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Abstract. There has been much interest in password-authenticated key-
exchange protocols which remain secure even when users choose pass-
words from a very small space of possible passwords (say, a dictionary
of English words). Under this assumption, one must be careful to design
protocols which cannot be broken using off-line dictionary attacks in
which an adversary enumerates all possible passwords in an attempt to
determine the correct one. Many heuristic protocols have been proposed
to solve this important problem. Only recently have formal validations of
security (namely, proofs in the idealized random oracle and ideal cipher
models) been given for specific constructions [3,10,22].

Very recently, a construction based on general assumptions, secure in the
standard model with human-memorable passwords, has been proposed
by Goldreich and Lindell [17]. Their protocol requires no public parame-
ters; unfortunately, it requires techniques from general multi-party com-
putation which make it impractical. Thus, [17] only proves that solutions
are possible “in principal”. The main question left open by their work
was finding an efficient solution to this fundamental problem.

We show an efficient, 3-round, password-authenticated key exchange pro-
tocol with human-memorable passwords which is provably secure under
the Decisional Diffie-Hellman assumption, yet requires only (roughly) 8
times more computation than “standard” Diffie-Hellman key exchange
[14] (which provides no authentication at all). We assume public param-
eters available to all parties. We stress that we work in the standard
model only, and do not require a “random oracle” assumption.

1 Introduction

1.1 Background

Protocols which allow for mutual authentication of two parties and for gener-
ating a cryptographically-strong shared key between them (authenticated key
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exchange) underly most interactions taking place on the Internet. The impor-
tance of this primitive has been realized for some time by the security commu-
nity (see [11] for exhaustive references), followed by an increasing recognition
that precise definitions and formalization were needed. The first formal treat-
ments [4,6,2,20,9,28,11] were in a model in which participants already share some
cryptographically-strong information: either a secret key which can be used for
encryption/authentication of messages, or a public key which can be used for
encryption/signing of messages. The setting arising most often in practice — in
which (human) users are only capable of storing “human-memorable” passwords
(password-authenticated key exchange) — remains much less studied, though
many heuristic protocols exist. Indeed, only recently have formal definitions of
security for this setting appeared [3,10,22,17].

The problem (in the standard model; i.e., without random oracles) is difficult
precisely because it requires “bootstrapping” from a weak shared secret to a
strong one. In fact, it is not even a priori clear that a solution is possible.
Completeness results for multi-party computation [18] do not directly apply here
due to the strong adversarial model considered (see Section 2). In particular,
the adversary may ask for concurrent (arbitrarily-interleaved) executions of the
protocol, may modify messages or even prevent their delivery, may impersonate
participants in the protocol and act as a “man-in-the-middle”, and may corrupt
all protocol participants. Nevertheless, in a very recent paper, Goldreich and
Lindell [17] have shown that in principle, this problem is solvable based on
any trapdoor permutation (leaving open the question of whether a practical
solution is possible). We show, perhaps somewhat surprisingly, the existence
of an efficient solution for human-memorable passwords under the Decisional
Diffie-Hellman assumption.

1.2 The Adversarial Model

The setting is as follows (a formal discussion appears in Section 2): two par-
ties within a larger network who share a weak (low-entropy) password wish to
authenticate each other and generate a strong session key for protecting their
subsequent communication. An adversary controls all communication in the net-
work. Thus, messages may be tampered with, delivered out-of-order, or not de-
livered at all; the adversary may also ask for arbitrarily-interleaved executions of
the protocol. Finally, the adversary may corrupt selected instances (see below) of
the participants and obtain the session keys generated by successful executions
of the protocol. The adversary succeeds if he can cause a participant to compute
a session key which the adversary can then distinguish from random.

Since the space of possible passwords is small, an adversary who has mon-
itored a conversation may enumerate all possible passwords and try to match
the recorded conversation to each one. As an example, any challenge-response
protocol in which one party sends challenge N and the other responds with
f(password, N) is trivially susceptible to this attack, regardless of f (note that
such an attack is not possible by a poly-time adversary, for appropriate choice
of f , when the parties share a high-entropy password). Additionally, the fact
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that the adversary can corrupt instances and determine the actual session key
means that the protocol must ensure consistency between the recorded conversa-
tion and these session keys, even while not revealing any information about the
password. These complications make this problem much harder than the case in
which participants already share a strong key at the outset of the protocol.

What does security mean in a model which is inherently insecure? Indeed,
since passwords are chosen from a small space, an adversary can always try each
possibility one at a time in an impersonation (on-line) attack. Thus, we say a
protocol is secure (informally) if this exhaustive guessing is the best an adversary
can do. For a real-world adversary, such on-line attacks are the hardest to mount,
and they are also the easiest to detect. It is very realistic to assume that the
number of on-line attacks an adversary is allowed is severely limited, while other
attacks (eavesdropping, off-line password guessing) are not.

1.3 Previous Work

The problem of off-line attacks in password-authenticated protocols was first
noted by Bellovin and Merritt [7], followed by a flurry of work in the security
community providing additional solutions with heuristic arguments for their se-
curity (see [11] for exhaustive references). More recently, two formal models
for password-authenticated key exchange have been proposed: one by Bellare,
Pointcheval, and Rogaway [3], based on [4,6] with extensions suggested by [21];
and a second by Boyko, MacKenzie, and Patel [10], following [2] with extensions
given in [28]. While both models have their advantages, we choose to work in
the first model and review the appropriate definitions in Section 2.

These models all assume that two parties wishing to communicate share only
a human-memorable password; in particular, they do not assume a public-key
infrastructure (PKI) which allows participants to generate and share public keys.
Definitions for security in this setting have also been proposed [20,9,28] and, in
fact, the first protocols resistant to off-line dictionary attacks were given in this
model. However, the requirement of a secure PKI is a strong one, and we wish
to avoid it.

