i
t+1 ∼ Q

(
ξ

I i
t+1

t , ·),
ωi

t+1 = gt+1
(
ξ i
t+1

)
.

The algorithm, which is the standard bootstrap particle filter presented in [21], is initialized by
drawing {ξ i

0}Ni=1 ∼ χ �N and letting ωi
0 = g0(ξ

i
0) for all i ∈ �1,N �. In this basic scheme, which

is summarized in Algorithm 1, the information provided by the most current observation yt+1
enters the algorithm via the importance weights only. However, instead of moving the particles
“blindly” according to the latent dynamics Q, it is, in order to direct the particle swarm toward
regions of the state space with large posterior probability, possible to increase the influence of the
last observation on the mutation moves as well as the selection mechanism step via the frame-
work of auxiliary particle filters [34]. Even though all the results of the present paper can be
extended straightforwardly to auxiliary particle filters, we have chosen to limit the presentation
to bootstrap-type particle filters only for clarity.

In Algorithm 1, Pr({ω�
t }N�=1) denotes the categorical distribution induced by the probabilities

{ω�
t /�t }N�=1. We will express Algorithm 1 in a compact form by writing

“
{(

ξ i
t+1,ω

i
t+1

)}N

i=1 ← PF
({(

ξ i
t ,ω

i
t

)}N

i=1

)
”.

2.3.2. Forward-filtering backward-smoothing (FFBSm)

As discussed in Introduction, the bootstrap filter may also be used for smoothing, as the weighted
occupation measures associated with the genealogical trees of the particle samples generated by
the algorithm form consistent estimates of the joint smoothing distributions. A way of detouring
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the particle path degeneracy of this poor man’s smoother goes via the backward decomposi-
tion (2.5), granted that we are able to approximate each kernel

←−
Q φs

, s ∈ N. However, consider-
ing instead the reverse kernel associated with the particle filter φN

s , yields, via (2.1), the particle
approximations

←−
Q φN

s
h(x) =

N∑
i=1

ωi
sq(ξ i

s , x)∑N
�=1 ω�

sq(ξ�
s , x)

h
(
ξ i
s

) (
x ∈ X, h ∈ Fb(X )

)
. (2.8)

FFBSm consists in simply inserting these approximations into (2.5), that is, approximating, for
h ∈ Fb(X t+1), φ0:t |t h by

φN
0:t |t h :=

N∑
i0=1

· · ·
N∑

it=1

(
t−1∏
s=0

ω
is
s q(ξ

is
s , ξ

is+1
s+1 )∑N

�=1 ω�
sq(ξ�

s , ξ
is+1
s+1 )

)
ω

it
t

�t

h
(
ξ

i0
0 , . . . , ξ

it
t

)
. (2.9)

For general objective functions h, this occupation measure is impractical as the cardinality of
its support grows geometrically fast with time. In the case where the objective function h is of
additive form (1.2), the computational complexity is still quadratic, since computation of the
normalizing constants

∑N
�=1 ω�

sq(ξ�
s , ξ i

s+1) is required for all i ∈ �1,N � and s ∈ �0, t − 1�. Con-
sequently, FFBSm is a computationally intensive approach.

2.3.3. Forward-only implementation of FFBSm

Appealingly, as noted by [9], in the case of additive state functionals the sequence {φN
t ht }t∈N

can be computed on-the-fly as t increases on the basis of the recursion (2.6). More specifically,
plugging the estimates (2.8) into the recursion in question yields particle approximations {τ̃ i

t }Ni=1
of the statistics {Tt ht (ξ

i
t )}Ni=1 evaluated at the particle locations. After initializing τ̃ i

0 = 0 for all
i ∈ �1,N �, these approximations may, when new observations become available, be updated by
first evolving the particle filter sample one step and then setting

τ̃ i
t+1 =

N∑
j=1

ω
j
t q(ξ

j
t , ξ i

t+1)∑N
�=1 ω�

t q(ξ�
t , ξ i

t+1)

{
τ̃

j
t + h̃t

(
ξ

j
t , ξ i

t+1

)}
(t ∈N), (2.10)

yielding

φN
0:t |t ht =

N∑
i=1

ωi
t

�t

τ̃ i
t (2.11)

as an estimate of φ0:t |t ht . Note that (2.11) provides a particle interpretation of the backward de-
composition (2.5). Besides allowing for online processing of the data, the algorithm has also the
appealing property that only the current statistics {τ̃ i

t }Ni=1 and particle sample {(ξ i
t ,ω

i
t )}Ni=1 need

to be stored in the memory. Still, the complexity of the scheme is O(N2) due to the computation
of the normalizing constants of the backward kernel induced by the particle filter.
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2.3.4. Forward-filtering backward-simulation (FFBSi)

In order to remedy the high computational complexity of FFBSm, FFBSi generates trajectories
on the index space �1,N �t+1 by simulating repeatedly a time-reversed, inhomogeneous Markov
chain {J̃s}ts=0 with transition probabilities

�N
s (i, j) := ω

j
s q(ξ

j
s , ξ i

s+1)∑N
�=1 ω�

t q(ξ�
s , ξ i

s+1)

(
(s, i, j) ∈ �0, t − 1� × �1,N �2) (2.12)

and initial distribution (i.e., distribution at time t ) Pr({ωj
t }Nj=1). Given {J̃s}ts=0, an approximate

draw from the joint smoothing distribution is formed by the random vector (ξ
J̃0
0 , . . . , ξ

J̃t
t ). Con-

sequently, the uniformly weighted occupation measure associated with a set of conditionally
independent such draws provides a finite-dimensional approximation of the smoothing distribu-
tion φ0:t |t ; see [20]. In this basic formulation of FFBSi, the backward sampling pass requires
the normalizing constants of the particle-based backward kernels to be computed, and hence the
algorithm suffers from a quadratic complexity. On the other hand, on the contrary to FFBSm, this
complexity is the same for all types of objective functions (whereas FFBSm has quadratic com-
plexity only when applied to additive state functionals). However, following [11] it is, under the
assumption that there exists ε̄ ∈R

∗+ such that q(x, x′) ≤ ε̄ for all (x, x′) ∈ X2 (an assumption that
is satisfied for most models of interest), possible to reduce the computational complexity of FF-
BSi by simulating the approximate backward kernel using the following accept–reject technique.
In order to sample from Pr({�N

s (i, j)}Nj=1) for given s ∈ �0, t −1� and i ∈ �1,N �, a candidate J ∗

drawn from the proposal distribution Pr({ωj
s }Nj=1) is accepted with probability q(ξJ ∗

s , ξ i
s+1)/ε̄.

The procedure is repeated until acceptance; see Algorithm 3 for an efficient way of implementing
this approach. Under the additional assumption that the transition density is bounded also from
below (see Assumption 2 below) it can be shown (see [11], Proposition 2) that the computational
complexity of this accept–reject-based FFBSi algorithm is indeed linear (i.e., O(N)).

3. Main results

Requiring separate forward and backward processing of the data, the standard design of FFBSi
is not useful in online applications. We hence propose a novel algorithm which can be viewed
as a hybrid between the forward-only implementation of the FFBSm algorithm and the FFBSi
algorithm. In order to gain computational effort, it then replaces, in the spirit of FFBSi, exact
computation of (2.10) by a Monte Carlo estimate. The algorithm, which is presented in the next
section, is furnished with rigorous theoretical results concerning its convergence and numerical
stability in Section 3.2.

3.1. The particle-based, rapid incremental smoother (PaRIS)

Given estimates {τ i
t }Ni=1 of the auxiliary statistics {Tt ht (ξ

i
t )}Ni=1 and a particle sample {(ξ i

t ,

ωi
t )}Ni=1 targeting the filter φt , the algorithm updates the estimated auxiliary statistics by, first,
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Algorithm 2 Particle-based, rapid incremental smoother (PaRIS)

Require: Particles sample {(ξ i
t ,ω

i
t )}Ni=1 targeting φt and estimated auxiliary statistics {τ i

t }Ni=1.
1: run {(ξ i

t+1,ω
i
t+1)}Ni=1 ← PF({(ξ i

t ,ω
i
t )}Ni=1);

2: for i = 1 → N do
3: for j = 1 → Ñ do
4: draw J

(i,j)

t+1 ∼ Pr({ω�
t q(ξ�

t , ξ i
t+1)}N�=1);

5: end for

6: Set τ i
t+1 ← Ñ

−1 ∑Ñ
j=1(τ

J
(i,j)
t+1

t + h̃t (ξ
J

(i,j)
t+1

t , ξ i
t+1));

7: end for
8: return {τ i

t+1}Ni=1 and {(ξ i
t+1,ω

i
t+1)}Ni=1.

propagating the particle cloud one step, yielding {(ξ i
t+1,ω

i
t+1)}Ni=1, second, drawing, for each

i ∈ �1,N �, conditionally independent and identically distributed indices {J (i,j)

t+1 }Ñj=1, where

Ñ ∈N
∗ is some given sample size referred to as the precision parameter, according to

{
J

(i,j)

t+1

}Ñ

j=1 ∼ Pr
({

�N
t (i, �)

}N

�=1

)�Ñ (
i ∈ �1,N �

)
,

where the transition probabilities �N
t are defined in (2.12), and third, letting

τ i
t+1 = Ñ

−1
Ñ∑

j=1

(
τ

J
(i,j)
t+1

t + h̃t

(
ξ

J
(i,j)
t+1

t , ξ i
t+1

)) (
i ∈ �1,N �

)
.

Using the updated statistics {τ i
t+1}Ni=1, an estimate of φ0:t+1|t+1ht+1 = φt+1Tt+1ht+1 is ob-

tained as
∑N

i=1 ωi
t+1τ

i
t+1/�t+1. As for FFBSm, the algorithm is initialized by setting τ i

0 = 0
for i ∈ �1,N �. The resulting smoother, which is summarized in Algorithm 2, allows for online
processing with constant memory requirements, as it requires only the current particle cloud and
estimated auxiliary statistics to be stored at each iteration. In addition, applying, in Step (4), the
accept–reject technique described in the previous section yields, for a given Ñ , an algorithm with
linear complexity.

