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Efficient photosynthesis of carbon monoxide
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Artificial photosynthesis, mimicking nature in its efforts to store solar energy, has received

considerable attention from the research community. Most of these attempts target the

production of H2 as a fuel and our group recently demonstrated solar-to-hydrogen conversion

at 12.3% efficiency. Here, in an effort to take this approach closer to real photosynthesis,

which is based on the conversion of CO2, we demonstrate the efficient reduction of CO2 to

carbon monoxide driven solely by simulated sunlight using water as the electron source.

Employing series-connected perovskite photovoltaics and high-performance catalyst

electrodes, we reach a solar-to-CO efficiency exceeding 6.5%, which represents a new

benchmark in sunlight-driven CO2 conversion. Considering hydrogen as a secondary product,

an efficiency exceeding 7% is observed. Furthermore, this study represents one of the

first demonstrations of extended, stable operation of perovskite photovoltaics, whose large

open-circuit voltage is shown to be particularly suited for this process.
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U
sing sunlight towards the generation of value-added
chemicals entails capturing its energy in chemical bonds,
a form of energy that can be readily stored and

transported, thereby solving these two key challenges of
solar light exploitation. This approach, called ‘artificial photo-
synthesis’1, has been mainly directed towards sunlight-driven
splitting of water to generate H2 and O2, and solar-to-hydrogen
energy-conversion efficiencies exceeding 10% have been
demonstrated2–4. Although H2 is an important fuel and
chemical feedstock, a desirable alternative is to target the direct
production of carbon-based fuels, which allows for better
integration into the existing energy infrastructure. These fuels
can be accessed by the electrochemical reduction of carbon
dioxide (CO2), in a process that comes a step closer to natural
photosynthesis and simultaneously holds the promise of closing
the anthropogenic carbon cycle5,6. Compared with water
splitting, electrochemical CO2 reduction presents considerably
greater challenges, including product selectivity, electrolyte
constraints and large voltage requirements. The combination of
these effects makes sunlight-driven CO2 reduction difficult to
achieve a desirable product with high efficiency7.

The emergence of metal halide perovskites has attracted great
attention in the photovoltaic community due to a combination
of advantages, such as low-cost synthesis, abundant materials,
and rapidly climbing efficiencies, presently certified at 20.1%,
competing with the commercially available silicon solar cells8–10.
Our group was recently able to demonstrate a simple system,
achieving a striking 12.3% solar-to-hydrogen efficiency by the use
of perovskite photovoltaics, thereby showing a promising path
towards the realization of high-efficiency solar-to-fuel conversion
devices3.

Here, extending our previous work in an attempt to get closer
to carbon-based photosynthesis and taking advantage of the high
open-circuit voltage of perovskite photovoltaics, we demonstrate
the efficient reduction of CO2 to carbon monoxide (CO) driven
solely by simulated sunlight using water as the electron source.
Using series-connected perovskite photovoltaics and high-
performance catalyst electrodes, we achieve a solar-to-CO
efficiency exceeding 6.5%, setting a new benchmark in sunlight-
driven CO2 conversion. Considering also hydrogen, which is
generated as a secondary product, a total solar-to-fuel efficiency
exceeding 7% is achieved. It has to be noted that in addition to the
aforementioned results, this study represents one of the first
demonstrations of extended, stable operation of perovskite
photovoltaics under a real load.

Results
Carbon monoxide as a photosynthetic target. Among all the
products obtained by the reduction of CO2 (ref. 11), CO stores
the largest amount of energy per molecule and is an important
bulk chemical in manufacturing12. Importantly, through the
established gas to methanol and Fischer–Tropsch processes, as
well as novel electrochemical methods, CO can be converted into
a large number of carbon fuels and other commodity
chemicals13–15. Recently, researchers have proposed a two-step
process towards the solar-driven synthesis of hydrocarbon fuels
using CO as an intermediate16–18. Therefore, CO is one of the
most attractive targets of artificial photosynthesis.

A complete process for the light-driven synthesis of carbon
monoxide must be based on a sustainable and balanced reaction,
consuming only CO2. To match the reduction of CO2 at the
cathode, an oxidation reaction must occur at the anode, which
supplies the electrons consumed in the reduction and regenerates
the protons used to accept oxygen from CO2. This is a seldom-
considered requirement that plays an important role in overall

device performance19. Many studies are presently concerned
solely with the cathode process, employing sacrificial and
therefore unsustainable reactions on the anode side. Here, an
aqueous system is employed where water oxidation continuously
provides a proton source to accept oxygen from CO2, leading to
the reactions defined in Table 1.