Only recently have formal validations of security for specific protocols ap-
peared [3,10,22]. However, these validations are not proofs in the standard model;
[3] relies on ideal ciphers, while [10,22] rely on random oracles. More recently,
Goldreich and Lindell [17] have shown a protocol based on general assumptions
which is secure in the standard model. Interestingly, in contrast to the present
work, their protocol does not require public parameters. Unfortunately, their
construction requires a non-constant number of rounds and also requires tech-
niques from generic multi-party computation [18]. Thus, their scheme serves as
a general plausibility result (a terminology coined in [16]), but is much too inef-
ficient for practical use. Finally, as pointed out by the authors themselves, the
solution of [17] does not allow for concurrent executions of the protocol between
parties using the same password.
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1.4 Our Contribution

Security validation via proofs in the random oracle and ideal cipher models are
useful, as they lend a measure of confidence to protocols whose security would
otherwise be only heuristic. On the other hand, proofs of security in these models
do not necessarily translate to real-world security [12], so it is important to have
proofs under standard cryptographic assumptions. We prove the security of our
construction using only the Decisional Diffie-Hellman (DDH) assumption.

Efficiency is especially important in this setting, where security concerns are
motivated by very practical considerations (human users’ inability to remem-
ber long secrets). We stress that our scheme, though provably secure, is very
practical even when compared to heuristically-secure protocols such as [3,10] or
the original Diffie-Hellman protocol [14] (which does not provide any authen-
tication). Our protocol requires only three rounds and has communication and
computational complexity only (roughly) 5-8 times greater than the above solu-
tions. Furthermore, we are able to construct our scheme without making stronger
assumptions (the DDH assumption is used in [14,3,10]).

Although our solution relies on public-key techniques (in fact, this is neces-
sary [20]) we emphasize that our protocol is not a “public-key solution” (as in
[2,20,9]). In particular, we do not require any participant to have a public key,
but instead rely on one set of common parameters shared by everyone in the
system. This avoids problems associated with public key infrastructures (such
as revocation, centralized trust, key management issues, etc.), and also allows
new servers and clients to join the network at any time during execution of the
protocol without requiring access to an on-line, centralized (trusted) author-
ity (in fact, they do not even need to inform anyone else of their presence).
Furthermore, no participants know the “secret key” associated with the pub-
lic parameters. This eliminates the risk that compromise of a participant will
compromise the security of the entire system.

The construction given here is secure under both the notion of basic security
and the stronger notion of “forward security” (in the weak corruption model).
In this initial version we concentrate on basic security only, and leave the topic
of forward security for the final version.

2 Model and Definitions

The reader is assumed to be familiar with the model of [3], which is the model in
which we prove security of our protocol. For completeness, we review the main
points of their definition here, and refer the reader to [3] for more details.

Principals, Passwords, and Initialization.We have a fixed set of protocol
participants (principals) each of which is either a client C ∈ Client or a server S ∈
Server (Client and Server are disjoint). We let User def= Client ∪ Server. Each C ∈
Client has a password pwC . Each S ∈ Server has a vector PWS = 〈pwC〉C∈Client

which contains the passwords of each of the clients (we assume that all clients
share passwords with all servers). Recall that pwC is what client C remembers



Password-Authenticated Key Exchange Using Human-Memorable Passwords 479

to log in; therefore, it is assumed to be chosen from a relatively small space of
possible passwords.

Before the protocol is run, an initialization phase occurs during which public
parameters are set and passwords are chosen for each client. We assume that
passwords for each client are chosen independently and uniformly1 at random
from the set {1, . . . , N}, where N is a constant, independent of the security
parameter.

Execution of the Protocol. In the real world, protocol P determines how
principals behave in response to signals (input) from their environment. Each
principal is able to execute the protocol multiple times with different partners;
this is modeled by allowing each principal an unlimited number of instances in
which to execute the protocol (see [6]). We denote instance i of user U as Πi

U .
A given instance is used only once. The adversary is assumed to have complete
control over all communication in the network. Thus, the adversary’s interaction
with the principals is modeled via access to oracles whose inputs may range over
U ∈ User and i ∈ IN; this allows the adversary to “interact with” different
instances. Global state is maintained throughout the entire execution for each
instance with which the adversary interacts (this global state is not directly
visible to the adversary); the global state for an instance may be updated by
an oracle during an oracle call, and the oracle’s output may depend upon this
state. The oracle types, as defined in [3], are:

– Send(U, i,M) — This sends messageM to instance Πi
U . The oracle runs this

instance as in a real execution, maintaining state as appropriate. The output
of Πi

U is given to the adversary in addition to other information; see [3].
– Execute(C, i, S, j) — This oracle executes the protocol between instances Πi

C

and Πj
S , where C ∈ Client and S ∈ Server, and outputs a transcript of this

execution. This transcript includes everything an adversary would see when
eavesdropping on a real-world execution of the protocol, as well as other
information; see [3].

– Reveal(U, i) — This outputs the session key ski
U (stored as part of the global

state) of instance Πi
U .

– Test(U, i) — This query is allowed only once, at any time during the adver-
sary’s execution. A random bit b is generated; if b = 1 the adversary is given
ski

U , and if b = 0 the adversary is given a random session key.

