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Abstract. We prove a theorem on partitioning point sets in E d (d fixed) and give 

an efficient construction of partition trees based on it. This yields a simplex range 

searching structure with linear space, O(n log n) deterministic preprocessing time, and 

O(nl-lla(logn)ml)) query time. With O(n 1+6) preproeessing time, where 6 is an 

arbitrary positive constant, a more complicated data structure yields query time 

O(n 1-1/d(log log n)°Cl)). This attains the lower bounds due to Chazelle [C1] up to 

polylogarithmic factors, improving and simplifying previous results of Chazelle et al. 

[CSW]. 

The partition result implies that, for r ~ _< n 1 -~, a (I/r)-approximation of size O(r ~) 

with respect to simplices for an n-point set in E a can be computed in O(n log r) 

deterministic time. A (1/r)-cutting of size O(r ~) for a collection of n hyperplanes in E a 

can be computed in O(n log r) deterministic time, provided that r <_ n ltc2~- ~. 

1. Introduction 

In this pape r  we cons ider  a p rob lem known  as simplex range searchinfl: preprocess  

a set P of  n poin ts  in E d so that,  given any query simplex a, the poin ts  in P c~ <r 

can be counted  or  repor ted  efficiently. Usual ly  this p rob lem is investigated in a 

more general  setting, where a weight  function on the poin ts  is assumed and  a 

cumulative weight of  the poin ts  in P n ~r is asked  for. The  weights are  assumed 

to belong to a semigroup,  i.e., we should  not  use subt rac t ions  when comput ing  

the answer. We assume tha t  the semigroup  opera t ions  can be executed in constant  

time. 

- - - - . . - - _ _ . _ _ . _  
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As is typical in computational geometry, we consider the space dimension d as 

a fixed number (and imagine that it is a small number), thus something depending 

on the dimension only will be a constant for us. All the algorithms considered are 

deterministic unless stated otherwise. 

The simplex range searching problem has quite a rich history, which reflects 

its basic importance in computational geometry. We do not try to give an account 

of this history; we mention only some works directly related to our results. 

The possible efficiency of the query answering depends on the amount of storage 

(and preprocessing time) used. Chazelle {C1] established the following lower 

bounds: in dimension d and given m units of storage, the worst-case query time 

is ~((n/log n)/m TM) (in the plane, the bound sharpens to f2(n/x/~); this indicates 

that, for higher dimensions, the logarithmic factor might be only a product of the 

proof technique). These lower bounds are valid only under some restrictions on 

the kind of algorithm used, but so far all known algorithms satisfy these restrictions 

and there does not seem to be much hope for circumventing the lower bound. 

Most of the works on upper bounds (i.e., designing efficient simplex range 

searching algorithms) concern the "small-space" end of the spectrum, i.e., a linear 

or slightly superlinear storage. 

The earlier solutions, starting with Willard EWi], use the idea of partition trees. 

We briefly explain the idea of a partition tree and its use for query answering. For 

simplicity, we start with the planar case and half-planar ranges (instead of 

simplices)0 What is needed to construct a partition tree is a partitioning scheme 

of the following kind: Given an n point set, divide the plane into several regions, 

such that each region contains at least a constant fraction of the points, and that 

any line misses one (or several) of the regions. Given a query half-plane, we can 

then treat the points in the regions missed by its boundary line very efficiently: 

either they all lie inside the query half-plane or all lie outside of it. Thus it remains 

to handle the points in the regions intersected by the boundary line of the query 

half-plane. To this end, the partition scheme is applied recursively for subsets in 

each of the regions, until we reach trivially small subsets (of a constant size). A 

data structure recording this recursive partition of the point set in a suitable way 

is called a partition tree. In the query answering process we handle the regions 

missed by the boundary line of the query half-plane directly, and we proceed 

recursively down the tree for the regions intersected by the boundary line. 

The efficiency of a partition tree is determined by the parameters of the 

partitioning scheme used. The earlier partition schemes proposed in the literature 

(e.g., l-Wi], [EW], and [YY]) divide the space into a small number of parts, and 

the ham-sandwich cut theorem or similar theorems are used to establish the 

existence of such schemes. More efficient partition trees of this kind were devised 

by Haussler and Welzl [HW]. Their partition scheme has a large but constant 

number of parts and a probabilistic method is employed for its construction and 

analysis. 
The query time achieved in the partition trees of [HW] is still quite far from 

the above-quoted lower bound. For the planar case, the first algorithm attaining 

the lower bound up to a polylogarithmic factor was given by Welzl [We]. The 



Efficient Partition Trees 317 

method is refined in [CW]. It works in an arbitrary fixed dimension, even in a 

more general setting than the geometric one, but in the so-called arithmetic model 

only. In the arithmetic model we only count the semigroup operations needed to 

compute the answer to a query, and other operations needed in the algorithm are 

ignored (or rather left unspecified in the algorithm). Hence the result does not 

yield an algorithm in the usual sense automatically, and an efficient algorithm is 

given for dimensions two and three only in [CW]. 

While the usual partition trees are built "locally," by a recursive application 

of a partitioning scheme, Welzl's method is a "global" one. However, it can also 

be crammed under the above-described pattern of a partition tree (actually a 

single-level one): essentially, it gives a partition scheme, which has n/2 regions, 

each of the regions contains just two points and no line crosses more than O(v/-n ) 

of the regions. This view is a departing point of this paper. With a modification 

of Welzl's proof, this global partition scheme can be turned into a local one, and 

we get almost optimal partition trees and an almost optimal solution to the simplex 

range search problem in higher dimensions. 

The most efficient previous solution of the general simplex range searching 

problem is due to Chazelle et al. [CSW]. They give an efficient randomized 

algorithm almost attaining the lower bounds in all dimensions (up to O(n ~) 

factors1). Their approach is again basically similar to "local" partition trees, but 

instead of a single partition scheme they use a family of partition schemes, such 

that for each hyperplane there is a "good" partition scheme in this family. 

In our new solution, the query answering structure is simpler, and there is a 

reasonably simple randomized algorithm for the preprocessing. The query time 

and preprocessing time approach the lower bounds more tightly. Also, the 

partition scheme and partition trees may have applications for which other 

constructions do not suffice; in this paper we give an application to a surprisingly 

fast deterministic computation of e-approximations and e-cuttings. 