In the PaRIS scheme, the precision parameter Ñ has to be set by the user. As shown in Sec-
tion 3.2, the algorithm is asymptotically consistent (as the particle sample size N tends to in-
finity) for any fixed Ñ ∈ N

∗ (i.e., the precision parameter does not need to be increased with N

in order to guarantee consistency). Increasing the precision parameter increases the accuracy of
the algorithm at the cost of additional computational complexity. Importantly, there is a signif-
icant qualitative difference between the cases Ñ = 1 and Ñ ≥ 2, and it turns out that the latter
is required to keep PaRIS numerically stable. This will be clear from the theoretical bounds on
the asymptotic variance obtained in Section 3.2 as well as from the numerical experiments in
Section 4.

In order to understand the fundamental difference between the cases Ñ = 1 and Ñ ≥ 2, we
may use the backward indices to connect the particles of different generations. Hence, let, for all
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Figure 1. Genealogical traces corresponding to backward simulation in the PaRIS algorithm. Columns of
nodes refer to different particle populations (with N = 3) at different time points (with time increasing
rightward) and arrows indicate connections through the relation ���. Black-colored particles are included
in the support S4 of the final estimator, while gray-colored ones are inactive.

t ∈N and i ∈ �1,N �, J (i,∅)
t,t := i and, for all s ∈ �0, t − 1� and js:t−1 ∈ �1, Ñ �t−s ,

J (i,js:t−1)
s,t := J

(J (i,js+1:t−1)

s+1,t ,js )

s+1

and let us write “ξ�
s ��� ξ i

t ” if there exists a sequence js:t−1 of indices such that � = J (i,js:t−1)
s,t .

Note that the support of the PaRIS estimator at time t is given by St := ∏t
s=0 As,t ⊂ Xt+1,

where As,t := ⋃N
i=1{ξ�

s : ξ�
s ��� ξ i

t } ⊂ {ξ�
s }N�=1 (so that, since ξ i

t ��� ξ i
t for all i ∈ �1,N �, At,t =

{ξ�
t }N�=1). When Ñ = 1, the sequence {#As,t }∞t=s is non-decreasing, and #As,t = 1 ⇒ #Au,t = 1

for all u ∈ �0, s�. This implies a degeneracy phenomenon that resembles closely that of the poor
man’s smoother. On the contrary, in the case Ñ ≥ 2 it may well occur that #As,t > #As,t+1, also
when #As,t+1 = 1. The previous is, for N = 3 and t = 4, illustrated graphically in Figure 1,
where columns of nodes represent particle clouds at different time steps (with time increasing
rightward) and arrows indicate connections through the relation ���. Black-colored particles are
included in the support S4 of the final estimator, while gray-colored ones are inactive. As clear
from Figure 1(a), setting Ñ = 1 depletes quickly the support of the estimator, leading to a nu-
merically unstable algorithm. Figure 1(b) shows the same configuration as in (a), but with one
additional backward sample (i.e., Ñ = 2). In this case, the sequence {#As,4}4

s=0 is no longer non-
decreasing, and a high degree of depletion at some time points (such as s = 2) has merely local
effect of the support of the estimator. In the coming sections, the fact that PaRIS stays numeri-
cally stable for any fixed Ñ ≥ 2 is established theoretically as well as through simulations.

3.2. Theoretical results

The coming convergence analysis is driven by the following assumption.

Assumption 1.

(i) For all t ∈ N, the measure density gt ∈ Fb(X ) is a positive bounded measurable function.
(ii) The transition density q ∈ Fb(X 2) is a bounded measurable function.
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Assumption 1(i) implies finiteness and positiveness of the particle weights; the boundedness
of the transition density q implied by Assumption 1(ii) allows, besides certain technical argu-
ments (formalized in Lemma 14) based on the generalized Lebesgue theorem, the accept–reject
sampling technique discussed in Section 2.3.4 to be used.

It turns out to be necessary to establish the convergence of PaRIS for a slightly more general
affine modification of the additive state functional (1.2) under consideration. More specifically,
we will verify that for all t ∈N and bounded measurable functions (ft , f̃t ) ∈ Fb(X )2,

N∑
i=1

ωi
t

�t

{
τ i
t ft

(
ξ i
t

) + f̃t

(
ξ i
t

)} N→∞� φt (Tt htft + f̃t ), (3.1)

where {τ i
t }Ni=1 and {(ξ i

t ,ω
i
t )}Ni=1 are the output of Algorithm 2, in the senses of exponential con-

centration, weak convergence, and Lp error. The analogous results for the original additive state
functional are then obtained as corollaries by simply applying (3.1) with ft ≡ 1X and f̃t ≡ 1Xc .
Our proofs, which are presented in Appendix A, are based on single-step analyses of the scheme
and rely on techniques developed in [11] and [12]. Nevertheless, the analysis of PaRIS is, es-
pecially in the case of weak convergence, highly non-trivial due to the complex dependence
between the ancestral lineages of the particles induced by the backward sampling approach (on
the contrary to standard FFBSi, where the backward trajectories are conditionally independent;
see the previous section).

3.2.1. Hoeffding-type inequalities

Besides being a result of independent interest, the following exponential concentration inequality
for finite sample sizes N plays an instrumental role in the proof of the CLT in the next section. For
reasons that will be clear in the proof of Theorem 3, the bound is established for the unnormalized
as well as the normalized estimator; see Theorem 1, equations (i) and (ii), respectively.

Theorem 1. Let Assumption 1 hold. Then for all t ∈N, bounded measurable functions (ft , f̃t ) ∈
Fb(X )2, and Ñ ∈ N

∗ there exist constants (ct , c̃t ) ∈ (R∗+)2 (depending on ht , Ñ , ft , and f̃t ) such
that for all N ∈N

∗ and all ε ∈R
∗+,

(i) P(| 1
N

∑N
i=1 ωi

t {τ i
t ft (ξ

i
t ) + f̃t (ξ

i
t )} − φt−1Lt−1(Tt htft + f̃t )| ≥ ε) ≤ ct exp(−c̃tNε2),

(ii) P(|∑N
i=1

ωi
t

�t
{τ i

t ft (ξ
i
t ) + f̃t (ξ

i
t ) − φt (Tt htft + f̃t )}| ≥ ε) ≤ ct exp(−c̃tNε2)

(with the convention φ−1 ≡ χ ).

The following is an immediate consequence of Theorem 1.

Corollary 2. Let Assumption 1 hold. Then for all t ∈ N and Ñ ∈ N
∗ there exist constants

(ct , c̃t ) ∈ (R∗+)2 (depending on ht and Ñ ) such that for all N ∈N
∗ and all ε ∈R

∗+,

P

(∣∣∣∣∣
N∑

i=1

ωi
t

�t

τ i
t − φ0:t |t ht

∣∣∣∣∣ ≥ ε

)
≤ ct exp

(−c̃tNε2).
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3.2.2. Central limit theorems and asymptotic Lp error

Theorem 3. Let Assumption 1 hold. Then for all t ∈ N, bounded measurable functions (ft , f̃t ) ∈
Fb(X )2, and Ñ ∈N

∗, as N → ∞,

√
N

N∑
i=1

ωi
t

�t

{
τ i
t ft

(
ξ i
t

) + f̃t

(
ξ i
t

) − φt (Tt htft + f̃t )
} D−→ σt 〈ft , f̃t 〉(h)Z,

where Z has standard Gaussian distribution and

σ 2
t 〈ft , f̃t 〉(ht )

:= σ̃ 2
t 〈ft , f̃t 〉(ht )

(3.2)

+
t−1∑
s=0

s∑
�=0

Ñ
�−(s+1)

× φ�L�{←−Q φ�
(T�h� + h̃� − T�+1h�+1)

2L�+1 · · ·Ls(gs+1{Ls+1 · · ·Lt−1ft }2)}
(φ�L� · · ·Ls−11X)(φsLs · · ·Lt−11X)2

with

σ̃ 2
t 〈ft , f̃t 〉(ht ) :=

t−1∑
s=0

φsLs{gs+1D̃2
s+1,t (htft + f̃t )}

(φsLs · · ·Lt−11X)2

being the asymptotic variance of the FFBSm algorithm (where, by convention, LmLn = id if
m > n).

Remark 4. Since for all s ∈ �0, t − 1� and � ∈ �0, s�, � − (s + 1) ≤ −1, it holds, in (3.2), that

lim
Ñ→∞

σ 2
t 〈ft , f̃t 〉(ht ) = σ̃ 2

t 〈ft , f̃t 〉(ht ),

that is, for large Ñ the asymptotic variance of PaRIS tends to that of the FFBSm algorithm.
This is in line with our expectations, as the forward-only version of FFBSm can be viewed as a
Rao–Blackwellization of PaRIS.

Again, the following is an immediate consequence of Theorem 3.

Corollary 5. Let Assumption 1 hold. Then for all t ∈N and Ñ ∈ N
∗, as N → ∞,

√
N

(
N∑

i=1

ωi
t

�t

τ i
t − φ0:t |t ht

)
D−→ σt (ht )Z,
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where Z has standard Gaussian distribution and

σ 2
t (ht ) := σ̃ 2

t (ht )

+
t−1∑
s=0

s∑
�=0

Ñ
�−(s+1)

(3.3)

× φ�L�{←−Q φ�
(T�h� + h̃� − T�+1h�+1)

2L�+1 · · ·Ls(gs+1{Ls+1 · · ·Lt−11X}2)}
(φ�L� · · ·Ls−11X)(φsLs · · ·Lt−11X)2

with

σ̃ 2
t (ht ) :=

t−1∑
s=0

φsLs(gs+1D̃2
s+1,t ht )

(φsLs · · ·Lt−11X)2

being the asymptotic variance of the FFBSm algorithm.

By following identically the lines of the proof of [13], Theorem 8, we may use Corollary 2 and
Corollary 5 for deriving also the asymptotic Lp error of the estimates produced by the algorithm.

Corollary 6. Let Assumption 1 hold. Then for all p ∈ R
∗+, t ∈N, and Ñ ∈N

∗,

lim
N→∞

√
N

∥∥∥∥∥
N∑

i=1

ωi
t

�t

τ i
t − φ0:t |t ht

∥∥∥∥∥
Lp

= √
2σt (ht )

(
�{(p + 1)/2}√

2π

)1/p

,

where σ 2
t (ht ) is given in (3.3).