Advantage of the Adversary. Event Succ occurs (adversary A succeeds) if
she asks a single Test query, outputs a bit b′, and b′ = b (where b is the bit chosen
by the Test oracle). The advantage of A in attacking protocol P , is defined as as
AdvakeP,A

def= 2Pr[Succ] − 1. If the adversary were unrestricted, success would be
trivial (since the adversary could submit a Reveal query for the same instance
submitted to the Test oracle). Clearly, some restrictions must be imposed. Before
describing these, we formalize the idea of partnering. Intuitively, instances Πi

U

1 This is for ease of presentation only, as our analysis can be extended easily to handle
arbitrary distributions, including users with inter-dependent passwords.
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and Πj
U ′ are partnered if they have jointly run protocol P . Formally, we define

a session-id (sid) for each instance, and say that two instances are partnered
if they hold the same sid (which is not null). Here, we define the sid as the
concatenation of all messages sent and received by an instance (i.e., a transcript
of the execution). The following restriction may now be imposed on an adversary
whose Test query is (U, i): that a Reveal query may not be called on (U, i) or on
(U ′, j), where Πj

U ′ is partnered with Πi
U . Furthermore, instance Π

i
U must have

completed execution, and therefore have a non-null session key defined.
A poly-time adversary will be able to break any protocol by attempting to

impersonate a user and trying all passwords one-by-one (the size of the password
space is independent of the security parameter — indeed, this is what distin-
guishes the problem from that of [4,6]). So, we say that a given protocol is secure
when this kind of attack is the best an adversary can do. More formally, let qsend
be the number of calls the adversary makes to the Send oracle. A protocol is se-
cure if, when passwords are chosen from a dictionary of size N , the adversary’s
advantage in attacking the protocol is bounded by

O(qsend/N) + ε(k),

for some negligible function ε(·). The first term represents the fact that the
adversary can (essentially) do no better than guess a password during each call
to the Send oracle2. In particular, even polynomially-many calls to the Execute
oracle (i.e., passive observations of valid executions) and the Reveal oracle (i.e.,
compromise of short-term session keys) are of no help to an adversary; only on-
line impersonation attacks (which are harder to mount and easier to detect) give
the adversary a non-negligible advantage.

Concrete security is particularly important in this setting since the adver-
sary’s advantage is non-negligible (assuming Send queries are made). We quan-
tify an adversary’s maximum advantage as a function of the adversary’s running
time t and the number of queries made to the Send, Execute, and Reveal oracles
(qsend, qexecute, and qreveal respectively).

3 A Provably Secure Protocol for Password-AKE

3.1 Building Blocks

Our protocol and proof of security rely on a number of building blocks. First, our
protocol uses the Cramer-Shoup cryptosystem [13] which is secure under adap-
tive chosen-ciphertext attack. Actually, we require an extension of the Cramer-
Shoup cryptosystem, which remains secure under adaptive chosen-ciphertext
attack. Our extension defines two “types” of encryption: client-encryption and
2 A tighter definition of security would require that the adversary’s advantage be
bounded by qsend/rN + ε(k), where r is the minimum number of messages an ad-
versary needs to send in order to cause (completion of the protocol and) a non-null
session key to be defined. An analysis of our proof proof indicates that the security
of our construction is indeed tight in this respect.
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server-encryption. Details appear in Appendix B. We will also need a one-time
signature scheme [15] secure against existential forgery [19]. Finally, our proof of
security relies on the Decisional Diffie-Hellman (DDH) assumption [14,8] (note
that the security of the Cramer-Shoup cryptosystem requires the DDH assump-
tion already). We review these components in Appendix A, and also explicitly
quantify their (in)security which is necessary for an explicit analysis of the ad-
versary’s maximum advantage in attacking the key exchange protocol.

Chosen-ciphertext-secure encryption has been used previously in the context
of secure key exchange [2,20,9,28]. However, as pointed out above, our protocol
differs from these works in that it does not require the assumption of a public-
key infrastructure, and no participant holds a secret key or publishes a public
key. Indeed, “decryption” is never performed during execution of our protocol.

3.2 The Protocol

A high-level description of the protocol is given in Figure 1. Let p, q be primes
such that q|p−1, and let G be a subgroup of Z

∗
p of order q in which the DDH as-

sumption holds. During the initialization phase, generators g1, g2, h, c, d ∈ G and
a functionH from a family of universal one-way hash functions [23] (which can be
based on any one-way function [26]) are chosen at random and published. Note
that this public information is not an added assumption3; “standard” Diffie-
Hellman key exchange [14] typically assumes that parties use a fixed generator g
(although this is not necessary), and [3,10] seem to require a public generator g
for their proofs of security. However, we do require that no one know the discrete
logarithms of any of the generators with respect to any other, and thus we need
either a trusted party who generates the public information or else a source of
randomness which can be used to publicly derive the information.

As part of the initialization phase, passwords are chosen randomly for each
client. We assume that all passwords lie in (or can be mapped to) Zq. For typical
values of |q|, this will be a valid assumption for human-memorable passwords.

Execution of the protocol is as follows (see Figure 1): When client C wants
to connect to server S, the client first runs the key generation algorithm for
the one-time signature scheme, giving VK and SK. Then, the client computes
a client-encryption (see Appendix B) of gpwC

1 . This, along with the client’s
name, is sent to the server as the first message. The server chooses random
elements x2, y2, z2, w2 from Zq, computes α′ using the first message, and forms
gx2
1 g

y2
2 h

z2(cdα′
)w2 . The server then computes a server-encryption (see Appendix

B) of gpwC
1 . This is sent back to the client as the second message. The client

selects random elements x1, y1, z1, w1 from Zq, computes β′ using the second
message, and forms K = gx1

1 g
y1
2 h

z1(cdβ′
)w1 . Finally, β′ and K are signed us-

ing the signing key which was generated in the first step. The sid is defined as
the transcript of the entire conversation. A formal description of the protocol
appears in Appendix C.