Many applications of the partition scheme of Chazelle et al. [CSWJ are given 

by Agarwal and Sharir [AS]. In these applications, replacing that scheme by our 

partition trees results in simpler and sometimes slightly more efficient algorithms. 

In general, efficient simplex range searching algorithms often give conceptually 

simple and efficient algorithms for problems where previously problem-specific 

and often complicated methods have been used. 

In a related paper [M4], the method of this paper is adapted to the half-space 

range reporting problem, where it significantly improves known results for 

dimensions d > 4. These results in turn can be applied, e.g., for simple and efficient 

ray-shooting algorithms in higher dimensions and numerous other problems, see 

[AM2] and [AM1]. The author recently gave a further improvement of the 

simplex range searching results (based on a work by Chazelle [C2]), in particular 

attaining O(n 1- l/d) query time with linear space [M3]. 

l Throughout this paper, 6 stands for an arbitrary but fixed positive constant, and the multiplicative 
factors implicit in the big-Oh notation may depend on it. 
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2. Preliminaries on Cuttings 

In this section we give some definitions and results on cutting arrangements of 

hyperplanes which we need in the following. 

A cutting is a collection of d-dimensional closed simplices 2 with disjoint 

interiors, whose union is the whole space E d. The size of a cutting is the number 

of its simplices. Let H be a collection of n hyperplanes and E be a cutting. For a 

simplex A e E, let H a denote the collection of hyperplanes of H intersecting the 

interior of A. A cutting E is an e-cutting for H provided that [HA[ _< ~n for every 

simplex A 6 E. 

It is sometimes convenient to work with weighted collections of hyperplanes. 

A weighted collection of hyperplanes is a pair (H, w), where H is a collection of 

hyperplanes and w: H ~ ~÷ is a weight function on H. If X ~ H we write just 

w(X) for ~h~x w(h). The  notions introduced for unweighted collections of hyper- 

planes can usually be generalized for weighted collections in an obvious way. For 

example, a cutting E is an z-cutting for (H, w), provided that, for every simplex A 

of E, the collection H a has total weight w(Ha) _< ew(H). 

The main known results about cuttings and their computability are summarized 

in the following theorem: 

Theorem 2.1. 

(i) [CF] For any collection of n hyperplanes and a parameter r <_ n, there exists 

a (1/r)-cutting of size O(r a) (which is asymptotically the best possible size). 

(ii) A cutting as in (i) can be computed in O(nr a- 1) time by a randomized 

algorithm [CF] or by a deterministic algorithm [C2]. 

(iii) [M2] Any algorithm computing (1/r)-cuttings for unweiohted collections of 

hyperplanes can be converted into one computing (1/r)-euttings for weighted 

collections, with the same asymptotic bounds on the running time and on the 

size of  the resulting cutting. 

Let us remark that in (ii) we can also compute the collections HA for all simplices 

A within the same time bound. 

The preprocessing for our algorithm given in the following uses the computation 

of cuttings as in (ii). In order to give the reader a more complete picture of how 

complicated the preprocessing algorithm really is, we describe a randomized 

algorithm for computing a (1/r)-cutting of asymptotically optimal size: 

1. Pick a random sample of r hyperplanes of H, construct its arrangement, and 

triangulate it in a specific way (so-called canonical or bottom-vertex triangu- 

lation, see, e.g., [CF]). 

2. For every simplex A of this triangulation, compute the collection Ha of 

hyperplanes intersecting it, and set tA = I HAlr/n. 

3. Pick a sample R a of Ct a log t a hyperplanes of the collection Ha (C a suitable 

2 By a simplex, we mean an intersection of d + 1 half-spaces, thus we admit also unbounded 
simplices. 
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constant), and let R~ be R a plus the d + 1 hyperplanes bounding the 

simplex A. 

4. Triangulate the portion of the arrangement of R~ inside A. Form a cutting 

E as the set of all simplices thus obtained for all A. 

5. Check if E is a (1/r)-cutting for H and if the size of E is at most C'r d, for a 

suitable constant C'. These conditions can be verified in O(nr d- 1) time, and 

if they are not satisfied, the algorithm is restarted. 

This algorithm (properly implemented) has expected running time O(nra-1). 

The proof is given in [CF] (and rephrased in [M2]). 

3. Partitioning Point Sets 

In this section we describe an efficient partition scheme for point sets. 

Let P be an n-point set in E ~. A simplicial partition for P is a collection 

l-i = {(P~, a~)  . . . . .  (P, . ,  a , . )} ,  

where the P{s are pairwise disjoint subsets (called'the classes of FI) forming a 

partition of P, and each At is a relatively open simplex containing the set P~. 

Let us remark at this point that the simplex A t may also contain other points 

of P than those of P~. Also, we admit not only full-dimensional simplices but also 

simplices of any dimension k < d. This is sometimes necessary for point sets P in 

degenerate positions; for a general position, we may take only full-dimensional 

simplices in the simplicial partitions in the forthcoming Partition Theorem. 

The simpliciai partitions we work with satisfy the following condition: 

max{ [e,I; (P,, s~) ~ II} < 2 min{ IP, I; (Pt, s~) e I-I}, (1) 

so all the classes have roughly the same size. 3 

If h is a hyperplane and A is a simplex, we say that h crosses A if h c~ A 4: 

and A ~ h (thus a hyperplane does not cross a lower-dimensional simplex 

contained in it). Let h be a hyperplane; we define the crossing number of h (relative 

to FI) as the number of simplices among the Ai's crossed by h. The crossing number 

of I7 is defined as the maximum of crossing numbers over all hyperplanes h. For  

the construction of efficient partition trees, we are interested in simplicial partitions 

with as small crossing number as possible. 

Our main result is the following: 

Theorem 3.1 (Partition Theorem). Let  P be an n-point set in E d (d ~ 2), let s be 

an inteaer parameter, 2 < s < n, and set r = n/s. There exists a simplicial partition FI 

3 This is a strengthening of the notion of fine simplicial partition defined in the preliminary version 
of this paper, where only the upper bound on the cardinality of the classes was imposed. The lower 
bound comes for free from the proof, and it can be useful in some applications of our results. 
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for P, whose classes P, satisfy s < IP~I < 2s, and whose crossino number is O(r 1 - l/d). 