3.2.3. Time uniform asymptotic variance bounds

In the present section, we establish the long-term numerical stability of the PaRIS algorithm by
bounding the asymptotic variance (3.3) (and hence, by Corollary 6, the asymptotic Lp error) using
mixing-based arguments. We will treat separately joint smoothing and marginal smoothing, and
derive, for precision parameters Ñ ≥ 2, O(t) and O(1) bounds, respectively, on the asymptotic
variances in these cases. Since such time dependence is the best possible for SMC error bounds
on the path and marginal spaces, these results confirm the conjecture that the algorithm stays
numerically stable for precision parameters of this sort. Similar results for the FFBSm and FFBSi
algorithms were obtained in [11,18]. The analysis will be carried through under the following
strong mixing assumption, which is standard in the literature of SMC analysis (see [10] and, e.g.,
[5,7,8,13] for refinements) and points to applications where the state space X is a compact set.

Assumption 2.

(i) There exist constants 0 < ¯ε < ε̄ < ∞ such that for all (x, x̃) ∈ X2,

¯ε ≤ q(x, x̃) ≤ ε̄,

and we define � := 1 − ¯ε/ε̄.
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(ii) There exist constants 0 < ¯δ < δ̄ < ∞ such that for all t ∈N, ‖gt‖∞ ≤ δ̄ and ¯δ ≤ Lt1X(x),
x ∈ X.

Joint smoothing. The following assumption implies that the additive functional under consid-
eration grows at most linearly with time, which is a minimal requirement for obtaining an O(t)

asymptotic variance.

Assumption 3. There exists |h̃|∞ ∈ R
∗+ such that for all s ∈N, osc(h̃s) ≤ |h̃|∞.

As an auxiliary result, we provide an O(t) bound on the asymptotic variance of the FFBSm
algorithm; see [18] for a similar result on the Lp error for finite particle sample sizes.

Proposition 7. Let Assumption 2 and Assumption 3 hold. Then

lim sup
t→∞

1

t
σ̃ 2

t (ht ) ≤ |h̃|2∞
4δ̄

¯δ(1 − �)4
.

In the light of Proposition 7, it suffices to bound the second term of (3.3) by a quantity of order
O(t). This yields the following result, where interestingly, the incremental asymptotic variance
caused by the backward simulation is inversely proportional to the precision parameter Ñ . This
is well in line with the theory of random weight SMC methods, in which, in similarity to our
algorithm, intractable quantities (the importance weights) are replaced by random and unbiased
estimates of the same (see [31,32]).

Theorem 8. Let Assumption 2 and Assumption 3 hold. Then for all Ñ ≥ 2,

lim sup
t→∞

1

t
σ 2

t (ht ) ≤ |h̃|2∞
δ̄

¯δ(1 − �)4

(
4 + (4δ̄�2 + 1 − �)2

(Ñ − 1)(1 − �)

)
,

where σ 2
t (ht ) is defined in (3.3).

Marginal smoothing. We turn to marginal smoothing, that is, the situation when all terms of the
additive functional are zero but a single one. For such a particular objective function, we are able
to construct a time uniform bound on the unnormalized asymptotic variance of the same form as
before, with one term representing the FFBSm asymptotic variance (see [11], Theorem 12) and
one additional term being inversely proportional to the precision parameter and representing the
loss of accuracy introduced by backward sampling.

Assumption 4. The additive functional has the following form. For some ŝ ∈ N,

h̃s(xs:s+1) =
{

0 for s �= ŝ,
h̃ŝ (xŝ) for s = ŝ.
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Theorem 9. Let Assumption 2 and Assumption 4 hold. Then for all t ∈N and Ñ ≥ 2,

σ 2
t (ht ) ≤ osc2(h̃ŝ )

δ̄

(1 − �)3

(
δ̄

1 + �2

1 + �
+ 4

1

¯δ(Ñ − 1){(1 − �2) ∧ (1/2)}
)

,

where σ 2
t (ht ) is defined in (3.3).

3.2.4. Computational complexity

We conclude this section with some comments on the complexity of the algorithm. Under As-
sumption 1(ii), we may cast the accept–reject technique proposed in [11], Algorithm 1, into the
framework of PaRIS. A pseudo-code describing the resulting scheme is provided by Algorithm 3
in Section B.2. For a given t ∈ N, we denote by Ct 〈N, Ñ〉 the (random) number of elementary
operations needed for executing the PaRIS algorithm parameterized by (N, Ñ) ∈ (N∗)2 from
time zero to time t . Note that Ct 〈N, Ñ〉 is strongly data dependent, as the observations {ys}ts=0
effect, via the particle weights, the acceptance probabilities at the different time steps. Still, under
the strong mixing assumption above it is possible to bound uniformly this random variable. The
following result is an immediate consequence of [11], Proposition 2.

Theorem 10. Let Assumption 2 hold. Then there exists a constant c ∈ R
∗+ such that E[Ct 〈N,

Ñ〉] ≤ ctNÑ/(1 − �) for all t ∈N.

Thus, the expected number of trials grows linearly with time, the number of particles, and the
precision parameter, showing the importance of keeping the latter at a minimum. On the other
hand, since the variance bound derived in Proposition 7 (and Theorem 9) is inversely propor-
tional to Ñ , using an excessively large precision parameter will not pay off in terms of variance
reduction (as the variance term controlled by the precision parameter will be negligible beside
the variance corresponding to FFBSm). We hence advocate keeping Ñ at a moderate value, and
will return to this matter in connection to the numerical illustrations of the next section.

4. Simulations

An exhaustive study of the numerical aspects of PaRIS is beyond the scope of the present paper;
nevertheless, we benchmark the algorithm on two different models, namely

• a linear Gaussian state-space model (for which all quantities of interest can be computed
exactly for comparison) and

• a stochastic volatility model [22].

4.1. Linear Gaussian state-space model

We first consider the linear Gaussian state-space model

Xt+1 = aXt + σεεt+1,
(4.1)

Yt = bXt + σζ ζt (t ∈N),



The PaRIS algorithm 1971

where Y = X = R and {εt }t∈N∗ and {ζt }t∈N are sequences of mutually independent standard
normally distributed random variables. The parameters (a, b) ∈ R

2 and (σε, σζ ) ∈ (R∗+)2 are
considered to be known. We aim at computing smoothed expectations of the sufficient statistics

h
(1)
t (x0:t ) :=

t∑
s=0

xs, h
(2)
t (x0:t ) :=

t∑
s=0

x2
s ,

(4.2)

h
(3)
t (x0:t ) =

t−1∑
s=0

xsxs+1
(
x0:t ∈ Xt+1)

under the dynamics governed by the parameter vector (a, b, σε, σζ ) = (0.7,1,0.2,1), and assume
for simplicity that the model is well-specified. For this model, the disturbance smoother (see,
e.g., [5], Algorithm 5.2.15) provides the exact values of the smoothed sufficient statistics, and we
compared these values with approximations obtained using PaRIS as well as the forward-only
implementation of FFBSm. With our implementation, parameterizing PaRIS and FFBSm with
(N, Ñ) = (150,2) and N = 50, respectively, resulted in very similar computational times for the
two algorithms, with PaRIS being slightly faster (recall that FFBSm has a quadratic complexity).
As clear from the box plots (based on time-normalized estimates) displayed in Figure 2, PaRIS
outperforms clearly FFBSm as the former exhibits lower variance as well as smaller bias for
equal computational time.

As a measure of numerical performance, we define efficiency as inverse sample variance over
computational time. Figure 3 reports the efficiencies by which the PaRIS and forward-only FF-
BSm algorithms estimate φ0:t |t h(1)

t using each N = 500 particles. As evident from the plot, PaRIS
exhibits a higher efficiency uniformly over all time points. The variance estimates were based on
50 replicates.

In order to examine the dependence of the performance of PaRIS on the design of the precision
parameter Ñ , we produced estimates of φ0:t |t h(1)

t for t ∈ �0,1000� using the algorithm for each of
the precision parameters Ñ ∈ {1,2,3,4,10,30}. All these estimators were computed on the basis
of the same forward particles, so also an additional FFBSm-based estimator. This experiment
was, in order to estimate the variances of the (seven) different estimators, replicated 100 times for
the same fixed sequence of observations. Figure 4, displaying estimated variance as a function of
time, shows a momentous difference between the cases Ñ = 1 and Ñ > 1 (note the difference in
y-axis scale between the two graphs); the graphs in the top (Ñ = 1) and bottom (Ñ > 1) figures
exhibit variance growths that appear to be close to quadratic and linear, respectively, which is
well in accordance with the theory. Increasing the precision parameter Ñ from 2 to 4 implies
some decrease of variance, while increasing the same from 4 to 30 has only marginal effect on
the accuracy of the estimator (the difference between the variances corresponding to Ñ = 10
and Ñ = 30 is close to indistinguishable). This is perfectly in line with the theoretical results
obtained in Section 3, where the second term of the variance bound in Theorem 8 is inversely
proportional to the precision parameter. Finally, ratios of variances of estimators associated with
different Ñ are displayed in Figure 5, which shows a linearly increasing ratio of the variances
associated with Ñ = 1 and Ñ = 2 and a close to constant ratio of the variances associated with
Ñ = 2 and Ñ = 3.
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Figure 2. Box plots of estimates of smoothed sufficient statistics (4.2) for the linear Gaussian model
(4.1) produced by PaRIS (right column) and the forward-only version of FFBSm (left column) using
(N, Ñ) = (150,2) and N = 50, respectively (yielding close to identical computational times). The boxes
are based on 50 replicates of the estimates for the same fixed observation sequence and asterisks indicate
exact values obtained with the disturbance smoother.

Finally, in order to illustrate our algorithm’s capacity of coping with particle path degeneracy,
we report, in Figure 6, the ratios #St /{N(t + 1)}, t ∈ �0,1000�, where #St is the cardinality of
the support of the PaRIS algorithm at time t (in the notation of Section 3.1), for the precision pa-
rameters Ñ ∈ {1,2,3,10,30}. Here, N = 100, and again the estimators associated with different
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Figure 3. Estimated efficiencies for the PaRIS and forward-only FFBSm algorithms using each N = 500
particles. (The first time step is removed from the plot due to very high efficiencies for both algorithms.)

Figure 4. Estimated variances of PaRIS estimators for Ñ = 1 (top graph) and Ñ ∈ {2,3,4,10,30} (bot-
tom graph) at different time steps t ∈ �0,1000�. The bottom graph includes variance estimates of the for-
ward-only FFBSm estimator. The variance estimates are based on 100 replicates.

