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Abstract

Nervous systems are information processing networks that evolved by natural selection, whereas very large scale integrated
(VLSI) computer circuits have evolved by commercially driven technology development. Here we follow historic intuition
that all physical information processing systems will share key organizational properties, such as modularity, that generally
confer adaptivity of function. It has long been observed that modular VLSI circuits demonstrate an isometric scaling
relationship between the number of processing elements and the number of connections, known as Rent’s rule, which is
related to the dimensionality of the circuit’s interconnect topology and its logical capacity. We show that human brain
structural networks, and the nervous system of the nematode C. elegans, also obey Rent’s rule, and exhibit some degree of
hierarchical modularity. We further show that the estimated Rent exponent of human brain networks, derived from MRI
data, can explain the allometric scaling relations between gray and white matter volumes across a wide range of
mammalian species, again suggesting that these principles of nervous system design are highly conserved. For each of
these fractal modular networks, the dimensionality of the interconnect topology was greater than the 2 or 3 Euclidean
dimensions of the space in which it was embedded. This relatively high complexity entailed extra cost in physical wiring:
although all networks were economically or cost-efficiently wired they did not strictly minimize wiring costs. Artificial and
biological information processing systems both may evolve to optimize a trade-off between physical cost and topological
complexity, resulting in the emergence of homologous principles of economical, fractal and modular design across many
different kinds of nervous and computational networks.
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Introduction

Since the publication of Watts and Strogatz’s seminal article,

‘‘Collective dynamics of ‘small-world’ networks’’, network

science, as it has now come to be called, has extensively

pervaded the scientific community, transcending previously

impermeable boundaries between disciplines at every turn [1].

The availability of integrative tools to quantify the emergent

behavior of systems made up of many interacting parts, whether

they be people in a social network, proteins in a protein-

interaction network, or individual web pages in the WWW,

allowed many disciplines to add an entirely new level of

description and find common ground with traditionally unrelated

fields. The beauty of the topological formalism stemmed from its

simplicity: each connection between two parts of the system was

indicated by a line of unitary length, collectively giving an

understanding of connectivity structure in the abstract, e. g. in

topological space. While this strong focus on interconnect

topology has enabled seminal discoveries in a wide variety of

networks in the past decade, it inevitably neglects a fundamental

property of the majority of these systems: their existence in a

physical space. Gene co-expression profiles have specific

anatomical distributions throughout the body; proteins have

spatial distributions within cells that may increase or decrease the

probability of their interactions; humans have physical locations

that may influence who they make friends with; countries have

frontiers with each other that may affect their trade of goods.

Each of these complex systems can be described by a network

topology that is highly dependent on each node’s physical

location. Indeed, understanding the importance of physical node

placement in network growth and resultant topologies is an active

topic of research in network science [2,3].
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At this timely juncture, we investigate the interdependence of

topology and physicality in a ‘‘topophysical’’ analysis of informa-

tion processing networks. High performance computer circuits

have been empirically observed to exhibit a simple scaling

relationship, known as Rent’s rule, between the number of nodes

or ‘‘gates’’ in any piece of the circuit and the number of

connections (inputs or outputs) to that piece of circuit or ‘‘block of

logic’’, over a range of spatial scales [4]. First observed by Rent in

the 1960s, this scaling relationship has held up remarkably well as

circuits have evolved rapidly in terms of size and functional

performance. Circuits with greater logical capacity have higher

values of the Rent exponent, indicating more complex wiring or

higher dimensionality of the interconnect topology of the circuit.

Rentian scaling is one aspect of fractal or self-similar network

design principles that are also reflected in the hierarchical

modularity of VLSI circuits, which typically consist of ‘‘modules-

within-modules’’. Minimization of the cost of wiring VLSI circuits

has been an important economic factor in their commercial

evolution. Rentian scaling represents a cost-efficient solution to the

challenge of embedding a high dimensional functional intercon-

nect topology in a relatively low dimensional physical space with

economical wiring costs [5,6].

Given the mounting evidence that many complex systems share

important organizational properties in common [7], we hypoth-

esized that other informational systems, which have evolved by

natural selection rather than technological development, would

also be characterized by high dimensional fractal topologies

mapped cost-efficiently into physical space. The hypothesis that

biological and artificial information processing systems, in

particular, might share network properties such as hierarchical

modularity that confer adaptivity or evolvability of function [8]

dates back to Simon’s prescient analysis [9] but has not yet been

extensively tested using contemporary datasets and network

analysis tools. Here we study the only complete neuronal

connectome currently available, that of the nematode worm

Caenorhabditis elegans, as well as large-scale human brain structural

networks recently derived from neuroimaging data (using both

magnetic resonance imaging, MRI, and diffusion spectrum

imaging, DSI), and a benchmark VLSI circuit.

Results

We investigated the topological and physical properties of three

distinct and differently sized information processing networks -

two biological nervous systems and an artificial computer system.

The two biological systems were the human brain structural

network and the neuronal connectome of the nematode worm

Caenorhabditis elegans. Human brain structural networks were

measured at a relatively coarse-grained, regional level of

resolution (cm) using two complementary neuroimaging tech-

niques in two different samples; see [10] for a review of graphical

methods of network analysis in human neuroimaging. Covaria-

tion of regional gray matter volumes was measured using

conventional MRI data on a sample of 259 healthy volunteers

and a binary network was constructed by thresholding the inter-

regional partial correlation matrix [11]. Gray matter covariation

has previously been proposed as an indirect marker of anatomical

(axonal) connectivity between regions [12,13] and the rationale is

rehearsed in supplementary Text S1. As an alternative and more

direct measure of anatomical connectivity, we also estimated the

connection probabilities between regions by tractographic

analysis of diffusion spectrum imaging (DSI) data on 5 healthy

volunteers [14]. This approach allows us to construct an

anatomical network, by thresholding the inter-regional connec-

tion probability matrix, for each individual participant; whereas

the approach based on inter-individual covariation of gray matter

volumes in conventional MRI yields only a single network for the

whole group of participants. The nervous system of C. elegans has

been precisely measured at a finer-grained, cellular (vmm) level

of resolution [15,16] and is highly reproducible across individual

worms. The computational system was a benchmark very large

scale integrated (VLSI) circuit (ISCAS89 sequential logic circuit

s953 [17]).

We applied methods of network analysis, drawn mainly from

the literature on VLSI design, consistently to both nervous and

computational systems; see Materials and Methods and Table 1

for details, and Figure 1 for a graphical depiction of analysis

methods.