This bound is asymptotically tight in the worst case. 

A special case of this result, with s = 2, was proved by Chazelle and Welzl 

[CW], by improving a method developed by Welzl [We]. Our proof uses Welzl's 

method; the main new ingredient is the application of cuttings, which enables us 

to handle arbitrary values of s. 

The proof is based on the following lemma: 

Lemma 3.2. Let P, n, s be as above, and let Q be a set of hyperplanes. Then there 

exists a simplicial partition H for P, whose classes P~ satisfy s <__ IP,'I < 2s for every 

i, and such that the crossin9 number of every hyperplane of Q relative to FI is 

O(r 1-1/d + loglQI). 

Proof. We inductively construct the disjoint sets P1 ,  P2  . . . .  ___ P, and simplices 

A1, Az . . . . .  Pi ~- Ai. Suppose that PI  . . . . .  Pg have already been constructed, and 

set P~ = Pk(P1 w . . .  u Pi), ni = IP~I. If Inil < 2s, we set Pi+l = P'i, Ai+I  = Ea, 
m = i + 1, and H = {(P1, A1) . . . .  (Pro, Ar~)}, which finishes the construction. 

Let now n~ > 2s. For a hyperplane h ~ Q, let xi(h) denote the number of 

simplices among A1 . . . . .  A~ crossed by h. We define a weighted collection (Q, w~) 

by setting wi(h) = 2 ~ t̀h) for every h ~ Q. 

Let us choose a parameter tg as large as possible, but such that there exists a 

(1/ti)-cutting El for (Q, wl), whose simplices have at most ni/s faces of all dimensions 

in total. By Theorem 2.1, t~ can be chosen such that t~ > c(ni/s) TM for some positive 

constant c. By the pigeonhole principle, some of the relatively open faces of the 

simplices of the cutting Eg contains at least s points of P~. Let Ai+ 1 be some 

such relatively open face. Since s _> 2, the dimension of Ai is at least 1. Among 

the at least s points of P'~ contained in AI+ 1, let us choose an s-point subset 

(arbitrarily) and call it P~+ 1. This finishes the description of the construction. 

Let us establish the bound on the crossing numbers of the hyperplanes of Q 

relative to the simplicial partition FI. The bound is obtained by estimating the 

final total weight win(Q) of the hyperplanes of Q in two different ways. 

The weight win(h) of a hyperplane h e Q with crossing number x is equal to 

2 ~. Therefore x < log2w,~(Q). 

Let us consider how wi+ x(Q) increases compared with w,~Q). Let Qi+J denote 

the collection of the hyperplanes of Q crossing Ai+l. For the hyperplanes of Qi÷I, 

the weight increases twice, and for the others it remains unchanged. From this we 

get 

Wi+ I(Q) < w,(Q) - wi(Q,+ l) + 2w,(Q,+ 0 = w,(Q)(1 -~ 
wt~Qi + l!~. 

-- \ wi(Q) / 

We claim that wi(Qi+ 1) < wi(Q)/ti. Indeed, this is clear from the definition of 

a (1/ti)-cutting if A i has dimension d. For a simplex of lower dimension we note 

that if a hyperplane crosses a face of a full-dimensional simplex, then it also 

intersects the interior of that simplex; this is easily seen by induction on dimension. 
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Hence 

w,+ I(Q) <-- w,(Q) 1 + tl <- w,(Q) 1 + 

and using wo(Q) = I Q f, ni = n - is, r = n/s, m = Lr_], we get 

-,( , )  
win(Q) <_ I Qt I~ 1 + - 

~=o c(r i) lid " 

Taking logarithms and using the inequality ln(l + x) <_ x we get 

1 ,~-I  1 1 , . - 1  1 
log w,"(Q) < loglQ! + - - -  c (r - i) TM -< logtQI + - - c i:-o (m - ip :d 

1 1 
= toglQI + - 

c j j l /d" 

Bounding the last sum by integral, we finally obtain 

rc < log2 wm(Q) = O(loglQI + r t -x/a). 

This concludes the proof of Lemma 3.2. [] 

The second ingredient in the proof of the Partition Theorem is the following 

lemma, saying that when estimating the crossing number of our simplicial 

partitions, we may concentrate on a fairly small number of "test" hyperplanes 

instead of considering all possible hyperplanes: 

Lemma 3.3 (Test Set Lemma). For an n-point set P c E d and a parameter r, there 

exists a set Q o f  at most r hyperplanes, such that, for  any simplicial partition 

H = {(PI, A1) . . . . .  (P,", Am)}for P satisfying lP~[ >>_ s f o r  every i, the following holds: 

O" Xo is the max imum crossing numbers o f  hyperplanes o f  Q relative to II, then the 

crossing number o f  17 is bounded by 

Proof. Let H = ~(P)  be the collection of hyperplanes dual to the points of P 

(see, e.g., [E] for the definition and relevant properties of the duality transform). 

According to Theorem 2. l(i), we can choose a (1/0-cutting E for H whose simplices 

have at most r vertices in total, where t = t~(rl/d). Let V be the set of all vertices 

of the simplices of E, and put Q = ~(V). We claim that Q has the desired property. 