Figure 5. Ratios of variances of the estimators associated with Ñ = 1 and Ñ = 2 (solid line) and Ñ = 2
and Ñ = 3 (dashed line).
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Figure 6. Plot the ratios #St /{N(t + 1)}, t ∈ �0,1000�, for the precision parameters Ñ ∈ {1,2,3,10,30}
and N = 100. The 95% confidence bounds are obtained on the basis of 100 replicates of the observation
record.

precision parameters were based on the same forward particles. The 95% confidence bounds dis-
played the same plot were obtained on the basis of 100 replicates of observation record. Judging
by these confidence bounds, the dependence of the copiousness of the support on the observa-
tions is fairly robust. Interestingly, for Ñ = 1 the sequence of ratios tends quickly to zero, while
letting Ñ > 1 stabilizes completely the support of the estimator. Already Ñ = 2 yields a sup-
port that involves, on the average and in the long run, more than 50% of all forward particles.
Again, increasing the precision parameter has some effect for moderate values of the same, say,
up to Ñ = 10, while increasing the parameter further from 10 to 30 (which implies a significant
increase of computational overhead) effects only marginally the cardinality of the support. Also
this observation is perfectly in line with the theory presented in Section 3, consolidating our
apprehension that only a modest value of Ñ is required as long as Ñ ≥ 2.

4.2. Stochastic volatility model

For the sake of completeness, we also consider a non-linear model, namely the standard stochas-
tic volatility model

Xt+1 = φXt + σεεt+1,
(4.3)

Yt = β exp(Xt/2)ζt (t ∈ N),

where X = Y = R and {εt }t∈N∗ and {ζt }t∈N are as in the previous example. We assume that the
model parameters φ ∈ R and (σ,β) ∈ (R∗+)2 are known and that the model is well-specified. Our
aim is to compute, using again PaRIS and the forward-only implementation of FFBSm, smoothed
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Figure 7. Box plots of estimates of smoothed sufficient statistics (4.4) for the stochastic volatility model
(4.3) produced by PaRIS (right column) and the forward-only version of FFBSm (left column) using
(N, Ñ) = (250,2) and N = 250, respectively. With this parameterization, PaRIS was 5 times faster than the
FFBSm algorithm. The boxes are based on 100 replicates of the estimates for the same fixed observation
sequence.

expectations of the sufficient statistics

h
(1)
t (x0:t ) :=

t∑
s=0

x2
s , h

(2)
t (x0:t ) :=

s−1∑
s=0

xsxs+1
(
x0:t ∈ Xt+1) (4.4)

for a model parameterized by (φ,σ,β) = (0.975,0.16,0.63). In this case, both algorithms
used N = 250 particles and the precision parameter of PaRIS was set to Ñ = 2. Figure 7
shows box plots based on 100 replicates of estimates of φ0:t |t h(i)

t /t , for i ∈ {1,2} and t ∈
{2000,4000,6000,8000,10 000}, obtained using these methods. Even though the variance and
the bias of the estimates produced by the two algorithms are comparable, PaRIS was now 5 times
faster than the FFBSm algorithm.

4.3. Some comments on the implementation

When applying accept–reject-based backward sampling (Algorithm 3), some acceptance proba-
bilities will be small due to the random support of the particle-based backward kernel. In order to
avoid getting stuck, it may be convenient to equip the algorithm with a threshold for the number
of trials used at each accept–reject operation; when the threshold is reached, accept–reject sam-
pling is cancelled and replaced by a draw from original distribution (recall that we are just using
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Figure 8. Computational time as a function of the size of the accept–reject threshold for the linear Gaus-
sian model and N = 250 particles (left panel). The histogram to the right displays the number of trials
needed before acceptance at any accept–reject sampling operation in algorithm when the threshold is 14
(corresponding to minimal computational time); the bar at 15 represents 3.55% of the occasions.

accept–reject sampling in order to reduce the computational work). Figure 8 displays computa-
tional time as a function of the size of this threshold for the linear Gaussian model and N = 250
particles. Interestingly, the graph has a minimum for the threshold value 14, and using this value
we run the algorithm and counted the number of trials at any accept–reject sampling operation.
The outcome is presented in the histogram plot to the right, from which it is clear that the ma-
jority of the particles are accepted after just a few trials (moreover, an index is most commonly
accepted at once). In addition, at only 3.55% of the occasions, the number of trials exceeded the
threshold. Needless to say, the optimal threshold depends on the model as well as the number
of particles (when the number of particles is small, a too high threshold may have significant
negative effect on the computational efficiency; on the contrary, when the number of particles is
large, the performance of the algorithm is relatively robust vis-à-vis the design of the threshold).
Further simulations not presented here indicate however that a threshold value around

√
N could

be a rule of thumb.

5. Conclusions

We have presented a novel algorithm, the particle-based, rapid incremental smoother, PaRIS, for
computationally efficient online smoothing of additive state functionals in general HMMs. The
algorithm, which is based on a backward decomposition of the smoothing distribution which
can be implemented recursively for objective functions of additive type, can be viewed as a
hybrid between the forward-only implementation of FFBSm and the FFBSi algorithm; more
specifically, forward-only FFBSm may be viewed as a Rao–Blackwellized version of PaRIS.
The algorithm is furnished with a number of convergence results, where the main result is a
CLT of PaRIS’s Monte Carlo output at the rate

√
N . The analysis of PaRIS is considerably more

involved than that of the FFBSi algorithm due to the complex dependence structure introduced by
the retrospective simulation (on the contrary to FFBSi, where the trajectories are conditionally
independent given the particles generated in the forward pass). Interestingly, the design of the
precision parameter, that is, the number of Monte Carlo simulations used for approximating the
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backward decomposition, turns out to be critical, since using a single backward draw yields a
degeneracy phenomenon that resembles closely that of the poor man’s smoother. However, as
established theoretically as well as through simulations, using at least two such draws stabilizes
completely the support of the estimator. For Ñ ≥ 2, we are able to derive O(1 + 1/(Ñ − 1))

and O(t{1 + 1/(Ñ − 1)}) bounds on the asymptotic variance in the cases of marginal and joint
smoothing, respectively, and since the second term of these bounds is inversely proportional to
the precision parameter, we suggest this parameter to be kept at a moderate value in order to gain
computational speed. As known to the authors, this is the first analysis ever of this kind.

The algorithm we propose has a linear complexity in the number of particles while the forward-
only implementation of FFBSm has a quadratic complexity, and a numerical comparison between
the two shows clearly that PaRIS achieves the same accuracy as FFBSm at a considerably lower
computational cost. In addition, similarly to forward-only FFBSm, our smoother has limited and
constant memory requirements, as it needs only the current particle sample and a set of estimated
auxiliary statistics to be stored at each iteration.

Smoothing of additive state functionals is a key ingredient of most – frequentistic or Bayesian –
online parameter estimation techniques for HMMs. Since these applications are most often char-
acterized by strict computational requirements, PaRIS can be naturally cast into any such frame-
work.

Appendix A: Proofs

The following filtrations will be used repeatedly in the proofs. For all (N, Ñ) ∈ (N∗)2, define

F̃N
t :=

⎧⎨
⎩

σ
({

ξ i
0

}N

i=1

)
for t = 0,

σ
(
ξ i

0, ξ
i
s , I

i
s ,

{
J

(i,j)
s

}Ñ

j=1; s ∈ �1, t �, i ∈ �1,N �
)

for t ∈ N
∗,

that is, F̃N
t is the σ -field generated by all random variables produced during the first t iterations

of PaRIS (Algorithm 2). (Since we consider exclusively the convergence of PaRIS as the particle
sample size N tends to infinity for a fixed precision parameter Ñ , we have omitted the latter from
the notation.) In addition, for all (N, Ñ) ∈ (N∗)2, let

FN
t :=

{
F̃N

0 for t = 0,

F̃N
t−1 ∨ σ

({
ξ i
t , I

i
t

}N

i=1

)
for t ∈N

∗,

that is, FN
t is the σ -field generated by all random variables produced by PaRIS up to Step (1) in

the t th iteration. Note that for all t ∈N, F̃N
t ⊂FN

t+1.

A.1. Two prefatory lemmas

Lemma 11. For all t ∈ N and (ft+1, f̃t+1) ∈ Fb(X )2 it holds that

φt+1(Tt+1ht+1ft+1 + f̃t+1) = φt {Tt htLt ft+1 + Lt (h̃t ft+1 + f̃t+1)}
φtLt1X

.



1978 J. Olsson and J. Westerborn

Proof. By combining the definitions of Tt , Lt and using reversibility,

φtLt (Tt+1ht+1ft+1) = φtQ
{←−

Q φt
(Tt ht + h̃t )gt+1ft+1

}
= φtQ �

←−
Q φt

{
(Tt ht + h̃t )gt+1ft+1

}
= φt � Q

{
(Tt ht + h̃t )gt+1ft+1

}
= φt

{
Tt htLt ft+1 + Lt (h̃t ft+1)

}
.

Now the statement of the lemma follows by dividing both sides of the previous equation by
φtLt1X and using the identity φt+1 = φtLt /φtLt1X. �

Lemma 12. For all t ∈ N, (ft+1, f̃t+1) ∈ Fb(X )2, and (N, Ñ) ∈ (N∗)2 the random variables
{ωi

t+1(τ
i
t+1ft+1(ξ

i
t+1) + f̃t+1(ξ

i
t+1))}Ni=1 are, conditionally on F̃N

t , i.i.d. with expectation

E
[
ω1

t+1

{
τ 1
t+1ft+1

(
ξ1
t+1

) + f̃t+1
(
ξ1
t+1

)} | F̃N
t

]
(A.1)

=
N∑

i=1

ωi
t

�t

{
τ i
t Lt ft+1

(
ξ i
t

) + Lt (h̃t ft+1 + f̃t+1)
(
ξ i
t

)}
.

Proof. The multinomial selection procedure implies that the particles {ξ i
t+1}Ni=1 are i.i.d. condi-

tionally on F̃N
t . Hence, since also the backward indices {J (i,j)

t+1 }Ñj=1 are i.i.d. conditionally on the

particle ξ i
t and the σ -field F̃N

t , we conclude that {ωi
t+1(τ

i
t+1ft+1(ξ

i
t+1) + f̃t+1(ξ

i
t+1))}Ni=1 are

i.i.d. conditionally on F̃N
t .