3 The protocols of [22,17], however, do not require any public information.
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Public information: p, q, g1, g2, h, c, d,H
Client Server

(VK, SK)← SigGen(1k)

r1 ←− Zq

A = gr1
1 ;B = gr1

2

C = hr1g
pwC
1

α = H(Client |VK|A|B|C)
D = (cdα)r1 Client | VK | A | B | C | D✲

x2, y2, z2, w2, r2 ←− Zq

α′ = H(Client |VK|A|B|C)
E = gx2

1 gy2
2 hz2(cdα′

)w2

F = gr2
1 ;G = gr2

2

I = hr2g
pwC
1

β = H(Server |E|F |G|I)
J = (cdβ)r2Server | E | F | G | I | J✛

x1, y1, z1, w1 ← Zq

β′ = H(Server |E|F |G|I)
K = gx1

1 gy1
2 hz1(cdβ′

)w1

Sig = SignSK(β
′ | K) K | Sig ✲

I ′ = I/g
pwC
1

skC = Er1F x1Gy1(I ′)z1Jw1

if VerifyVK((β | K), Sig) = 1

C′ = C/g
pwC
1

skS = Kr2Ax2By2(C′)z2Dw2

else skS ← G

Fig. 1. The protocol for password-AKE. See text for details.

The protocol description in Figure 1 omits many implementation details
which are important for the proof of security to hold. Most important is for both
client and server to perform a “validity check” on the messages they receive. In
particular, each side should check that the values they receive are actually in
the group G and are not the identity (in other words, it is required to check
that the group elements indeed have order q). Note that such validity checks are
required even for chosen-ciphertext security of the underlying Cramer-Shoup
cryptosystem.

Correctness. In an honest execution of the protocol, C and S calculate iden-
tical session keys. To see this, first note that α = α′ and β = β′ in an honest
execution. Then:

skC = (gx2
1 g

y2
2 h

z2(cdα)w2)r1gr2x1
1 gr2y1

2 hr2z1(cdβ)r2w1
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and
skS = (gx1

1 g
y1
2 h

z1(cdβ)w1)r2gr1x2
1 gr1y2

2 hr1z2(cdα)r1w2 ,

and one can verify that these are equal.

Mutual Authentication. We note that the protocol as presented above
achieves key exchange only, and not mutual authentication. However, we can
trivially add mutual authentication by adding a fourth message to the protocol.
Details will appear in the final version.

3.3 Practical Considerations

In practice, a collision resistant hash function (say, SHA-1) can be used instead of
a universal one-way hash function. This has the advantage of increased efficiency,
at the expense of requiring a (possibly) stronger assumption for security.

Efficient one-time signatures [15] can be based on (presumed) one-way func-
tions like SHA-1 or DES. In particular, one-time signatures are much more ef-
ficient than signature schemes which are secure against adaptive (polynomially-
many) chosen message attacks.

Client computation can be reduced (which is important when the client
is smartcard-based) as follows: instead of using a one-time signature scheme
where fresh keys need to be generated each time a connection is made, a signing
key/verification key can be generated once (upon initialization) and used for the
lifetime of the client. Particularly suited for such applications are “on-the-fly”
signature schemes such as [27,24,25]. This initialization step may be done by a
host computer (with the keys then downloaded to the smartcard) or this step may
be done off-line before the first connection is made. The proof of security given
in Section 4 still holds. The disadvantage is that this signature scheme is now
required to be secure against existential forgeries even when polynomially-many
messages are signed (and not just a single message). In some cases, however, this
tradeoff may be acceptable.

Finally, note that we may store gpwC
1 at the server instead of pwC and thereby

avoid computing the exponentiation each time the protocol is executed.

4 Security of the Protocol

We concentrate here on the basic security of the protocol, and leave the corre-
sponding results about forward security to the full paper. The following theorem
indicates that the protocol is secure, since all lower order terms are negligible in
k (see Appendix A for definitions of the lower order terms).

Theorem 1. Let P be the protocol of Figure 1, where passwords are chosen from
a dictionary of size N , and let k = |q| be the security parameter. Let A be an
adversary which runs in time t and asks qexecute, qsend, and qreveal queries to the
respective oracles. Then:
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AdvakeP,A <
qsend
2N

+ 2qsendεsig(k, t) + 2εddh(k, t) + 2qsendεcs(k, t, qsend/2)

+
min{2qreveal, qsend}

q
+

2min{qreveal, qexecute}
q2

.

It will be helpful to develop some intuition and notation before presentation
of the full proof. First, note that the Execute oracle cannot help the adversary.
The reason is that Diffie-Hellman key exchange [14] forms the “heart” of this
protocol, and this is secure under a passive attack.

Next, consider active “impersonation attacks” by the adversary. The protocol
has three flows. When an adversary tries to impersonate a client (in an attempt
to determine the eventual session key of a server), the adversary must send the
first and third messages; when the adversary wants to impersonate a server (in
an attempt to determine the eventual session key of a client), the adversary must
“prompt” the client to generate the first message and must then send the second
message. Consider an adversary impersonating a client, and let the first message
(which comes from the adversary) be 〈Client|VK|A|B|C|D〉. We say this message
is valid if:

logg1
A = logg2

B = logh(C/g
pwC
1 ) = logcdα′ D, (1)

where α′ = H(Client,VK, A,B,C), and pwC is the password for Client. We
define valid analogously for the second message of an adversary impersonating
a server (note that here the password which determines validity depends upon
the name of the client to which the adversary sends the message). We do not
define any notion of validity for the third message. The following fact is central
to our proof:

Fact 1 When an invalid message is sent to an instance, the session key com-
puted by that instance is information-theoretically independent of all messages
sent and received by that instance. This holds for both clients and servers.

Proof. Consider the case of an adversary interacting with a server, with the first
message as above. Let θ1

def= logg1
g2; θ2

def= logg1
h; and θ3

def= logg1
(cdα′

). Con-
sider the random values x2, y2, z2, w2 (see Figure 1) used by the server instance
during its execution. Element E of the second message constrains these values
as follows:

logg1
E = x2 + y2θ1 + z2θ2 + w2θ3. (2)

The session key is calculated asKr2 multiplied by sk′
S = Ax2By2(C/gpwC

1 )z2Dw2 .
But we have:

logg1
sk′

S = x2 logg1
A+ y2θ1 logg2

B + z2θ2 logh(C/g
pwC
1 ) + w2θ3 logcdα′ D.(3)

When equation (1) does not hold (i.e., the message is invalid), equations (2) and
(3) are linearly independent and sk′

S ∈R G is information-theoretically indepen-
dent of the transcript of the execution. A similar argument holds for the case of
an adversary interacting with a client.
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Let Πi
U be an instance to which the adversary has sent an invalid message.