Hierarchical modularity
All three information processing networks demonstrated

modularity of community structure, such that each network could

be sub-divided into a number of sparsely interconnected modules

each comprising a number of densely intra-connected nodes.

Indeed, we found that there were often ‘‘modules within

modules’’, such that community structure was present on a

hierarchy of topological scales. This property of hierarchical

modularity can be discerned simply by inspection of the co-

classification matrix of each network (Figure 2 left) but is more

robustly demonstrated by the results of iterative modular

decomposition using the Louvain algorithm [18,19] (Figure 2

right). The C. elegans nervous system and the VLSI circuit both had

significantly non-random modularity over 4 hierarchical levels.

The human brain network derived from DSI data was significantly

modular over 3 hierarchical levels and the network derived from

conventional MRI data was modular over 2 levels; see

supplementary Text S1 for additional results. It is important to

note that such hierarchical modularity is consistent with a fractal

or scale-invariant topology of connections between elements of the

systems [5,6].

Author Summary

Brains are often compared to computers but, apart from
the trivial fact that both process information using a
complex physical pattern of connections, it has been
unclear whether this is more than just a metaphor. In our
work, we rigorously uncover novel quantitative organiza-
tional principles that underlie the network organization of
the human brain, high performance computer circuits, and
the nervous system of the nematode C. elegans. We show
through a topological and physical analysis of connectivity
data that each of these systems is cost-efficiently
embedded in physical space; they are organized as
economical modular networks, paying a modest premium
in wiring cost for the functional advantages of high
dimensional topology. We also show that the fractal
properties of human brain network connectivity can be
used to explain allometric scaling relations between grey
and white matter volumes in the brains of a wide range of
differently sized mammals—from mouse opossum to sea
lion—further suggesting that these principles of nervous
system design are highly conserved across species. We
propose that market-driven human invention and natural
selection have negotiated trade-offs between cost and
complexity in design of information processing networks
and convergently come to similar conclusions.

Physical Embedding of Information Systems
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Rentian scaling
In the development of VLSI circuits, a simple power law, known

as Rent’s rule, has been discovered to define the scaling relationship

between the number of external signal connections C to a block of

logic and the number of connected nodes N in the block [4]:

C~k Np ð1Þ

where 0ƒpƒ1 is the Rent exponent and k is the Rent coefficient.

Moreover, this scaling relationship can be measured in both

physical space and topological space by defining a ‘block’ as either a

physical box or a topological partition; see Figure 1 andMaterials and

Methods for details. We will refer to the Rent exponent estimated in

physical space as the physical Rent exponent, denoted simply p; and

we will refer to the Rent exponent estimated in topological space as

the topological Rent exponent, denoted pT . As we show below, the

topological Rent exponent can be used to estimate the fractal

dimension of the network topology, and can be compared to the

physical Rent exponent to assess the cost-efficiency with which the

network has been embedded in a Euclidean dimensional space.

Topological Rentian scaling and fractal dimension.

Topological Rentian scaling is generally defined as the scaling of

the number of nodes n within a topological partition with the

number of connections or edges, e, crossing the boundary of that

topological partition. If these two variables scale with each other in

log-log space, the network is said to show topological Rentian

scaling or fractal topology. The exponent of this scaling relationship

is known as the topological Rent exponent, p
T

and is related

to the topological dimension, DT , of the network according to

p
T
§1{

1

DT

[5]. Thus higher values of the topological Rent

exponent are indicative of higher dimensional network topology.

We found that all information processing networks demonstrated

topological Rentian scaling (see Table 1 and Figure 3). For all

networks, a power law provided a better fit to the topological data

on log nð Þversus log eð Þ than comparable exponential, linear or

polynomial models; see supplementary Text S1. It was also notable

that all the networks had a topological dimension DT greater than

the Euclidean dimension DE in which they were physically

embedded. This inequality indicates that the dimensionality of

connections between nodes of information processing networks is

generally greater than one would expect for a 2- or 3-dimensional

lattice (for which DT:DE ). In the evolution of VLSI circuitry,

progressively higher dimensional interconnections between logic

gates have been associated with greater logical capacity; see Figure 4.

However, the development of high dimensional network topologies

necessarily comes at a cost in terms of wiring. The wiring cost of a

network with DTwDE will inevitably be greater than the absolute

minimum cost of wiring an equivalent sized network with DTƒDE

(e.g., a regular lattice). Indeed, it is nontrivial (NP-complete) to find

the physical layout of a high dimensional topology which optimally

minimizes its wiring cost [20].

These findings were supported by the results of estimating

fractal dimension of the network topology by an alternative, box-

counting estimator [21,22], which provided consistent estimates of

DT , as discussed in the supplementary Text S1.

Physical Rentian scaling and efficient embedding. The

physical Rent exponent is estimated from the scaling of the

number of nodes n within a physically located subset with the

number of connections or edges, e, crossing the boundary around

the nodes; see Figure 1 and Materials and Methods. For a given

network topology, the minimum possible physical Rent exponent,

pmin, associated with the most efficient possible physical

placement, is theoretically related to the topological Rent

exponent, p
T
, as follows [23]:

pmin~max 1{
1

DE

, p
T

� �
: ð2Þ

Table 1. Measures of fractal connectivity and physical embedding in computational and nervous systems.

Network Nodes r DE p
T

bDDT p
T

� �
p �rr k

Observed

VLSI 440 0.4% 2 0.73+0.04 3.81+0.64 0.901+0.006 7.78 1.68

C. elegans 277 2.7% 3 0.77+0.06 4.42+1.53 0.74+0.07 53.34 28.39

Human brain (MRI) 104 15% 3 0.75+0.07 4.12+1.55 0.828+0.005 3.02 1.60

Human brain (DSI) 1000 2.7% 3 0.78+0.07 4.54+2.12 0.782+0.014 4.55+0.33 1.97+0.20