Let h be any hyperplane and let G be the set of vertices of a simplex A of E 

containing the dual point ~(h). By the assumption, each of the d + 1 hyperplanes 
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dual to the points of G crosses at most x o simplices of the simplicial partition II, 

and it remains to bound the number of simplices of 17 which are crossed by the 

hyperplane h but by no hyperplane of ~(G). Such simplices Ai must be completely 

contained in the zone of h in the arrangement of ~(G), and hence this zone must 

also contain the points of their corresponding classes P~ in its interior. It is 

elementary to verify, using the properties of the duality transform, that any point 

of P lying in the interior of the zone of h in the arrangement of ~(G) dualizes to 

a hyperplane of H intersecting the interior of the simplex A (see also [CSW]), and 

there are at most O(n/r TM) such hyperplanes in H. Hence the zone of h may contain 

at most this many points of P, and this shows that there are at most O(n/sr l/d) 

simplices of 17 completely contained in the zone of h in the arrangement 

of G. [] 

Proo f  o f  Theorem 3.1. In order to obtain the desired simplicial partition, we first 

use Lemma 3.3 with P, s, and r as in the statement of the Partition Theorem. We 

get a set Q of at most r hyperplanes and we use Lemma 3.2, obtaining a simplicial 

partition 17, whose classes have size between s and 2s, and such that the crossing 

number of any hyperplane of Q is at most O(loglQI + r 1 -1/~) = O(r l -  1/d). Then, 

by the property of Q guaranteed by the Test Set Lemma, the crossing number of 

17 is at most (d + 1)O(r 1- l/d) + O(n/srl/d) = O(r 1- lid). 

Finally we show that the bound on the crossing number is asymptotically tight 

in the worst case, extending an argument due to Welzl. Indeed, suppose that we 

want a simplicial partition for an n-point set, with classes of size between s and 

2s. Choose a set Q of hyperplanes in general position, such that its arrangement 

has at least [ -n / ( s -  1)] distinct cells; it suffices to take O(r ~/d) hyperplanes, 

r = n/s. Divide the n points into clusters by at most s - 1 points each, and place 

the clusters into distinct cells, of the arrangement of Q. In any simplicial partition 

with classes of size at least s, every simplex crosses at least one hyperplane of Q. 

Hence, on the average, a hyperplane of Q crosses D.(r 1-1/d) simplices of the 

simplicial partition. [] 

We now start considering an algorithmic form of the Partition Theorem. 

Lemma 3.4. For a value o f  r bounded by a constant, a simplicial partition as in 

Theorem 3.1 can be constructed in time O(n). 

Proof. It suffices to go through the steps of the preceding proof of Theorem 3.1 

and verify that they can be executed in the claimed time bound. For the Test Set 

Lemma we need to compute a (I/0-cutting for a collection of n hyperplanes, with 

t = O(1), which can be done in O(n) time by Theorem 2.1(ii). In the proof of Lemma 

3.2, the collection Q has a constant number r of hyperplanes, we make r = 0(1) 

steps and we always deal with a constant number of simplices only, so the only 

thing which might cause problems would be the arithmetic with the potentially 

large powers of two standing for the weights. In the algorithm the weights are 

only used for calculation of the cuttings. The calculation of a cutting for a weighted 

eoUection (H, w) in Theorem 2.1(iii) starts by replacing (H, w) by a multiset 



Efficient Partition Trees 323 

containing m(h) = [.IHlw(h)/w(H)] + 1 copies of each hyperplane h ~ H, but the 

procedure still works (with worse constants) if we use any number between re(h) 

and 2re(h) of copies of h. Hence it suffices to know the value of w(h)/w(H) with 

relative accuracy ½, so we can use ordinary integer arithmetic for these calculations. 

For later reference, let us also note that if r is not bounded by a constant, the 

above proof gives an algorithm polynomial in n and r for computing the simplicial 

partition. []  

This result has the following consequence: 

Corollary 3.5. Le t  6 > 0 be a posit ive constant. Given an n-point set P ~_ E a and 

an integer parameter  s, 2 <_ s < n, a simplicial partit ion f o r  P satisfying s < I Pil < 2s 

for  every class Pi and  with crossin9 number  O(r t -  ~/d+~) can be constructed in time 

O(n log r). 

Proof. A simple observation is that we can "compose"  the constructions of a 

simplicial partition. Namely, we may first construct a simplicial partition FI with 

class sizes between sl and 2Sl and with crossing number at most Cry-~/~, where 

r 1 = n/s 1 and C is some absolute constant which can be estimated by inspection 

of the proof of the Partition Theorem. Then for every class P~ of this simplicial 

partition we construct a simplicial partition 1-I~ with class sizes between s2 and 2s2 

and with crossing number at most CrY2- i/d, r2 = 2s~/s2. Apparently the union of all 

these secondary simplicial partitions is a simpticial partition for P with class sizes 

between s 2 and 2s 2 and with crossing number not exceeding 2C2r ~- l/d, where 

r = n/s 2. This refinement can be iterated more times, and we lose a constant factor 

at every iteration compared with a direct construction. 

In our case we choose a sufficiently large constant r o and we iterate the 

construction with parameter sl = [_n/ro], s2 = Is~/ro], etc. The number of itera- 

tions needed to achieve class size at most n/r is about D = log r/log ro, thus 

the multiplicative factor we lose in the crossing number is of order (2C)° = 

rtOg 2C/~ogro. By choosing the constant r o large enough, we can make this factor 

smaller than r ~ for arbitrary fixed ~ > 0. [] 

Our further goal is to prove a stronger algorithmic version of the Partition 

Theorem, with a better bound on the crossing number than in the preceding 

corollary. To this end we consider a fast computation of (1/r)-cuttings, and we 

obtain results of independent interest. 

4. Approximations, Cuttings, and an Efficient Partitioning Algorithm 

The starting observation is a relation between simplicial partitions and e-approx- 

imations with respect to simplices. 

Let P be a finite point set in E d, and let A ___ P. We say that A is an 

e-approximation for P (with respect to simplices), provided that for every simplex 



324 J. Matou~ek 

a it is 

l a n a i  IP c-~a[[ < e. 

IAt [Pt 

The notion of e-approximation originated in a paper by Vapnik and Chervo- 

nenkis [VC] in a more general setting; the name e-approximation comes from the 

paper by Haussler and Welzl [HW]. From a theorem in [VC], we get that, for 

each P and r, there exists a (1/r)-approximation for P of size at most O(r 2 log r). 

This size can be further improved to O(r 2 -2/~a+ l) tog2 r), see [MWW]. As shown 

in [M1], a (1/r)-approximation of size O(r 2 log r) can be computed in time 
O(n(r 2 log r) d(d+ 1)). 

The notion of s-approximation can be immediately generalized to the case when 

A is equipped by a weight function w: a weighted collection (A, w) is an s- 

approximation for P, provided that Iw(A c~ a)/w(A) -- IP c~ at/IPII < e for every 

simplex a. 