In order to compute the common conditional expectation, we decompose the same according to

E
[
ω1

t+1

{
τ 1
t+1ft+1

(
ξ1
t+1

) + f̃t+1
(
ξ1
t+1

)} | F̃N
t

]
= E

[
ω1

t+1τ
1
t+1ft+1

(
ξ1
t+1

) | F̃N
t

] +E
[
ω1

t+1f̃t+1
(
ξ1
t+1

) | F̃N
t

]
,

where, by the tower property,

E
[
ω1

t+1τ
1
t+1ft+1

(
ξ1
t+1

) | F̃N
t

]
= E

[
ω1

t+1ft+1
(
ξ1
t+1

)
E

[
τ 1
t+1 | FN

t+1

] | F̃N
t

]
= E

[
ω1

t+1ft+1
(
ξ1
t+1

) N∑
�=1

ω�
t q(ξ�

t , ξ1
t+1)∑N

�′=1 ω�′
t q(ξ�′

t , ξ1
t+1)

{
τ �
t + h̃t

(
ξ�
t , ξ1

t+1

)} ∣∣∣ F̃N
t

]

=
N∑

i=1

ωi
t

�t

∫
q
(
ξ i
t , x

)
gt+1(x)ft+1(x)

N∑
�=1

ω�
t q(ξ�

t , x)∑N
�′=1 ω�′

t q(ξ�′
t , x)

{
τ �
t + h̃t

(
ξ�
t , x

)}
μ(dx)

=
N∑

�=1

ω�
t

�t

{
τ �
t Lt ft+1

(
ξ�
t

) + Lt (h̃t ft+1)
(
ξ�
t

)}
.
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We conclude the proof by noting that

E
[
ω1

t+1f̃t+1
(
ξ1
t+1

) | F̃N
t

] =
N∑

�=1

ω�
t

�t

Q(gt+1f̃t+1)
(
ξ�
t

) =
N∑

�=1

ω�
t

�t

Lt f̃t+1
(
ξ�
t

)
.

�

A.2. Proof of Theorem 1

We proceed by induction and assume that the claim of the theorem holds for t ∈ N. To establish
(i) for t + 1, write, using Lemma 11,

1

N

N∑
i=1

ωi
t+1

{
τ i
t+1ft+1

(
ξ i
t+1

) + f̃t+1
(
ξ i
t+1

)} − φtLt (Tt+1ht+1ft+1 + f̃t+1)

= 1

N

N∑
i=1

ωi
t+1

{
τ i
t+1ft+1

(
ξ i
t+1

) + f̃t+1
(
ξ i
t+1

)}

−E
[
ω1

t+1

{
τ 1
t+1ft+1

(
ξ1
t+1

) + f̃t+1
(
ξ1
t+1

)} | F̃N
t

]
+

N∑
i=1

ωi
t

�t

{
τ i
t Lt ft+1

(
ξ i
t

) + Lt (h̃t ft+1 + f̃t+1)
(
ξ i
t

)}

− φt

{
Tt htLt ft+1 + Lt (h̃t ft+1 + f̃t+1)

}
.

Since the functions Lt ft+1 and Lt (h̃t ft+1 + f̃t+1) belong to Fb(X ), the induction hypothesis (ii)
implies that for all ε ∈R

∗+,

P

(∣∣∣∣∣
N∑

i=1

ωi
t

�t

{
τ i
t Lt ft+1

(
ξ i
t

) + Lt (h̃t ft+1 + f̃t+1)
(
ξ i
t

)}

− φt

{
Tt htLt ft+1 + Lt (h̃t ft+1 + f̃t+1)

}∣∣∣∣∣ ≥ ε

)

≤ ct exp
(−c̃tNε2).

In addition, by Lemma 12, {ωi
t+1(τ

i
t+1ft+1(ξ

i
t+1)+ f̃t+1(ξ

i
t+1))}Ni=1 are conditionally i.i.d. given

F̃N
t ; thus, since for all i ∈ �1,N �,

∣∣ωi
t+1

{
τ i
t+1ft+1

(
ξ i
t+1

) + f̃t+1
(
ξ i
t+1

)}∣∣
≤ ‖gt+1‖∞

(‖ht+1‖∞‖ft+1‖∞ + ‖f̃t+1‖∞
)
< ∞,
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the conditional Hoeffding inequality provides constants (d, d̃) ∈ (R∗+)2 such that

P

(∣∣∣∣∣ 1

N

N∑
i=1

ωi
t+1

{
τ i
t+1ft+1

(
ξ i
t+1

) + f̃t+1
(
ξ i
t+1

)}

−E
[
ω1

t+1

{
τ 1
t+1ft+1

(
ξ1
t+1

) + f̃t+1
(
ξ1
t+1

)} | F̃N
t

]∣∣∣∣∣ ≥ ε

)

≤ d exp
(−d̃Nε2).

This establishes (i).
The inequality (ii) for the self-normalized estimator is an immediate consequence of (i) and

the generalized Hoeffding inequality in [11], Lemma 4.
Finally, we conclude the proof by checking that the result is straightforwardly true for the base

case t = 0, since T0h0 = 0, τ i
0 = 0 for all i ∈ �1,N �, and the weighted sample {(ξ i

0,ω
i
0)}Ni=1

(targeting φ0) is generated by standard importance sampling.

A.3. Proof of Theorem 3

We proceed by induction and suppose that the claim of the theorem holds true for some
t ∈ N. Thus, pick (ft+1, f̃t+1) ∈ Fb(X )2 and assume first that φt+1(Tt+1ht+1ft+1 + f̃t+1) = 0.
Write

√
N

N∑
i=1

ωi
t

�t

{
τ i
t+1ft+1

(
ξ i
t+1

) + f̃t+1
(
ξ i
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= N�−1
t

1√
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−
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{
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(
ξ�
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) + Lt (h̃t ft+1 + f̃t+1)
(
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+ N�−1
t

√
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{
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ξ�
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) + Lt (h̃t ft+1 + f̃t+1)
(
ξ�
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)}
,

where, by Theorem 1, N�−1
t tends to (φtLt1X)−1 in probability. In order to establish

the weak convergence of the first term, we will apply Theorem 16 to the triangular ar-
ray

υi
N := 1

Ñ
√

N

Ñ∑
j=1

υ̃N

(
J

(i,j)

t+1 , ξ i
t+1

) (
i ∈ �1,N �,N ∈N

∗),
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where

υ̃N (j, x) := gt+1(x)
{(

τ
j
t + h̃t

(
ξ

j
t , x

))
ft+1(x) + f̃t+1(x)

}
−

N∑
�=1

ω�
t

�t

{
τ �
t Lt ft+1

(
ξ�
t

) + Lt (h̃t ft+1 + f̃t+1)
(
ξ�
t

)}
(A.2)

(
x ∈ X, j ∈ �1, Ñ �,N ∈N

∗),
furnished with the filtration {F̃N

t }N∈N∗ . Note that for all i ∈ �1,N �, E[υi
N | F̃N

t ] = 0 (by
Lemma 12) and |υi

N | ≤ 2‖gt+1‖∞(‖ht+1‖∞‖ft+1‖∞ + ‖f̃t+1‖∞)/
√

N . To check the condi-
tion (B1) in Theorem 16, write, using, first, that {υi

N }i=1 are conditionally i.i.d. given F̃N
t and,

second, that the backward indices {J (i,j)

t+1 }Ñj=1 are, for all i ∈ �1,N �, i.i.d. conditionally on F̃N
t

and ξ i
t+1,

N∑
i=1

E
[(

υi
N

)2 | F̃N
t

] = Ñ−2
E

[(
Ñ∑

j=1

υ̃N

(
J

(1,j)

t+1 , ξ1
t+1

))2 ∣∣∣ F̃N
t

]

= Ñ−1
E

[
E

[
υ̃2

N

(
J

(1,1)
t+1 , ξ1

t+1

) | FN
t+1

] | F̃N
t

]
(A.3)

+ Ñ−1(Ñ − 1)E
[
E

2[υ̃N

(
J

(1,1)
t+1 , ξ1

t+1

) |FN
t+1

] | F̃N
t

]
. (A.4)

We treat separately the two terms (A.3) and (A.4). Concerning (A.3),

E
[
E

[
υ̃2

N

(
J

(1,1)
t+1 , ξ1

t+1

) |FN
t+1

] | F̃N
t

]

= E

[
N∑

�=1

υ̃2
N

(
�, ξ1

t+1

) ω�
t q(ξ�

t , ξ1
t+1)∑N

�′=1 ω�′
t q(ξ�′

t , ξ1
t+1)

∣∣∣ F̃N
t

]

=
N∑

i=1

ωi
t

�t

∫
q
(
ξ i
t , x

) N∑
�=1

υ̃2
N(�, x)

ω�
t q(ξ�

t , x)∑N
�′=1 ω�′

t q(ξ�′
t , x)

μ(dx)

=
N∑

�=1

ω�
t

�t

∫
q
(
ξ�
t , x

)
υ̃2

N(�, x)μ(dx).

Now, using the definition (A.2),

N∑
�=1

ω�
t

�t

∫
q
(
ξ�
t , x

)
υ̃2

N(�, x)μ(dx)

=
N∑

�=1

ω�
t

�t

(
τ �
t

)2Lt

(
gt+1f

2
t+1

)(
ξ�
t

)
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+
N∑

�=1

ω�
t

�t

(
τ �
t 2Lt

{
gt+1ft+1(h̃t ft+1 + f̃t+1)

}(
ξ�
t

) + Lt

{
gt+1(h̃t ft+1 + f̃t+1)

2}(ξ�
t

))

−
(

N∑
�=1

ω�
t

�t

{
τ �
t Lt ft+1

(
ξ�
t

) + Lt (h̃t ft+1 + f̃t+1)
(
ξ�
t

)})2

.