Randomly rewired

VLSI 440 0.4% 2 0.81+0.06 5.26+2.42 0.927+0.003 10.90 1.98

C. elegans 277 2.7% 3 0.79+0.05 4.76+1.48 0.805+0.003 88.43 44.54

Human brain (MRI) 104 15% 3 0.82+0.06 5.55+1.06 0.874+0.003 12.00 6.27

Human brain (DSI) 1000 2.7% 3 0.86+0.05 7.14+2.77 0.925+0.002 10.88 3.23

Minimally rewired

VLSI 440 0.4% 2 0.46+0.06 1.85+0.23 0.509+0.005 1.21 0.43

C. elegans 277 2.7% 3 0.43+0.28 1.75+1.69 N/A 1.34 1.36

Human brain (MRI) 104 15% 3 0.59+0.13 2.43+1.13 0.93+0.01 1.88 1.47

Human brain (DSI) 1000 2.7% 3 0.57+0.11 2.32+0.79 0.68+0.004 2.17 1.01

r connection density; DE , Euclidean (embedding) dimension; p
T
, observed topological Rent’s exponent; bDDT p

T

� �
, fractal dimension of network topology estimated from

the topological Rent’s exponent, p
T
; p, observed physical Rent exponent; �rr, mean connection distance between nodes (Eq 6); k, measure of cost-efficient embedding (Eq

4). Errors reported are 95% confidence intervals for fits of bDDT p
T

� �
, p; and standard deviation over individual subject’s values for the DSI estimations of �rr and k. For

the DSI estimations of p
T
, bDDT p

T

� �
, and p, combined errors (s) are reported which include the errors of fit (sfit) and individual variation (sind ) as given by s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2fitzs2ind

q

(see supplementary Text S1 for results from individual DSI scans). Values for the randomly rewired networks are averages over 10 random network instantiations.
doi:10.1371/journal.pcbi.1000748.t001
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For all information processing networks, a power law provided a

better fit to the physical data on log nð Þversus log eð Þ than

comparable exponential, linear or polynomial models; see

supplementary Text S1. In all cases, we found that p
T
w1{

1

DE

(which is 2/3 or 0.67 for DE~3 and 0.5 for DE~2). Therefore,

the minimum physical Rent exponent possible for each of these

networks was equal to its topological Rent exponent: pmin~p
T
. As

shown in Table 1, the observed physical Rent exponent, p, was

indeed close to its theoretically predicted minimum value, p
T
,

indicating that both biological and computational networks had

been cost-efficiently embedded in physical space.

Wiring length. From the theory of VLSI design, we also

know that the mean connection distance �rr between nodes in a

circuit is related to its size N, topological dimension DT and

embedding dimension DE by the equation [5,24]

�rr~k DT ,DEð ÞN1=DE{1=DT , ð3Þ

where the coefficient k*1 if the network has been cost-efficiently

embedded. As shown in Table 1, all information processing

networks, especially the human brain networks, had values of k
close to unity, providing additional evidence in favor of their cost-

efficient embedding. The relatively large value of k for the C.

Figure 1. Schematic of some key methods. A hierarchical modular network, A(i), is made up of modules, A(ii) green, which are made up of sub-
modules, A(ii) yellow, and sub-sub-modules, A(ii) red, which are collectively visualized by a co-classification matrix, A(iii), where hierarchical
modularity is evident by layers of color located along the diagonal [74]. To estimate the topological Rent exponent and dimension of a network, B(i),
we first cover the network with a single box large enough to cover it entirely; then we recursively partition the box (B(ii) and B(iii)) into halves,
quarters, and so on using a partition algorithm that minimizes the number of edges cut by each partition. For each iteration of this process, we count
the number of nodes within a partition (n), and the number of edges (e) crossing the partitions; a linear relationship between these two variables
plotted on logarithmic axes indicates topological Rentian scaling of network connectivity and provides an estimator of the topological dimension DT

of the network[21,22]. To estimate the physical Rent exponent, we randomly place 5000 randomly sized boxes on the physically embedded network,
e.g., the human brain network in anatomical space C(i). Then we count the number of nodes n and the number of boundary-crossing edges e for each
box C(ii) and estimate the physical Rent exponent p by the linear relationship between these two variables on logarithmic axes, C(iii).
doi:10.1371/journal.pcbi.1000748.g001

Physical Embedding of Information Systems
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elegans system reflects the fact that its connections are physically

extended to innervate an entire organism.

Although these information processing networks were efficiently

embedded, they were not wired for absolutely minimum cost. We

rewired each circuit to minimize its wiring cost and compared the

cost and topological dimension of this minimally wired version of

the network to its observed cost and dimensionality. In all cases,

we found that wiring cost could be further reduced by a

minimization algorithm, indicating that cost had not been

minimized by selection pressures on the observed networks.

However, such wiring minimization could only be achieved at the

expense of a reduced topological dimension (see Table 1 and

Figure 5).

Allometric scaling
In VLSIs, the self-similar nature of Rent’s rule is used to predict

the effect of scaling the system, by keeping the exponent and

coefficient the same. Indeed, despite the lack of any explicit

imperative for individual circuit designers to follow this law, Rent

exponents can be a remarkably reliable predictor for emergent

VLSI allometric scaling properties, over many orders of

magnitude, such as can be seen in Figure 4A.

We considered the related question of whether the Rentian

scaling of connections between cortical regions in the human brain

networks could be related to the allometric scaling of gray matter

G and white matter W volumes previously described over a wide

range of differently sized mammalian species, from mouse

Figure 2. Hierarchical modularity in nervous and computational systems. Dendrograms displaying significant modular and sub-modular
structure for (A) a very large scale integrated circuit, (B) the nematode worm C. elegans, (C) the human cortical anatomical network estimated using
conventional MRI in 259 normal volunteers and (D) the human cortical anatomical network estimated using diffusion spectrum imaging (DSI) from an
independent sample of 5 normal volunteers. The modularity, m, of each of these matrices was estimated using the Louvain community detection
algorithm [18]; 1-tailed t-tests were performed to determine where the modularity of the observed network was higher than the modularity of
a functional random (p-value, p

f
), and pure random (p-value, p) network. The matrices were decomposed into their sub-modules, and each sub-

module was tested for modularity, m, greater than functional and pure random networks (p
f
, p) of the same size as the module being tested. This

process was iteratively performed: sub-modules were tested for non-random modularity, and if sub-sub-modules were identified in this way
then each of them was in turn tested for non-random modularity. All modules shown in the decomposition had p, p

f
v:05 except for those few

indicated in gray (p
f
v:05) and blue (pv:05). Complete decompositions are shown for the VLSI and human brain MRI network; both the C. elegans

and human brain DSI networks continue to deeper hierarchical levels, here not shown due to space constraints (see supplementary Text S1 for full
decompositions). Insets The inset panels give a visual depiction of the hierarchical modularity of each system, which has been represented by a co-
classification matrix where red/brown colors highlight modules or clusters of nodes with high local interconnectivity and relatively sparse
connectivity to nodes in other modules [74]; see also Figure 1 for a schematic.
doi:10.1371/journal.pcbi.1000748.g002
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opposum to sea lion [25,26] (Figure 4). It can be shown that the strong