Fact 1 implies that the adversary has advantage 0 in distinguishing the session
key generated by this instance from a random session key. Thus, an adversary’s
(non-zero) advantage can come about only by sending a valid message to an
instance.

We call a message sent by an adversary previously-used if the message was
previously output by a client or server running the protocol (that is, the adver-
sary has simply “copied” and re-used the message), and is new otherwise. The
following lemma bounds the adversary’s probability of coming up with a new,
valid first or second message:

Lemma 1. An adversary’s probability of sending, at any point during the pro-
tocol, a first or second message which is both new and valid is bounded by
O(qsend/N) + ε(k), for some negligible function ε(·).
This lemma essentially follows from the chosen-ciphertext security (and hence
non-malleability) of extended Cramer-Shoup encryption (see [13] and Appendix
B). Detail appear in the full proof, below. The lemma reflects the fact that the
adversary can (trivially) “guess” the appropriate password4 each time he sends
a first or second message.

The only remaining point to argue is that previously-used messages cannot
significantly help the adversary. First note that if an adversary re-uses a first
message, the adversary will (with high probability) not be able to compute a
valid signature to include with the third message. If an adversary re-uses a
second message, the full proof indicates that without knowing the randomness
used to generate that message, the adversary will gain only negligible advantage.

Proof (of Theorem 1). We refer to the formal specification of the protocol as it
appears in Appendix C. The number of clients and servers is polynomial in the
security parameter, and this number is fixed in advance5 and public.

We imagine a simulator who controls all oracles to which the adversary has
access. The simulator runs the protocol initialization as described in Appendix
C, Figure 2, including selecting passwords for each client6. The simulator answers
the adversary’s oracle queries as defined in Appendix C, Figures 3 and 4. The
adversary succeeds if it can guess the bit b that the simulator uses during the
Test query (see Section 1 for additional details).

We define a sequence of transformations P1, . . . to the original protocol P0,
and bound the effect each transformation has on the adversary’s advantage.
4 The lemma assumes that passwords are chosen uniformly at random from the pass-
word space, but can be appropriately modified to handle arbitrary distributions.

5 As mentioned in Section 1.4, clients and servers can in fact be dynamically added to
the protocol during execution at the request of the adversary (and even with pass-
words chosen by the adversary, when forward security is considered). For simplicity,
we focus on the static case.

6 For simplicity we assume that users choose passwords independently and with uni-
form distribution. The analysis can easily be modified to accommodate arbitrary
distributions.
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Then, we bound the adversary’s advantage in the final (transformed) protocol;
this gives an explicit bound on the adversary’s advantage in the original protocol.

Consider the verification keys output by the Send0 oracle during the course
of the protocol. We may restrict ourselves to the case where the adversary is
unable to forge a new message/signature pair for any of these keys during the
course of the protocol. This can change the adversary’s success probability (as
a simple hybrid argument shows) by at most qsend0εsig(k, t) ≤ qsendεsig(k, t).

In protocol P1, calls to the Execute oracle are answered as before, except that
C and I are chosen at random from G. The following bounds the effect on the
adversary’s advantage:

Lemma 2. The adversary’s success probability in P1 differs by at most εddh(k, t)
from its advantage in P0.

Proof. The simulator uses the adversary as a black box to distinguish Diffie-
Hellman quadruples from random quadruples. Given quadruple (g, h, s, t) and
group G, it runs the initialization as follows:

a, b, �← Zq

g1 = g; g2 = ga; c = gb, d = g�

H ← UOWH
Publish parameters (q, g1, g2, h, c, d,H) and group G
〈pwC〉C∈Client ← {1, . . . , N}

By a random self-reducibility property [28,1], the simulator can generate
sT , tT (for T = 1, . . .) such that, if (g, h, s, t) is a Diffie-Hellman quadruple, so
is (g, h, sT , tT ); on the other hand, if (g, h, s, t) is a random quadruple, then
(g, h, sT , tT ) is distributed among random quadruples with g and h fixed. The
T -th call to Execute is answered as:

Execute(Client, i,Server, j) —
(VK, SK) R←− SigGen(1k) x1, x2, y1, y2, z1, z2, w1, w2

R←− Zq

A = s2T ; B = sa
2T ; C = t2T · gpwC

1 α = H(Client | VK|A|B|C)
D = sb+α�

2T msg-out1 ←− 〈Client | VK | A | B | C | D〉
E = gx1

1 gx1
2 hz1(cdα)w1 F = s2T+1; G = sa

2t+1; I = t2T+1 · gpwC
1

β = H(Server|E|F |G|I)
J = sb+β�

2T+1 msg-out2 ←− 〈Server | E | F | G | I | J〉
K = gx2

1 gy2
2 hz2(cdβ)w2 msg-out3 ←− 〈K | SignSK(β|K)〉

skj
S←−sk

i
C←− Ax1By1(C · g−pwC

1 )z1Dw1F x2Gy2(I · g−pwC
1 )z2Jw2

sidj
S←−sid

i
C←−〈msg-out1 |msg-out2 |msg-out3〉

return 〈msg-out1,msg-out2,msg-out3〉

If (g, h, s, t) is a Diffie-Hellman quadruple, this is an exact simulation of P0; on
the other hand, if it is a random quadruple, this is an exact simulation of P1.

