
Discrete Comput Geom 8:315-334 (1992)

e o m e ry

Efficient Partition Trees*

Jifi Matou~ek

Department of Applied Mathematics, Charles University,
Malostransk6 nfirn. 25, 118 00 Praha 1, Czechoslovakia
matousek@cspguk I t.bitnet

Abstract. We prove a theorem on partitioning point sets in E d (d fixed) and give

an efficient construction of partition trees based on it. This yields a simplex range

searching structure with linear space, O(n log n) deterministic preprocessing time, and

O(nl-lla(logn)ml)) query time. With O(n 1+6) preproeessing time, where 6 is an

arbitrary positive constant, a more complicated data structure yields query time

O(n 1-1/d(log log n)°Cl)). This attains the lower bounds due to Chazelle [C1] up to

polylogarithmic factors, improving and simplifying previous results of Chazelle et al.

[CSW].

The partition result implies that, for r ~ _< n 1 -~, a (I/r)-approximation of size O(r ~)

with respect to simplices for an n-point set in E a can be computed in O(n log r)

deterministic time. A (1/r)-cutting of size O(r ~) for a collection of n hyperplanes in E a

can be computed in O(n log r) deterministic time, provided that r <_ n ltc2~- ~.

1. Introduction

In this pape r we cons ider a p rob lem known as simplex range searchinfl: preprocess

a set P of n poin ts in E d so that, given any query simplex a, the poin ts in P c~ <r

can be counted or repor ted efficiently. Usual ly this p rob lem is investigated in a

more general setting, where a weight function on the poin ts is assumed and a

cumulative weight of the poin ts in P n ~r is asked for. The weights are assumed

to belong to a semigroup, i.e., we should not use subt rac t ions when comput ing

the answer. We assume tha t the semigroup opera t ions can be executed in constant

time.

- - - - . . - - _ _ . _ _ . _

* Part of this research was performed while the author was visiting at Freie Universitfit Berlin.
The author was partially supported by the ESPRIT II Basic Research Actions Program of the EC

under Contract No. 3075 (project Alcom). A preliminary version of this paper appeared in the
Proceedings of the Seventh ACM Symposium on Computational Geometry, pages 1-9, 1991.

316 J. Matou~ek

As is typical in computational geometry, we consider the space dimension d as

a fixed number (and imagine that it is a small number), thus something depending

on the dimension only will be a constant for us. All the algorithms considered are

deterministic unless stated otherwise.

The simplex range searching problem has quite a rich history, which reflects

its basic importance in computational geometry. We do not try to give an account

of this history; we mention only some works directly related to our results.

The possible efficiency of the query answering depends on the amount of storage

(and preprocessing time) used. Chazelle {C1] established the following lower

bounds: in dimension d and given m units of storage, the worst-case query time

is ~((n/log n)/m TM) (in the plane, the bound sharpens to f2(n/x/~); this indicates

that, for higher dimensions, the logarithmic factor might be only a product of the

proof technique). These lower bounds are valid only under some restrictions on

the kind of algorithm used, but so far all known algorithms satisfy these restrictions

and there does not seem to be much hope for circumventing the lower bound.

Most of the works on upper bounds (i.e., designing efficient simplex range

searching algorithms) concern the "small-space" end of the spectrum, i.e., a linear

or slightly superlinear storage.

The earlier solutions, starting with Willard EWi], use the idea of partition trees.

We briefly explain the idea of a partition tree and its use for query answering. For

simplicity, we start with the planar case and half-planar ranges (instead of

simplices)0 What is needed to construct a partition tree is a partitioning scheme

of the following kind: Given an n point set, divide the plane into several regions,

such that each region contains at least a constant fraction of the points, and that

any line misses one (or several) of the regions. Given a query half-plane, we can

then treat the points in the regions missed by its boundary line very efficiently:

either they all lie inside the query half-plane or all lie outside of it. Thus it remains

to handle the points in the regions intersected by the boundary line of the query

half-plane. To this end, the partition scheme is applied recursively for subsets in

each of the regions, until we reach trivially small subsets (of a constant size). A

data structure recording this recursive partition of the point set in a suitable way

is called a partition tree. In the query answering process we handle the regions

missed by the boundary line of the query half-plane directly, and we proceed

recursively down the tree for the regions intersected by the boundary line.

The efficiency of a partition tree is determined by the parameters of the

partitioning scheme used. The earlier partition schemes proposed in the literature

(e.g., l-Wi], [EW], and [YY]) divide the space into a small number of parts, and

the ham-sandwich cut theorem or similar theorems are used to establish the

existence of such schemes. More efficient partition trees of this kind were devised

by Haussler and Welzl [HW]. Their partition scheme has a large but constant

number of parts and a probabilistic method is employed for its construction and

analysis.
The query time achieved in the partition trees of [HW] is still quite far from

the above-quoted lower bound. For the planar case, the first algorithm attaining

the lower bound up to a polylogarithmic factor was given by Welzl [We]. The

Efficient Partition Trees 317

method is refined in [CW]. It works in an arbitrary fixed dimension, even in a

more general setting than the geometric one, but in the so-called arithmetic model

only. In the arithmetic model we only count the semigroup operations needed to

compute the answer to a query, and other operations needed in the algorithm are

ignored (or rather left unspecified in the algorithm). Hence the result does not

yield an algorithm in the usual sense automatically, and an efficient algorithm is

given for dimensions two and three only in [CW].

While the usual partition trees are built "locally," by a recursive application

of a partitioning scheme, Welzl's method is a "global" one. However, it can also

be crammed under the above-described pattern of a partition tree (actually a

single-level one): essentially, it gives a partition scheme, which has n/2 regions,

each of the regions contains just two points and no line crosses more than O(v/-n)

of the regions. This view is a departing point of this paper. With a modification

of Welzl's proof, this global partition scheme can be turned into a local one, and

we get almost optimal partition trees and an almost optimal solution to the simplex

range search problem in higher dimensions.

The most efficient previous solution of the general simplex range searching

problem is due to Chazelle et al. [CSW]. They give an efficient randomized

algorithm almost attaining the lower bounds in all dimensions (up to O(n ~)

factors1). Their approach is again basically similar to "local" partition trees, but

instead of a single partition scheme they use a family of partition schemes, such

that for each hyperplane there is a "good" partition scheme in this family.

In our new solution, the query answering structure is simpler, and there is a

reasonably simple randomized algorithm for the preprocessing. The query time

and preprocessing time approach the lower bounds more tightly. Also, the

partition scheme and partition trees may have applications for which other

constructions do not suffice; in this paper we give an application to a surprisingly

fast deterministic computation of e-approximations and e-cuttings.