power law relationship logW*a logG has an allometric exponent a

that is simply related to the physical Rent exponent p of mammalian

cortical networks, i.e., a~
3p

2
; see Materials and Methods and

supplementary Text S1 for details. On this basis, we used the estimate

of p for human anatomical networks measured using MRI,

p̂p
MRI
*0:828+0:005, and using DSI, p̂p

DSI
*0:770{0:807, to

predict the allometric scaling relationship between cerebral gray

andwhitematter (Figure 4). The 95% confidence interval on the slope

of the true data leads to a range of 1:24vav1:33 while the interval

estimated from the MRI network was 1:234vav1:249 and for the

DSI networks 1:152vav1:194 (the slight underestimation of a from

DSI data may be related to a measurement bias against long distance

connections in DSI-based tractography; see supplementary Text S1).

The quality of prediction of mammalian allometric scaling from Rent

exponents estimated in a single species is consistent with the idea that

mammalian cortical networks are generally connected in accordance

with the same Rent exponent, and this constrains the allometric

scaling relations between gray and white matter volume which

emerge over differently sized species.

To make the same point a different way, we converted previously

reported allometric scaling exponents for the cerebral cortex and

cerebellum [26] to the corresponding Rent exponents and fractal

dimensions. Prior estimates of the cortical allometric scaling

exponent 1:24va Cortexð Þv1:33 correspond to an interval of

Rent exponents 0:83vp Cortexð Þv0:89 which includes the

empirical estimates from human MRI data (Table 1); whereas the

Figure 3. Topological and physical Rentian scaling in nervous and computational systems. Physical Rentian scaling in (A) a very large
scale integrated circuit, (B) the nematode worm C. elegans, (C) the human cortical anatomical network estimated using conventional MRI in 259
normal volunteers and (D) the human cortical anatomical network estimated using diffusion spectrum imaging (DSI) from an independent sample of
5 normal volunteers, is shown by a power law scaling of the number of connections or edges (log(e)) and number of processing elements (log(n)) in a
physical box; data points for each physical box are shown by black stars. The Rent exponents for each system were estimated by the gradients of the
fitted red lines (see Table 1). Note: Data and linear shown in D are for a single subject. Insets Topological Rentian scaling in nervous and
computational systems is shown by a power law scaling of the number of nodes (log(n)) in a topological partition and the number of edges crossing
the boundary of that partition (log(e)); data points for each topological partition are shown by black circles. The network topology of each system
was iteratively partitioned in topological space. All networks contained a linear scaling regime (so-called Region I, filled black circles) and a regime at
larger partition sizes where linear scaling broke down due to boundary effects (so-called Region II, empty black circles). The slope, p

T
, of the line

through points within Region I was estimated using a weighted linear regression (red line); see Table 1. Note: Data and linear fits for all six DSI scans
are shown in D.
doi:10.1371/journal.pcbi.1000748.g003
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prior cerebellar allometric scaling exponents 1:08va Cerebellumð Þv
1:18 correspond to an interval of Rent exponents 0:72v
p Cerebellumð Þv0:79. Although we were unable to verify the

allometrically predicted Rent exponents for human cerebellum

(because the MRI datasets did not include cerebellar measure-

ments), we note that the prediction of larger Rent exponents and

fractal dimensions for human cortical compared to cerebellar

systems is consistent with the arguably greater logical capacity of

cortical systems and the observation from VLSI circuits that higher

dimensional connectivity is associated with greater logical capacity;

see Figure 4. The hypothesis that cerebellar Rent exponents are

indeed significantly reduced compared to cortical systems, and the

more general idea that Rent exponents of neural systems are

functionally related to their logical capacity, demand further direct

investigation in future.

Discussion

We have shown that several topological and physical principles

of network organization are quite consistently represented across a

wide range of different information processing systems. Artificially

generated computer circuits and biologically evolved nervous

systems are generally fractal modular networks that represent the

cost-efficient physical embedding of a high dimensional intercon-

nect or connectome topology in a lower dimensional Euclidean

space. These properties help to explain the allometric scaling

relationship between grey and white matter volumes across

differently sized mammalian species and they provide fresh insight

into why the wiring costs of nervous systems are not more strictly

minimized.

In the remainder of this discussion, we will attempt to locate

these key findings in the context of both past and present biological

descriptions, computational models, and analysis methods.

Hierarchical modularity
Modularity is a fundamental and protean word with many

meanings in neuroscience. Psychological or functional modularity

refers to separability or informational encapsulation of cognitive

processes, which may be neurally represented by specialist, localised

processing centres in the brain. It is one of the key ideas behind

phrenology and faculty psychology [27]. There is also a well

articulated neurodevelopmental aspect of modularity. For example,

the embryonic development of chick hindbrain follows a strict

chronological progression of cellular differentiation from caudal to

rostral modules of nervous tissue, called rhombomeres, each of

which comprises cells that share distinctive patterns of genetic co-

expression compared to cells in neighbouring tissue modules [28].

Here we are concerned with topological modularity [18,29] - a

more general and quantitative version of the concept - that we have

applied to analysis of information processing network organization.

Topological modularity is sometimes also referred to as the

community structure of a network because it decomposes the

global network into a set of modules or communities each

comprising nodes that are densely intra-connected with each other

and relatively sparsely inter-connected to nodes in other modules.

This basic design of sub-systems within the global system is

functionally advantageous in various ways. As Herbert Simon

argued originally, the key advantage of such a design for an

information processing network is that it confers rapid adaptivity

or evolvability: the system can evolve or adapt to new information

one module at a time, without risking loss of function in modules

that are already well-adapted. For this reason, Simon predicted

that all ‘‘physical symbol processing systems’’ would share a

general architecture of complexity, including modularity (or near-

decomposability as he sometimes called it) as a key principle [9].