We have the following observation: 

Observation 4.1. Let P be an n-point set in E d and/et  H = {(P1, At) . . . . .  (Pro, Am)} 

be a simplicial partition for  P, with class sizes not exceeding s and with crossing 

number x. For each i, let ai be one point o f  Pi and put w(ai) = tPii. Then 

(A = { a l , . . . ,  am}, w) is an s-approximation for P (with respect to simplices), where 

e = (d + 1)xs/n. 

Proof. For  a simplex a, the difference in the number of points of P inside a and 

the total weight of points of A inside a is caused only by the classes of the simplicial 

partition whose corresponding simplices are crossed by the boundary of a. The 

number of points in such simplices is at most (d + 1)~cs, and the observation 

follows. [] 

We may now apply Corollary 3.5 together with the preceding observation, 

obtaining the following: 

Theorem 4.2. Given an n-point set P m E a and a parameter t, a (1~O-approximation 

o f  size O(ta+n) for P (with respect to simplices) can be computed in time O(n log 0. 

The approximation size attained in this theorem is far from optimal, and no 

substantial improvement is possible with the present method (via partition trees); 

the forthcoming strengthening of Corollary 3.5 can only remove the t o factor in 

the size of the (1/0-approximation (see below). If the required value of t (measuring 

the accuracy of the approximation) is not too large, we can use this as a first 

reduction in the problem size, and then use another algorithm (with a larger 

running time) to improve further the size of the (1/0-approximation. 

For the result about cuttings we have to pass to the dual setting. If H is a 

collection of hyperplanes and A m H, we call A an e-approximation for H (with 
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respect to segments), provided that for every segment e we have 

½1 IHel II < e, 

A IHI I 

where He (resp. Ae) denotes the set of hyperplanes of H (resp. of A) crossing 

the segment e. It is elementary to verify that if P is a point set and A is its 

e-approximation with respect to simplices, then ~(A) is an e-approximation for 

~(P) with respect to segments. The use of approximations for an efficient 

computation of cuttings stems from the following easy lemma (we again use the 

weighted form of approximations): 

Lemma 4.3 [M2]. Let (A, w) be an e-approximation for H and let E be an e'-cutting 

for" (A, w). Then E is a d(e + e')-cutting for H. 

Hence, in a computation of a (1/r)-cutting for a collection H of n hyperplanes, 

we can proceed as follows: We first compute a (1/2dr)-approximation of size 

O(r d+o) for H, in time O(n log r) according to Theorem 4.2. Then we apply Theorem 

2.1 to compute a (1/2dr)-cutting for this approximation, in time O(rZd+~-l). This 

yields a (1/r)-cutting for the original collection H. We summarize this in a 

proposition: 

Proposition 4.4. Let r <_ n lid. Then a (1/r)-cutting of  size O(ra) for a collection oj' 

n hyperplanes in E a can be computed in time O(n log r + r zn+6-1). In particular, for 

r < n 1/<zd+6-1), the running time is O(n log r). 

Now we use these improved results on cutting computations to strengthen our 

results on the computation of simplicial partitions. We begin with a technical 

lemma on range counting. 

Lemma 4.5. Let C be a prescribed constant, let P be an n-po&t set in E a, and let 

r < n • be a parameter, where ~ = ~(C) > 0 is a constant. Then we can buiM in 

O(n log r) time a data structure, which computes the number of  points of  P in a given 

query simplex in O(n/r c) time, and which can be maintained under deletions of  points 

from P, in 0(1) time per delete operation (the value of  n in the query time remains 

the original cardinality o f  P, even after deletions). 

Proof There are several possible ways to proceed, we use one applying simplicial 

partitions. Let t be a sutficiently large power of r. In the preprocessing phase we 

compute in O(n log r) time a simplicial partition H for P, with at most t classes 

and with crossing number O(t 1 - ~/~+~). For  every (Pi, Ai) ~ FI, we store the simplex 

Ai, the list of points of Pi, and their number. Given a query simplex a, we first 

find the simplices of II crossed by some of the hyperplanes bounding a, and we 

directly test the points of the corresponding classes for membership in a. We then 

add the point counts for all simplices of I-I completely contained in ~, obtaining 
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the number of points of P n tr. The query time will be 

O(t + (n/t)t 1-1/d+~) = O(t + n/t~/d-~). 

If t is a large enough power of r and ~(C) is small enough, this does not exceed 

O(n/rC). Finally the deletion of a point is performed by marking the point as deleted 

in the appropriate list, and updating the appropriate point count. [] 

Lemma 4.6. Let  P, n, s, r be as in Theorem 3.1 and let r < n ~, where ~ > 0 & a 

certain constant. A simplicial partition as in the Partition Theorem can be con- 

structed in O(n log r) time. 

Proo f  We again go through the proof of the Partition Theorem. First we have 

to compute a (l/0-cutting as in the Test Set Lemma (with t = f~(rl/d)) in time 

O(n log r), which we can do by Proposition 4.4. 

The remaining steps can mostly be performed in time depending polynomiatly 

on r and not depending on n. The only exception is when we select a face of a 

simplex of the cutting E i containing enough points of the set P~. To this end 

we need to count the points in these faces (and then report the points inside the 

selected face). This requires O(r 2) simplex range counting (and fewer reporting) 

queries on an n-point set which, moreover, dynamically evolves--the points are 

deleted from it. By Lemma 4.5, these queries can all be performed in O(n log r) 

time including the preprocessing, if ~t > 0 is chosen small enough. [] 

Theorem 4.7. Let  P, n, s, r be as in Theorem 3.1. 

(i) For every f i x ed  6 > O, a simpliciat partition for  P whose classes Pi satisfy 

s < IP~I < 2s and whose crossing number is O(r 1- 1/d) can be constructed in 

t ime O(n log r), provided that s >_ n ~ (with the constant in the bound on the 

crossing number dependent on 6). 

(ii) For any s, a simplicial partition fo r  P whose classes Pi satisfy s < 1ell < 2s 

and whose crossing number is O(r I - 1/d( log r) °(~)) can be constructed in time 

O(n log r). 