The production of CO from CO2 requires 259 kJmol� 1 of
free energy (22 kJmol� 1 greater than water electrolysis),
corresponding to a voltage of 1.34V. However, both the
cathodic and anodic half reactions suffer significant kinetic
overpotentials (Z), which must be overcome to drive the reaction
at meaningful rates. These overpotentials depend largely on
the nature of the electrodes and on the constraint that
electrochemical CO2 reduction must be performed at
near-neutral pH, as discussed below. Gold (Au) is known to be
the best catalyst in terms of overpotential for selective cathodic
CO evolution12,20. However, a number of different products can
be generated by reduction processes on Au, including several
carbon products as well as hydrogen from aqueous proton
reduction. This creates a potential-dependent product selectivity,
which must be accounted for when defining the cathode
operating potential. On the anode side, iridium oxide (IrO2) is
known to be a top performer for the oxygen evolution reaction21,
but suffers an overpotential increase in near-neutral conditions.
As represented schematically in Fig. 1 and as described below,
considering the thermodynamic voltage and the overpotentials
for both electrodes, a voltage of at least 2 V is demanded to drive
efficient and selective CO evolution from CO2.

Preparation and characterization of catalyst electrodes.
To enhance the catalytic performance of Au, oxidized cathodes
were prepared by electrochemical anodization as previously
described22. After exposure to reaction conditions, these
electrodes exhibit a highly porous structure of metallic Au
with an increased surface area (Supplementary Fig. 1). The
electrocatalytic performance of this material was assessed at
various potentials in a three-electrode configuration in
CO2-saturated 0.5M NaHCO3 aqueous electrolyte (pH 7.2) and
gas chromatography analysis was performed in situ to monitor
the product. In Fig. 2a, the cathodic current density and
Faradaic efficiency (FE) of CO production are reported as a
function of electrode potential versus the reversible hydrogen
electrode (RHE). Carbon monoxide production starts to be
observed at 90mV overpotential (� 0.20 V versus RHE),
confirming the impressive activity of gold towards this reaction.
The CO selectivity peaks at around � 0.4V versus RHE,
exceeding 90% FE towards CO, then decreases again at more
negative potentials. The remaining balance of current
primarily goes to the reduction of aqueous protons to generate
hydrogen. Owing to this potential-dependent product selectivity,
an effective overpotential for optimal CO yield is around 300mV
on this cathode.

Table 1 | Redox processes involved in CO synthesis from
CO2.

Reaction Standard electrode
potentials

(V versus RHE*)

CO2 (g)þ 2 Hþ þ 2 e�" CO (g)þH2O (l) –0.11
H2O"½ O2 (g)þ 2 Hþ þ 2 e� þ 1.23

CO2 (g)"CO (g)þ½ O2 (g) DE¼ 1.34V

*RHE, reversible hydrogen electrode.
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As mentioned above, aqueous carbon dioxide reduction
processes are constrained to near-neutral environments. This is
because in acid most known CO2 reduction catalysts favour H2

evolution over reducing carbon dioxide, whereas in base dissolved
CO2 spontaneously converts to carbonate, which is unreactive as
a substrate in electrochemical CO evolution12. In a complete
system, the anode and cathode must be operated in the same
solution to avoid introducing chemical bias based on
concentration gradients, masking the true operating voltage.
Commonly, CO2 reduction is carried out in aqueous bicarbonate
electrolytes, which, on saturation with CO2, results in a solution
buffered at pH 7.2. This presents a challenge for the anodic
reaction, as although many electro-catalysts have demonstrated
high catalytic activity towards the oxygen evolution reaction21,
they are typically most efficient in either strongly alkaline or
acidic solutions. Oxygen evolution from near-neutral solutions
has received less attention23,24, but nonetheless plays an
important role in complete CO2 reduction cells. As we observed
that materials based on nickel led to poisoning of the Au cathode,
IrO2 was selected as anode material here because of its great
stability and excellent performance towards the oxygen evolution
reaction21. Current–voltage curves of IrO2 electrodes, prepared by
thermal decomposition of H2IrCl6 on Ti foil, are shown in
Fig. 2b. In alkaline solution (1M NaOH), these electrodes show
comparable performance to what has been reported previously25.
In 0.5M NaHCO3, the onset is shifted to slightly more positive
values and it was found that the catalyst showed better
performance in a CO2-saturated electrolyte than under Ar. This
effect might be attributed to the increased buffer strength of

carbonate in the presence of CO2. Under CO2 photolysis
conditions, the anode reaches 5mA cm� 2 at an overpotential
of 400mV.