Our results are compatible with Simon’s prediction - all the

information processing systems we considered could be decom-

posed into modules, or indeed ‘‘modules within modules’’. For a

classically modular decomposition, the system is decomposed into

a single lower level of organization in terms of multiple sub-

systems. For a hierarchically modular decomposition, the system is

iteratively decomposed into multiple nested lower levels of

organization in terms of sub-systems, sub-sub-systems, etc. When

Figure 4. Allometric and Rentian scaling of VLSI circuits and mammalian brains. In computer circuits (A), the number of connections at the
boundary of a chip scales in a Rentian power law with the number of processing elements; the Rent exponent p is greater for high performance
computers (shown in blue) than for simpler dynamic memory circuits (shown in red); see pp. 416–421 in [76] for data values plotted here. In the
cerebral hemispheres of mammalian brains (B), there is an allometric scaling relationship between white matter volume (related to connectivity of
elements) and gray matter volume (related to number of processing elements); see Table 1 in [26] for data values plotted here. The exponent of this

volume scaling relationship over species, a~
3p

2
, is simply related to the Rent exponent of mammalian cerebral connectivity, p. Lines fitted through

the intercept of the data show the allometric scaling relationship predicted by the Rent exponent estimated for neuroimaging data on a single
species (Homo sapiens), using MRI (cyan, p̂p*0:828) and DSI (blue, p̂p*0:782) (Table 1). Errors in the fits are smaller than the line width.
doi:10.1371/journal.pcbi.1000748.g004
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modularity is expressed consistently at several scales, we can

describe the system as hierarchically modular. This property was

clearly seen for the VLSI circuit, C. elegans and human

connectomes, for each of which modularity was expressed

consistently across several (4 or more) topological scales, so the

system as a whole could be described in terms of sub-sub-sub-

systems, or even lower hierarchical levels in the case of C. elegans

and the human DSI network (see supplementary Text S1). Even

the smallest and least precisely estimated connectome, that derived

from the human MRI datasets, also generated networks with some

hierarchical modular properties (across 2 topological scales) and

this observation is compatible with other data demonstrating

hierarchical modularity in human brain functional networks

derived from ‘‘resting state’’ functional MRI data [30].

The observation that nervous systems generally share a

hierarchically modular topology is particularly relevant to the

question of how they support function. As is perhaps intuitive,

there is mounting evidence that the modular architecture of

anatomical structure determines the possible emergent functions of

the network under study [31,32]. Functional patterns on

hierarchically modular architectures have specifically been shown

to display computationally advantageous dynamics characterized

by stability and diversity [33], unlike simulated dynamics on either

random or non-hierarchically small-world architectures [34].

Sporns provides a simple generative model for fractal hierarchical

networks and shows further relationships between their structural

and functional properties, suggesting that connectivity may

strongly constrain dynamics [32,35]. Computational models of

hierarchical modularity have shown that networks configured in

this way have the distinctive advantage of being robustly stable

under large scale reconnection of substructure [36].

Overall, we find there is strong empirical evidence, convergent

with prior theoretical and computational results, for fractal

modularity of information processing networks. We now consider

some other aspects of the scale invariance of these systems.

Fractal dimensions and wiring costs
Fractal dimensions are most frequently encountered in analysis

of the physical properties of some rough, irregular process in space

or time. A famous example is the fractal dimension of the fjord-

riven western coastline of Norway (1.52) which is considerably

greater than the Euclidean dimension of a straight line (1) but less

Figure 5. Minimally rewired networks. Wiring costs of nervous and computational networks are lower than expected in a random network, but
can be reduced by a rewiring algorithm designed to minimize connection distance between elements (A); see Table 1. However, the fractal
dimension of network topology, while lower than expected in a randomly rewired network, is also reduced by rewiring for cost minimization (B).
Rentian scaling is either destroyed or disrupted by minimally rewiring the C. elegans connectome (C) or the human MRI network (D). The inset panels
in (C,D) show the hierarchical modularity of each minimally wired system, which has been represented by a co-classification matrix as in Figure 2.
doi:10.1371/journal.pcbi.1000748.g005
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than the 2 dimensions of the Euclidean plane in which the

coastline is embedded on the page of an atlas. This is a fractional

or non-integer measure of the dimensionality of a geometric

system, DG, and it will generally be less than or equal to the integer

dimensional Euclidean space in which the process is embedded.

Thus the irregular convolutions of sulco-gyral folding in the

human brain are associated with fractal dimension of the cortical

surface DG*2:7, greater than a smooth 2D plane but less than the

3-dimensional volume in which the brain is embedded. Although

its estimation is a matter of ongoing methodological research

[37,38], the fractal dimension of the cortical surface has already

been used to describe healthy and abnormal neurodevelopment

[39,40] as well as aging [41].

However, here we have been concerned with a related but

different measure: the fractional dimension of a topologically

defined system, DT . The dimension of a topology is a non-integer

measure of the complexity of the interconnections between nodes,

regardless of their physical location, and is therefore not

constrained by the dimensionality of the physical embedding

space. The dimension of a topology can range from 0 to infinity, in

the limiting case of a very large, perfectly random network. If the

network is embedded in a physical space, its topological dimension

may therefore be larger than its embedding dimension, which in

real space is at most 3. We found convergent evidence, by two

independent estimators, for information processing network

topologies having fractional dimensions greater than 3. Thus it

seems brains have both fractal geometry and fractal topology,

although how these two aspects of brain organization are related

to each other is a fascinating question we will leave unaddressed

for the moment.

In VLSIs, such high dimensional interconnect topology is

related to logical capacity of the circuits, and we suggest that it is

also likely to be functionally advantageous in nervous systems.

However, greater than three-dimensional connection topology

incurs an extra wiring cost, compared to the minimum cost of

wiring the same set of physically located nodes interconnected by a

nearest-neighbour, lattice-like topology with DTƒ3. Our results

indicate that nervous systems and computational circuits are cost-

efficiently but not cost-minimally embedded in physical space,

meaning the wiring length of these networks is close to the

minimum length it could be, given their high dimensional

topology, but it is not absolutely minimized.

Previous studies of brain and neuronal networks have shown

that wiring costs are nearly if not absolutely minimized [15,42],

using a combination of component placement optimization and

wiring placement optimization. Component placement optimiza-

tion creates minimally wired networks by retaining the connec-

tivity of the system (edges) while allowing components of the

systems (nodes) to move in space. This approach maintains the

inherent functionality of the system and asks whether, given such

functionality, the components can be ordered in a different way to

provide shorter average wiring. Conversely, in wiring placement

optimization [15], we retain the placement of the components of

the system (nodes) and alter the connectivity of the system (edges).

