
Efficient Path Conditions in Dependence Graphs

Torsten Robschink, Gregor Snelting
Universität Passau

Lehrstuhl für Software-Systeme
Innstraße 33, D-94032 Passau, Germany

{robschink, snelting}@fmi.uni-passau.de

ABSTRACT
Program slicing combined with constraint solving is a pow-
erful tool for software analysis. Path conditions are gener-
ated for a slice or chop, which – when solved for the input
variables – deliver compact “witnesses” for dependences or
illegal influences between program points.

In this contribution we show how to make path conditions
work for large programs. Aggressive engineering, based on
interval analysis and BDDs, is shown to overcome the po-
tential combinatoric explosion. Case studies and empirical
data will demonstrate the usefulness of path conditions for
practical program analysis.

1. INTRODUCTION
In many safety critical software applications, it has to

be guaranteed that critical computations cannot be unduly
influenced by internal or external agents. Technically, such
safety checks have to determine which program parts can
influence a specific, critical program point, and then ana-
lyse which of these influences are legitimate and which are
safety violations. For the first part of this task, a well-known
method exists: program slicing. Slicers such as CodeSurfer
[8] or ValSoft [11] use a system dependence graph in order to
determine for a given statement x all statements which may
influence x. Slicing today is reasonably fast and can deal
with real programs written in real languages. There are
some language features which are hard to deal with – such
as pointer arithmetic in C – but in a safety-critical context,
such features can be disallowed by programming standards.

Unfortunately, even if the best known algorithms are used,
slicing is quite imprecise in practice: slices are bigger than
expected and sometimes too big to be useful [3]. Further-
more, slicing gives only binary information: it can decide
whether statement y may influence statement x, or whether
this is definitely not the case; but slicing does not say how
“strong” the influence is or under which circumstances it
can happen. We therefore proposed to combine slicing with
path conditions and constraint solving [18, 11]: for any path

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

y →∗ x in the system dependence graph, a necessary condi-
tion PC(y, x) is determined which must hold in order that
some information flow along the path is possible. After gen-
eration and simplification of these path conditions, they are
fed to a constraint solver, which hopefully can solve them for
the program’s input variables. The resulting formulae are
necessary (if not sufficient) conditions for the program input
which must hold in order that y influences x: if input values
satisfying the conditions are given to the program, the in-
fluence will become visible. In case of safety violations the
inputs thus serve as witnesses for the illegal behaviour.

In [18, 11], we presented fundamental formulae and theo-
rems for the definition and simplification of path conditions.
But back then we did not have an implementation and no
empirical data. Hence the contribution of this work is three-
fold: 1. we recapitulate the computation of path conditions
in program dependence graphs; 2. we demonstrate how in-
terval analysis and BDDs make path conditions scale; 3. we
present case studies which illustrate the use of path condi-
tions in safety analysis.

The work described here is implemented on top of the
ValSoft Slicer. ValSoft is a slicer for ANSI C; it uses a vari-
ety of techniques to handle the full language including side
effects, procedures, libraries, pointers, unstructured control
flow etc. ValSoft can build a dependence graph for 50000
lines of C in a few minutes. Forward and backward slices or
chops can be interactively computed and visualized in the
source text.

2. BACKGROUND AND FOUNDATIONS
We assume that the reader has some basic knowledge of

program slicing (see e.g. [21]). In this section, we review
some notation and some fundamental properties of path con-
ditions (see [18, 11] for a more formal treatment).

2.1 Dependences and slices
We say a statement y influences statement x (or equiva-

lently, x is dependent on y) if either the values computed
at x or the mere execution of x depend on values computed
at y. Weiser’s original slicing definition made the notion of
influence precise by demanding that the program fragment
consisting of all y influencing x produces the same effects at
x as the original program. We write I(y, x) if y influences
x. Note that I(y, x) is in general undecideable.

Slicing computes a conservative approximation for I.
Slices can be defined via the system dependence graph [16,
21]. This graph SDG = (N,→) contains nodes for every
statement or expression of the program, and edges which

 1 int data[100];
 2 int temp[100];
 3
 4 void move (int* fromlist, int first, int last,
 5 	 int* tolist, int index) {
 6 while (first <= last)
	7 tolist[index++] = fromlist[first++];
 8 }
 9
10 void merge (int first, int mid, int last) {
11 int index, index1, index2;
12
13 index = 0;
14 index1 = first;
15 index2 = mid + 1;
16
17 while ((index1 <= mid) && (index2 <= last)) {
18	 if (data[index1] < data[index2])
19	 temp[index++] = data[index1++];
20	 else
21	 temp[index++] = data[index2++];
22 }
23
24 if (index1 > mid)
25	 move (data, index2, last, temp, index);
26 else
27	 move (data, index1, mid, temp, index);
28
29 move(temp, 0, last-first, data, first);
30 }
31
32 void mergesort (int left, int right) {
33 int m;
34 m = (left+right) / 2;
35 if (left < right) {
36 	 mergesort (left, m);
37 	 mergesort (m + 1, right);
38 	 merge (left, m, right);
39 }
40 }
41
42 int main () {
43 int i;
44
45 data[0]=999;
46 data[1]=1;
47 data[2]=23;
48 data[3]=55;
49 data[4]=44;
50
51 mergesort (0, 4);
52
53 for (i=0; i < 5; ++i) {
54	 printf ("%d ",data[i]);
55 }
56 printf ("\n");
57
58 return 0;
59 }

 [m = (left+right)/2]

1

global constraints
multiple data dependency
propagation of global variable

Φ

Φ

2

3

4

5

Figure 1: A mergesort program and part of its SDG

represent control and data dependences between them. N
consists of various kinds of nodes, such as statements, ex-
pressions, parameters, and control predicates. The control
predicates are denoted C, and ν ∈ C ⊆ N typically is a con-
dition in an if- or while-statement governing the execution of
other statements. → comprises data dependence edges, con-
trol dependence edges, and summary edges. The set of con-
trol dependence edges is denoted by →C (where →C ⊆ →).
A control predicate ν must evaluate to true (or some spe-
cific value) in order that execution proceeds along the con-
trol dependence edge ν → µ ∈ →C . This is formalized by
the notion of a control condition c(ν → µ), which usually

has the form c(ν → µ) , ν = true or c(ν → µ) , ν = a for
some value a (e.g. in a switch-statement).

We write BS(x) for the backward slice of x; it consists
of all nodes in the dependence graph from which x can
be reached (in case of interprocedural slicing, context-free
reachability must be used [17]). The forward slice is de-
noted FS(x), and the chop between two nodes is CH(y, x) =
BS(x)∩FS(y). Note that y ∈ BS(x) ⇐⇒ x ∈ FS(y) ⇐⇒

CH(y, x) 6= ∅.
BS(x) contains usually a few more statements than ac-

tually influence x: we have the fundamental property
I(y, x) =⇒ y ∈ BS(x), but the converse implication does
in general not hold. Therefore in practice the question of
slicing precision becomes very important: of course we de-
mand that the above implication is “almost” an equivalence
and BS(x) as small as possible. However, slices can be quite
imprecise for realistic languages and programs, even if the
best known algorithms are used. This was the original mo-
tivation to compute path conditions.