In the previous expression, by Lemma 13,

N∑
�=1

ω�
t

�t

(
τ �
t

)2Lt

(
gt+1f

2
t+1

)(
ξ�
t

) P−→ φt

{
T2

t htLt

(
gt+1f

2
t+1

)} + ηt

{
Lt

(
gt+1f

2
t+1

)}
,

where the functional ηt is defined in (A.9), and, by Corollary 2 and Lemma 11 (recalling that
φtLt (Tt+1ft+1 + f̃t+1) = 0 by assumption),

N∑
�=1

ω�
t

�t

(
τ �
t 2Lt

{
gt+1ft+1(h̃t ft+1 + f̃t+1)

}(
ξ�
t

) + Lt

{
gt+1(h̃tft+1 + f̃t+1)

2}(ξ�
t

))
P−→ 2φt

(
Tt htLt

{
gt+1ft+1(h̃tft+1 + f̃t+1)

}) + φtLt

{
gt+1(h̃tft+1 + f̃t+1)

2},
N∑

�=1

ω�
t

�t

{
τ �
t Lt ft+1

(
ξ�
t

) + Lt (h̃t ft+1 + f̃t+1)
(
ξ�
t

)} P−→ 0. (A.5)

We hence conclude that

(A.3)
P−→ Ñ−1(φt

{
T2

t htLt

(
gt+1f

2
t+1

)} + ηt

{
Lt

(
gt+1f

2
t+1

)}
+ 2φt

(
Tt htLt

{
gt+1ft+1(h̃tft+1 + f̃t+1)

}) + φtLt

{
gt+1(h̃t ft+1 + f̃t+1)

2}) (A.6)

= Ñ−1(φtLt

(
gt+1

{
(Tt ht + h̃t )ft+1 + f̃t+1

}2) + ηt

{
Lt

(
gt+1f

2
t+1

)})
.

We turn to (A.4) and write

E
[
E

2[υ̃N

(
J

(1,1)
t+1 , ξ1

t+1

) | FN
t+1

] | F̃N
t

]

= E

[(
N∑

�=1

υ̃N

(
�, ξ1

t+1

) ω�
t q(ξ�

t , ξ1
t+1)∑N

�′=1 ω�′
t q(ξ�′

t , ξ1
t+1)

)2 ∣∣∣ F̃N
t

]

=
N∑

i=1

ωi
t

�t

∫
q
(
ξ i
t , x

)( N∑
�=1

υ̃N (�, x)
ω�

t q(ξ�
t , x)∑N

�′=1 ω�′
t q(ξ�′

t , x)

)2

μ(dx),
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where we note that the right-hand side can, by (A.2), be written as φN
t QϕN , with

ϕN(x) :=
(

gt+1(x)ft+1(x)

N∑
�=1

ω�
t q(ξ�

t , x)∑N
�′=1 ω�′

t q(ξ�′
t , x)

{
τ �
t + h̃t

(
ξ�
t , x

)} + gt+1(x)f̃t+1(x)

−
N∑

�′=1

ω�′
t

�t

{
τ �′
t Lt ft+1

(
ξ�′
t

) + Lt (h̃t ft+1 + f̃t+1)
(
ξ�′
t

)})2

(x ∈ X).

Note that ‖ϕN‖∞ ≤ 4‖gt+1‖2∞(‖ht+1‖∞‖ft+1‖∞ + ‖f̃t+1‖∞)2 for all N ∈ N. Moreover, by
Corollary 2 (and, in particular, the implication (A.5)) it holds, for all x ∈ X, P-a.s.,

ϕN(x) → g2
t+1(x)

(
ft+1(x)

∫
q(x̃, x){Tt ht (x̃) + h̃t (x̃, x)}φt (dx̃)∫

q(x̃, x)φt (dx̃)
+ f̃t+1(x)

)2

= g2
t+1(x)

{
ft+1(x)

←−
Q φt

(Tt ht + h̃t )(x) + f̃t+1(x)
}2

= g2
t+1(x)

{
ft+1(x)Tt+1ht+1(x) + f̃t+1(x)

}2
.

Thus, under Assumption 1 we may apply Lemma 14, yielding

φN
t QϕN

P−→ φtLt

{
gt+1(ft+1Tt+1ht+1 + f̃t+1)

2},
and we may hence conclude that

(A.4)
P−→ Ñ

−1
(Ñ − 1)φtLt

{
gt+1(ft+1Tt+1ht+1 + f̃t+1)

2}.
Finally, by combining this limit with (A.6) we obtain, using the identity

φtLt

(
gt+1

{
(Tt ht + h̃t )ft+1 + f̃t+1

}2) − φtLt

{
gt+1(ft+1Tt+1ht+1 + f̃t+1)

2}
= φt � Q

(
g2

t+1

{
(Tt ht + h̃t )ft+1 + f̃t+1

}2 − g2
t+1{ft+1Tt+1ht+1 + f̃t+1}2)

= φtQ �
←−
Q φt

(
g2

t+1

{
(Tt ht + h̃t )ft+1 + f̃t+1

}2 − g2
t+1{ft+1Tt+1ht+1 + f̃t+1}2)

= φtQ �
←−
Q φt

{
g2

t+1f
2
t+1(Tt ht + h̃t − Tt+1ht+1)

2}
= φtLt

←−
Q φt

{
gt+1f

2
t+1(Tt ht + h̃t − Tt+1ht+1)

2},
the convergence

N∑
i=1

E
[(

υi
N

)2 | F̃N
t

]
P−→ φtLt

{
gt+1

(
ft+1Tt+1ht+1 + f̃t+1

)2} (A.7)

+ Ñ
−1(

φtLt
←−
Q φt

{
gt+1f

2
t+1(Tt ht + h̃t − Tt+1ht+1)

2} + ηt

{
Lt

(
gt+1f

2
t+1

)})
,
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which verifies (B1). In order to check also the condition (B2), write, for ε ∈R
∗+,

N∑
i=1

E
[(

υi
N

)21{|υi
N |≥ε

} | F̃N
t

] ≤ 4‖gt+1‖2∞
(‖ht+1‖∞‖ft+1‖∞ + ‖f̃t+1‖∞

)2

× 1{
2‖gt+1‖∞

(‖ht+1‖∞‖ft+1‖∞+∥∥f̃t+1
∥∥∞

)≥ε
√

N
},

where the indicator function on the right-hand side is zero for N large enough. This shows
the condition (B2). Hence, for general (ft+1, f̃t+1) (by just replacing f̃t+1 by f̃t+1 −
φt+1(Tt+1ht+1ft+1 + f̃t+1)), by Theorem 16, [38], Lemma A.5, and Slutsky’s lemma,

√
N

N∑
i=1

ωi
t+1

�t+1

{
τ i
t+1ft+1

(
ξ i
t+1

) + f̃t+1
(
ξ i
t+1

) − φt+1(Tt+1ht+1ft+1 + f̃t+1)
}

D−→ σt+1〈ft+1, f̃t+1〉(h)Z,

where Z is a standard Gaussian variable and

σ 2
t+1〈ft+1, f̃t+1〉(ht+1)

:= φtLt (gt+1{ft+1Tt+1ht+1 + f̃t+1 − φt+1(Tt+1ht+1ft+1 + f̃t+1)}2)

(φtLt1X)2
(A.8)

+
t∑

�=0

Ñ
�−(t+1) φ�L�{←−Q φ�

(T�h� + h̃� − T�+1h�+1)
2L�+1 · · ·Lt (gt+1f

2
t+1)}

(φ�L� · · ·Lt−11X)(φtLt1X)2

+ σ 2
t (Lt ft+1,Lt {h̃t+1ft+1 + f̃t+1 − φt+1(Tt+1ht+1ft+1 + f̃t+1)})

(φtLt1X)2
.

We now apply the induction hypothesis to the last term. For this purpose, note that, by Lemma 11,

htLt ft+1 + Lt

{
h̃t+1ft+1 + f̃t+1 − φt+1(Tt+1ht+1ft+1 + f̃t+1)

}
− φt

(
htLt ft+1 + Lt

{
h̃t+1ft+1 + f̃t+1 − φt+1(Tt+1ht+1ft+1 + f̃t+1)

})
= Lt

{
ht+1ft+1 + f̃t+1 − φt+1(Tt+1ht+1ft+1 + f̃t+1)

}
,

yielding, for all N  s < t ,

D̃s+1,t

(
htLt ft+1 + Lt

{
h̃t+1ft+1 + f̃t+1 − φt+1(Tt+1ht+1ft+1 + f̃t+1)

})
= Ds+1,tLt

{
ht+1ft+1 + f̃t+1 − φt+1(Tt+1ht+1ft+1 + f̃t+1)

}
= D̃s+1,t+1(ht+1ft+1 + f̃t+1).
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We may hence conclude that

σ 2
t (Lt ft+1,Lt {h̃t+1ft+1 + f̃t+1 − φt+1(Tt+1ht+1ft+1 + f̃t+1)})

(φtLt1X)2

=
t−1∑
s=0

φsLs{gs+1D̃2
s+1,t+1(ht+1ft+1 + f̃t+1)}

(φsLs · · ·Lt1X)2

+
t−1∑
s=0

s∑
�=0

Ñ
�−(s+1)

× φ�L�{←−Q φ�
(T�h� + h̃� − T�+1h�+1)

2L�+1 · · ·Ls(gs+1{Ls+1 · · ·Lt ft+1}2)}
(φ�L� · · ·Ls−11X)(φsLs · · ·Lt1X)2

.

Finally, we complete the induction step by noting that

φtLt (gt+1{ft+1Tt+1ht+1 + f̃t+1 − φt+1(Tt+1ht+1ft+1 + f̃t+1)}2)

(φtLt1X)2

= φtLt {gt+1D̃2
t+1,t+1(ht+1ft+1 + f̃t+1)}

(φtLt1X)2
.

It remains to check the base case; however, letting, in (A.8), t = 0 and σ 2
0 ≡ 0 (as T0h0 = 0

and τ i
0 = 0 for all i ∈ �1,N �) yields

σ 2
1 〈f1, f̃1〉(h1) = φ0L0(g1{f1T1h1 + f̃1 − φ1(T1h1f1 + f̃1)}2)

(φ0L01X)2

+ Ñ
−1 φ0L0{←−Q φ0

(h̃0 − T1h1)
2g1f

2
1 }

(φ0L01X)2

= φ0L0{g1D̃1,1(h1f1 + f̃1)
2}

(φ0L01X)2
+ Ñ

−1 φ0L0{←−Q φ0
(h̃0 − T1h1)

2g1f
2
1 }

(φ0L01X)2

which is, under the standard convention that LmLn = id if m > n, in agreement with (3.2). This
completes the proof.