As such, wiring placement optimization does not retain the

inherent functionality of the systems but instead retains the

inherent anatomical structure (heterogeneous localization of brain

regions or neurons). In this work, given the placement of nodes in

space and preserving the number of edges, we ask: could these

nodes be reconnected in a different configuration so as to yield a

shorter average wiring length? Our purpose in choosing wiring

placement over component placement was to compare the

topological and physical characteristics of a given brain network

to those of a 3-dimensional lattice-like network in a realistic brain

anatomy. By this approach we found that wiring costs in brain

networks were nearly but not absolutely minimal.

Given the high metabolic costs of the brain (about 20% of the

total energy budget for only 2% of body mass in the human), of

which a large proportion is due to the costs of building and

maintaining functional connections between anatomically distrib-

uted neurons [43,44], it seems reasonable to ask: why have brain

wiring costs not been more strictly minimized by natural selection?

Our answer to this question is that the selection of greater than 3-

dimensional (w3D) network topologies, which are associated with

hierarchical modularity and greater logical capacity, has been

prioritized despite the adverse impact on wiring cost that is

entailed when any system that is topologically more complex than

a 3D lattice is embedded in physical space [15,42]. Absolute

minimization of wiring cost in these nervous systems could only be

achieved at the expense of reduced topological complexity.

Moreover, the generalizability of this result to both C. elegans and

Homo sapiens suggests that a trade-off between high dimensional

connectivity and wiring cost has been negotiated in the evolution

of nervous systems at microscopic (cellular) and macroscopic

(whole brain) levels of description and in phylogenetically removed

species.

Rentian and allometric scaling of nervous systems
In comparing the results of these and other studies, it is

important again to highlight the distinction between Rentian

characteristics for partitioning (topological Rentian scaling) versus

placement (physical Rentian scaling) [23]. Partitioning examines

the un-embedded network topology, whereas placement examines

the position of nodes embedded in a physical substrate. Therefore,

the partition-based Rent exponent measures a characteristic more

intrinsic to the VLSI circuit topology while the placement-based

Rent exponent measures a characteristic of the extrinsic physical

wiring properties [23]. In the construction of a VLSI, placement is

the artificial process by which a given network topology is

somehow embedded into a physical substrate by the manipulation

of nodal placement. Minimization of wiring costs is an important

economic factor in VLSI production and designers will seek to

optimise the efficiency of network embedding. The optimal cost-

efficient embedding will have a physical Rent exponent, based on

placement, equivalent to the topological Rent exponent, based on

partitioning. However, optimal placement is an NP-complete

problem, as is optimal partitioning, and as such different

placement algorithms can yield sub-optimal Rent exponents.

While topological Rentian scaling of the C. elegans connectome

has been previously reported [45–47], the present work is the first,

to the best of our knowledge, to report topological Rentian scaling

in human anatomical networks derived from neuroimaging and

also the first to explore physical Rentian scaling in neuronal

networks. In the nervous systems studied here, the placement and

topology have both been evolved by nature, and as such the

physical Rent exponent is constrained by the (sub)optimality of

natural selection rather than by the particular placement

algorithm chosen (as is the case for a VLSI). We found that for

both human brains and the nematode connectome, the physical

Rent exponent p was close to its theoretical minimum, the

topological exponent p
T
, indicating that natural selection has

resulted in near-optimisation of cost-efficient network placement.

This analysis has also provided the first direct evidence for a

simple relationship between physical Rentian scaling of connec-

tivity within the nervous system of a single species and allometric

scaling of gray and white matter volumes across the differently

sized brains of a range of mammalian species. This result needs to

be considered in the context of a rich prior literature on allometric
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brain scaling and its possible theoretical relationship to isometric

or fractal scaling of network connectivity. Early studies of

allometric scaling in the brain showed, for example, that the

number of neurons scaled with gray matter density while the

number of synapses remained constant [48–50]. The study of the

relationship between white and gray matter in mammalian cortex

began with the work of Schlenska [51] and later Frahm [52] in the

late 70s and early 80s. Both reported scaling relationships in

independent mammalian datasets with exponents of 1.22 and 1.24

respectively. The strength and consistency of this finding, later

underscored by a comparative MRI study [53], prompted

theoreticians to propose various geometric and mechanistic

models which have been used to predict other scaling relationships

between related neuronal variables [54,55], serving as important

guides for further experimental work.

Beiu et al. suggested that the allometric scaling exponent for

gray and white matter volumes between species was identical to the

Rent exponent within a species [56]. The assumption that the

scaling exponent between white and gray matter volumes is

identical to Rent’s exponent necessarily neglects the differences

between a volumetric scaling and a network scaling (e.g., a scaling

of nodes and connections). As we have shown in our derivation

here and in the supplementary Text S1, nodes and connections do

not in fact scale directly with volume, and thus the exponents of

volumetric scaling and Rentian scaling are not directly equivalent.

Prothero developed a repeating units model [54] which suggests

that all brains are made up of identical repeating units: larger brains

simply have more of these units than smaller brains. Changizi

developed a slightly more complicated, two-part model [55]

partially based on the application of West’s theory of branching to

neuronal arbors [57]. While these two models sought to describe

allometric relationships between a wide variety of neuronal

variables, Zhang and Sejnowski elegantly propounded a model to

explain only the allometric relationship between gray and white

matter [25]. However, following the publication of these models,

empirical developments have challenged one of the main

assumptions underlying all three: namely, that there is a basic

uniformity of the cerebral cortex as evidenced by a constant number

of neurons in a unit area of cortical surface; this assumption now

seems unrealistic [58]. Also, although the final two models produce

an near-perfect 4/3 scaling exponent between white matter volume

and cortical gray matter volume in mammals, they do not readily

allow for distinct scaling exponents in non-cortical systems, e.g.,

cerebellum, or in non-mammalian species.

These challenges aside, prior studies have contributed seminal

insights to our understanding of allometric scaling of brain

properties which we hope we have been able to further refine. We

suggest that the allometric scaling of white matter volume with

gray matter volume is a direct consequence of the physical Rentian

scaling of connectivity in a given brain. In contrast to the models

previously described, our explanation allows an independent

empirical validation or cross-check: we separately estimate the

Rentian scaling within a single mammalian system and use it to

predict the allometric scaling of white matter volume with gray

matter volume across a range of mammalian species. In addition,

our heuristic allows for differences in scaling relationships between

distinct areas of cortex such as the neocortex and cerebellum or

between different classes of animals such as vertebrates and

invertebrates. This isometric generative mechanism for allometric

scaling does not stand or fall by producing an ideal, e.g., 4/3,

scaling relationship between white matter volume and gray matter

volume, but allows for irrational or non-integer scaling exponents

that may vary somewhat depending on the type of brain network

and/or the phylogenetic class of species considered.