Many applications of the partition scheme of Chazelle et al. [CSWJ are given

by Agarwal and Sharir [AS]. In these applications, replacing that scheme by our

partition trees results in simpler and sometimes slightly more efficient algorithms.

In general, efficient simplex range searching algorithms often give conceptually

simple and efficient algorithms for problems where previously problem-specific

and often complicated methods have been used.

In a related paper [M4], the method of this paper is adapted to the half-space

range reporting problem, where it significantly improves known results for

dimensions d > 4. These results in turn can be applied, e.g., for simple and efficient

ray-shooting algorithms in higher dimensions and numerous other problems, see

[AM2] and [AM1]. The author recently gave a further improvement of the

simplex range searching results (based on a work by Chazelle [C2]), in particular

attaining O(n 1- l/d) query time with linear space [M3].

l Throughout this paper, 6 stands for an arbitrary but fixed positive constant, and the multiplicative
factors implicit in the big-Oh notation may depend on it.

318 J. Matou~ek

2. Preliminaries on Cuttings

In this section we give some definitions and results on cutting arrangements of

hyperplanes which we need in the following.

A cutting is a collection of d-dimensional closed simplices 2 with disjoint

interiors, whose union is the whole space E d. The size of a cutting is the number

of its simplices. Let H be a collection of n hyperplanes and E be a cutting. For a

simplex A e E, let H a denote the collection of hyperplanes of H intersecting the

interior of A. A cutting E is an e-cutting for H provided that [HA[_< ~n for every

simplex A 6 E.

It is sometimes convenient to work with weighted collections of hyperplanes.

A weighted collection of hyperplanes is a pair (H, w), where H is a collection of

hyperplanes and w: H ~ ~÷ is a weight function on H. If X ~ H we write just

w(X) for ~h~x w(h). The notions introduced for unweighted collections of hyper-

planes can usually be generalized for weighted collections in an obvious way. For

example, a cutting E is an z-cutting for (H, w), provided that, for every simplex A

of E, the collection H a has total weight w(Ha) _< ew(H).

The main known results about cuttings and their computability are summarized

in the following theorem:

Theorem 2.1.

(i) [CF] For any collection of n hyperplanes and a parameter r <_ n, there exists

a (1/r)-cutting of size O(r a) (which is asymptotically the best possible size).

(ii) A cutting as in (i) can be computed in O(nr a- 1) time by a randomized

algorithm [CF] or by a deterministic algorithm [C2].

(iii) [M2] Any algorithm computing (1/r)-cuttings for unweiohted collections of

hyperplanes can be converted into one computing (1/r)-euttings for weighted

collections, with the same asymptotic bounds on the running time and on the

size of the resulting cutting.

Let us remark that in (ii) we can also compute the collections HA for all simplices

A within the same time bound.

The preprocessing for our algorithm given in the following uses the computation

of cuttings as in (ii). In order to give the reader a more complete picture of how

complicated the preprocessing algorithm really is, we describe a randomized

algorithm for computing a (1/r)-cutting of asymptotically optimal size:

1. Pick a random sample of r hyperplanes of H, construct its arrangement, and

triangulate it in a specific way (so-called canonical or bottom-vertex triangu-

lation, see, e.g., [CF]).

2. For every simplex A of this triangulation, compute the collection Ha of

hyperplanes intersecting it, and set tA = I HAlr/n.

3. Pick a sample R a of Ct a log t a hyperplanes of the collection Ha (C a suitable

2 By a simplex, we mean an intersection of d + 1 half-spaces, thus we admit also unbounded
simplices.

Efficient Partition Trees 319

constant), and let R~ be R a plus the d + 1 hyperplanes bounding the

simplex A.

4. Triangulate the portion of the arrangement of R~ inside A. Form a cutting

E as the set of all simplices thus obtained for all A.

5. Check if E is a (1/r)-cutting for H and if the size of E is at most C'r d, for a

suitable constant C'. These conditions can be verified in O(nr d- 1) time, and

if they are not satisfied, the algorithm is restarted.

This algorithm (properly implemented) has expected running time O(nra-1).

The proof is given in [CF] (and rephrased in [M2]).

3. Partitioning Point Sets

In this section we describe an efficient partition scheme for point sets.

Let P be an n-point set in E ~. A simplicial partition for P is a collection

l-i = {(P~, a~) (P, . , a , .)} ,

where the P{s are pairwise disjoint subsets (called'the classes of FI) forming a

partition of P, and each At is a relatively open simplex containing the set P~.

Let us remark at this point that the simplex A t may also contain other points

of P than those of P~. Also, we admit not only full-dimensional simplices but also

simplices of any dimension k < d. This is sometimes necessary for point sets P in

degenerate positions; for a general position, we may take only full-dimensional

simplices in the simplicial partitions in the forthcoming Partition Theorem.

The simpliciai partitions we work with satisfy the following condition:

max{ [e,I; (P,, s~) ~ II} < 2 min{ IP, I; (Pt, s~) e I-I}, (1)

so all the classes have roughly the same size. 3

If h is a hyperplane and A is a simplex, we say that h crosses A if h c~ A 4:

and A ~ h (thus a hyperplane does not cross a lower-dimensional simplex

contained in it). Let h be a hyperplane; we define the crossing number of h (relative

to FI) as the number of simplices among the Ai's crossed by h. The crossing number

of I7 is defined as the maximum of crossing numbers over all hyperplanes h. For

the construction of efficient partition trees, we are interested in simplicial partitions

with as small crossing number as possible.

Our main result is the following:

Theorem 3.1 (Partition Theorem). Let P be an n-point set in E d (d ~ 2), let s be

an inteaer parameter, 2 < s < n, and set r = n/s. There exists a simplicial partition FI

3 This is a strengthening of the notion of fine simplicial partition defined in the preliminary version
of this paper, where only the upper bound on the cardinality of the classes was imposed. The lower
bound comes for free from the proof, and it can be useful in some applications of our results.

320 J. Matougek

for P, whose classes P, satisfy s < IP~I < 2s, and whose crossino number is O(r 1 - l/d).

This bound is asymptotically tight in the worst case.

A special case of this result, with s = 2, was proved by Chazelle and Welzl

[CW], by improving a method developed by Welzl [We]. Our proof uses Welzl's

method; the main new ingredient is the application of cuttings, which enables us

to handle arbitrary values of s.

The proof is based on the following lemma:

Lemma 3.2. Let P, n, s be as above, and let Q be a set of hyperplanes. Then there

exists a simplicial partition H for P, whose classes P~ satisfy s <__ IP,'I < 2s for every

i, and such that the crossin9 number of every hyperplane of Q relative to FI is

O(r 1-1/d + loglQI).