2.2 Path conditions
A path condition PC(y, x) is a condition over program

variables which is necessary for influence: I(y, x) =⇒
PC(y, x). That is, if the path condition cannot be satis-

fied (PC(y, x) , false), there is definitely no influence from
y to x. As an example of a very simple path condition,
consider the program fragment

(1) a[i+3] = x;

(2) if (i>10)

(3) y = a[2*j-42];

In order that x in (1) can influence y in (3), it is necessary

that PC(1, 3) , (i > 10) ∧ (i + 3 = 2j − 42) is satisfiable.
Path conditions in general consist of control predicates (that
is, conditions from if-, while-, and similar statements) and
may – as in this example – contain additional constraints
concerned with data structures such as arrays. Satisfiability
means that the program variables in path conditions are
implicitely existentially quantified. Thus for the example
holds I(1, 3) =⇒ ∃i, j.(i > 10) ∧ (i + 3 = 2j − 42)1. This
path condition is satisfiable. But if line 2 is replaced by
if ((i>10)&&(j<5)), the resulting path condition

PC′(1, 3) , (i > 10) ∧ (j < 5) ∧ (i + 3 = 2j − 42)

is unsatisfiable, hence line 1 cannot influence line 3.
Since there may be assignments to the same variable at

different program points, all programs must be transformed
into static single assignment form (SSA) first [18, 5].2 In
SSA form, there is at most one assignment to every variable.
If necessary, we will distinguish different SSA-variants of a
program variable by additional indices.

For given (y, x), there may be many different path condi-
tions. A path condition PC(y, x) is stronger than another
PC′(y, x) iff PC(y, x) =⇒ PC′(y, x).

It is our goal to construct path conditions which are suf-
ficient and not only necessary. In practice, however, it is
only possible to construct path conditions which are “al-
most” sufficient. Thus, if a path condition imposes few
constraints on the program variables, probability is high
that y ∈ BS(x) indeed implies I(y, x). If it imposes
many constraints, then probability is low that y influences
x. If PC(y, x) , false, y cannot influence x even though

y ∈ BS(x). If PC(y, x) , true, probability is extremely
high that y ∈ BS(x) implies I(y, x).

Path conditions are defined with respect to chops in the
SDG, as I(y, x) =⇒ CH(y, x) 6= ∅. Let CH(y, x) consist of

1All conditions are made under the assumption that vari-
ables have defined values.
2In our context, computation of the SSA is trivial, since we
have the SDG.

the (not necessarily disjoint) paths P1, P2, . . . ∈ CH(y, x).
The following fundamental formula for a strong and neces-
sary path condition was introduced in [18]:

PC(y, x) =
∨

Pρ∈CH(y,x)

∧
z∈Pρ

E(z) (1)

This formula relies on the “execution conditions” E(z). For
a statement z ∈ CH(y, x), the execution condition E(z)
is a necessary condition for the execution of z. In order
that influence along a path in the chop can be exercised, all
statements in the path must at least be executable and hence
the conjunction of their execution conditions be taken; if
there is more than one path in the chop, the disjunction over
the individual path conditions has to be used. E(z) itself is
determined by the control predicates along the control path
from the start node to z:

E(z) =
∨

Pρ∈CH(Start,z)

∧
ν→µ∈Pρ∩(→C)

c(ν → µ) (2)

All control conditions c(ν → µ) on the path from Start to z
must be satisfiable, otherwise z cannot be executed. In case
of unstructured control flow, more than one control path
from the start node to z might exist, and the disjunction of
the corresponding conditions must be taken.

Since the program is transformed to SSA form first, some
additional constraints must be generated which represent
the Φ-functions occuring in SSA form. Let xi, xj , xk, . . .
be different SSA-variants of variable x. A Φ-function xi =
Φ(xj , xk, . . .) generates the additional Φ-Constraints xi =
xj ∨ xi = xk ∨ Path conditions can also be extended to
capture properties of arrays and other data types. A simple
example of a condition involving array indices has been given
above; more details will be described below.

Note that the above path conditions are not necessarily
the strongest path conditions but are – as the later examples
will show – quite strong in practice; it is hard to see how
to generate stronger conditions from the source text alone.
But how does slicing precision influence path conditions? If
we have two chops where one is more precise than the other,
then it generates a stronger path condition: CH(y, x) ⊆
CH ′(y, x) implies that a path Pρ ∈ CH(y, x) is also a path
in CH ′(y, x). Therefore∨

Pρ∈CH(y,x)

∧
z∈Pρ

E(z) =⇒
∨

Pρ∈CH′(y,x)

∧
z∈Pρ

E(z)

as the latter disjunction runs over more paths.

2.3 Solving path conditions
In our earlier work we have shown how to simplify path

conditions if only structured control flow is used. Typi-
cally, the four levels of nested disjunctions resp. conjunctions
from equations (1)+(2) can be reduced to two or three lev-
els. Here, we present some general decomposition properties
which will be exploited later.

First, let z be a dominator for y in CH(x, y). Then

PC(x, y) = PC(x, z) ∧ PC(z, y) (3)

Proof: see footnote3. The proof for the following statements
is similar and omitted due to lack of space.

3Proof of equation (3): As any path from x to
y must go through z, PC(x, z) ∧ PC(z, y) =
=

∨
P∈CH(x,z)

∧
u∈P E(u) ∧

∨
P ′∈CH(z,y)

∧
u′∈P ′ E(u′)

Now let us assume that any path x →∗ y must pass
through a subgraph S ⊆ N . From x, S can only be en-
tered via entry points e1, . . . , ek ∈ S, and y can only be
reached via exit points o1, . . . , om ∈ S. Then

PC(x, y) =

k∨
i=1

(
PC(x, ei) ∧

(m∨
j=1

PC(ei, oj) ∧ PC(oj , y)
))
(4)

A particular simple case of the latter general statement oc-
curs if S consists only of coincidencing entry- and exit nodes,
namely the predecessors of y:

PC(x, y) = E(y) ∧
∨

z∈pred(y)

PC(x, z) (5)

The symmetric formula is valid as well:

PC(x, y) = E(x) ∧
∨

z∈succ(x)

PC(z, y) (6)

An important theorem states that cycles can be ignored.
This makes the set of paths for any chop finite. Let z →
z1 → . . . → zk → z be a cycle, where z dominates y. Then

PC(x, y) = PC(x, z) ∧ PC(z, y) (7)

This theorem is due to the fact that a path through a cy-
cle only makes a path condition stronger, but the stronger
subconditions are cancelled out in the outer disjunction of
equation (1) due to the absorption law (A ∨ (A ∧ B) = A).
Cycle ignorance can be generalized to the situations of equa-
tions (4) - (6) [18].

Eventually, path conditions are simplified and fed to a
constraint solver which tries to solve them for the program’s
input variables. Remember that all program variables in
path conditions are existentially quantified, so constraint
solvers based on quantor elimination such as Redlog [7] are
particularly suitable. Here is an illustrating example: if
PC(y, x) , ∃c.ac2+bc+1 = 0, where a, b are input variables
(i.e. free parameters) and c is an auxiliary variable, we want
to eliminate c and thus solve for a, b. Quantor elimination
transforms the condition to (a 6= 0∧b2−4a ≥ 0)∨(a = 0∧b 6=
0); the theory guarantees that both formulae are equivalent
with respect to satisfiability4. Using Redlog to solve the
path condition PC(1, 3) , (i > 10) ∧ (i + 3 = 2j − 42),
eliminating i yields 2j > 55, while eliminating both i and
j yields just true. Solving PC′(1, 3) , (i > 10) ∧ (j <
5) ∧ (i + 3 = 2j − 42) yields just false.