In protocol P2, calls to Execute are answered as before except that the session
key is chosen randomly from G. The adversary’s view (and thus its success proba-
bility) is within statistical distance min{qreveal, qexecute}/q2 from the adversary’s
view in protocol P1. Indeed, Fact 1 shows that the session key is independent
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of the transcript of the execution seen by the adversary whenever msg-out1 or
msg-out2 are not valid (for the appropriate password). But when C and I are
chosen randomly, the probability that both msg-out1 and msg-out2 are valid is
exactly 1/q2.

In protocol P3, the public parameters are generated by choosing g1 and g2
randomly from G, then choosing x1, x2, y1, y2, and z randomly from Zq and set-
ting c = gx1

1 g
x2
2 , d = gy1

1 g
y2
2 , and h = gz

1 ; H is chosen as before. Furthermore,
the Send3 oracle is changed as follows: the simulator first checks whether first-
msg-in (which was the message sent to the Send1 oracle for the same instance)
is previously-used (see above). If so, the current query to the Send3 oracle is an-
swered normally. Otherwise, let first-msg-in = 〈Client|VK|A|B|C|D〉. The simu-
lator computes α = H(Client|VK|A|B|C) and checks whetherAx1+y1αBx2+y2α =
D and gpwC

1 Az = C. If so, first-msg-in is said to appear valid, and the query is
answered normally. If not, first-msg-in is said to appear non-valid, and the query
is answered normally except that the session key is chosen randomly from G.

Calls to Send2(Client, i,msg-in) are answered in similar fashion. If msg-in
is previously-used, the query is answered normally. Otherwise, let msg-in =
〈Server|E|F |G|I|J〉. The simulator computes β=H(Server|E|F |G|I) and checks
whether F x1+y1βGx2+y2β = J and gpwC

1 F z = I. If so, msg-in is said to appear
valid, and the query is answered normally. If not, msg-in is said to appear non-
valid, and the query is answered normally but the session key for instance Πi

C

is chosen randomly from G.
The adversary’s view of this protocol is exactly equivalent to its view of

protocol P2. When first-msg-in or msg-in appear non-valid, they are in fact
not valid for password pwC , and Fact 1 shows that the resulting session key
is independent of the adversary’s view. On the other hand, a message which
appears valid may in fact be invalid, but since the query is answered normally
the adversary’s view is not affected.

In protocol P4, the definition of the adversary’s success is changed:

– If, during the course of answering a Send3 oracle query, first-msg-in is new
and appears valid, the session key is set to the special value ∇. If the adver-
sary ever asks a Reveal query for this instance, the simulator halts immedi-
ately and the adversary succeeds.

– If, during the course of answering a Send2 oracle query, msg-in is new and
appears valid, the session key is set to the special value ∇. If the adversary
ever asks a Reveal query for this instance, the simulator halts immediately
and the adversary succeeds.

– Otherwise, the adversary succeeds, as before, by guessing the bit b.

This can only increase the advantage of the adversary.
In protocol P5, calculation of the session key by the Send3 oracle is modified.

First, every time K is computed by the simulator when answering a call to the
Send2 oracle, the simulator stores K along with its associated values of x, y, z, w.
When a call is made to the Send3 oracle with msg-in = 〈K|Sig〉, there are four
possibilities:
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– first-msg-in is new and appears valid. In this case the session key is set to
∇ and the simulator behaves as in P4 (above).

– first-msg-in is new and appears non-valid. In this case, the simulator chooses
the session key randomly (as in P3, P4).

– first-msg-in is previously-used and VerifyVK((β|K),Sig) = 0. In this case, the
simulator chooses the session key randomly (as in P0, . . . , P4).

– first-msg-in is previously-used and VerifyVK((β|K),Sig) = 1. It must be the
case that 〈K,Sig〉 was previously output by the Send2 oracle (since we as-
sume the adversary has not forged any new message/signature pairs). The
simulator therefore knows values x′, y′, z′, w′ such thatK = gx′

1 g
y′
2 h

z′
(cdβ)w

′
.

Let first-msg-out = 〈Server|E|F |G|I|J〉 and I∗ = I · g−pwC
1 . The simulator

calculates the session key as:

ski
S ←− AxBy(C∗)zDwF x′

Gy′
(I∗)z

′
Jw′

.

The adversary’s view is exactly equivalent to the adversary’s view in P4 (since
Kr does equal F x′

Gy′
(I∗)z

′
Jw′

when first-msg-out is a valid message; it is valid
since it was generated by the simulator who knows the appropriate password).

In protocol P6 we change oracle Send1 so that component I is chosen at
random from G. This cannot change the adversary’s success probability by
more than qsend1εcs(k, t, qsend2 + qsend3). If it did, the simulator could break
extended-CS encryption under a chosen ciphertext attack as follows: parame-
ters for extended-CS encryption become the public parameters for the proto-
col. During the course of the protocol, the simulator may determine whether
a new message appears valid by submitting it to the decryption oracle and
checking whether the returned plaintext is equal to the appropriate password.
When calls to the Send1 oracle are made, the simulator submits the appropri-
ate password as the plaintext along with the server name, the value α, and
a request for a server-encryption (see Appendix B). In return, the simulator
is given 〈Server|E|F |G|I|J〉 (which may be an encryption of either the appro-
priate password or a random group element) along with x, y, z, w such that
E = gx

1g
y
2h

z(cdα)w. A simple hybrid argument bounds the change in the adver-
sary’s success probability.

In protocol P7, the Send2 oracle is changed so that whenever msg-in was
previously-used the session key is chosen at random from G. To ensure consis-
tency, the Send3(Server, i, ∗) oracle is changed as follows: if sidi

S matches sidj
C for

some other instance Πj
C , then ski

S is set equal to skj
C . The statistical difference

between the adversary’s view in this protocol and the previous one is bounded
by min{qreveal, qsend2}/q. Indeed, Fact 1 shows that the views are equivalent
when msg-in is invalid. Furthermore, the probability that msg-in is valid for the
appropriate password is 1/q (since I was chosen at random).