Proof. We inductively construct the disjoint sets P1 , P2 ___ P, and simplices

A1, Az Pi ~- Ai. Suppose that PI Pg have already been constructed, and

set P~ = Pk(P1 w . . . u Pi), ni = IP~I. If Inil < 2s, we set Pi+l = P'i, Ai+I = Ea,
m = i + 1, and H = {(P1, A1) (Pro, Ar~)}, which finishes the construction.

Let now n~ > 2s. For a hyperplane h ~ Q, let xi(h) denote the number of

simplices among A1 A~ crossed by h. We define a weighted collection (Q, w~)

by setting wi(h) = 2 ~ t̀h) for every h ~ Q.

Let us choose a parameter tg as large as possible, but such that there exists a

(1/ti)-cutting El for (Q, wl), whose simplices have at most ni/s faces of all dimensions

in total. By Theorem 2.1, t~ can be chosen such that t~ > c(ni/s) TM for some positive

constant c. By the pigeonhole principle, some of the relatively open faces of the

simplices of the cutting Eg contains at least s points of P~. Let Ai+ 1 be some

such relatively open face. Since s _> 2, the dimension of Ai is at least 1. Among

the at least s points of P'~ contained in AI+ 1, let us choose an s-point subset

(arbitrarily) and call it P~+ 1. This finishes the description of the construction.

Let us establish the bound on the crossing numbers of the hyperplanes of Q

relative to the simplicial partition FI. The bound is obtained by estimating the

final total weight win(Q) of the hyperplanes of Q in two different ways.

The weight win(h) of a hyperplane h e Q with crossing number x is equal to

2 ~. Therefore x < log2w,~(Q).

Let us consider how wi+ x(Q) increases compared with w,~Q). Let Qi+J denote

the collection of the hyperplanes of Q crossing Ai+l. For the hyperplanes of Qi÷I,

the weight increases twice, and for the others it remains unchanged. From this we

get

Wi+ I(Q) < w,(Q) - wi(Q,+ l) + 2w,(Q,+ 0 = w,(Q)(1 -~
wt~Qi + l!~.

-- \ wi(Q) /

We claim that wi(Qi+ 1) < wi(Q)/ti. Indeed, this is clear from the definition of

a (1/ti)-cutting if A i has dimension d. For a simplex of lower dimension we note

that if a hyperplane crosses a face of a full-dimensional simplex, then it also

intersects the interior of that simplex; this is easily seen by induction on dimension.

Efficient Partition Trees 321

Hence

w,+ I(Q) <-- w,(Q) 1 + tl <- w,(Q) 1 +

and using wo(Q) = I Q f, ni = n - is, r = n/s, m = Lr_], we get

-,(,)
win(Q) <_ I Qt I~ 1 + -

~=o c(r i) lid "

Taking logarithms and using the inequality ln(l + x) <_ x we get

1 ,~-I 1 1 , . - 1 1
log w,"(Q) < loglQ! + - - - c (r - i) TM -< logtQI + - - c i:-o (m - ip :d

1 1
= toglQI + -

c j j l /d"

Bounding the last sum by integral, we finally obtain

rc < log2 wm(Q) = O(loglQI + r t -x/a).

This concludes the proof of Lemma 3.2. []

The second ingredient in the proof of the Partition Theorem is the following

lemma, saying that when estimating the crossing number of our simplicial

partitions, we may concentrate on a fairly small number of "test" hyperplanes

instead of considering all possible hyperplanes:

Lemma 3.3 (Test Set Lemma). For an n-point set P c E d and a parameter r, there

exists a set Q o f at most r hyperplanes, such that, for any simplicial partition

H = {(PI, A1) (P,", Am)}for P satisfying lP~[>>_ s f o r every i, the following holds:

O" Xo is the max imum crossing numbers o f hyperplanes o f Q relative to II, then the

crossing number o f 17 is bounded by

Proof. Let H = ~(P) be the collection of hyperplanes dual to the points of P

(see, e.g., [E] for the definition and relevant properties of the duality transform).

According to Theorem 2. l(i), we can choose a (1/0-cutting E for H whose simplices

have at most r vertices in total, where t = t~(rl/d). Let V be the set of all vertices

of the simplices of E, and put Q = ~(V). We claim that Q has the desired property.

Let h be any hyperplane and let G be the set of vertices of a simplex A of E

containing the dual point ~(h). By the assumption, each of the d + 1 hyperplanes

322 J. Matou~ek

dual to the points of G crosses at most x o simplices of the simplicial partition II,

and it remains to bound the number of simplices of 17 which are crossed by the

hyperplane h but by no hyperplane of ~(G). Such simplices Ai must be completely

contained in the zone of h in the arrangement of ~(G), and hence this zone must

also contain the points of their corresponding classes P~ in its interior. It is

elementary to verify, using the properties of the duality transform, that any point

of P lying in the interior of the zone of h in the arrangement of ~(G) dualizes to

a hyperplane of H intersecting the interior of the simplex A (see also [CSW]), and

there are at most O(n/r TM) such hyperplanes in H. Hence the zone of h may contain

at most this many points of P, and this shows that there are at most O(n/sr l/d)

simplices of 17 completely contained in the zone of h in the arrangement

of G. []

Proo f o f Theorem 3.1. In order to obtain the desired simplicial partition, we first

use Lemma 3.3 with P, s, and r as in the statement of the Partition Theorem. We

get a set Q of at most r hyperplanes and we use Lemma 3.2, obtaining a simplicial

partition 17, whose classes have size between s and 2s, and such that the crossing

number of any hyperplane of Q is at most O(loglQI + r 1 -1/~) = O(r l - 1/d). Then,

by the property of Q guaranteed by the Test Set Lemma, the crossing number of

17 is at most (d + 1)O(r 1- l/d) + O(n/srl/d) = O(r 1- lid).

Finally we show that the bound on the crossing number is asymptotically tight

in the worst case, extending an argument due to Welzl. Indeed, suppose that we

want a simplicial partition for an n-point set, with classes of size between s and

2s. Choose a set Q of hyperplanes in general position, such that its arrangement

has at least [-n / (s - 1)] distinct cells; it suffices to take O(r ~/d) hyperplanes,

r = n/s. Divide the n points into clusters by at most s - 1 points each, and place

the clusters into distinct cells, of the arrangement of Q. In any simplicial partition

with classes of size at least s, every simplex crosses at least one hyperplane of Q.