The solved conditions can be used as a witness for the
path: if input values are provided which satisfy the solved
PC(y, x), the statements in the SDG path y →∗ x will in-
deed be executed and the influence of y to x will become
visible. Note that occasional false alarm is possible, as path
conditions are only necessary, not sufficient – both slicing
and path conditions stick to the principle of conservative
approximation. For safety analysis this is very appropriate,

=
∨

P∈CH(x,z)

∨
P ′∈CH(z,y)

(∧
u∈P E(u)

)
∧

(∧
u′∈P ′ E(u′)

)
=

∨
P∈CH(x,z)

∨
P ′∈CH(z,y)

∧
u∈PP ′ E(u) =∨

P∈CH(x,y)

∧
u∈P E(u) = PC(x, y)

4Note that quantor elimination is, due to decidability prob-
lems, restricted to various kinds of arithmetic formulae.
Other solving techniques may be used for other kinds of for-
mulae. The whole matter is outside the scope of this paper;
see however [2, 13].

since we can live with rare false alarms, but cannot accept
potential misses of illegal influences.

3. BASIC ANALYSIS
The ValSoft system can generate path conditions for full

ANSI C (except pointer arithmetic and setjmp/longjmp). It
does in particular deal with interprocedural analysis by ex-
tending Reps’ technique of context-free reachability in SDGs
to the corresponding path conditions.

Reps’ context-free reachability constraints the possible
paths in order to capture correct context for procedure calls.
For the eligible paths in an interprocedural slice or chop,
the conditions itself are generated using the standard for-
mula. As usual in program slicing, parameter passing is
modelled by value-result with the help of additional assign-
ments. Note that these assignments introduce additional
Φ-constraints, which are however not globally valid as the
SSA-generated ones, but are valid just for a specific calling
context in a specific slice.

Before we explain how to make path conditions scale, we
will present some small examples in order to explain the
basic machinery.

3.1 Analysing data flow
Figure 1 presents a mergesort program in C. Parts of the

SDG are also presented, in particular the chop CH(45, 21)
between constant 999 in line 45 and array temp in line 21.
Dashed arcs are control dependence edges, normal arcs are
data dependence edges. As global variables are transformed
into additional procedure parameters, there are some addi-
tional dependences for global array data. Dotted arcs are
not part of the SDG, but represent points in the SDG for
the computation of path conditions as explained below.

In order to generate the path condition PC(45, 21), the
execution conditions for statements on the path and their
constituenting control conditions must be generated. For
example, c(17 → 18) , (index1 ≤ mid) ∧ (index2 ≤ last)

(condition 4 in figure 1), and c(18 → 21) , data[index1] ≥
data[index2] (condition 5). Furthermore, there are some
global Φ-Constraints such as m = (left + right)/2; to-
gether with formal/actual Φ-constraints we obtain mid =
m = 2, last = right = 4 (condition 1 and 3). From

these fragments, E(21) , (index1 ≤ 2) ∧ (index2 ≤
4) ∧ (data[index1] ≥ data[index2]) can be computed. Sim-
ilarly, E(38) (the call site for merge) is determined to be
left < right (condition 2), which via Φ-constraints simpli-

fies to E(38) , 0 < 4 , true. Note that there is just one
merge call, hence the Φ-constraints contain no disjunctions
and act like constant propagation. The initial path condi-
tion thus is

PC(45, 21) , E(21) ∧ E(38)

, (index2 ≤ 4) ∧ (index1 ≤ 2)

∧(data[index1] ≥ data[index2])

Remember that all program variables in this necessary con-
dition are existentially quantified. Furthermore, path con-
ditions in their basic form (equations (1)+(2)) do treat ar-
rays like scalar variables, and array elements are not distin-
guished.

Quantor elimination by Redlog generates true. Hence
there is high probability that there is information flow from
line 45 to line 21: the value 999 will eventually be assigned

1 void main () {
2 int i;
3 int a[100];
4 int k=40;
5 int l=53;
6 int x;
7
8 a[0]=100;
9 for (i = 1;

i < a[0]; ++i) {
10 a[i]=255;
11 }
12 a[5]=5;

13 if (1)
14 a[10] = 10;
15 else
16 a[20] = 20;
17 a[30] = 30;
18 a[k] = 40;
19 a[50] = 50;
20
21 if (a[l] == x) {
22 ;
23 }
24 }

Figure 2: Some array uses

to the temp array. But note that due to the coarse-grained
array treatment, the path condition is too weak. That is too
pessimistic – it indicates a probability of influence which is
too high. This example shows that basic path conditions are
only necessary conditions and sometimes could be stronger.

3.2 Arrays
If array elements are distinguished, additional constraints

for index expressions will be generated for data dependencies
concerning an array. We have already seen such a constraint
in section 2 (namely i + 3 = 2j − 42). In general, any data
dependence edge a[exp1] → a[exp2] generates a constraint
exp1 = exp2, and for a path in the SDG, all such constraints
along its edges are conjunctively added to the path condi-
tion. The general formula thus becomes

PC(x, y) =
∨

Pρ∈CH(x,y)

(∧
z∈Pρ

E(z)
)
∧

(∧
z→z′∈Pρ

δ(z → z′)
)
(8)

where δ(z → z′) , true if z → z′ is not an array depen-

dence edge; δ(a[e1] → a[e2]) , e1 = e2 otherwise.5 The
resulting path conditions may contain complex conditions
for index values, and it is well known that arbitrary con-
straints over integers cannot be solved. But many solvers
can deal with constant or linear index expressions, or even
Presburger arithmetic [14].

For the chop between lines 8 and 21 in figure 2, ValSoft
generates the path condition (simplified by Redlog)

PC(8, 21) , i = 53

This condition becomes clear after a closer look at the pro-
gram: line 9 is data dependent on line 8 via a[0]; since line
10 is control dependent on line 9 it is also dependent on line
8. All the a[i] in line 10 and in particular a[53] are thus

5In case several definitions of an array element may reach the
same program point, the situation becomes even more com-
plex, as the dependence edges themselves must be modified
in order to take care of possible aliases. As an example con-
sider (1) a[i] = x; (2) a[j] = y; (3) z = a[k];. The
data dependencies are not (1) → (3) and (2) → (3), but
(1) → (2) and (2) → (3), because the definition of data de-
pendence disallows a redefinition of the same variable along
a possible execution path from (1) to (3). In the exam-
ple, it could be that i = j, violating the data dependence
definition for (1) → (3). To keep the data dependencies in-
tact, a more complex definition of δ results, which is given
here without explanation for the amusement of the reader:
δ(z → z′) ,

∨
z1...zkz′∈array-CH(x,z′)

(∨
i=1,k I(zi) = I(z′)∧∧

j=i+1,k I(zj) 6= I(zi)
)

typedef enum {plus, minus,
eos, operand} precedence;

...
struct adt stack stack;
char* expr;