(iii) For any s, a simplicial partition for  P whose classes Pi satisfy s < I P~I < 2s 

and whose crossing number is O(r 1 - i/a) can be constructed in time O(n 1 +~) 

(again with the constant in the bound on the crossing number dependent on 3). 

Proo f  We again iterate the partition construction similarly as in the proof of 

Corollary 3.5, but using Lemma 4.6 this time. When a current point set has size 

m, we set the parameter s to Lm 1 -~_] for the next iteration. Thus after the ith 

iteration, the size of the classes of the current partition are about ntl -')'. In order 

to get claim (i), it suffices to iterate this partition construction a constant number 

of times (until (1 - 0t) i drops below 6). We thus lose a constant factor in the crossing 

number only. For  claim (ii) we iterate the construction at most O( log log n) times, 

losing a 2 °t~°~ log n) = logO(l) n factor in the crossing number altogether. For claim 

(iii) we iterate the construction a constant number of times, until we reach classes 

of size m = O(n ~') for a small enough 6'. For  each of these small classes we still 
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need to compute a simplicial partition with class sizes between s and 2s, where s 

may still be very small compared with m. We now use the polynomial-time 

procedure for computing a simplicial partition without restrictions on the param- 

eter value (implied by the proof of the Partition Theorem). Since the classes for 

which this procedure is applied are small enough, the total running time is of order 

O(n ~ + ~). [ ]  

The preceding theorem allows us to improve the previously mentioned compu- 

tation of ~:-approximations and e-cuttings a little more. In Theorem 4.2 we can 

compute a (1/t)-approximation of size O(t d) in O(n log t) time, provided that 

t d <_< n 1-6 for a fixed 6 > 0. In Proposition 4.4 we then get an improved running 

time O(n log r + r 2d- 1) for r < n 1-6. This improves Theorem 2.1 if r a < n. How- 

ever, the result can be combined with Theorem 2.1, and we can improve the 

running time for cutting computation also for larger values of r, as follows: We 

choose a suitable value of a parameter rl ,  we compute a (1/r0-cutting for H as 

in Theorem 2.1 (ii) together with the collection HA for every simplex of this cutting. 

Then we compute a (rl/r)-cutting for each H a w Ba, where Ba are the hyperplanes 

bounding A. Similarly as in the outline of a randomized cutting algorithm 

following Theorem 2.I, this yields a (1/r)-cutting for H. In order to balance the 

running times appropriately, we put 

Fr + 1/2(d- 1) 1 

rl  = I_ n -~t~d-~---5 J '  

and by straightforward analysis we obtain 

Theorem 4.8. Let  r <_ n 1 - ~ f o r  some f i x e d  J > O. Then a (1/r)-cutting o f  (asympto- 

tically optimal) size O(r d) f o r  a collection o f  n hyperplanes in E d can be computed 

in time O(n logr  + x/nrd-1/2). 

Interestingly, this computation is significantly faster than if we only wanted to 

verify that some collection of triangles (in the plane) is a (1/r)-cutting for given 

collection of n lines, by counting the number of intersections of every side of the 

triangles with the lines, using the fastest-known algorithms (see [A]). For instance, 

for r = n I/~, computing the number of intersections with a given collection of n 

lines for O(r 2) = O(n 2/3) segments by Agarwal's algorithm requires about n 1°/9 

time, while our results yield a (i/r) cutting in almost linear time in this case. 

5. Range Searching 

Using Theorem 4.7, it is now straightforward to establish the following: 

Theorem 5.1. Given a set o f  n points in E a, we can preprocess it for  simplex range 

searchino (with semioroup weiohts) in time O(n log n), store the results in space O(n), 

and then answer queries in time O(n 1- l/d(1og n)°(1)). 
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Proof  We use the simplicial partition from Theorem 4.7 recursively, building a 

partition tree. The leaves of the tree form a partition of P into constant-sized 

subsets. Each inner node v of this tree corresponds to a subset P~ of P and to a 

simplicial partition H~ of P~. Of that simplicial partition, we store only the 

simplices and the cumulative weights of the corresponding subsets in the node v; 

the classes themselves are only represented implicitly, each corresponding to a 

child of v. The simplicial partitions FI v are constructed as in Theorem 4.7(i) with 

s = I_lPvl 1/dj. Hence the size of the sets corresponding to the nodes at level i of the 

partition tree are of order n 1/a', so unlike previous partition trees, ours has depth 

O(log log n). 

In the query answering process we proceed as follows: Given a query simplex 

a, we start in the root. Being in a node v, we take the simplices of the simplicial 

partition H~ one by one, and we handle directly those contained in a or disjoint 

from a, and we proceed into the corresponding children nodes for the other 

simplices. 4 Each of the latter ones must be crossed by at least one of the 

hyperplanes bounding the query simplex, so we recurse in O(r I - l/d) simplices only 

(r = n/s) .  

For the query time T(n), we get a recurrence 

r = FI 1 - 1 / d  

with initial condition T(n) = O(1) for n smaller than some constant. The solution 

is easily verified to be of the claimed form T(n) = O(n 1- l/d(log n)°tl)). 

Since an m-point node of the partition tree uses storage O(m 1-1/d), the total 

space occupied by the tree is linear (we group the nodes of the partition tree 

according to their depth, we bound the size for every level and we find that the 

size of leaves forms a constant fraction of the total size). The preprocessing time 

for constructing the simplicial partition in a node with m points is O(m log m) by 

Theorem 4.7(i), and since the number of points in nodes decreases as a double 

exponential with their depth in the tree, the total preprocessing time is 

O(n tog n). [] 

Let us remark that an analogue of Theorem 5.1 for range reporting can be 

proved along similar lines (with query time O(n 1-1/d(1og n) °~1) + k), where k is the 

number of reported points). 

Chazelle et al. [CSW] describe a "fast" simplex range searching data structure 

with query time O((log n) d+l) and storage and preprocessing time O(nd+~). This 

data structure can be combined with the partition trees to get a space/query time 

tradeoff. We may stop the construction of our partition tree at an appropriate 

level (on a level where the classes corresponding to nodes have some prescribed 

size). Instead of the subtrees of the partition tree below that level, we store the 

fast data structures for the corresponding point sets at these nodes; this is quite 

similar to a construction in [CSW] and we omit the details. We also note that 

4 Note that we can handle both open and closed query simplices. 
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the randomized construction of the "fast" structure can immediately be made 

deterministic using Theorem 2.1. 