In protocol P8, the Send0 oracle is changed so that component C is chosen
randomly from G. Following a similar analysis to that of protocol P6, this cannot
change the adversary’s success probability by more than qsend0εcs(k, t, qsend2 +
qsend3). Finally, in protocol P9 the Send3 oracle is changed so that a random ses-
sion key is chosen when first-msg-in is previously-used. Following a similar anal-
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ysis to that of protocol P7, the statistical difference between the adversary’s view
in this protocol and the previous protocol is bounded by min{qreveal, qsend3}/q.

Consider the adversary’s advantage in protocol P9. The adversary’s view
is entirely independent of the passwords chosen by the simulator unless the
adversary manages to submit a new msg-in which appears valid at some point
during execution of the protocol; i.e., succeeds in guessing the password. The
adversary’s probability of guessing the password, however, is precisely (qsend2 +
qsend3)/N (this assumes that passwords are selected uniformly; an analogous
calculation can be done when this is not the case). The adversary’s advantage
in protocol P9 is thus bounded by qsend/2N (note that the adversary must ask a
qsend0 query for a qsend2 query to be meaningful, and similarly must ask a qsend1

query for a qsend3 query to be meaningful). The adversary’s advantage in the
original protocol is therefore bounded by the expression in Theorem 1.
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A Building Blocks

Decisional Diffie-Hellman (DDH) Assumption (see [8]). For concreteness,
we let G be a subgroup of Z

∗
p of order q where p, q are prime, q|p − 1, and

|q| = k, the security parameter. Let g be a generator of G. The DDH assumption
states that it is infeasible for an adversary to distinguish between the following
distributions:

{x, y, z ← Zq : (gx, gy, gxz, gyz)} and {x, y, z, w ← Zq : (gx, gy, gz, gw)}.

More precisely, choose at random one of the above distributions and give ad-
versary A an element chosen from this distribution. The adversary succeeds by
guessing which distribution was chosen; the advantage is defined as usual. Let
εddh(k, t) be the maximum advantage of any adversary which runs in time t. The
DDH assumption is that for t = poly(k), the advantage εddh(k, t) is negligible.
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One-Time Digital Signatures (see [19,15]). Let SigGen(1k) be a probabilis-
tic algorithm generating a public verification key/private signing key (VK,SK).
Signing message M is denoted by Sig ← SignSK(M), and verification is de-
noted by b = VerifyPK(M,Sig) (the signature is correct if b = 1). Consider
the following experiment: SigGen(1k) is run to generate (VK,SK). Message M
is chosen, and the signature Sig ← SignSK(M) is computed. Adversary A is
given (PK,M,Sig) and outputs a pair (M ′,Sig′) which is not equal to the mes-
sage/signature pair it was given. The adversary’s advantage is defined as the
probability that VerifyPK(M ′,Sig′) = 1. Let εsig(k, t) be the maximum possible
advantage of any adversary which runs in time t. The assumption is that for
t = poly(k), this value is negligible. Note that a signature scheme meeting this
requirement can be constructed [15,26] given any one way function7.

Extended Cramer-Shoup Encryption ([13]). The Cramer-Shoup cryptosys-
tem is an encryption scheme secure under adaptive chosen ciphertext attack (see
[13] for formal definitions). We extend their cryptosystem, as discussed in Ap-
pendix B; our extension remains secure under adaptive chosen ciphertext attack.
The extension gives two “types” of encryption algorithms: a client-encryption
algorithm and a server-encryption algorithm, both using the identical public
parameters.

Consider the following experiment: ExtCSGen(1k) is run to generate public
key/private key pair (pk, sk). Adversary A is given pk and is also given access to a
decryption oracle which, given ciphertext C, returns the corresponding plaintext
P (or ⊥ if the ciphertext is invalid). The adversary outputs a plaintext x, and
may request either a client-encryption or a server-encryption of x. A random
bit b is chosen; if b = 0 the adversary is given a random encryption (of the
type requested) of x, while if b = 1 the adversary is given a random encryption
(of the type requested) of a random element. The adversary may continue to
submit queries to the decryption oracle, but cannot ask for decryption of the
challenge ciphertext. The adversary succeeds by guessing b; the advantage is
defined as usual. Let εcs(k, t, d) be the maximum possible advantage of any
adversary which runs in time t and asks at most d decryption oracle queries. In
[13] (see also Appendix B) it is proved that for t, d = poly(k), the advantage
εcs(k, t, d) is negligible (under the DDH assumption). A concrete security bound
can be found in [1].

B Extended Cramer-Shoup Encryption

We consider here an extension of the Cramer-Shoup encryption scheme [13]
which is chosen-ciphertext secure. No new techniques are used, and the proof of
security for the modified scheme is exactly the same as for the original with the
exception of a few details which one must be careful to get right.

Public parameters are generators g1, g2, h = gz
1 , c = gx1

1 g
x2
2 , d = gy1

1 g
y2
2 ∈ G

along with a universal one-way hash function H. Ciphertexts are of the form:
7 The DDH assumption implies that f(x) = gx is a one-way function.
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〈A|B|C|D|E|F 〉. Decryption is done as in [13]: first, α = H(A,B,C,D,E) is
computed, and the following condition is checked:

Cx1+y1αDx2+y2α ?= F.