Integrated device characterization. Considering the perfor-
mance of both electrodes, an overall overpotential of
about 700mV is expected for selective production of CO,
therefore necessitating a driving force of 2V or more.
This is visualized in their current–voltage response in a
two-electrode configuration (Fig. 3a), where additional ohmic
losses are taken into account (see Methods). Driving this
reaction with sunlight requires a device producing voltages
considerably higher than conventional photovoltaics (PVs). In
this study, three perovskite cells connected in series were
employed (see Methods), producing an open-circuit voltage of
3.1 V and a short-circuit current density of 6.15mA cm� 2

(Fig. 3a, red). The operating point of the complete device can be
predicted by the intersection of the electrode and photovoltaic
curves3,26, which, in this case, falls on the outer end of the plateau
current of the photovoltaic—not far from the maximum power
point for solar-to-electric energy conversion. Intersecting in this
relatively flat region of the perovskite J–V characteristic enables a
stable system with respect to small perturbations such as
fluctuations in the light intensity and performance fluctuations
of the catalysts. The data predict a device current density of
B5.93mA cm� 2 (normalized to the total illuminated area of the
photovoltaics), which is close to the value observed on the
complete assembled device.
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Figure 1 | Sunlight-driven CO2 reduction device. (a) Schematic of the device combining photovoltaics with an electrochemical cell. (b) Generalized energy

diagram for converting CO2 into CO with three perovskite solar cells. The series-connected photovoltaics produce a voltage sufficient to overcome the sum

of the reaction free energy (DE) and the reaction overpotentials (Z) at the electrodes.
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For long-term testing of the complete device, a CO2-saturated
solution of 0.5M NaHCO3 was used as electrolyte and the PV
cells were kept in a transparent chamber under a constant flow of
argon. On exposure to simulated sunlight, the series-connected
perovskite tandem cell produced an absolute current of 1.65mA
(for a total illuminated area 0.285 cm2). To establish the cathode-
operating potential at � 0.4V versus RHE, at which CO yield on
Au is maximal, the cathode area was adjusted to 1.0 cm2 to
achieve the desired current density as defined by the catalyst
behaviour shown in Fig. 2a. After initial equilibration of both the
catalyst and the PV cells, the system was allowed to run without
any external bias under constant illumination for more than 18 h
(Fig. 3b). The current density remained constant at about
5.8mA cm� 2 and the minimal change in observed photocurrent
verifies the excellent stability of not only the anode and cathode,
but also of the three perovskite photovoltaics that are transferring
power to the catalyst load. To the best of our knowledge, this is
the first study of extended testing of CH3NH3PbI3 perovskite
photovoltaics under actual load conditions, confirming that stable
operation of these devices can be achieved.

Evolved gases were periodically analysed by gas chromato-
graphy and the CO signal was related to the measured currents to
determine the FE of sunlight-driven CO2 reduction to CO. As
shown in Fig. 3b, during the 18-h period of operation, the FE
varies between 80% and 90%. The energy-conversion efficiency
for a given species (solar-to-CO in this example) is defined by
equation (1):

ZCO ¼
E0
CO2=CO

� J � FECO
Isolar

ð1Þ

where E0
CO2=CO

¼ 1:34V is the thermodynamic energy stored in
the CO2/CO couple, J is the observed current density, FECO is the
faradaic efficiency towards CO formation and Isolar is the solar
power density. The measured current density and FE combine to
yield a CO2 reduction efficiency 46.5%, a new benchmark
exceeding greatly the efficiencies previously reported on systems
driven by Si photovoltaics27,28. In addition, considering hydrogen
that is formed as a secondary product at an average faradaic yield
of 10.5% over the whole experiment, a solar-to-fuel efficiency
exceeding 7% was achieved using this system. Although our study
focuses on gas-phase products, we note that anodized gold
catalysts have been reported to also produce liquid-phase
products, albeit in very small amounts22.

To understand the behaviour of each component, the
potentials of the anode, cathode and each photovoltaic cell
were monitored over time, as plotted in Supplementary Fig. 2a.
It can be seen that a distinct equilibrium takes place between

the three series-connected photovoltaic cells, whereas the
potentials at the anode and cathode remain fairly constant
during the course of the experiment. J�V curves of the
series-connected PV before and after testing are shown in
Supplementary Fig. 2b. As the perovskite photovoltaics are tested
over an extended amount of time and the efficiency is defined by
the actual current density during operation (equation (1)),
hysteretic behaviour does not affect the determination of the
CO2 reduction efficiency29. In this configuration, the
performance of the device is largely dictated by the interplay
between the Au cathode and photovoltaic current–voltage
behavior, as the anode shows a very steep J–V behaviour
compared with the other system components and thus only
negligibly influences the operating voltage.