Corollary 5.2. Given a set P o f  n points in E d and a parameter m, n < m < n d, we 

can preprocess P for  simplex range searching, deterministically in time O(m 1 +~), 

store the results in space o f  the same order, and then answer queries in time 

(: ) O ~ie 1ogd+ 1 n . 

6. Reducing the Query Time 

In this section we show that we can further improve the query time for simplex 

range searching with linear space. However, this improvement complicates the 

algorithm and so far we also have to sacrifice something in the preprocessing time: 

Theorem 6.1. Given a set o f  n points in E d, we can preproeess it for  simplex range 

searching in t ime O(n 1 +~), store the results in space O(n), and then answer queries 

in time 

O(n 1-1/a(log log n)°~l)). 

For point weights which can be subtracted (i.e., belonging to a group, as for  

instance for  range counting), query time 

O(n I - 1/e2o~log..) ) 

can be achieved. Also f o r  reporting the points in the query simplex we can get 

query time O(n 1- l/d20~l°g*") + k), where k is the number o f  reported points. 

Proof  Let us look why the (log n) °~t~ factor in the query time appears in Theorem 

5.1 : it is because in each level of the partition tree we lose a constant factor in the 

"efficiency" (crossing number) of the partition. From this point of view the best 

thing to do would be to have a single-level partition tree, thus returning back to 

the construction of Welzl [We], [CW]. However, another difficulty arises here: 

we know that only a small number of simplices in the simplicial partition crosses 

the boundary of a query simplex, but we have to detect them, more precisely to 

solve the following two problems: 

A. Which simplices of the simplicial partition are crossed by the boundary of 

the query simplex ? 

B. What is the cumulative weight of points associated with the simplices of the 

simplicial partition which are completely contained in the query simplex? 

In the proof of Theorem 5.1 the size of the simplicial partition was not bigger 

than the query time aimed at, so these problems could have been solved trivially-- 

by inspecting all the simplices. This enforces f~(log log n) levels of the partition 

tree. For a smaller number of levels, the value of r in each node has to be closer 



330 J. Matou~ek 

to the number of points in that node, and we need some secondary data structure 

for Problems A and B. 

Let us begin with Problem B. We note that a simplex is contained in another 

simplex iff all its vertices are. We consider a more general situation, and we show 

the following: 

Lemma 6.2. Let k > 1 be a fixed integer, let A be a set of  n ordered k-tuples of 

points in E a and suppose that every k-tuple is equipped by a semigroup weight. We 

can compute (in time and space O(n(log n)Ck)) a data structure Sk(A) which allows 

us to compute the total weight of  all k-tuples of  A completely contained in a query 

simplex in time O(n 1-1/~ exp(C~,~/log n)) (Ck, C'k constants). 

Proof. We proceed by induction on k. For k = t, the problem is solved by 

Theorem 5.1, so let k > 1. For simplicity of description, let us suppose that all 

points occurring as the components of the k-tuples of A are distinct. Let F be the 

set of the first components the k-tuples of A. 

In order to construct the data structure Sk(A) we build a partition tree as in 

Theorem 5.1 on the set F, this time setting r = m/s = exp(x/log m) in an m-point 

node. Let v be a node storing a simplicial partition H v = {(P1, sl) . . . . .  (P~, s~)}. 

For every class Pi --- F, let Ai ___ A be the set of k-tuples whose first components 

belong to Pi, and let A~ be the set of (k - t)-tuples arising by removing the first 

component from the k-tuples of A~. We compute the data structure Sk- I(A'~) and 

we store it in the node v. 

Given a query simplex tr, we proceed as follows: We start in the root of the 

partition tree. In current (nonleat) node v we find the simplices of the simplicial 

partition Fir completely contained in tr, and, for each such simplex A~, we use the 

data structure Sk-I(A'i) to find the number of k-tuples of A~ contained in tr. 

Also, we find the simplices of Hv crossed by the boundary of tr, and we use the 

appropriate subtrees of v recursively to find the number of k-tuples inside tr 

belonging to the subsets corresponding to such simplices. 

For  the query time Tk(n) we get the recurrence 

Tk(n) < O(r) + O(rl-1/a)Tk(~) q - O(r)Tk- l(2~nr ) 

with r = exp(~/iog n), and we also have Tk- l(n) = O(n' - '/aexp(C~,_, 1 ~  n)) by 

inductive hypothesis. By a straightforward calculation we verify the estimate for 

Tk(n) from this recurrence. We leave the analysis of space requirements and 

preprocessing time to the reader. Let us also remark that similar "multilevel" 

constructions have been used in [CSW] and [AS]. These, however, use a constant 

value of r in the partition trees, so our approach brings some improvement. [] 

As for Problem A, we observe that a simplex is crossed by the boundary of 

another simplex iff some of its edges is. In fact, the simplicial partition guarantees 

not only a small number of simplices crossing the boundary of the query simplex, 
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but even a small number of simplices crossing any of the hyperplanes bounding 

the query simplex. Hence it is enough to have a data structure for reporting all 

segments crossing a query hyperplane h. 

We can achieve the following solution: 

Lemma 6.3. For a set o f  n segments in E a, there exists a data structure for  reporting 

the segments crossing a query' hyperplane, with O(n(log n) °(1)) space and preprocess- 

ing time and O(n 1-1/d(log n) °(1) + k) query time, where k is the number o f  reported 

segments, 

Proof Similarly as in Lemma 6.2 we build a partition tree on the set of left 

endpoints of the segments. The difference to Lemma 6.2 is that, for the secondary 

data structures on the right endpoints, we require only half-space range reporting. 