Hence, on the average, a hyperplane of Q crosses D.(r 1-1/d) simplices of the

simplicial partition. []

We now start considering an algorithmic form of the Partition Theorem.

Lemma 3.4. For a value o f r bounded by a constant, a simplicial partition as in

Theorem 3.1 can be constructed in time O(n).

Proof. It suffices to go through the steps of the preceding proof of Theorem 3.1

and verify that they can be executed in the claimed time bound. For the Test Set

Lemma we need to compute a (I/0-cutting for a collection of n hyperplanes, with

t = O(1), which can be done in O(n) time by Theorem 2.1(ii). In the proof of Lemma

3.2, the collection Q has a constant number r of hyperplanes, we make r = 0(1)

steps and we always deal with a constant number of simplices only, so the only

thing which might cause problems would be the arithmetic with the potentially

large powers of two standing for the weights. In the algorithm the weights are

only used for calculation of the cuttings. The calculation of a cutting for a weighted

eoUection (H, w) in Theorem 2.1(iii) starts by replacing (H, w) by a multiset

Efficient Partition Trees 323

containing m(h) = [.IHlw(h)/w(H)] + 1 copies of each hyperplane h ~ H, but the

procedure still works (with worse constants) if we use any number between re(h)

and 2re(h) of copies of h. Hence it suffices to know the value of w(h)/w(H) with

relative accuracy ½, so we can use ordinary integer arithmetic for these calculations.

For later reference, let us also note that if r is not bounded by a constant, the

above proof gives an algorithm polynomial in n and r for computing the simplicial

partition. []

This result has the following consequence:

Corollary 3.5. Le t 6 > 0 be a posit ive constant. Given an n-point set P ~_ E a and

an integer parameter s, 2 <_ s < n, a simplicial partit ion f o r P satisfying s < I Pil < 2s

for every class Pi and with crossin9 number O(r t - ~/d+~) can be constructed in time

O(n log r).

Proof. A simple observation is that we can "compose" the constructions of a

simplicial partition. Namely, we may first construct a simplicial partition FI with

class sizes between sl and 2Sl and with crossing number at most Cry-~/~, where

r 1 = n/s 1 and C is some absolute constant which can be estimated by inspection

of the proof of the Partition Theorem. Then for every class P~ of this simplicial

partition we construct a simplicial partition 1-I~ with class sizes between s2 and 2s2

and with crossing number at most CrY2- i/d, r2 = 2s~/s2. Apparently the union of all

these secondary simplicial partitions is a simpticial partition for P with class sizes

between s 2 and 2s 2 and with crossing number not exceeding 2C2r ~- l/d, where

r = n/s 2. This refinement can be iterated more times, and we lose a constant factor

at every iteration compared with a direct construction.

In our case we choose a sufficiently large constant r o and we iterate the

construction with parameter sl = [_n/ro], s2 = Is~/ro], etc. The number of itera-

tions needed to achieve class size at most n/r is about D = log r/log ro, thus

the multiplicative factor we lose in the crossing number is of order (2C)° =

rtOg 2C/~ogro. By choosing the constant r o large enough, we can make this factor

smaller than r ~ for arbitrary fixed ~ > 0. []

Our further goal is to prove a stronger algorithmic version of the Partition

Theorem, with a better bound on the crossing number than in the preceding

corollary. To this end we consider a fast computation of (1/r)-cuttings, and we

obtain results of independent interest.

4. Approximations, Cuttings, and an Efficient Partitioning Algorithm

The starting observation is a relation between simplicial partitions and e-approx-

imations with respect to simplices.

Let P be a finite point set in E d, and let A ___ P. We say that A is an

e-approximation for P (with respect to simplices), provided that for every simplex

324 J. Matou~ek

a it is

l a n a i IP c-~a[[< e.

IAt [Pt

The notion of e-approximation originated in a paper by Vapnik and Chervo-

nenkis [VC] in a more general setting; the name e-approximation comes from the

paper by Haussler and Welzl [HW]. From a theorem in [VC], we get that, for

each P and r, there exists a (1/r)-approximation for P of size at most O(r 2 log r).

This size can be further improved to O(r 2 -2/~a+ l) tog2 r), see [MWW]. As shown

in [M1], a (1/r)-approximation of size O(r 2 log r) can be computed in time
O(n(r 2 log r) d(d+ 1)).

The notion of s-approximation can be immediately generalized to the case when

A is equipped by a weight function w: a weighted collection (A, w) is an s-

approximation for P, provided that Iw(A c~ a)/w(A) -- IP c~ at/IPII < e for every

simplex a.

We have the following observation:

Observation 4.1. Let P be an n-point set in E d and/et H = {(P1, At) (Pro, Am)}

be a simplicial partition for P, with class sizes not exceeding s and with crossing

number x. For each i, let ai be one point o f Pi and put w(ai) = tPii. Then

(A = { a l , . . . , am}, w) is an s-approximation for P (with respect to simplices), where

e = (d + 1)xs/n.

Proof. For a simplex a, the difference in the number of points of P inside a and

the total weight of points of A inside a is caused only by the classes of the simplicial

partition whose corresponding simplices are crossed by the boundary of a. The

number of points in such simplices is at most (d + 1)~cs, and the observation

follows. []

We may now apply Corollary 3.5 together with the preceding observation,

obtaining the following:

Theorem 4.2. Given an n-point set P m E a and a parameter t, a (1~O-approximation

o f size O(ta+n) for P (with respect to simplices) can be computed in time O(n log 0.

The approximation size attained in this theorem is far from optimal, and no

substantial improvement is possible with the present method (via partition trees);

the forthcoming strengthening of Corollary 3.5 can only remove the t o factor in

the size of the (1/0-approximation (see below). If the required value of t (measuring

the accuracy of the approximation) is not too large, we can use this as a first

reduction in the problem size, and then use another algorithm (with a larger

running time) to improve further the size of the (1/0-approximation.

For the result about cuttings we have to pass to the dual setting. If H is a

collection of hyperplanes and A m H, we call A an e-approximation for H (with

Efficient Partition Trees 325

respect to segments), provided that for every segment e we have

½1 IHel II < e,

A IHI I

where He (resp. Ae) denotes the set of hyperplanes of H (resp. of A) crossing

the segment e. It is elementary to verify that if P is a point set and A is its

e-approximation with respect to simplices, then ~(A) is an e-approximation for

~(P) with respect to segments. The use of approximations for an efficient

computation of cuttings stems from the following easy lemma (we again use the

weighted form of approximations):

Lemma 4.3 [M2]. Let (A, w) be an e-approximation for H and let E be an e'-cutting

for" (A, w). Then E is a d(e + e')-cutting for H.