If it fails output ⊥. Otherwise, output the plaintext E/Cz.
The essential difference lies in the definition of the encryption oracle. The

adversary submits a plaintext m but also submits additional information, and
the encryption oracle returns some side information in addition to the ciphertext.
More precisely, the adversary includes a bit b ∈ {0, 1}, which determines whether
the plaintext is encrypted via client-encryption or server-encryption. For the
case of client-encryption, the adversary also includes Client ∈ Client. For the
case of server-encryption, the adversary includes Server ∈ Server and a value
α ∈ Zq. The encryption oracle sets m′ = m with probability 1/2 and chooses m′

randomly from G otherwise. Encryption is then carried out as follows:

Client-encryption(m′,Client)
(VK,SK)← SigGen(1k)
A = Client;B = VK
r ← Zq

C = gr
1;D = gr

2;E = hrm′

α = H(A,B,C,D,E)
F = (cdα)r

return(〈A,B,C,D,E, F 〉,SK)

Server-encryption(m′,Server, α)
x, y, z, w, r ← Zq

A = Server;B = gx
1g

y
2h

z(cdα)w

C = gr
1;D = gr

2;E = hrm′

β = H(A,B,C,D,E)
F = (cdβ)r

return(〈A,B,C,D,E, F 〉, x, y, z, w)

Theorem 2. The encryption scheme outlined above is secure (in the sense of
indistinguishability) under an adaptive chosen ciphertext attack.

Sketch of Proof (Informal) The proof of security exactly follows [13], and
it can be easily verified that the additional information given to the adversary
does not improve her advantage. One point requiring careful consideration is
the adversary’s probability of finding a collision in H. If H is collision resistant
(a stronger assumption than being universal one-way), there is nothing left to
prove. If H is universal one-way, however, it can first be noted that VK or B
could be selected by a simulator before H is given to it (if the simulator prepares
the public key such that it knows logg1

g2 it can produce a representation of B
for any value α given to it by the adversary). But, we must also deal with the
fact that the adversary gets to choose A (and the bit b which determines whether
client-encryption or server-encryption is used) after seeing H. However, since the
set User is fixed in advance, and (at worst) of size polynomial in the security
parameter, the simulator can “guess” the adversary’s choices in advance (before
being given H) and this will only affect the simulator’s probability of finding a
collision by a polynomial factor (details omitted).
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C Formal Specification of the Protocol

Initialize(1k) —
Select p, q prime with |p| = k and q|p− 1; this defines group G
Choose random generators g1, g2, h, c, d← G
H ← UOWHF
Publish parameters (q, p, g1, g2, h, c, d, H)
〈pwC〉C∈Client ← {1, . . . , N}

Fig. 2. Specification of protocol initialization.

Execute(Client, i,Server, j) —
(VK, SK) R←− SigGen(1k) x1, x2, y1, y2, z1, z2, w1, w2, r1, r2

R←− Zq

A = gr1
1 ; B = gr1

2 ; C = hr1g
pwC
1 α = H(Client | VK|A|B|C)

D = (cdα)r1 msg-out1 ←− 〈Client | VK | A | B | C | D〉
E = gx1

1 gx1
2 hz1(cdα)w1 F = gr2

1 ; G = gr2
2 ; I = hr2g

pwC
1

β = H(Server | E|F |G|I)
J = (cdβ)r2 msg-out2 ←− 〈Server | E | F | G | I | J〉
K = gx2

1 gy2
2 hz2(cdβ)w2 msg-out3 ←− 〈K | SignSK(β|K)〉

skj
S←−sk

i
C←− Ax1By1(C · g−pwC

1 )z1Dw1F x2Gy2(I · g−pwC
1 )z2Jw2

sidj
S←−sid

i
C←−〈msg-out1 |msg-out2 |msg-out3〉

return 〈msg-out1,msg-out2,msg-out3〉

Reveal(User, i) —
return ski

U

Test(User, i) —
b

R←− {0, 1}, sk← G
if b = 0 return sk else return ski

U

Fig. 3. Specification of the Execute, Reveal, and Test oracles to which the adversary has
access. Note that q, g1, g2, h, c, d,H are public, and G is the underlying group. Subscript
S refers to the server, and C to the client.
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Send0(Client, i,Server) —
(VK, SK) R←− SigGen(1k) r

R←− Zq

A = gr
1 ; B = gr

2 ; C = hrg
pwC
1 α = H(Client|VK|A|B|C)

msg-out←− 〈Client | VK | A | B | C | (cdα)r〉
statei

C ←− 〈SK, r,msg-out〉
return msg-out

Send1(Server, i, 〈Client, VK, A, B, C, D〉) —
x, y, z, w, r

R←− Zq α = H(Client|VK|A|B|C) E = gx
1 gy

2hz(cdα)w

F = gr
1 ; G = gr

2 ; I = hrg
pwC
1 β = H(Server | E|F |G|I)

msg-out←− 〈Server | E | F | G | I | (cdβ)r〉
statei

S←−〈msg-in, x, y, z, w, r, β,msg-out〉
return msg-out

Send2(Client, i, 〈Server, E, F, G, I, J〉) —
〈SK, r,first-msg-out〉 ←−statei

C β = H(Server|E|F |G|I)
x, y, z, w

R←− Zq K = gx
1 gy

2hz(cdβ)w

msg-out←− 〈K | SignSK(β|K)〉 sidi
C←−〈first-msg-out |msg-in |msg-out〉

I∗ = I · g−pwC
1 ski

C←− ErF xGy(I∗)zJw

return msg-out

Send3(Server, i, 〈K, Sig〉) —
〈first-msg-in, x, y, z, w, r, β,first-msg-out〉 ←−statei

S

〈VK, A, B, C, D〉 ←− first-msg-in
sidi

S←−〈first-msg-in | first-msg-out |msg-in〉
if VerifyVK((β|K), Sig) = 1

C∗ = C · gpwC
1 ski

S←− AxBy(C∗)zDwKr

else
ski

S
R←− G

return ε

Fig. 4. Specification of the Send oracles to which the adversary has access. Note that
q, g1, g2, h, c, d,H are public, and G is the underlying group. Subscript S refers to the
server, and C to the client. The third argument to the Send oracles is denoted msg-in.
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