...

precedence get_token (char* symbol,
int* n) {

*symbol = expr[(*n)++];
switch (*symbol) {
case ’+’: return plus;
case ’-’: return minus;
case ’\0’: return eos;
default: return operand;
}

}

int eval (void) {
precedence tok;
char symbol;
int op1, op2;
int n=0;

tok = get_token (&symbol, &n);
while (tok != eos) {

if (tok == operand) {
stack = push(symbol-’0’,

stack);
} else {

op2 = top(stack);
stack = pop(stack);
op1 = top(stack);
stack = pop(stack);
switch(tok) {
case plus: stack =

push(op1+op2, stack);
break;

case minus:
if (op1==0) {

stack = push(1,stack);
} else {

stack = push(op1-op2,
stack);

}
break;

}
}
tok = get_token (&symbol,

&n);
}
return (top(stack));

}

int main () {
stack = newstack();
expr = "75-123-++1-";
printf ("’%s’ results to %d\n",

expr, eval());

return 0;
}

Figure 3: A desc calculator program

dependent on line 8. The usage of array a in line 21 cre-
ates a dependence if i = l. Φ-constraints, acting as constant
propagation imply, that in line 21 the only possible value for
l is 53. Thus line 21 depends on line 8 if i = 53.

Applying improved array conditions to PC(45, 21) in fig-
ure 1 has the following effect. First, conditions which con-
strain a variable to a small discrete interval are automat-
ically translated into a disjunction of possible values. For
example, 0 ≤ index1 ≤ 2 is translated into index1 =
0 ∨ index1 = 1 ∨ index1 = 2. These disjunctions mul-
tiply through in data[index1] ≥ data[index2], resulting in
data[0] ≥ data[0]∨data[1] ≥ data[0]∨ . . .∨data[2] ≥ data[4].
Φ-constraints – acting again as constant propagation – will
replace the array elements by their values from lines 45 -
49. Redlog finally reduces the resulting constraint to true,
the same condition as with simplistic array treatment. But
since fine-grained array analysis is in effect, the confidence
that there is in fact an influence (45) → (21) increases.

3.3 Abstract data types
Most programs rely not only on arrays, but on all kinds of

standard datatypes such as lists, stacks, queues etc. We will
now demonstrate how precision of path conditions can be
increased even more by taking into account the algebraic se-
mantics of such data types. In order to apply this technique,
we assume that for some datatype in the program, an equa-
tional specification is given. In order to operationally exploit
such specifications, we make a standard assumption [4]: we
consider all equations to be oriented from left to right, that
is to be rewrite rules, and assume that a normalizing rewrite
system results6.

6If this is not the case, there are techniques like Knuth-
Bendix completion, but that is outside the scope of this
paper. See however [1].

As an example, consider the program in figure 3, which
uses a stack. We assume the standard equations for stacks,
like top(newstack()) = error, top(push(element,stack)) = el-
ement, pop(push (element,stack)) = stack, etc.

In order to see how these equations are exploited, consider
the code fragment

10 if (b)
11 stack = push (10, stack)
12 else
13 stack = push (20, stack)
14 ...
15 x = top (stack)

Here we have two data dependencies 11 → 15 and 13 →
15. By backsubstituting the Φ-constraints for stack in
line 15, we thus obtain x = top(push(10,stack)) ∨ x =
top(push(20,stack)). Via the stack equations these con-
straints can be simplified to x = 10 ∨ x = 20. The lat-
ter conditions are used for δ(11 → 15) , x = 10 resp.

δ(13 → 15) , x = 20 in equation (8). This example illus-
trates the technique of backsubstituting all possible sources
of data dependencies for a variable occuring in a term to be
rewritten; it is called rewriting modulo data dependencies.
Note that backsubstituting and rewriting steps must be in-
tertwined – due to lack of space we omit the details. The
resulting normal forms are used as additional δ-constraints;
treatment of path conditions then proceeds as usual.

For figure 3, let us compute the path condition between
the underlined expressions in main(). Without the stack
equations, ValSoft computes the path condition

(tok53 6= eos ∧ tok54 = operand) ∨
(tok53 6= eos ∧ tok54 6= operand ∧ tok61 = plus) ∨
(tok53 6= eos ∧ tok54 6= operand ∧ tok61 = minus)

which is remarkable enough: it presents minimal syntactic
requirements for the input in order that the result eval() is
dependent on the input. In fact all valid syntactic prefixes
have been determined. Using the stack equations, we obtain
an even stronger condition. The final result is

(tok53 6= eos ∧ tok54 = operand ∧
symbol55 − ”0” = top75) ∨
(tok53 6= eos ∧ tok54 6= operand ∧ tok61 = plus ∧
top59 + top57 = top75) ∨
(tok53 6= eos ∧ tok54 6= operand ∧ tok61 = minus ∧
top59 − top57 = top75 ∧ top59 6= 0) ∨
(tok53 6= eos ∧ tok54 6= operand ∧ tok61 = minus ∧
1 = top75 ∧ top59 = 0)

Now not only the valid prefixes have been inferred, but
also some actual numerical relationships between stack en-
tries. For example, lines 5 to 8 in the path condition, which
treat the unary minus, distinguish the two cases where the
first operand of the unary minus is zero resp. nonzero; the
resulting stack computations are not the same.

4. SCALING UP
Path conditions as introduced in the last two sections do

not scale. In practice, SDGs have thousands to ten thou-
sands of nodes, and chops have thousands of paths as well as
hundreds of cycles. Furthermore, naive generation of path
conditions can easily cause an exponential blowup in their
size.

In order to overcome these obstacles, we apply two tech-
niques: 1. Interval analysis is performed on the SDG, iden-
tifying a hierarchy of reducible loops, irreducible loops, or

acyclic subgraphs; 2. Ordered binary decision diagrams
(OBDDs) are used to avoid blowup of path conditions.

4.1 OBDDs
Path conditions typically contain the same execution con-

ditions and control conditions over and over again, mounted
up to substantial heaps of conjunctions and disjunctions.
Binary decision diagrams (BDDs) are the data structure of
choice where there is a multitude of complex boolean for-
mulae with high potential for structure sharing.

We therefore use the BDD package BuDDy [12]. First,
control conditions c(z → z′) are broken up into atomic terms
not containing conjunctions and disjunctions, and some el-
ementary simplifications are performed. Then the atomic
control conditions get a unique identifier attached, which is
used in execution conditions and path conditions. Execu-
tion conditions are cached, as the same execution condition
can appear in many path conditions (see below for more de-
tails). The use of BDDs for all this has the advantage that
conjunctions and disjunctions can be performed in polyno-
mial time; negations, tests for true or false run in constant
time. The high degree of shared subexpressions in BDDs
normally prevents combinatoric explosion.

4.2 Exploiting interval analysis
In practice, a chop contains many backward edges, and

typically only half of them belong to reducible loops. We
therefore perform interval analysis in order to obtain a hi-
erarchy of nested cycles.