Hence, in a computation of a (1/r)-cutting for a collection H of n hyperplanes,

we can proceed as follows: We first compute a (1/2dr)-approximation of size

O(r d+o) for H, in time O(n log r) according to Theorem 4.2. Then we apply Theorem

2.1 to compute a (1/2dr)-cutting for this approximation, in time O(rZd+~-l). This

yields a (1/r)-cutting for the original collection H. We summarize this in a

proposition:

Proposition 4.4. Let r <_ n lid. Then a (1/r)-cutting of size O(ra) for a collection oj'

n hyperplanes in E a can be computed in time O(n log r + r zn+6-1). In particular, for

r < n 1/<zd+6-1), the running time is O(n log r).

Now we use these improved results on cutting computations to strengthen our

results on the computation of simplicial partitions. We begin with a technical

lemma on range counting.

Lemma 4.5. Let C be a prescribed constant, let P be an n-po&t set in E a, and let

r < n • be a parameter, where ~ = ~(C) > 0 is a constant. Then we can buiM in

O(n log r) time a data structure, which computes the number of points of P in a given

query simplex in O(n/r c) time, and which can be maintained under deletions of points

from P, in 0(1) time per delete operation (the value of n in the query time remains

the original cardinality o f P, even after deletions).

Proof There are several possible ways to proceed, we use one applying simplicial

partitions. Let t be a sutficiently large power of r. In the preprocessing phase we

compute in O(n log r) time a simplicial partition H for P, with at most t classes

and with crossing number O(t 1 - ~/~+~). For every (Pi, Ai) ~ FI, we store the simplex

Ai, the list of points of Pi, and their number. Given a query simplex a, we first

find the simplices of II crossed by some of the hyperplanes bounding a, and we

directly test the points of the corresponding classes for membership in a. We then

add the point counts for all simplices of I-I completely contained in ~, obtaining

326 J. Matou~ek

the number of points of P n tr. The query time will be

O(t + (n/t)t 1-1/d+~) = O(t + n/t~/d-~).

If t is a large enough power of r and ~(C) is small enough, this does not exceed

O(n/rC). Finally the deletion of a point is performed by marking the point as deleted

in the appropriate list, and updating the appropriate point count. []

Lemma 4.6. Let P, n, s, r be as in Theorem 3.1 and let r < n ~, where ~ > 0 & a

certain constant. A simplicial partition as in the Partition Theorem can be con-

structed in O(n log r) time.

Proo f We again go through the proof of the Partition Theorem. First we have

to compute a (l/0-cutting as in the Test Set Lemma (with t = f~(rl/d)) in time

O(n log r), which we can do by Proposition 4.4.

The remaining steps can mostly be performed in time depending polynomiatly

on r and not depending on n. The only exception is when we select a face of a

simplex of the cutting E i containing enough points of the set P~. To this end

we need to count the points in these faces (and then report the points inside the

selected face). This requires O(r 2) simplex range counting (and fewer reporting)

queries on an n-point set which, moreover, dynamically evolves--the points are

deleted from it. By Lemma 4.5, these queries can all be performed in O(n log r)

time including the preprocessing, if ~t > 0 is chosen small enough. []

Theorem 4.7. Let P, n, s, r be as in Theorem 3.1.

(i) For every f i x ed 6 > O, a simpliciat partition for P whose classes Pi satisfy

s < IP~I < 2s and whose crossing number is O(r 1- 1/d) can be constructed in

t ime O(n log r), provided that s >_ n ~ (with the constant in the bound on the

crossing number dependent on 6).

(ii) For any s, a simplicial partition fo r P whose classes Pi satisfy s < 1ell < 2s

and whose crossing number is O(r I - 1/d(log r) °(~)) can be constructed in time

O(n log r).

(iii) For any s, a simplicial partition for P whose classes Pi satisfy s < I P~I < 2s

and whose crossing number is O(r 1 - i/a) can be constructed in time O(n 1 +~)

(again with the constant in the bound on the crossing number dependent on 3).

Proo f We again iterate the partition construction similarly as in the proof of

Corollary 3.5, but using Lemma 4.6 this time. When a current point set has size

m, we set the parameter s to Lm 1 -~_] for the next iteration. Thus after the ith

iteration, the size of the classes of the current partition are about ntl -')'. In order

to get claim (i), it suffices to iterate this partition construction a constant number

of times (until (1 - 0t) i drops below 6). We thus lose a constant factor in the crossing

number only. For claim (ii) we iterate the construction at most O(log log n) times,

losing a 2 °t~°~ log n) = logO(l) n factor in the crossing number altogether. For claim

(iii) we iterate the construction a constant number of times, until we reach classes

of size m = O(n ~') for a small enough 6'. For each of these small classes we still

Efficient Partition Trees 327

need to compute a simplicial partition with class sizes between s and 2s, where s

may still be very small compared with m. We now use the polynomial-time

procedure for computing a simplicial partition without restrictions on the param-

eter value (implied by the proof of the Partition Theorem). Since the classes for

which this procedure is applied are small enough, the total running time is of order

O(n ~ + ~). []

The preceding theorem allows us to improve the previously mentioned compu-

tation of ~:-approximations and e-cuttings a little more. In Theorem 4.2 we can

compute a (1/t)-approximation of size O(t d) in O(n log t) time, provided that

t d <_< n 1-6 for a fixed 6 > 0. In Proposition 4.4 we then get an improved running

time O(n log r + r 2d- 1) for r < n 1-6. This improves Theorem 2.1 if r a < n. How-

ever, the result can be combined with Theorem 2.1, and we can improve the

running time for cutting computation also for larger values of r, as follows: We

choose a suitable value of a parameter rl , we compute a (1/r0-cutting for H as

in Theorem 2.1 (ii) together with the collection HA for every simplex of this cutting.

Then we compute a (rl/r)-cutting for each H a w Ba, where Ba are the hyperplanes

bounding A. Similarly as in the outline of a randomized cutting algorithm

following Theorem 2.I, this yields a (1/r)-cutting for H. In order to balance the

running times appropriately, we put

Fr + 1/2(d- 1) 1

rl = I_ n -~t~d-~---5 J '

and by straightforward analysis we obtain

Theorem 4.8. Let r <_ n 1 - ~ f o r some f i x e d J > O. Then a (1/r)-cutting o f (asympto-

tically optimal) size O(r d) f o r a collection o f n hyperplanes in E d can be computed

in time O(n logr + x/nrd-1/2).