However, like the other available models, our derivation does

include some assumptions or approximations: 1) we have made the

approximation of ignoring the effect of white matter dilation after

determining that its contribution is small over the range of white

matter volume values studied (see supplementary Text S1), and 2)

we have assumed that the number of synapses in a cross-sectional

area is constant as a function of gray matter volume based on the

known invariance of synaptic density [50]. Empirically required

alterations to these approximations and assumptions may induce

small corrections to the estimation of the Rent exponent, p.

The formal and empirical connection we have made between

fractal or self-similar connectivity of the nervous system of a single

mammalian species and the allometric scaling of gray and white

matter volumes over multiple mammalian species provides a novel

mechanistic explanation for a long-established observation. We

propose that allometric scaling of brain anatomy is constrained by

fractal properties of the cortical network for information transfer in

broadly the same way as the allometric scaling of mammalian

metabolic rate with body mass is constrained by fractal properties

of the respiratory network for gas exchange [57,59].

Methodological limitations
There are several methodological issues to be considered in

evaluating the results of this study. The small size of both the

human MRI and C. elegans networks limits the precision with

which we have been able to estimate the fractal dimension of

network topology, DT . We have tried to address this by reporting

convergent results from two complementary estimators (topolog-

ical Rentian scaling and box counting) and by using DSI data

which have been parcellated into 1000 nodes. Nonetheless in

future studies, it will be useful to apply finer grained parcellation

templates to human neuroimaging data to improve estimation of

fractal properties of network topology by analysing the systems

over a larger range of scales.

The use of covariation in gray matter volumetric variables as a

measure of anatomical connectivity between brain regions

[12,60–62] is indirect and entails some assumptions. For example,

it has been assumed that reciprocal afferent connections have a

mutually trophic effect on the growth and maintenance of both

connected regions leading to positively correlated volumes in adult

brains [13,62]. Recent studies have provided some experimental

validation of this hypothesis by comparing pairs of regions with

highly correlated volumetric properties to known fiber tracts

established using diffusion tensor imaging [13,63–65] and tract

tracing studies [66–68]. Nevertheless, the assertion of anatomical

connectivity on the basis of regional covariation in gray matter

volumes remains somewhat conjectural at this time. Moreover, the

construction of a single group mean anatomical network from the

MRI data means that the error in estimation of the Rent exponent

p̂pMRI , may be under-estimated by exclusion of any between-

subject or between-network components of variability.

The diffusion spectrum imaging network, on the other hand,

contains an inherent distance bias [14], meaning that long distance

connections have a lower probability of being included in the

network than short distance connections. While Hagmann and

colleagues did use a distance bias correction in the preprocessing

of these networks, the most complete correction method remains a

matter of ongoing debate [14]. It is possible that some distance

bias remains in the current dataset which may artefactually

decrease the topological dimension, DT , the Rent exponent, pDSI ,

and the average wiring length, �rr. However, it is not the purpose of

this study to evaluate the available methods for distance bias

correction and we have instead used this recently published dataset

which represents one of the currently accepted methods.
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This previously published DSI dataset [14] includes data for 5

subjects with 1 subject scanned twice. As such, this dataset is not

adequate to assess the inter-scan reliability or inter-subject

reliability of the anatomical structural properties we are studying

in this work. Recently, it has been shown that similar whole-brain

networks derived from functional MEG data have reproducible

topological properties [69]. However, a similar study in anatom-

ical networks has not yet been published, and it will be important

in future work to describe the reproducibility of network

architecture in terms of both topology and physical embedding.

In this work, the distance between any two network nodes was

defined as the Euclidean distance between the center of mass of

the brain regions (in the human) or neuronal cell bodies (in C.

elegans). While this definition is currently widely used [11,15,63,70],

it provides an indirect estimate and likely an under-estimate of the

true length of white matter tracts and axons in these neural

systems, which may take convoluted paths to connect a given pair

of nodes. Future advances in diffusion imaging may provide us

with better length estimates for major white matter tracts in the the

human brain while advances in the microscopic characterization

of neuronal tissue may provide us with better estimates of

individual axonal pathways.

The placement embedding for the VLSI circuit required the use

of simulated annealing. The estimated physical Rent exponent

based on placement, p~0:901, was less optimal than a previously

reported Rent’s exponent based on partitioning [71]. It is

important to be aware that Rent exponents based on placement

and based on partitioning may not be identical; the partitioning

method does not require simultaneous physical embedding of all

gates in the entire system. We have chosen to use the placement

embedding technique to make the results most comparable to the

C. elegans and human brain network results. In a similar vein, it is

important to note that we used the formalism of graphs and edges

rather than hypergraphs and hyperedges. The latter are often used

in the analysis of VLSI circuits but the concepts are not simply

transferable to the biological networks studied here. Thus we have

chosen to use simple edges in all reported analyzes to facilitate

comparability across systems.

The relationship between allometric scaling and Rentian scaling

could be further supported by studying Rentian scaling in MRI or

DSI/DTI datasets from a range of mammalian species rather than

the human alone. In particular, it would be interesting to discern

whether there is a difference in isometric Rentian scaling between

mammalian and non-mammalian species as well as between

marine and terrestrial mammals who arguably show distinct

volumetric scaling relationships [72,73]. The construction of a

comparable species-dependent MRI network would require

structural scans from over 200 animals in that species. While no

such data is currently available or likely to become available in the

near future, the application of DTI specifically to the macaque

monkey is a pressing line of current inquiry.

Conclusion
The parallels we have identified between the properties of

naturally selected nervous systems and commercially selected

computational systems suggest that diverse information processing

networks have convergently evolved to satisfy ubiquitous fitness

criteria. Just as principles of natural selection were originally

informed by Darwin’s analysis of artificial selection pressures

operating in the market for domestic animals, principles of nervous

system evolution may be elucidated by comparative analysis of

computational systems that have evolved in the market for

logically advanced computers.