Interval analysis has been introduced by Tarjan[20] as a
technique to identify nested loops in reducible control flow
graphs. It has later been extended by authors such as Sreed-
har et al. in order to cope with unstructured control flow
[19]. The Sreedhar-Gao-Lee (SGL) algorithm separates the
graph into several nested strongly connected components
(SCCs). SCCs are either reducible, that is they have one
loop entry node, and back edges return to this entry node.
Or SCCs are irreducible in case a unique entry point cannot
be identified. The nested hierarchy of SCCs is connected
by an acyclic set of “skeleton” edges. SGL’s algorithm first
computes the dominator tree and deals with the nodes of the
dominator tree in a bottom-up fashion. Every dominator is
a potential loop entry, and depth-first search is performed
to identify reducible and irreducible SCCs.

The advantage of determining reducible loops and not just
(nested) SCCs is that back edges in reducible loops can com-
pletely be ignored when computing path conditions, due to
equation (7). Only in irreducible loops back edges can gen-
erate additional path conditions. Generally, SCCs are pro-
cessed bottom up. Path conditions are computed as follows.

1. For a reducible SCC L, let e be the entry point and
x1, . . . , xn be the exit points. Since backward arcs only
go back to the entry point and can be ignored due
to equation (7), path conditions can be computed in
topological order. For any node z ∈ L, PC(e, z) is
computed according to equation (5). Eventually topo-
logical order reaches the xi, thus all PC(e, xi) can be
collected in time O(|L|) (collected, not computed, as
the time for BDD operations is left out – these typi-
cally have a complexity of O(|L|) themselves, resulting
in a total of O(|L|2)).

2. For an irreducible SCC L, let e1, . . . , ek be the en-

S

Z

A

B C

D E

G F

H

S

Z

A

B C

DG E

F

H

S

Z

A

B C

DG E

F

H

S

Z

A

B

CDGEFH

S

Z

A

B

CDGEFH

S

Z

ABCDGEFH

Figure 4: Bottom-up treatment of nested loops

try points and x1, . . . , xn the exit points (entry and
exit points need not be disjoint!). All cycle-free paths
from an ei to an xj are generated by depth-first search
starting at ei, and PC(ei, xj) is computed according
to equation (6) – common prefixes for two paths are
thus automatically factored out. The complexity is
O(p · |L|), where p is the number of paths (again not
counting the BDD operations).

3. Once the PC(ei, xj) have been computed for all SCCs
at a certain level, these conditions are exploited on the
next level up by applying equations (3) or (4). SCCs
from a lower level are collapsed into one “meganode”.
Note that entry and exit points of SCCs are needed in
equation 4 and thus must be propagated up to the next
level, even though their SCC was collapsed. If L′ is the
SCC on the next upper level, time for computing the
path conditions (without the time for the inner SCCs
and BDD operations) is O(|L′|) for reducible L′ and
O(p · |L′|) for irreducible L′.

In any case, execution conditions E(z) which are needed
for some PC(u, v) are computed on-the-fly by traversing the
paths from z back to START (usually control flow is struc-
tured, which makes the outer disjunction in equation (2)
redundant), and is cached in node z.7

As an example, consider figure 4, which displays a sim-
ple SDG and the bottom-up generation of path conditions.
Solid arcs are SDG edges, while dashed arcs are dominator
edges not in the SDG. The SGL algorithm discovers D/G as
innermost cycle, which is a reducible loop – the back edge
G → D can be ignored, and PC(D, G) = E(D) ∧ E(G),

7Execution condition generation for unstructured control
flow can be improved by applying a formula analogeous to
equation (5); details are omitted.

SDG Nodes SDG Edges LOC Funcs Calls Depth redL maxSize irredL maxSize
Mergesort 238 528 59 4 10 10 20 4 16 27
Calculator 262 551 115 7 15 9 24 6 9 53
TripleDES 4876 15505 1023 1 1 4 0 0 0 0
WobbleTable 10590 27749 4482 67 497 14 890 12 484 171
ctags 12413 45170 2933 63 300 19 1184 13 554 441
Patch 29733 195749 7998 113 854 15 2370 9 1429 1241
Flex 37006 125223 7640 119 621 15 1520 7 1194 227
Bison 30173 94446 8303 155 904 22 1853 10 1639 246

Table 1: SDG size and structure for various programs

Chop Nodes Chop Edges redL irredL Conj Disj BDDnodes BDDvar time(s) space(Mb)
Mergesort 65 141 14 4 5 6 2019 6 1 23
Calculator 182 416 24 8 9 2 2044 12 1 23
TripleDES 301 949 35 9 24 3 2096 12 1 28
WobbleTable 4116 11301 542 325 42 2 29893 194 74 55
Ctags 3787 12998 499 108 1 1 1919716 335 430 91
Patch 12422 97560 1370 648 335 32 38696 994 31771 285
Flex 5589 15453 369 115 91 5 29477 3190 322 287
Bison 3953 12660 335 173 15 2 11146858 2646 976 282

Table 2: Size and performance for various path conditions

Figure 5: Number of SCCs vs. SCC size

PC(D, D) = E(D). The cycle is collapsed, and the bottom-
up strategy identifies the SCC DG/C/E/F/H next. This
time, it is an irreducible SCC, as it has two entry points
DG and C, and one exit point, H. Thus

PC(DG, H) = E(D) ∧
(
E(F) ∧ E(H) ∨ E(G) ∧ E(H)

)
= E(D) ∧ E(H) ∧

(
E(F) ∨ E(G)

)
PC(C, H) = E(C) ∧

(
PC(DG, H) ∨ E(E) ∧ E(F) ∧ E(H)

)
After collapsing CDGEF, the next SGL step identifies the

SCC A/B/CDGEFH. The path condition is

PC(A, CDGEFH) = E(A) ∧
(
PC(C, H) ∨

E(B) ∧ PC(DG, H)
)

Thus the last step computes the final path condition

PC(S, Z) = E(S) ∧ PC(A, CDGEFH) ∧ E(Z)

Substituting all intermediate path conditions in the equa-
tions would lead to a blowup of the formula – an effect which
is fortunately avoided by using BDDs. Note also how the
hierarchical SGL decomposition avoids an explosion of the
number of paths, since enumeration of paths is limited to
local SCCs at a certain level in the bottom-up process.

The total complexity depends very much on the structure
of the chop under consideration. If the SGL decomposition
produces many small nested SCCs, the complexity of path
condition generation for a bottom-level SCC is bounded by a
constant, and a standard divide-and-conquer analysis results
in a complexity of O(n · ln n) (n = |SDG|). If the chop is
just one huge non-decomposable SCC, the number of paths
can be exponential in n, making path conditions unfeasible.

4.3 Implementation and performance
The path condition generator was implemented on top of

the ValSoft slicer. First, we implemented the Lengauer/Tar-
jan fast dominator algorithm as well as SGL’s generalized
interval analysis. The core of the condition generator was
implemented according to section 2.3. and 4.2; all path con-
ditions are handled through the BuDDy BDD package, and
the BDDs for all conditions are cached in the corresponding
SDG nodes. The final path conditions are extracted from
the BDD and fed into a standard Quine/McClusky mini-
mizer in order to obtain a minimal disjunctive normal form.
This MDNF is needed for displaying path conditions, and
also prevents the subsequent constraint solvers from drown-
ing in huge formulae. Note that computing the DNF can
have exponential time complexity, but posed no problem in
practice. Right now, an interface to the Redlog solver has
been implemented; interfaces to other solvers are in prepara-
tion. The solved conditions are eventually displayed to the
user in textual form. ValSoft comprises about 75,000 lines
of C++, among them 25,000 for path condition generation
and simplification (without BDD package).