Interestingly, this computation is significantly faster than if we only wanted to

verify that some collection of triangles (in the plane) is a (1/r)-cutting for given

collection of n lines, by counting the number of intersections of every side of the

triangles with the lines, using the fastest-known algorithms (see [A]). For instance,

for r = n I/~, computing the number of intersections with a given collection of n

lines for O(r 2) = O(n 2/3) segments by Agarwal's algorithm requires about n 1°/9

time, while our results yield a (i/r) cutting in almost linear time in this case.

5. Range Searching

Using Theorem 4.7, it is now straightforward to establish the following:

Theorem 5.1. Given a set o f n points in E a, we can preprocess it for simplex range

searchino (with semioroup weiohts) in time O(n log n), store the results in space O(n),

and then answer queries in time O(n 1- l/d(1og n)°(1)).

328 J. Matou~ek

Proof We use the simplicial partition from Theorem 4.7 recursively, building a

partition tree. The leaves of the tree form a partition of P into constant-sized

subsets. Each inner node v of this tree corresponds to a subset P~ of P and to a

simplicial partition H~ of P~. Of that simplicial partition, we store only the

simplices and the cumulative weights of the corresponding subsets in the node v;

the classes themselves are only represented implicitly, each corresponding to a

child of v. The simplicial partitions FI v are constructed as in Theorem 4.7(i) with

s = I_lPvl 1/dj. Hence the size of the sets corresponding to the nodes at level i of the

partition tree are of order n 1/a', so unlike previous partition trees, ours has depth

O(log log n).

In the query answering process we proceed as follows: Given a query simplex

a, we start in the root. Being in a node v, we take the simplices of the simplicial

partition H~ one by one, and we handle directly those contained in a or disjoint

from a, and we proceed into the corresponding children nodes for the other

simplices. 4 Each of the latter ones must be crossed by at least one of the

hyperplanes bounding the query simplex, so we recurse in O(r I - l/d) simplices only

(r = n/s) .

For the query time T(n), we get a recurrence

r = FI 1 - 1 / d

with initial condition T(n) = O(1) for n smaller than some constant. The solution

is easily verified to be of the claimed form T(n) = O(n 1- l/d(log n)°tl)).

Since an m-point node of the partition tree uses storage O(m 1-1/d), the total

space occupied by the tree is linear (we group the nodes of the partition tree

according to their depth, we bound the size for every level and we find that the

size of leaves forms a constant fraction of the total size). The preprocessing time

for constructing the simplicial partition in a node with m points is O(m log m) by

Theorem 4.7(i), and since the number of points in nodes decreases as a double

exponential with their depth in the tree, the total preprocessing time is

O(n tog n). []

Let us remark that an analogue of Theorem 5.1 for range reporting can be

proved along similar lines (with query time O(n 1-1/d(1og n) °~1) + k), where k is the

number of reported points).

Chazelle et al. [CSW] describe a "fast" simplex range searching data structure

with query time O((log n) d+l) and storage and preprocessing time O(nd+~). This

data structure can be combined with the partition trees to get a space/query time

tradeoff. We may stop the construction of our partition tree at an appropriate

level (on a level where the classes corresponding to nodes have some prescribed

size). Instead of the subtrees of the partition tree below that level, we store the

fast data structures for the corresponding point sets at these nodes; this is quite

similar to a construction in [CSW] and we omit the details. We also note that

4 Note that we can handle both open and closed query simplices.

Efficient Partition Trees 329

the randomized construction of the "fast" structure can immediately be made

deterministic using Theorem 2.1.

Corollary 5.2. Given a set P o f n points in E d and a parameter m, n < m < n d, we

can preprocess P for simplex range searching, deterministically in time O(m 1 +~),

store the results in space o f the same order, and then answer queries in time

(:) O ~ie 1ogd+ 1 n .

6. Reducing the Query Time

In this section we show that we can further improve the query time for simplex

range searching with linear space. However, this improvement complicates the

algorithm and so far we also have to sacrifice something in the preprocessing time:

Theorem 6.1. Given a set o f n points in E d, we can preproeess it for simplex range

searching in t ime O(n 1 +~), store the results in space O(n), and then answer queries

in time

O(n 1-1/a(log log n)°~l)).

For point weights which can be subtracted (i.e., belonging to a group, as for

instance for range counting), query time

O(n I - 1/e2o~log..))

can be achieved. Also f o r reporting the points in the query simplex we can get

query time O(n 1- l/d20~l°g*") + k), where k is the number o f reported points.

Proof Let us look why the (log n) °~t~ factor in the query time appears in Theorem

5.1 : it is because in each level of the partition tree we lose a constant factor in the

"efficiency" (crossing number) of the partition. From this point of view the best

thing to do would be to have a single-level partition tree, thus returning back to

the construction of Welzl [We], [CW]. However, another difficulty arises here:

we know that only a small number of simplices in the simplicial partition crosses

the boundary of a query simplex, but we have to detect them, more precisely to

solve the following two problems:

A. Which simplices of the simplicial partition are crossed by the boundary of

the query simplex ?

B. What is the cumulative weight of points associated with the simplices of the

simplicial partition which are completely contained in the query simplex?

In the proof of Theorem 5.1 the size of the simplicial partition was not bigger

than the query time aimed at, so these problems could have been solved trivially--

by inspecting all the simplices. This enforces f~(log log n) levels of the partition

tree. For a smaller number of levels, the value of r in each node has to be closer

330 J. Matou~ek

to the number of points in that node, and we need some secondary data structure

for Problems A and B.

Let us begin with Problem B. We note that a simplex is contained in another

simplex iff all its vertices are. We consider a more general situation, and we show

the following:

Lemma 6.2. Let k > 1 be a fixed integer, let A be a set of n ordered k-tuples of

points in E a and suppose that every k-tuple is equipped by a semigroup weight. We

can compute (in time and space O(n(log n)Ck)) a data structure Sk(A) which allows

us to compute the total weight of all k-tuples of A completely contained in a query

simplex in time O(n 1-1/~ exp(C~,~/log n)) (Ck, C'k constants).

Proof. We proceed by induction on k. For k = t, the problem is solved by

Theorem 5.1, so let k > 1. For simplicity of description, let us suppose that all

points occurring as the components of the k-tuples of A are distinct. Let F be the

set of the first components the k-tuples of A.

In order to construct the data structure Sk(A) we build a partition tree as in

Theorem 5.1 on the set F, this time setting r = m/s = exp(x/log m) in an m-point

node. Let v be a node storing a simplicial partition H v = {(P1, sl) (P~, s~)}.