Lemma 13. Let Assumption 1 hold. Then for all t ∈N, ft ∈ Fb(X ), and Ñ ∈ N
∗,

N∑
i=1

ωi
t

�t

(
τ i
t

)2
ft

(
ξ i
t

) P−→ φt

(
T2

t htft

) + ηt (ft ),
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where

ηt (ft ) :=
t−1∑
�=0

Ñ
�−t φ�L�{←−Q φ�

(T�h� + h̃� − T�+1h�+1)
2L�+1 · · ·Lt−1ft }

φ�L� · · ·Lt−11X
. (A.9)

Proof. Again, we proceed by induction. First, the base case t = 0 is trivially true since T0h0 = 0,
τ i

0 = 0 for all i ∈ �1,N �, and
∑−1

�=0 = 0 by convention. We now assume that the claim of the

lemma holds true for some t ∈ N. Since Corollary 2 implies that N−1�t+1
P−→ φtLt1X it is

enough to study the convergence of N−1 ∑N
i=1 ωi

t+1(τ
i
t+1)

2ft+1(ξ
i
t+1). For this purpose, we will

apply Theorem 15 to the triangular array

υi
N := N−1ωi

t+1

(
τ i
t+1

)2
ft+1

(
ξ i
t+1

) (
i ∈ �1,N �,N ∈N

∗)
furnished with the filtration {F̃N

t }N∈N∗ . Note that |υi
N | ≤ ‖gt+1‖∞‖ht+1‖2∞‖ft+1‖∞/N for all

i ∈ �1,N � and N ∈ N
∗. In addition, using, first that {υi

N }Ni=1 are conditionally i.i.d. given F̃N
t

and, second, that for all i ∈ �1,N �, the backward indices {J (i,j)

t+1 }Ñj=1are conditionally i.i.d. given

F̃N
t and ξ i

t+1,

N∑
i=1

E
[
υi

N | F̃N
t

]

= E
[
ω1

t+1

(
τ 1
t+1

)2
ft+1

(
ξ1
t+1

) | F̃N
t

]
= Ñ

−1
E

[
ω1

t+1ft+1
(
ξ1
t+1

)
E

[(
τ

J
(1,1)
t+1

t + h̃t

(
ξ

J
(1,1)
t+1

t , ξ1
t+1

))2 | FN
t+1

] | F̃N
t

]
(A.10)

+ Ñ
−1

(Ñ − 1)E
[
ω1

t+1ft+1
(
ξ1
t+1

)
E

2[τJ
(1,1)
t+1

t + h̃t

(
ξ

J
(1,1)
t+1

t , ξ1
t+1

) |FN
t+1

] | F̃N
t

]
. (A.11)

We treat separately the two terms (A.10) and (A.11). First,

(A.10) = Ñ
−1

E

[
ω1

t+1ft+1
(
ξ1
t+1

) N∑
�=1

ω�
t q(ξ�

t , ξ1
t+1)∑N

�′=1 ω�′
t q(ξ�′

t , ξ1
t+1)

{
τ �
t + h̃t

(
ξ�
t , ξ1

t+1

)}2
∣∣∣ F̃N

t

]

= Ñ
−1

N∑
i=1

ωi
t

�t

∫
q
(
ξ i
t , x

)
gt+1(x)ft+1(x)

×
N∑

�=1

ω�
t q(ξ�

t , x)∑N
�′=1 ω�′

t q(ξ�′
t , x)

{
τ �
t + h̃t

(
ξ�
t , x

)}2
μ(dx)

= Ñ
−1

N∑
�=1

ω�
t

�t

∫
q
(
ξ�
t , x

)
gt+1(x)ft+1(x)

{
τ �
t + h̃t

(
ξ�
t , x

)}2
μ(dx).
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Using Corollary 2 and the induction hypothesis, we obtain the limits

N∑
�=1

ω�
t

�t

(
τ �
t

)2Lt

(
ξ�
t , ft+1

) P−→ φt

(
T2

t htLt ft+1
) + ηt (Lt ft+1),

N∑
�=1

ω�
t

�t

τ �
t Lt

(
ξ�
t , h̃t ft+1

) P−→ φt

{
Tt htLt (h̃t ft+1)

}
,

N∑
�=1

ω�
t

�t

Lt

(
ξ�
t , h̃2

t ft+1
) P−→ φtLt

(
h̃2

t ft+1
)
,

which yield

(A.10)
P−→ Ñ

−1(
φt

(
T2

t htLt ft+1
) + ηt (Lt ft+1) + 2φt

{
Tt htLt (h̃t ft+1)

} + φtLt

(
h̃2

t ft+1
))

= Ñ
−1(

φtLt

{
(Tt ht + h̃t )

2ft+1
} + ηt (Lt ft+1)

)
.

We turn to the second term (A.11) and equate the same with Ñ
−1

(Ñ − 1)φN
t QϕN , where

ϕN(x) := gt+1(x)ft+1(x)

(
N∑

�=1

ω�
t q(ξ�

t , x)∑N
�′=1 ω�′

t q(ξ�′
t , x)

{
τ �
t + h̃t

(
ξ�
t , x

)})2

(x ∈ X).

Since ‖ϕN‖∞ ≤ ‖gt+1‖∞‖ft+1‖∞‖ht+1‖∞ for all N ∈ N, and, by Corollary 2, for all x ∈ X,
P-a.s.,

ϕN(x) → gt+1(x)ft+1(x)

(∫
q(x̃, x){Tt ht (x̃) + h̃t (x̃, x)}φt (dx̃)∫

q(x̃, x)φt (dx̃)

)2

= gt+1(x)ft+1(x)
←−
Q

2
φt

(Tt ht + h̃t )(x)

= gt+1(x)ft+1(x)T2
t+1ht+1(x),

we may, under Assumption 1, apply Lemma 14, yielding

φN
t QϕN

P−→ φtQ
(
gt+1ft+1T2

t+1ht+1
) = φtLt

(
T2

t+1ht+1ft+1
)
.

Consequently,

N∑
i=1

E
[
υi

N | F̃N
t

] P−→ φtLt

(
T2

t+1ht+1ft+1
)

(A.12)
+ Ñ

−1(
φtLt

{
(Tt ht + h̃t )

2ft+1
} − φtLt

(
T2

t+1ht+1ft+1
) + ηt (Lt ft+1)

)
.
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In order to show that
∑N

i=1 υi
N has the same limit (A.12) in probability we use Theorem 15.

Condition (A1) is easily checked by reusing (A.12) with ft+1 replaced by |ft+1|. In order to
check (A2), we simply note that for all ε ∈ R

∗+,

N∑
i=1

E
[∣∣υi

N

∣∣1{|υi
N |≥ε} | F̃N

t

] ≤ ‖gt+1‖∞‖ht+1‖2∞‖ft+1‖∞1{‖gt+1‖∞‖ht+1‖2∞‖ft+1‖∞≥εN
},

where the right-hand side is zero for N large enough. Thus, Theorem 15 applies and since, by
reversibility,

φtLt

{
(Tt ht + h̃t )

2ft+1
} − φtLt

(
T2

t+1ht+1ft+1
)

= φt � Q
({

(Tt ht + h̃t )
2 − T2

t+1ht+1
}
gt+1ft+1

)
= φtQ �

←−
Q φt

{
(Tt ht + h̃t − Tt+1ht+1)

2gt+1ft+1
}

= φtLt

{←−
Q φt

(Tt ht + h̃t − Tt+1ht+1)
2ft+1

}
,

Slutsky’s lemma implies

N∑
i=1

ωi
t+1

�t+1

(
τ i
t+1

)2
ft+1

(
ξ i
t+1

)

= N�−1
t+1

N∑
i=1

υi
N

P−→ φt+1
(
T2

t+1ht+1ft+1
)

+ 1

Ñ(φtLt1X)

(
φtLt

{←−
Q φt

(Tt ht + h̃t − Tt+1ht+1)
2ft+1

} + ηt (Lt ft+1)
)
.

We may now conclude the proof by noting, using the induction hypothesis, the identity

(φ�L� · · ·Lt−11X)(φtLt1X) = φ�L� · · ·Lt1X,

and the convention Lt+1Lt = id, that

1

Ñ(φtLt1X)

(
φtLt

{←−
Q φt

(Tt ht + h̃t − Tt+1ht+1)
2ft+1

} + ηt (Lt ft+1)
)

=
t∑

�=0

Ñ
�−(t+1) φ�L�{←−Q φ�

(T�h� + h̃� − T�+1h�+1)
2L�+1 · · ·Lt ft+1}

φ�L� · · ·Lt1X
.

�

The following lemma formalizes an argument used in the proof of [11], Theorem 8.
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Lemma 14. Let Assumption 1 hold. Let � be a possibly unnormalized transition kernel on
(X,X ) having transition density ψ ∈ Fb(X 2) with respect to some reference measure λ. More-
over, let {ϕN }N∈N∗ be a sequence of functions in Fb(X ) for which:

(i) there exists ϕ ∈ Fb(X ) such that for all x ∈ X, ϕN(x) → ϕ(x), P-a.s., and
(ii) there exists |ϕ|∞ ∈R

∗+ such that ‖ϕN‖∞ ≤ |ϕ|∞ for all N ∈N
∗.

Then for all t ∈N, φN
t �ϕN

P−→ φt�ϕ.

Proof. Since, by Corollary 2, φN
t �ϕ

P−→ φt�ϕ, it is enough to establish that

φN
t �ϕN

P−→ φN
t �ϕ.

For this purpose, set

aN(x) := ∣∣ϕN(x) − ϕ(x)
∣∣ ∫ ψ(x̃, x)φN

t (dx̃),

ãN (x) :=
∫

ψ(x̃, x)φN
t (dx̃)

(
N ∈N

∗, x ∈ X
)
.

Since |φN
t �ϕN −φN

t �ϕ| ≤ λaN it is, by Markov’s inequality, enough to show that E[λaN ] tends
to zero as N tends to infinity. However, by Fubini’s theorem,

lim
N→∞E[λaN ] = lim

N→∞

∫
E

[
aN(x)

]
λ(dx) = 0,

where the last equality is a consequence of the generalized Lebesgue dominated convergence
theorem provided that:

(i) limN→∞ E[aN(x)] = 0 for all x ∈ X,
(ii) there exists c ∈ R

∗+ such that E[aN(x)] ≤ cE[ãN (x)] for all x ∈ X,
(iii) limN→∞

∫
E[ãN (x)]λ(dx) = ∫

limN→∞ E[ãN (x)]λ(dx).