Materials and Methods

Network data
For the C. elegans nervous system, connection data and two-

dimensional spatial coordinates for each neuron were taken from

[15,16]. Each neuron was taken to be a node in the network and

nodes were connected by edges where a chemical or electrical (gap

junction) synapse between two neurons was known to exist. For the

human nervous system, we used two sets of neuroimaging data from

independent samples studied using complementary magnetic

resonance imaging (MRI) methods; these include the most fine-

grained view to date of whole brain white matter tract connectivity

and the classical cytoarchitecturally constrained view of whole brain

gray matter connectivity. It was hoped that in the combination of

both complementary lines of inquiry, the discovery of consistent

properties would underscore both replicability and robustness. In

259 healthy adults, regional gray matter volume measurements

were made in 104 cortical and subcortical regions defined by an

anatomically informed parcellation template applied to conven-

tional MRI data [11]. The inter-regional partial correlation in gray

matter volume was estimated for each pair of regions and

thresholded to create an undirected graph where each node

corresponded to a region and an edge indicated a suprathreshold

correlation of volumes between regions [11,13,63]. In 5 healthy

adults with 1 adult scanned twice, the probabilities of fiber tracts

between any two regions of interest (N=1000) were determined

from diffusion spectrum imaging (DSI) data using an altered path

integration method [14]. The connectivity backbone of this

probability matrix was determined by first calculating the minimum

spanning tree and then adding connections with the highest

probability weights until the average degree was 4 [14]. For the

VLSI (s953) circuit [17], each node in an undirected graph

represented one of 440 logic gates and an edge represented a wire

between gates. The C. elegans data is freely downloadable from the

Biological Networks website http://www.biological-networks.org/;

the DSI data are freely downloadable from the Brain Connectivity

Toolbox www.brain-connectivity-toolbox.net.

Hierarchical modularity
To visually represent the hierarchical community structure of

the networks, we used a co-classification algorithm which

iteratively determines hierarchical nodal affinities based on

topological overlap in the symmetrized matrix and uses this

information to determine the relative relationships between nodes

at all hierarchical levels [74]; see Figure 1. Modularity of these

matrices was estimated using the Louvain community detection

algorithm [18] and compared to the modularity distribution

(N= 100) of two benchmark networks: 1) Pure random networks,

i.e., networks with the same number of nodes and edges as the

original network, and 2) Functional random networks, i.e., those

with the same number of nodes and degree distribution as the

original networks [75] such that each edge was rewired on average

15 times. A network was defined as being hierarchically modular if

it contained first-level modules with significantly non-random

modularity, i.e., the presence of submodules was confirmed; see

supplementary Text S1 for details.

Topological dimension
The fractal dimension of the network topology DT was

estimated in two ways. First, we used a topological partitioning

algorithm (hMetis software, version 1.5) to compute the topolog-

ical Rent’s exponent, p
T
, which is then related to the topological

dimension by p
T
§1{

1

DT

[5]. The network was recursively
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partitioned into halves, quarters, and so on in topogical space. The

slope in log-log space of the average number of nodes in a partition

versus the average number of edges crossing the boundary of the

topological partition was defined as the topological Rent’s

exponent, p
T
. In a complementary analysis, we estimated DT

using the box-counting algorithm of Concas et. al [21] based on

Song’s renormalization algorithm [22]. This estimator counts the

number of boxes B required to cover all nodes in each network as

box size S is varied between 1 and Smax. The gradient of a straight

line fitted to logB versus logS using weighted linear regression is

a consistent estimator of DT ; see Figure 1.

Average expected wiring
The expected wiring of a high dimensional topology which is

embedded in a lower dimensional physical space is

�rr~k DT ,DEð ÞN1=DE{1=DT ð4Þ

for N1=DE{1=DT&1, where �rr is the mean connection distance in

terms of node-to-node spacing, k is a constant of order unity, DT is

the fractal dimension of the topology, DE is the Euclidean

dimension of the embedding, and N is the number of nodes [5,24].

The node-to-node spacing, s, is given by

s~
1

N

X

i, j

min di, j
� �

ð5Þ

where di, j is the Euclidean distance between any pair of nodes i

and j. The mean connection distance in terms of node-to-node

spacing, �rr, is then given by

�rr~

1

N

X

Vdi, jw0

di, j

s
ð6Þ

where di, j is the Euclidean distance between any pair of connected

nodes i and j.

Rentian scaling in Euclidean space
The Euclidean space of the networks was tiled with M~5000

overlapping randomly sized boxes (e.g., two-dimensional squares

or three-dimension cubes for the VLSI, C. elegans, and human

networks. In each box we determined the number of nodes (n) and

the number of connections (e) that cross the box boundaries; see

Figure 1. The gradient of a straight line fitted to log n versus log e

using iteratively weighted least squares regression is an estimate of

the Rent exponent p; see Figure 3. To minimize (Region II)

boundary effects, p was estimated using the subset of boxes which

contained less than half the total number of nodes, nvN=2.

Minimally and randomly wired networks
Each network was minimally rewired by first computing a

minimum spanning tree to ensure that all nodes were connected

then iteratively adding the next shortest edge to the network until

the connection density matched that of the observed networks

[15]; see Table 1. Randomly wired networks were pure random

networks with the same number of nodes and edges as the

observed network; see Table 1, bottom panel.

Allometric scaling
If we approximate the brain as a sphere, then the cross-sectional

area, A, of white matter volume, W , is given by

A~p
1
3

3

4
W

� �2
3

ð7Þ

which can be related to the number of connections, C, according

to

C~hp
1
3

3

4
W

� �2
3

ð8Þ

where h denotes the number of connections per unit surface area

of white matter which we assume to be constant given the

independence of synaptic density and brain volume over the

mammalian class of species [50]. We use w to denote the number

of constant-complexity processing elements, N, per unit volume of

gray matter, G, which scales with synaptic density and is therefore

a constant. On this basis, we can write

N~
1

2
wG: ð9Þ

A system obeys Rent’s rule if C~kNp for some Rent coefficient k

and exponent p; inserting (8) and (9) we then have:

hp
1
3

3

4
W

� �2
3
~k

1

2
wG

� �p

, ð10Þ

which simplifies to

W~
4

3
ffiffiffi
p

p k

h

� �3
2 w

2
G

� �3
2
p

: ð11Þ

Thus,

log Wð Þ~ 3p

2
log Gð Þzlog

4

3p

k

h

� �3
2 w

2

� �3p
2

2

4

3

5, ð12Þ

and multiplying the allometric scaling exponent a~
3p

2
by

2

3
provides an estimate of the Rent exponent, p. For a more detailed

derivation, see supplementary Text S1.

Supporting Information

Text S1 Supplementary Information

Found at: doi:10.1371/journal.pcbi.1000748.s001 (1.22 MB

PDF)
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