Table 1 presents data about size, SDG size, number of
function definitions/calls, dominator tree depth, and num-
ber of reducible/irreducible loops together with the number
of nodes in the biggest SCC for a set of benchmark pro-
grams. The relatively high number of SDG nodes and edges
stems from the fact that ValSoft uses a fine-grained SDG on
the expression level in order to cope with side effects. The
data clearly show the high number of nested SCCs. This
large amount is mostly caused by fine-grained expressions
which involve a lot of small loops in the SDG.

Table 2 presents running times and memory requirements
for several path condition examples. The number of nodes

and edges in some arbitrarily selected chops is given, to-
gether with dominator tree depth and the number of re-
ducible/irreducible SCCs. The path condition generated for
this chop is characterised by the number of conjunctions
and disjunctions, the number of nodes resp. variables in all
BDDs, and finally the most important data, namely time
and space needed to generate the path condition. The lat-
ter have been determined on a 1.0GHz PC. Figure 5 displays
the relationship between SCC size and number of SCCs for
the chops from table 2. The data show that the SGL decom-
position generates many small SCCs and a few big SCCs;
usually there are more SCCs on the higher levels of the SGL
hierarchy. The runtimes for the dominator computation and
SGL decomposition are always below one second and there-
fore irrelevant compared to the time for the path conditions.

In analysing these data, we would first like to point out
that the selection of chops has not been biased towards easy
generation of path conditions, but was done quasi-random
based on some superficial understanding of the source text.
Looking at the size and effort for the corresponding path
conditions, our data confirm that the resources needed do
not depend on the size of the source code, but on the struc-
ture of the chop and it’s size respectively. The general struc-
ture of our chops can be characterised as a very dense graph
with a lot of cycles. This independency of the source code
size can clearly be seen comparing the programs “Patch”,
“Flex”, and ”Bison”, which have about the same size. But
the chop for “Patch” contains so many edges and SCCs
that generation of this particular path condition took several
hours. It is also quite interesting to compare the structure
of “Patch” with the structure of “WobbleTable”: 93% of
all non-empty chops in “Patch” have about 105 edges, the
remaining 7% have only a few thousand edges. For “Wob-
bleTable”, 72% of all non-empty chops contain less than
1000 edges, and only 0.6% (among them the chop in table
2) contain more than 10000 edges.

These data points indicate that “Patch” has a bad pro-
gram structure - lots of dependencies all over the place,
which makes path condition generation infeasible. The pro-
gram size however is not a limiting factor, since only the
structure of a particular chop will determine the effort for
its path condition. This demonstrates that path conditions
indeed scale, but for some “islands of bad structure” no con-
ditions can be generated in practice.

5. A CASE STUDY
The “WobbleTable” system has been developed in a stu-

dent project about real time controllers. A ball in a maze has
to be moved into a target. To achieve this, the maze can be
rotated to a vertical angle along two orthogonal axes; rota-
tion is controlled by a step motor. A stereo camera above the
maze is used to determine the position of the ball. The Wob-
bleTable software reads the camera input, computes the ball
position and the way to the target, determines the horizon-
tal and vertical angle for the maze, and sends corresponding
signals to the step motor. This setup is not really a nuclear
power plant but has many characteristics of safety-critical
embedded systems.

The source file is 4482 LOC of ANSI C; computation of
the SDG took 20 seconds. For some library functions con-
cerned with camera and motor control, C stubs were pro-
vided which simulate the function’s behaviour with respect
to data and control dependencies between parameters and

...
weg_ans_ziel = dspkommEmpfangePfad(); (line 4)

if (weg_ans_ziel == 0l) {
...

}
alter_mittelpunkt = weg_ans_ziel->root->wegpunkt;
weg_startpunkt = weg_ans_ziel->root->wegpunkt;
reglerInit();

while (ziel_nicht_erreicht) {
ret = dspkommEmpfangeDoublePunkt(mittelpunkt);
if (ret == 0) {

ziel_nicht_erreicht = 0;
continue;

}
if (abs(platte.x) > 250 || abs(platte.y) > 250) {

...
ziel_nicht_erreicht = 0;
continue;

}
ziel_nicht_erreicht = pfadNaechsterZielpunkt(weg_ans_ziel,

mittelpunkt, abstand, geschwindigkeit);
aktueller_zielpunkt = weg_ans_ziel->root->wegpunkt;
geschwindigkeit->x = mittelpunkt->x - alter_mittelpunkt.x;
geschwindigkeit->y = mittelpunkt->y - alter_mittelpunkt.y;

reglerBerechneMotorschritte(abstand->x, geschwindigkeit->x,
platte.x,abstand->y, geschwindigkeit->y,
platte.y, &schritte_x, &schritte_y);

vektor = calcSteuerungsVektor(schritte_x, schritte_y);
if (ziel_nicht_erreicht) {

dspkommSendeMotorschritte(vektor, 0, vektorlaenge);
platte.x = platte.x + schritte_x;
platte.y = platte.y + schritte_y;

}
free(vektor);
alter_mittelpunkt = *mittelpunkt;

}

schritte_x = -platte.x;
schritte_y = -platte.y;
vektor = calcSteuerungsVektor(schritte_x, schritte_y);
dspkommSendeMotorschritte(vektor, vektorlaenge, 0); (line 45)
...

Figure 6: Source code of central wobble loop

global variables. In our experiment, we wanted to check
whether the step motor is influenced by an outside agent,
and if so determine witnesses for suspicious behaviour.

Figure 6 displays the central loop of the source code.
Since all the function names are in German, figure 7 dis-
plays the functional structure of the system (the columns
correspond to function nestings). While the ball did not
reach the target, the ball position is read from the cam-
era and converted to maze coordinates (function “dsp-
kommEmpfangeDoublePunkt”). The function “pfadNaech-
sterZielpunkt” computes the euclidian distance to the next
intermediate ball position, and the function “reglerBerech-
neMotorschritte” uses a neural net to compute the rotation
of the maze. Function “calcSteuervektor” transforms this
information into a control vector which is sent to the mo-
tor (“dspkommSendeMotorschritte”); the maze angles are
adjusted accordingly.

Figure 8 displays the path condition for the chop between
line 4 and line 45, that is, a necessary condition for influ-
ence of the motor by the camera. Performance data for this
chop is given in table 2, line 4. For all atomic conditions
their source file and source line is given. Path conditions
are LaTexed automatically; Φ-constraints without disjunc-
tions (i.e. simple value propagations) are automatically sub-
stituted, complex Φ-constraints are shown only on request.
SSA indices of program variables (italic font) and function

receive computed path from optical unit

loop until ball reaches destination

 read focal point of ball

 if ball is lost or if alignment of table is wrong? terminate program

 compute next destination (stage) for ball:

 compute speed of ball

 compute motor steps using neuronal net

 compute navigation vectors for motor

 send navigation vectors to motor

 update alignment of table and update focal point of ball

compute horizontal alignment of table

compute navigation vectors for motor

compute euclidean distance between actual position and destination

compute destination

generate several destination stages if distance windows is too small

compute length of path and receive path

convert hardware to software point

write motor steps to register and run motor

selection: 2 axes, dist, speed, alignment of table, plumbline dist

compute intersection with distance window

compute point of plumbline

scale values compute the level a neuron is in

compute results of time-delayed neuronal network compute gate of neuron

train fuzzy net which emulates a fuzzy control considering
alignment of table and 2 axes (selection) compute target values for the net gates

scale values

compute results of time-delayed neuronal network

train the net and adjust the weights
algorithm: back propagation for time-delayed neuronal nets

convert software step requests to hardware sequences

send navigation vectors to motor write motor steps to register and run motor

Figure 7: Functional decomposition of WobbleTable software

return values (bold font) are usually shown, because they
can be used as back references to their (unique) assignment
in the source code. The condition was not fed into a con-
straint solver, as it is already in solved form.