Here, (i) is implied by Corollary 2 and, as |aN(x)| ≤ ‖ψ‖∞(‖ϕ‖∞ + |ϕ|∞) for all x ∈ X, the
standard dominated convergence theorem. Moreover, (ii) is satisfied with c = ‖ϕ‖∞ + |ϕ|∞.
Finally, to check (iii), notice that

lim
N→∞

∫
E

[
ãN (x)

]
λ(dx)

(a)= lim
N→∞E

[
φN

t �1X
] (b)= φt�1X

(c)=
∫ ∫

ψ(x̃, x)φt (dx̃)λ(dx)
(d)=

∫
lim

N→∞E
[
ãN (x)

]
λ(dx),

where (a) and (c) follow by Fubini’s theorem and (b) and (d) are obtained from Corollary 2 and
the standard dominated convergence theorem (as �1X ∈ Fb(X ) and ψ ∈ Fb(X 2) by assumption).
This completes the proof. �
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A.4. Proof of Proposition 7

By [18], Lemma 1,

‖D̃s+1,t ht‖∞ ≤ ‖Ls+1 · · ·Lt1X‖∞
t−1∑
�=0

�max{s−�+2,�−s−3,0} osc(h̃�), (A.13)

and, consequently,

t−1∑
s=0

φsLs(gs+1D̃2
s+1,t ht )

(φsLs · · ·Lt−11X)2

≤ |h̃|2∞
t−1∑
s=0

(φsLsgs+1)‖Ls+1 · · ·Lt1X‖2∞
(φsLs · · ·Lt−11X)2

(
t−1∑
�=0

�max{s−�+2,�−s−3,0}
)2

.

Now, under Assumption 2, for all x ∈ X,

¯εμ(gs+2Ls+2 · · ·Lt1X) ≤ Ls+1 · · ·Lt1X(x) ≤ ε̄μ(gs+2Ls+2 · · ·Lt1X) (A.14)

implying that

(φsLsgs+1)‖Ls+1 · · ·Lt1X‖2∞
(φsLs · · ·Lt−11X)2

= (φs+1gs+1)‖Ls+1 · · ·Lt1X‖2∞
(φsLs1X)(φs+1Ls+1 · · ·Lt−11X)2

≤ δ̄

¯δ
(

ε̄

¯ε
)2

= δ̄

¯δ(1 − �)2
.

Moreover, as

t−1∑
s=0

(
t−1∑
�=0

�max{s−�+2,�−s−3,0}
)2

=
t−4∑
s=0

(
2 − �s+3 − �t−s−3

1 − �

)2

+
t−1∑

s=t−3

(
ρs+2 1 − ρ−t

1 − ρ−1

)

= 4t

(1 − �)2
+ o(t),

we conclude that

lim sup
t→∞

1

t

t−1∑
s=0

φsLs(gs+1D̃2
s+1,tht )

(φsLs · · ·Lt−11X)2
≤ |h̃|2∞

4δ̄

¯δ(1 − �)4
.

A.5. Proof of Theorem 8

The first term of σ 2
t (ht ) is the asymptotic variance of the FFBSm algorithm, which is, by

Proposition 7, bounded by 4|h̃|2∞δ̄/{¯δ(1 − �)4}. To treat the second term, we bound, using
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(A.14),

L�+1 · · ·Ls(gs+1{Ls+1 · · ·Lt−11X}2)

(φ�+1L�+1 · · ·Ls−11X)(φsLs · · ·Lt−11X)2

≤ ‖L�+1 · · ·Ls−11X‖∞δ̄‖Ls+1 · · ·Lt−11X‖2∞
(φ�+1L�+1 · · ·Ls−11X)(φsLs1X)(φs+1Ls+1 · · ·Lt−11X)2

(A.15)

≤ δ̄

¯δ(1 − �)3
.

Moreover, since T�+1h�+1 = ←−
Q φ�

(T�h� + h̃�) and T�h� = D�,�h�, we obtain, by reusing
(A.13),

‖T�h� + h̃� − T�+1h�+1‖∞ ≤ osc(T�h�) + osc(h̃�) ≤ 4‖D̃�,�h�‖∞ + osc(h̃�)

≤ |h̃|∞
(

4δ̄�2

1 − �
+ 1

)
.

Thus,

1

t

t−1∑
s=0

s∑
�=0

Ñ
�−(s+1)

× φ�+1{←−Q φ�
(T�h� + h̃� − T�+1h�+1)

2L�+1 · · ·Ls(gs+1{Ls+1 · · ·Lt−1ft }2)}
(φ�+1L�+1 · · ·Ls−11X)(φsLs · · ·Lt−11X)2

≤ |h̃|2∞
δ̄

¯δ(1 − �)3

(
4δ̄�2

1 − �
+ 1

)2 1

t

t−1∑
s=0

s∑
�=0

Ñ
�−(s+1)

,

and since

lim
s→∞

s∑
�=0

Ñ
�−(s+1) = (Ñ − 1)−1

we may conclude the proof by taking the Cesàro mean.

A.6. Proof of Theorem 9

In the case of marginal smoothing, [11], Theorem 12, provides, for t ≥ ŝ (since the variance
vanishes for t < ŝ, the result holds trivially true in this case), the time uniform bound

σ̃ 2
t (ht ) ≤ osc2(h̃ŝ )

δ̄2(1 + �2)

(1 + �)(1 − �)3
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and hence, since all terms are zero except h̃ŝ , it is enough to bound the quantity

t−1∑
s=ŝ

s∑
�=ŝ

Ñ
�−(s+1)

(A.16)

× φ�+1{←−Q φ�
(T�h� + h̃� − T�+1h�+1)

2L�+1 · · ·Ls(gs+1{Ls+1 · · ·Lt−1ft }2)}
(φ�+1L�+1 · · ·Ls−11X)(φsLs · · ·Lt−11X)2

(where h̃� = 0 for � > ŝ). In addition, by [11], Lemma 10, for all � ≥ ŝ,

‖D̃�,�h�‖∞ ≤ ��−ŝ osc(h̃ŝ ),

yielding

‖T�h� + h̃� − T�+1h�+1‖∞ ≤ 2��−ŝ osc(h̃ŝ ).

By combining this with (A.15) we obtain, via standard operations on geometric sums,

(A.16) ≤ 4 osc2(h̃ŝ )
δ̄

¯δ(1 − �)3

t−1∑
s=ŝ

s∑
�=ŝ

Ñ
�−(s+1)

�2(�−ŝ)

= 4 osc2(h̃ŝ )
δ̄

¯δ(1 − �)3

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

(1 − Ñ�2)

(
1 − Ñ

−(t−ŝ)

Ñ − 1
− �2 1 − �2(t−ŝ)

1 − �2

)
if Ñ�2 �= 1,

1

Ñ − 1

(
2 − Ñ

−(t−ŝ) − (t − ŝ)Ñ
−(t−ŝ)+1 − Ñ

−(t−ŝ))
if Ñ�2 = 1,

and hence, letting t tend to infinity,

(A.16) ≤ 4 osc2(h̃ŝ )
δ̄

¯δ(1 − �)3
×

⎧⎪⎪⎨
⎪⎪⎩

1

(Ñ − 1)(1 − �2)
if Ñ�2 �= 1,

2

Ñ − 1
if Ñ�2 = 1,

which concludes the proof.

Appendix B: Technical results

B.1. Conditional limit theorems for triangular arrays of dependent
random variables

We first recall two results, obtained in [12] (but reformulated slightly here for our purposes),
which are essential for the developments of the present paper.
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Theorem 15 ([12]). Let (�,A, {FN }N∈N∗,P) be a filtered probability space. In addition, let
{υi

N }Ni=1, N ∈ N
∗, be a triangular array of random variables on (�,A,P) such that for all

N ∈N
∗, the variables {υi

N }Ni=1 are conditionally independent given FN with E[|υi
N | |FN ] < ∞,

P-a.s., for all i ∈ �1,N �. Moreover, assume that

(A1)

lim
λ→∞ sup

N∈N∗
P

(
N∑

i=1

E
[∣∣υi

N

∣∣ |FN

] ≥ λ

)
= 0.

(A2) For all ε > 0, as N → ∞,

N∑
i=1

E
[∣∣υi

N

∣∣1{|υi
N |≥ε

} | FN

] P−→ 0.

Then, as N → ∞,

max
m∈�1,N �

∣∣∣∣∣
m∑

i=1

υi
N −

m∑
i=1

E
[
υi

N |FN

]∣∣∣∣∣ P−→ 0.

Theorem 16 ([12]). Let the assumptions of Theorem 15 hold with E[(υi
N )2 | FN ] < ∞, P-a.s.,

for all i ∈ �1,N �, and (A1) and (A2) replaced by

(B1) For some constant ς2 > 0, as N → ∞,

N∑
i=1

(
E

[(
υi

N

)2 | FN

] −E
2[υi

N | FN

]) P−→ ς2.

(B2) For all ε > 0, as N → ∞,

N∑
i=1

E
[(

υi
N

)21{|υi
N |≥ε

} | FN

] P−→ 0.

Then, for all u ∈ R, as N → ∞,

E

[
exp

(
iu

N∑
i=1

{
υi

N −E
[
υi

N | FN

]}) ∣∣∣ FN

]
P−→ exp

(−u2ς2/2
)
.

B.2. An accept–reject-based algorithm for backward sampling

Given two subsequent particle samples {(ξ i
s−1,ω

i
s−1)}Ni=1and {(ξ i

s ,ω
i
s)}Ni=1, the following algo-

rithm, which is a trivial adjustment of [11], Algorithm 1, simulates the full set {J (i,j)
s : (i, j) ∈

�1,N � × �1, Ñ �} of backward indices required for one iteration of PaRIS. The algorithm requires
Assumption 1(ii) to hold true.
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Algorithm 3 Accept-reject-based backward sampling

Require: Particle samples {(ξ i
s−1,ω

i
s−1)}Ni=1and {(ξ i

s ,ω
i
s)}Ni=1.

1: for j = 1 → Ñ do
2: set L ← �1,N �;
3: while L �=∅ do
4: set n ← #L;
5: draw (I1, . . . , IN) ∼ Pr({ωi

s−1}Ni=1)
�N ;

6: draw (U1, . . . ,UN) ∼ U(0,1)�N ;
7: set Ln ←∅;
8: for k = 1 → n do
9: if Uk ≤ q(ξ

Ik

s−1, ξ
L(k)
s )/ε̄ then

10: set J
(L(k),j)
s ← Ik ;

11: else
12: set Ln ← Ln ∪ {L(k)};
13: end if
14: end for
15: set L ← Ln;
16: end while
17: end for
18: return {J (i,j)

s : (i, j) ∈ �1,N � × �1, Ñ �}
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