For every class Pi --- F, let Ai ___ A be the set of k-tuples whose first components

belong to Pi, and let A~ be the set of (k - t)-tuples arising by removing the first

component from the k-tuples of A~. We compute the data structure Sk- I(A'~) and

we store it in the node v.

Given a query simplex tr, we proceed as follows: We start in the root of the

partition tree. In current (nonleat) node v we find the simplices of the simplicial

partition Fir completely contained in tr, and, for each such simplex A~, we use the

data structure Sk-I(A'i) to find the number of k-tuples of A~ contained in tr.

Also, we find the simplices of Hv crossed by the boundary of tr, and we use the

appropriate subtrees of v recursively to find the number of k-tuples inside tr

belonging to the subsets corresponding to such simplices.

For the query time Tk(n) we get the recurrence

Tk(n) < O(r) + O(rl-1/a)Tk(~) q - O(r)Tk- l(2~nr)

with r = exp(~/iog n), and we also have Tk- l(n) = O(n' - '/aexp(C~,_, 1 ~ n)) by

inductive hypothesis. By a straightforward calculation we verify the estimate for

Tk(n) from this recurrence. We leave the analysis of space requirements and

preprocessing time to the reader. Let us also remark that similar "multilevel"

constructions have been used in [CSW] and [AS]. These, however, use a constant

value of r in the partition trees, so our approach brings some improvement. []

As for Problem A, we observe that a simplex is crossed by the boundary of

another simplex iff some of its edges is. In fact, the simplicial partition guarantees

not only a small number of simplices crossing the boundary of the query simplex,

Efficient Partition Trees 331

but even a small number of simplices crossing any of the hyperplanes bounding

the query simplex. Hence it is enough to have a data structure for reporting all

segments crossing a query hyperplane h.

We can achieve the following solution:

Lemma 6.3. For a set o f n segments in E a, there exists a data structure for reporting

the segments crossing a query' hyperplane, with O(n(log n) °(1)) space and preprocess-

ing time and O(n 1-1/d(log n) °(1) + k) query time, where k is the number o f reported

segments,

Proof Similarly as in Lemma 6.2 we build a partition tree on the set of left

endpoints of the segments. The difference to Lemma 6.2 is that, for the secondary

data structures on the right endpoints, we require only half-space range reporting.

For this problem, very efficient solutions are known in dimensions two and three:,

the algorithm of Chazelle et al. [CGL] in the plane and of Chazelle and Preparata

[CP] in 3-space. The query time for these algorithms is O(logn + k) for an n-point

set, where k is the number of points reported. The algorithm in [CGL] uses O(n)

space and O(n log n) preprocessing, the algorithm in [CP] is worse by some

logarithmic factors (an improved algorithm for this problem is given by Aggarwal

et al. [AHT]), which is insignificant for us. An efficient solution has recently been

obtained also for higher dimensions (see [M4]): it is possible to solve the half-space

range reporting problem with O(n log log n) space, O(n log n) preprocessing time,

and O(n 1- I/Ld/2J(log n) °(1) + k) query time.

Let us build a partition tree on the set of left endpoints of our segments, setting

the parameter s t o Lm2/3_j (say) in an m-point node. For each class Pi of the

simplicial partition stored in a node v, we let R i be the set of right endpoints of

the segments with the left endpoints in Pi, and we store a half-space range reporting

structure for R~. The total space and preprocessing time for the whole partition

tree including the secondary data structures remains close to linear. In an m-point

node v we are answering at most r = m 1/3 half-space range reporting queries on

at most 2s points each. The additive terms corresponding to the number of

reported segments in the complexity of these queries at v sum up to O(r I - lid) (this

follows from the bound on the crossing number of the simplicial partition). The

sum of the overhead terms for the half-space range reporting queries at v is

O(mUa(m2/3)t -1/L d/2 3(log n)O(1)) = O(m 1 - l/d),

and since the depth of the partition tree is O(log log n), we get the claimed

bound for the total query time. []

In the general case the solution to Problem B is worse than the solution to

Problem A. However, if we can subtract the weights of the points, it turns out

that Problem B can be solved faster, using the solution of Problem A: at a node

v, we pick one representing point in every class Pi of the simplicial partition 1-I v,

we let its weight be the total weight of the points of Pi and we build the simplex

range searching structure as in Theorem 5.1 for these representing points.

332 J. Matou~ek

Problem B is then solved as follows: We first use the auxiliary data structure

to compute the total weight w of the representing points lying inside the query

simplex a. From the solution to Problem A we know the simplices crossing the

boundary of a, and, for each of them, we check whether its representing point lies

inside a. If it does, we have to subtract its weight from w. With this adjustment

we obtain the answer to Problem B.

Similarly we can handle Problem B in the case of range reporting.

Now we are ready to prove Theorem 6.1. We equip every node of our basic

partition tree (except for the leaves) by auxiliary data structures solving Problems

A and B. For an m point node, we choose the size of the classes of the simplicial

partition in such a way that the time required for solving Problems A and B is

of order O(mt-tJa), and the space and preprocessing time for the secondary

structures is of order O(m/log m). Then the total space is easily seen to be linear,

and the preprocessing time is O(n 1 +~) using Theorem 4.7(iii).

Generalizing the analysis in the proof of Theorem 5.1, we get that if the work

on a query in an m-point node is O(m 1- i/a), then the query time depends on the

depth D of the partition tree--it will be O(n~-lJa2°tv)). The depth is in turn

determined by the smallest value of the parameter s we can afford for an m-point

node of the partition tree.

For the general case (subtractions not allowed), our solution to Problems A

and B allows us to put s = 2 c ~°~i~, where C is a sufficiently large constant.

Hence when passing one level down the tree, the logarithm of the node size is

reduced to a constant multiple of its square root, which gives the depth

D = O(log log log n).

For the case of weights which can be subtracted or for the case of range

reporting, the improved solution to Problem B allows us to set s = (log m) °~1~,

and thus the passage one level down in the partition tree reduces the node size

from m to (log m) °~). It is not difficult to calculate that D = O(log* n) in this case.

This finishes the proof of Theorem 6.1. []

7. Remarks on Dynamization

The data structures described in the previous section can be easily extended to

accommodate insertions and deletions of points using a standard approach

developed by Bentley I'B] and Overmars and van Leeuwen (see [O]). We include

this for completeness, since a dynamic version of the simplex range searching

algorithm is useful in various geometric applications.

Theorem 7.1. A simplex range searching data structure with the same asymptotic

performance as in Theorem 5.1 can be maintained under insertions and deletions of

points, with O(log n) amortized time per deletion and O(log z n) amortized time per

insertion.