The condition is surprisingly small and becomes quite
clear after a look at the source code (and after determining
the source positions of the SSA indices). The last part of
the condition requires that the target has not been reached
(> stands for a non-zero, that is true value), the ball has a
definite position, the vertical angels of the maze in x- and y
direction do not exceed a value of 250 “steps”, and the next
intermediate target for the ball is defined. The inner disjunc-
tion demands that either the euclidian distance between ball
and intermediate target does not exceed a maximum value
and the ball velocity is bounded, or some condition on the
neural network must be satisfied. The latter is not under-
standable from the path condition directly, but the source
code reveals that the number of firing neurons distinguishes
various cases of x/y angles, target distance and ball veloc-
ity. This part of the program needs closer examination, but
so far no hints for illegal motor manipulations can be ob-
served. Obviously understanding path conditions requires
some knowledge of the program, but path conditions are
less complex than one might expect.

For our next experiment we asked the WobbleTable pro-
grammers to introduce a safety violation by manipulating
the motor from the keyboard. In fact the keyboard in-
put buffer variable taste (“key” in German) was already
declared and easy to spot. According to the program-
mers, taste was used in a debugging version, but all ref-
erences to taste were removed later. Indeed, in the ex-
isting program there is no SDG path from the initialization
def (taste) to the motor control call in line 45, thus trivially

PC(def (taste), 45) , false.
After introduction of the manipulation, the path condi-

tion PC(def (taste), 45) was computed again. The result
is no longer false, but the condition in figure 9; com-
putation of this path condition took 29 seconds. Among
various constraints similar to figure 8, the condition con-
tains the atomic control condition ping3502&128 > 0. A
global Φ-constraint (displayed in the last line) states that
ping5294 = ping8855 ∨ ping5294 = taste9187, and a for-
mal/actual Φ-constraint adds that ping5294 = ping3502. SSA

indices can be used as back references to the source text:
taste9187 is indeed def (taste), ping5294 is a formal parame-
ter of “reglerBerechneMotorschritte”. Thus we see that the
step motor is manipulated by the keyboard input via vari-
able ping.

Here is what the programmers did: in file variable.h they
added declaration extern int* ping;, in file dspkomm.c

they added declaration int* ping;. In file regler.c they
added the statement ping = (int*) taste;. Deeply hid-
den inside neuronal.c they added the statement

if ((*ping)&0x80 > 0) {

wert *= 1.2;

}

which increases the scale factor in the neural net (see figure
7, right column) by 20% if the 8th bit of *ping (that is,
taste) is set. It has been used to avoid weaknesses of the
system in particular test cases. Interestingly, the variable
wert does not occur in the path condition, as it is never
used in any control condition. But the SSA index ping3502

in the witness condition links back to the source and im-
mediately identifies the malicious if-statement. Note that
this is a constructed manipulation, but not at all an obvious
manipulation – a few lines of manipulative statements are
distributed over various source files. A human expert would
have a hard time to discover such a manipulation!

6. RELATED WORK
Our work is similar in spirit to constraint-based test data

generation (e.g. [9, 10, 6]). All such methods for test data
generation are based on the control flow graph and generate
constraints which enforce a specific control flow. Hence they
cannot generate constraints for data flow, which are essential
for our analysis purposes. Furthermore, all these methods
have only been applied to small programs, while our contri-
bution centers about scaling up. Some use heuristics which
do not obey the principle of conservative approximation re-
quired for safety analysis. Some are restricted to specific
domains, as they use very specialized solving techniques;
our approach is to provide an efficient general path condi-
tion generator which can then be connected to specialised
solvers.

PC(4, 45) ,
((

i207 < |m x582|+ |m y583| (calc.c : 80, 157, 137)

∧
√(

(dspkommEmpfangePfad9134.root7876.wegpunkt7878.x7880 − calloc9095(1, 8).x7882)∗

(dspkommEmpfangePfad9134.root7886.wegpunkt7888.x7890 − calloc9095(1, 8).x7892) +

(dspkommEmpfangePfad9134.root7897.wegpunkt7899.y7901 − calloc9095(1, 8).y7903) ∗

(dspkommEmpfangePfad9134.root7907.wegpunkt7909.y7911 − calloc9095(1, 8).y7913)
)

< MAX ZIELPUNKTABSTAND9332 (pfad.c : 71, regler.c : 71− 74, 160, 171, 226)

∧ |calloc9109(1, 8).x7925| < MAX ZIELPUNKTGESCHWINDIGKEIT9333 (pfad.c : 111, regler.c : 162, 226)

∧ |calloc9109(1, 8).y7934| < MAX ZIELPUNKTGESCHWINDIGKEIT9333 (pfad.c : 112, regler.c : 162, 226)

∧ dspkommEmpfangePfad9134.root7943.naechster7945 = 0 (pfad.c : 115, regler.c : 177))
∨

(
i207 < |m x582|+ |m y583| (calc.c : 80, 157, 137)

∧ i4520 < anzahl neuronen4474 (neuronal.c : 1101, 1108)

∧ anzahl neuronen in schicht5403[0] 6= 2 (neuronal.c : 1348)

∧ anzahl neuronen in schicht5670[0] 6= 3 (neuronal.c : 1390)

∧ anzahl neuronen in schicht5979[0] = 8 (neuronal.c : 1434)))
∧ ziel nicht erreicht9265 = > (regler.c : 200)

∧ dspkommEmpfangeDoublePunkt9269(calloc9095(1, 8)) 6= 0 (regler.c : 160, 203, 206)

∧ |platte9291.x9292)| ≤ 250 (regler.c : 213)

∧ |platte9298.y9299)| ≤ 250 (regler.c : 213)

∧ pfadNaechsterZielpunkt9327(dspkommEmpfangePfad9134, calloc9095(1, 8),

calloc9102(1, 8), . . .) = > (regler.c : 160 . . . , 177, 226)

Figure 8: Path condition for step motor

Pugh [14] uses Presburger arithmetic for solving con-
straints concerning array dependencies. Pugh’s goal is au-
tomatic parallelization of loops, and he describes dedicated
constraints and solving techniques. Our array constraints
are in fact a subset of Pugh’s constraints, hence not as
strong; furthermore, we did not yet employ a Presburger
solver. But in principle it would be possible to “plug in” his
sophisticated analysis techniques into ValSoft.