Discussion
In this work, we demonstrated a highly efficient and unassisted
photolytic system for the reduction of carbon dioxide to carbon
monoxide using water as electron source, reaching benchmark
solar-to-CO efficiencies over 6.5%. This system, driven by three
perovskite photovoltaics, was shown to be stable over 18 h.
Remarkably, the extended operation under load demonstrated the
ability of the photovoltaics to maintain the necessary voltage for
selective photolytic synthesis of CO from CO2 in the long term,
encouraging further work on perovskite stability. Their large
open-circuit voltage constitutes a major strength of perovskite
photovoltaics. As a consequence of this, three of these in series-
connected cells were more than sufficient for CO production to
be driven with high efficiency, whereas conventional photo-
voltaics such as Si, on the other hand, require at least four cells to
achieve voltages sufficient to drive water splitting and CO2

reduction efficiently4.
Despite the remarkable efficiencies that were observed here,

there is still room for improvement. The use of more abundant
electrode materials will benefit the applicability of this catalytic
approach to industrial implementation. For instance, transition
metal or mixed metal cathodes have shown promise towards CO
evolution, although their performances are still less desirable than
for gold30. In addition, alternative anode materials for the oxygen
evolution reaction in near-neutral pH, such as Co-Pi and
Ni-Bi23,24, should be examined, keeping in mind that metal
contaminants in solution present the risk of poisoning the activity
of the CO2-reducing cathode12. As this photovoltaic system
produces a slight excess photovoltage, this design could
accommodate the use of higher-overpotential but cheaper
electrode materials and provide great potential for the selective
synthesis of other products.
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Side reactions due to cross-over of dissolved products (for
instance, re-oxidation of CO at the anode) constitute a loss
channel in this single-compartment system (Supplementary
Fig. 3). Further efficiency improvements can be expected on
incorporating a separator to prevent product diffusion between
electrode compartments. The use of a membrane can, however,
impart a significant overpotential because of the buildup of a pH
gradient, as has been previously reported31,32. Such a gradient
and overpotential buildup would be detrimental to the operation
of a CO2 reduction cathode, which exhibits a pH- and potential-
dependent product distribution. The development of an effective
membrane for neutral electrolysis could enable even higher
efficiencies in such a system and may represent a promising
avenue for continued research. Nevertheless, the solar-to-CO
efficiency reported here is unaffected from cross-over, as it is
derived from real-time measurements of the evolved gases.

The concept presented here shows that record performance can
be reached through simple device design. It therefore carries a
strong encouragement towards simplifying systems for solar fuel
generation and opens up a new path toward the efficient storage
of solar energy in carbon based fuels, which has the potential to
solve numerous challenges currently faced by the field of
renewable energy utilization.

Methods
Electrode preparation and characterization. Oxidized gold cathodes were pre-
pared with a modified method as described in ref. 22. Gold foil (99.97%, Chempur,
Germany) was cleaned in aqua regia mixed with deionized water (18.2MO) and
subsequently oxidized in 0.5M H2SO4 (96%, ‘extra pure’, Acros Organics) by
applying square pulses between 1.183 and 3.183V versus Ag/AgCl (KCl sat.) at
500Hz using a potentiostat (Interface 1000, Gamry USA). IrO2 anodes were
prepared as follows: titanium foil (99.7%, 0.25mm, Sigma Aldrich) was etched for
60min in boiling 1M oxalic acid (Z97%, anhydrous, Fluka). Subsequently, 30 ml of
0.2M H2IrCl6 (99.9%, hydrate, ABCR) in isopropanol (ACS Reagent, Merck) were
drop cast on the foil. This was followed by drying at 70 �C for 10min and
calcination at 500 �C for 10min in air. The step was repeated three times on each
side of the Ti foil. IrO2 (6.3mg) was deposited on each side. Both electrodes were
characterized before and after photolysis experiments by scanning electron
microscopy (SEM; Supplementary Fig. 1) and X-ray diffraction (Supplementary
Figs 4, 5). SEM micrographs were recorded using a Zeiss Merlin high-resolution
SEM. X-ray diffraction measurements were performed on a Bruker D8 Discover
X-ray diffractometer in the Bragg-Brentano Geometry using a CuKa source
(1.540598 Å) and a Ni b filter. A linear silicon strip detector was used (Lynx Eye).
Scans were acquired from 2y¼ 15�–110� with a step width of 0.03� and scan rates
between 2 and 10 s per step. The diffraction patterns were matched to the PDF-4þ
database (ICDD) and to literature reports33.