For this problem, very efficient solutions are known in dimensions two and three:, 

the algorithm of Chazelle et al. [CGL] in the plane and of Chazelle and Preparata 

[CP] in 3-space. The query time for these algorithms is O(logn + k) for an n-point 

set, where k is the number of points reported. The algorithm in [CGL] uses O(n) 

space and O(n log n) preprocessing, the algorithm in [CP] is worse by some 

logarithmic factors (an improved algorithm for this problem is given by Aggarwal 

et al. [AHT]), which is insignificant for us. An efficient solution has recently been 

obtained also for higher dimensions (see [M4]): it is possible to solve the half-space 

range reporting problem with O(n log log n) space, O(n log n) preprocessing time, 

and O(n 1- I/Ld/2J(log n) °(1) + k) query time. 

Let us build a partition tree on the set of left endpoints of our segments, setting 

the parameter s t o  Lm2/3_j (say) in an m-point node. For each class Pi of the 

simplicial partition stored in a node v, we let R i be the set of right endpoints of 

the segments with the left endpoints in Pi, and we store a half-space range reporting 

structure for R~. The total space and preprocessing time for the whole partition 

tree including the secondary data structures remains close to linear. In an m-point 

node v we are answering at most r = m 1/3 half-space range reporting queries on 

at most 2s points each. The additive terms corresponding to the number of 

reported segments in the complexity of these queries at v sum up to O(r I - lid) (this 

follows from the bound on the crossing number of the simplicial partition). The 

sum of the overhead terms for the half-space range reporting queries at v is 

O(mUa(m2/3)t -1/L d/2 3(log n)O(1)) = O(m 1 - l/d), 

and since the depth of the partition tree is O(log log n), we get the claimed 

bound for the total query time. []  

In the general case the solution to Problem B is worse than the solution to 

Problem A. However, if we can subtract the weights of the points, it turns out 

that Problem B can be solved faster, using the solution of Problem A: at a node 

v, we pick one representing point in every class Pi of the simplicial partition 1-I v, 

we let its weight be the total weight of the points of Pi and we build the simplex 

range searching structure as in Theorem 5.1 for these representing points. 
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Problem B is then solved as follows: We first use the auxiliary data structure 

to compute the total weight w of the representing points lying inside the query 

simplex a. From the solution to Problem A we know the simplices crossing the 

boundary of a, and, for each of them, we check whether its representing point lies 

inside a. If it does, we have to subtract its weight from w. With this adjustment 

we obtain the answer to Problem B. 

Similarly we can handle Problem B in the case of range reporting. 

Now we are ready to prove Theorem 6.1. We equip every node of our basic 

partition tree (except for the leaves) by auxiliary data structures solving Problems 

A and B. For an m point node, we choose the size of the classes of the simplicial 

partition in such a way that the time required for solving Problems A and B is 

of order O(mt-tJa), and the space and preprocessing time for the secondary 

structures is of order O(m/log m). Then the total space is easily seen to be linear, 

and the preprocessing time is O(n 1 +~) using Theorem 4.7(iii). 

Generalizing the analysis in the proof of Theorem 5.1, we get that if the work 

on a query in an m-point node is O(m 1- i/a), then the query time depends on the 

depth D of the partition tree--it  will be O(n~-lJa2°tv)). The depth is in turn 

determined by the smallest value of the parameter s we can afford for an m-point 

node of the partition tree. 

For the general case (subtractions not allowed), our solution to Problems A 

and B allows us to put s = 2 c ~°~i~, where C is a sufficiently large constant. 

Hence when passing one level down the tree, the logarithm of the node size is 

reduced to a constant multiple of its square root, which gives the depth 

D = O(log log log n). 

For the case of weights which can be subtracted or for the case of range 

reporting, the improved solution to Problem B allows us to set s = (log m) °~1~, 

and thus the passage one level down in the partition tree reduces the node size 

from m to (log m) °~). It is not difficult to calculate that D = O(log* n) in this case. 

This finishes the proof of Theorem 6.1. [] 

7. Remarks on Dynamization 

The data structures described in the previous section can be easily extended to 

accommodate insertions and deletions of points using a standard approach 

developed by Bentley I'B] and Overmars and van Leeuwen (see [O]). We include 

this for completeness, since a dynamic version of the simplex range searching 

algorithm is useful in various geometric applications. 

Theorem 7.1. A simplex range searching data structure with the same asymptotic 

performance as in Theorem 5.1 can be maintained under insertions and deletions of 

points, with O(log n) amortized time per deletion and O(log z n) amortized time per 

insertion. 

Proof First we note that it is easy to update the weight of a point in the partition 

tree from the proof of Theorem 5.1. It is enough to change the sums of weights 
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for the appropriate simplices. For a single point, there are O(log log n) simplices 

whose corresponding subsets contain that point. 

If the weights can be subtracted, then such an update is completely straightfor- 

ward. However, also without subtraction we can recompute the total weight for 

a node in logarithmic time. To this end we arrange the weights of the children 

nodes of the considered node as leaves of a balanced binary tree. The inner nodes 

of this binary tree then contain the appropriate partial sums. If the weight at one 

leaf of the binary tree is changed, it is enough to recompute weights along 

the path from this leaf to the root of the binary tree. This amounts to 

O(log r) = O(log m) operations in an m-point node of the partition tree. Summing 

this update time along a path from a leaf to the root in the partition tree, we get 

O(tog n) in total (recall that the node size decreases doubly exponentially with 

depth in the partition tree). 

By assigning null weights to points, we can simulate deletions. After hi2 
deletions we always rebuild the structure from scratch, so that we maintain an 

appropriate query time when the point set shrinks significantly. 

It remains to handle insertions. We know that a static structure for n points 

can be built in time O(n log n). If P1 and P2 are disjoint point sets, then the answer 

to a simplex range query on P1 u P2 can be computed from the answers for P~ 

and for P2 in constant time, i.e., the problem is decomposable in the terminology 

of [O]. Thus, applying the method for dynamizing insertions, we arrive at the 

following result: O(log z n) amortized insertion time, and asymptotically the same 

query time as for the static structure. []  

Many more questions concerning dynamization could of course be raised. For 

instance, we may require the time bounds for insertion and deletion to be 

worst-case rather than amortized (to achieve results similar to the ones given by 

Schipper and Overmars [SO] for other types of partition trees), or consider more 

complicated variants of the data structure with some secondary data structures 

attached to the nodes, etc. It does not seem at present that such questions should 

present any substantial difficulties. 
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