Reps [15] also investigated the use of abstract data types
in dependence graphs. He extends his earlier technique of
context-free reachability in order to model equations for ab-
stract types. It turns out that in connection with interpro-
cedural dependencies, data dependence becomes undecide-
able. Our approach, on the other hand, is based on rewriting
modulo data dependences, which is a mechanism completely
orthogonal to dependence analysis. While perhaps slightly
less precise, it avoids any decideability problems and is com-
pletely decoupled from the rest of the path condition gener-
ator.

7. CONCLUSION AND FUTURE WORK
Path conditions in dependence graphs are a valuable tool

for various kinds of program analysis, such as program un-
derstanding or safety checks. This contribution concen-
trated on the practical possibilities of path conditions. Our
results can be summarized as follows:

1. Path conditions are very helpful to reduce the impre-
cision of slicing, and can demonstrate that some slices
are in fact impossible;

2. Subsequent constraint solving will generate witnesses

for specific data flow, in particular for illegal influences
to safety-critical computations;

3. Naive generation of path conditions does not scale;

4. Interval analysis and BDDs are the key devices for
taming complexity;

5. The improved path condition generator produced a
witness for a safety violation in a medium-sized C pro-
gram in less than a minute.

Of course, our work is not finished at this point. One ob-
vious task is to make path conditions work for chops with
more than 105 edges in minutes instead hours, and we are
optimistic. Future efforts will also have to compare the be-
haviour of various solvers, such as Redlog, Mathematica,
Pugh’s Omega test, and constraint logic programming. An-
other issue is an adaption and extension of ValSoft for Java;
this requires static approximation of dynamic lookup be-
haviour for slicing, and generation of corresponding path
conditions. Of highest priority however is the application
of ValSoft to more case studies. In particular we hope to
obtain commercial safety-critical C programs, and then per-
haps discover a hidden trapdoor into the system – or prove
that such trapdoors do not exist.

Acknowledgements. Making path conditions in ValSoft
work and scale would not have been possible without ear-
lier work in slicing algorithms, intervall analysis, BDDs, and
constraint solvers; we collectively thank all the researchers
involved in these topics. Jens Krinke implemented the Val-
Soft slicer and thus laid the basis for path conditions. Frank
Tip provided valuable comments.

PC(def(taste), 45) , i207 < |m x582|+ |m y583| (calc.c : 80, 157, 137)

schichtVon3594(neuron id3500) 6= 0 (neuronal.c : 696, 719)

ping3502&128 > 0 (neuronal.c : 696, 731)

schichtVon4170(i4538) = 0 (neuronal.c : 964, 966, 1113)

i4533 < anzahl neuronen4487 (neuronal.c : 1105, 1112)

anzahl neuronen in schicht5419[0] 6= 2 (neuronal.c : 1352)

anzahl neuronen in schicht5698[0] 6= 3 (neuronal.c : 1394)

anzahl neuronen in schicht6023[0] = 8 (neuronal.c : 1438)

∧ ziel nicht erreicht9364 = > (regler.c : 202)

∧ dspkommEmpfangeDoublePunkt9368(calloc9191(1, 8)) 6= 0 (regler.c : 160, 205, 208)

∧ |platte9390.x9391)| ≤ 250 (regler.c : 215)

∧ |platte9397.y9398)| ≤ 250 (regler.c : 215)

∧ pfadNaechsterZielpunkt9426(dspkommEmpfangePfad9233, calloc9191(1, 8),

calloc9198(1, 8), . . .) = > (regler.c : 160 . . . , 179, 228)

Φ , ping5294 = ping8855 ∨ ping5294 = taste9187 (regler.c : 95, 158, neuronal.c : 1336)

Figure 9: Path condition revealing a safety violation

This work is funded by Deutsche Forschungsgemeinschaft,
grants DFG Sn11/5-1 and Sn11/5-2.

8. REFERENCES
[1] Franz Baader and Tobias Nipkow. Term rewriting and

All That. Cambridge University Press, 1998.

[2] Frederic Benhamou and Alain Colmerauer. Constraint
Logic Programming: Selected Research. MIT Press,
1993.

[3] Leeann Bent, Darren C. Atkinson, and William G.
Griswold. A comparative study of two whole program
slicers for C. Technical Report CS2000-0643,
University of California, San Diego, Computer Science
and Engineering, 2000.

[4] J.A. Bergstra, J. Heering, and P. Klint. Algebraic
specifications. ACM Press/Addison Wesley, 1989.

[5] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Efficiently
computing static single assignment form and the
control dependence graph. ACM Transactions on
Programming Languages and Systems, pages 451–490,
October 1991.

[6] R.A. deMillo and A.J. Offut. Constraint-based
automatic test data generation. IEEE Transactions in
Software Engineering, pages 900–910, September 1991.

[7] Andreas Dolzmann and Thomas Sturm. Redlog:
Computer algebra meets computer logic. ACM
SIGSAM Bulletin, 31(2):2–9, 1997.

[8] Tim Teitelbaum et al. Code surfer user guide and
reference. Technical report, Gramma Tech Product
Documentation, 2001.
http://www.grammatech.com/csurf-doc/manual.html.

[9] Arnaud Gotlieb, Bernard Botella, and Michael
Rueher. Automatic test data generation using
constraint solving techniques. In Proc. International
Symposium on Software Testing and Analysis, pages
53–62. ACM, 1998.

[10] Neelam Gupta, Aditya Mathur, and Mary Lou Soffa.
Automated test data generation using an iterative
relaxation model. In Proc. International Symposium
on Foundations of Software Engineering, pages
231–244. ACM, 1998.

[11] Jens Krinke and Gregor Snelting. Validation of
measurement software as an application of slicing and
constraint solving. Information and Software
Technology, pages 661–675, November/December
1998. Special issue on Program Slicing.

[12] Jorn Lind-Nielsen. BuDDy - a binary decision diagram
package. Technical report, University of Copenhagen,
2001. http://www.itu.dk/reserach/buddy.

[13] Kim Marriott and Peter Stuckey. Programming with
Constraints. MIT Press, 1998.

[14] William Pugh and David Wonnacott.
Constraint-based array dependency analysis. ACM
Transaction on Programming Languages and Systems,
pages 1248–1278, May 1998.

[15] Thomas Reps. Undecideability of context-sensitive
data-dependence analysis. ACM Transactions on
Programming Languages and Systems, pages 162–186,
January 2000.

[16] Thomas Reps, Susan Horwitz, Mooly Sagiv, and
Genevieve Rosay. Speeding up slicing. In Proc.
Foundations of Software Engineering, pages 11–20.
ACM, 1994.

[17] Tom Reps. Program analysis via graph reachability.
Information and Software Technology, pages 701–726,
November/December 1998. Special issue on program
slicing.

[18] Gregor Snelting. Combining slicing and constraint
solving for validation of measurement software. In
Proc. Static Analysis Symposium, volume 1145 of
LNCS, pages 332–348, 1996.

[19] Vugranam C. Sreedhar, Guang R. Gao, and
Yong-Fong Lee. Identifying loops using DJ graphs.
ACM Transactions on Programming Languages and
Systems, pages 649–658, November 1996.

[20] Robert Endre Tarjan. Testing flow graph reducibility.
Journal of Computer and System Sciences, 9:355–365,
1974.

[21] Frank Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3(3):121–189,
September 1995.