Photovoltaic cell preparation. Perovskite photovoltaic cells were prepared using a
similar procedure as described in the literature34. Different from the previous
method, the perovskite precursor solution was prepared by dissolving 1.1M of lead
iodide and methyl ammonium iodide in dimethylsulfoxide. The perovskite film was
deposited by spin coating, using chlorobenzyl as antisolvent to control the
crystallization. 2,20 ,7,70-tetrakis-(N,N-di-p-methoxyphenylamine)-9,90-
spirobifluorene (spiro-OMeTAD) was used as hole-transporting layer and it was
doped with bis(trifluoromethylsulfonyl)imide lithium salt and tris(2-(1H-pyrazol-
1-yl)-4-tert-butylpyridine)- cobalt(III) tris(bis(trifluoromethylsulfonyl)imide)35,36.

Electrochemical device testing. Electrocatalytic testing was performed in CO2-
saturated 0.5M NaHCO3 (99.7%, Sigma Aldrich) at pH 7.2. Anode J-V curves were
recorded in 1M NaOH (Reactolab, Switzerland) and in 0.5M NaHCO3 under Ar
(Carbagas, Switzerland) and CO2 (Carbagas Switzerland) using a potentiostat
(Interface 1000, Gamry USA). A Luggin capillary was used to minimize the iR-drop
between the working and reference electrodes, therefore eliminating the need for
applying iR correction, which is a common source of performance overestimation.
The gold cathode performance was assessed by testing at different potentials in CO2-
saturated 0.5M NaHCO3 aqueous electrolyte (pH 7.2), each point for 2 h and the
product was monitored at the same time by gas chromatography. These tests were
performed in a 25-ml three-neck flask with an Ag/AgCl (KCl sat.) reference electrode
(Metrohm, Switzerland) and sealed by septa (Suba Seal, Sigma Aldrich). A flamed Pt
wire was used as counter electrode. CO2 was sparged into the electrolyte at
20.00mlmin� 1 using a mass flow controller (Bronkhorst EL-Flow, The Netherlands)
and the product gas was analysed in a gas chromatography apparatus (Trace ULTRA,
Thermo USA) equipped with a ShinCarbon Column (Restek, USA) and a PDD
detector (Vici, USA), which was calibrated with respect to certified gas standards

(Carbagas, Switzerland). Combined J–V characteristic of the anode and cathode were
derived from the data obtained on both electrodes, considering the series resistance of
the cell and 4.5 cm2 as the surface area of the anode and adjusting the surface area of
the cathode to match the PV current at 2V at � 0.4V versus RHE as described
below. During testing, perovskite cells were kept in a custom-made chamber, which
was constantly flushed with argon gas (90mlmin� 1). This chamber was illuminated
using a 450W Xe arc lamp (Lot Oriel) with a KG3 filter (Edmund Optics, USA). The
total illuminated area of the perovskite cells was 0.285 cm2. The intensity of the light
source was adjusted to match standard AM 1.5G sunlight at 100mWcm� 2 intensity.
J–V curves of the cells were recorded from 3.1 to 0V at a scan rate of 10mV s� 1.
Electrocatalysis was performed as described above but with the Pt anode replaced by
IrO2/Ti. Before the test, the cathode was activated at � 0.4V versus RHE until
reaching a steady current. Similarly, the series-connected PV cells were activated at
2V. No external bias was applied for the whole duration of the stability test. For the
Au cathode to yield a maximum selectivity for CO, its surface area was adjusted to
1.0 cm2, which binds it to operate at � 0.4V versus RHE at the current supplied by
the photovoltaics (as described above and seen in the catalyst J–V curve in Fig. 2a).
The surface area of the anode was left constant at 4.5 cm2. The stable device current
density of 5.8mAcm� 2 (normalized by illuminated area) corresponded to a net
current of 1.65mA and therefore electrode current densities of 1.65 and
0.37mAcm� 2 on the cathode and anode, respectively. The FE data were smoothed
to correct for variations due to bubble formation and bubble breaking. Chopped
illumination experiments were conducted to confirm the light dependence of current
and electrode potentials (Supplementary Fig. 6). During testing, the current and
voltage on each cell and on each electrode, as well as on the Ag/AgCl (KCl sat.)
electrode were monitored using a Keithley 197 multimeter connected to an A/D
converter (USB 6211, National Instruments, USA) and the data recorded using
LabView (National Instruments, USA). The series resistance between the anode and
cathode was evaluated by potentiostatic AC-impedance measurements between
1MHz and 0.2Hz at 2V cell voltage and 10mV perturbation (Supplementary Fig. 7),
using the same potentiostat as above, and determined to be 22O.
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