Proof First we note that it is easy to update the weight of a point in the partition

tree from the proof of Theorem 5.1. It is enough to change the sums of weights

Efficient Partition Trees 333

for the appropriate simplices. For a single point, there are O(log log n) simplices

whose corresponding subsets contain that point.

If the weights can be subtracted, then such an update is completely straightfor-

ward. However, also without subtraction we can recompute the total weight for

a node in logarithmic time. To this end we arrange the weights of the children

nodes of the considered node as leaves of a balanced binary tree. The inner nodes

of this binary tree then contain the appropriate partial sums. If the weight at one

leaf of the binary tree is changed, it is enough to recompute weights along

the path from this leaf to the root of the binary tree. This amounts to

O(log r) = O(log m) operations in an m-point node of the partition tree. Summing

this update time along a path from a leaf to the root in the partition tree, we get

O(tog n) in total (recall that the node size decreases doubly exponentially with

depth in the partition tree).

By assigning null weights to points, we can simulate deletions. After hi2
deletions we always rebuild the structure from scratch, so that we maintain an

appropriate query time when the point set shrinks significantly.

It remains to handle insertions. We know that a static structure for n points

can be built in time O(n log n). If P1 and P2 are disjoint point sets, then the answer

to a simplex range query on P1 u P2 can be computed from the answers for P~

and for P2 in constant time, i.e., the problem is decomposable in the terminology

of [O]. Thus, applying the method for dynamizing insertions, we arrive at the

following result: O(log z n) amortized insertion time, and asymptotically the same

query time as for the static structure. []

Many more questions concerning dynamization could of course be raised. For

instance, we may require the time bounds for insertion and deletion to be

worst-case rather than amortized (to achieve results similar to the ones given by

Schipper and Overmars [SO] for other types of partition trees), or consider more

complicated variants of the data structure with some secondary data structures

attached to the nodes, etc. It does not seem at present that such questions should

present any substantial difficulties.

References

[A]

[AHT]

[AMI]

[AM2]

[AS]

P. K. Agarwal. Partitioning arrangements of lines, II: Applications. Discrete & Computa-

tional Geometry, 5:533-573, 1990.

A. Aggarwal, M. Hansen, and T. Leighton. Solving query-retrieval problems by compacting

Voronoi diagrams. In Proc. 21st ACM Symposium on Theory of Computing, pages 331-340,
t990.

P. K. Agarwal and J. Matou~ek. Dynamic half-space range reporting and its applications.

Tech. Report CS-9t-43, Duke University, 1991. Extended abstract: Proc. 33rd IEEE

Symposium on Foundations of Computer Science, to appear, 1992.

P. K. Agarwal and J. Matou~ek. Ray shooting and parametric search. Tech. Report

CS-1991-22, Duke University, 1991. Extended abstract: Proc. 24th ACM Symposium on

Theory of Computin#, 1992.
P. K. Agarwal and M. Sharir. Applications of a new space partitioning scheme. In Proc.

2nd Workshop on Algorithms and Data Structures, 1991.

334 J. Matougek

[B]

[CF]

[CGL]
[ci]

[c2]

[cP]

[csw]

[cw]

[E]
[EW]

[HW]

[M1]

[M2]

[M3]

[M4]

[-MWW]

Co]
[so]

[vc]

[We]

[Wi]

[-VY]

J. L Bentley. Decomposable searching problems. Information Processing Letters, 8:244-251,

1979.

B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in

geometry. Combinatorica, 10(3):229-249, 1990.

B. Chazelle, L. Guibas, and D. T. Lee. The power of geometric duality. BIT, 25(1), 1985.

B. Chazelle, Lower bounds on the complexity of polytope range searching. Journal of the

American Mathematical Society, 2(4):637-666, 1989.

B. Chazelle. Cutting hyperplanes for divide-and-conquer. Tech. Report CS-TR-335-91,

Princeton University, 1991. Preliminary version: Proc. 32nd IEEE Conference on Founda-

tions of Computer Science, October 1991. To appear in Discrete & Computational

Geometry.
B. Chazelle and F. P. Preparata. Halfspace range searching: An algorithmic application of

k-sets. Discrete & Computational Geometry, 1:83-93, 1986.

B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for simplex range

searching and new zone theorems. In Proc. 6th ACM ,Symposium on Computational

Geometry, pages 23-33, 1990.

B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite VC-dimension.

Discrete & Computational Geometry, 4:467-490, 1989.

H. Edelsbrunner. Algorithms in Combinatorial Geometry. Spnnger-Verlag, New York, 1987

H. Edelsbrunner and E. Welzl. Halfplanar range search in linear space and O(n 0'695) query
time. Information Processing Letters, 23(6):289-293, 1986.

D. Haussler and E. Welzl. e-nets and simplex range queries. Discrete & Computational

Geometry, 2:127-151, 1987.

J. Matou~ek. Approximations and optimal geometric divide-and-conquer. In Proc. 23rd

ACM Symposium on Theory of Computing, pages 506-511, 1991.

J. Matou~ek. Cutting hyperplane arrangements. Discrete & Computational Geometry, 6(5):

385-406, 1991.

J. Matou~ek. Range searching with efficient hierarchical cuttings. In Proc. 8th ACM

Symposium on Computational Geometry, pages 276-285, 1992.

J. Matou~ek. Reporting points in halfspace. In Proc. 32nd IEEE Symposium on Founaa-

tions of Computer Science, pages 207-215, 1991. Also to appear in Computational Geometry:

Theory and Applications.
J. Matou~ek, E. Welzl, and L Wernisch. Discrepancy and e-approximations for bounded

VC-dimension. Combinatorica, to appear. Also in Proc. 32nd IEEE Symposium on Founda-

tions of Computer Science, pages 424-430, 1991.

M. H. Overmars. The design of Dynamic Data Structures. Springer-Verlag, Berlin, 1983.

H. Schipper and M. H. Overmars. Dynamic partition trees. In Proc. 2nd Scandavian

Workshop on Algorithms Theory, pages 404-417, 1990. Lecture Notes in Computer Science,

Vol. 447. Springer-Verlag, Berlin, 1990. Also to appear in BIT.

V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probability and its Applications, 16:264-280, 1971.

E. Welzl. Partition trees for triangle counting and other range searching problems. In Proa

4th A C M Symposium on Computational Geometry, pages 23-33, 1988.

D. E. Willard. Polygon retrieval. SIAM Journal on Computing, 11:149-165, 1982.

F. F. Yao and A. C. Yao. A general approach to geometric queries. In Proc. 17th ACM

Symposium on Theory of Computing, pages 163-168, 1985.

Received April, 1991, and in revised form January 15, 1992.

