.EFFICIENT PLANARITY TESTING
John Hopcroft
__and
Robert Tarjén

TR 73 - 165

April 1973

Department of Computer Scienca

.Cornell University
Ithaca, New York 14850

LIREL I

EFFICIENT PLANARITY TESTINGf

John Hopcrott

lmm .

f..‘,,, .

and

Robert Tarjan

Cornell University
Ithaca, Wew York

Abstract:] TPy
This paper des;ribes an aefficient algorithm to determine

whether an arbitrary graph G can be embedded in the plane.

The ‘algoxithm may be vieved as an iterati;;.;ersxon of a '

method originally proposed by Auslander apd Pafter and

- correctly tormﬁlated by Goldstein. The algoriﬁhm uses depth-

first scarch and has 0(V) ' time and space bounds, where V

" is the number of vertices in G. An Algol implementation of

the algorithm successfully tested graphs with as many as 900

‘vertices in less than'lz seconds, e

Keywords and ohrases. algorithm, complexity, depth-first
search, embedding, genus, graph, palm tree, planarity,

spanﬁing tree.

CR Catocoriecs: §.32, 5.25, 3.24

f?%is recserreh was sunsarted by the Hertxz Poundation, the
beo s Lzilenc: lv-u“_-ic\, and the Ofifice of naval kusearch
.i yrants §N-00014-A-0112-0057 and ¥N-00014-67-A-0077-0021,

EFFICIENT PLANARITY TESTING ’
John Hopcroft
i . and

Robert Tarjan

Cornell University
Ithaca, New Yorx

1, Introduction

Graph theory is an endless source of easily stated yet
very hard problems. Many of these proble&s require algorithms,
given a graph, one may ask if the graph has a certain property,
. and an algorifhﬁ is to provide the answer. Since graphs are
widely used as models of real phenomena, it is important to
discover ggjigigﬂg algorithms for answvering graph-theoretic
questions. This paper presents an efficient alg;rithm to
Aete:mine whetﬁer a.graph G can be embedded (without any
crossing edges)-in.the plane.

The planarity algorithm may be viewed Qs an iterative °
version of a rccursive method originally proposed by Auslinder
and Parter [1) and correctly formulated by Goldstein [i].

1he algorithm uses depth-first search to order the calculations

" and thereby achieve cfficiency. Depth-first search, or back-
tracking, has been widely used for finding solutions to prob-
lems in combinatorial thecory and artifical intelligence (3,4).

' Recentl&'this gype of search has been gsed to construct effici-

ent algorithms for sé]ving several problems in graph theory,

ineluting . findiny hiconnacted components [6,6), finding tri-

et

connected comaonents (7,8), finding strongly connacted com-~
ponents [6), finding dominators (9}, and deLermlﬂinq whether
a directcd graph-is reducible (10,11},

In order to analyze the theoretical efficiency of the
planarity algorithm, a random access computer model 13 used,
Data storage and retrieval, arithmetic ogei&iiﬁns, conpatilons,
and logical oporations zare agsumed to require fiaad times. A
memory cell is allowed to hold integers wboso absolute value
is bounded by k V for some constant Kk, where V is the
number of vertices in the problem graph, Cook [12] describes

an exact computer model alonq these linesy! ‘I -£ and g

" are functions of x, we say “£(x) 1s O(g(x))“ if for some

constants k. and Xy [Elx 31 2 ,llg,")l + k2 for all x.

within this framework, the planarity ulgoxithu nas O(V)

timo and space bounds and is optimal to within a constant
factor. ‘ [

The practical efficiency of the algoiithm was neasurnd'-
by implementing it in Algol Y, the Stanford University version
of Algol [13)}. The algorithm in this papexr-is much simplesr
than the one originally programeed, but .he praogram was able
to analyze graphs wi#h up to 900 vertices in less than 12

scconds of IBN 360/67.processing time,

2. P:evious nesearch on Planarxtv AlGorithms

Lmhcdd:nq a graph in a plnne has several applications.

The design of dntegrated circuits requircs knowing whon.a

4

circuit may be cmbadded in a planes peternining isosorphism

of chemical structures is simplified if the structures are
planar (7,14»20]. The importance of the problem is suggested

by the number ofipublxshed planarity algorithms. Examples includs

[1,2,2i-32]; Surprisingly little work has been directed toward a

rigorous analysis of their running times, howebe:, and algo-
rithms continue to appear which aré obviously inferior to
previously published ones. We shall examine scveral of the
best algorithms here; a more complete history of the planarity

prdblem~may be found in Shirey's dissertation (28], which

-contains an exLensive bibliography.

" The earliest characterization of planar graphs was 91ven
by Kuratwoski (33]. He proved that every nonplanar graph
contains a sunqzaph whicl upun rewoval of degres two vertices
is isomorphic exthcr to the complete graph on five vertices
or to a complete bipartite graph on six vertices (Figure l).
Conversely, no planar graph contains either of these graphs. .

Although elegant, Kuratowski's condition is useless as a

. prac;iqal test of planarity; testing for sucﬁ subgraphs

. directly may require an amount of time proportionél to at

least Vﬁ, if not much worse, where V is the number of

" vertices in thelgraph.

The best approach to the planarity problcm seems to
be an attempt to construct a represcntation of a planar
embedding of the given graph. If such a rep:ésnntation
can be completed then the graph is planar; if not, then

tie gregl ic nea-planar. Phe first such algozithm was

proposed by Auslander and Pnrter {1). Fixst, 2 cycle is
found in the-graph. When this cyc]a is removed, the graph
tfalls into several pieces. The algorithm'is called recur~
sively to embed each picce ip the plane with the original
cyclé. Then the cnbedéings of the picces are combined, if
possible, to give an.enbcdding of tha entire graph. Unfor-'
tunately, Autlander and Parter's paper containa an error; the
roposed method nLy loop indefinitely. ’ Goldstein {2] correctly
' foxmulnted the algorithmn, using iteratioq insteéad of recursion.
Shirey [28) implemented this method using a list structure
rcpresentation for graphs, and proved an-asfmptoti; time .
:.bouﬁd of o(vs) for his variation of the g}gggighm.
Lenpel, Even, and Ccderbaum [25) have presented an alter-

nate wethod for pbuilding a graph in the plane. They start

© with a single vertex, and add all edges'xncident to that

vertex., They then.add all edges incidan;it@vgnq,of the navw

vqrtices. and continue in this way until Lhe entire graoh

is constructed. Vertices must be selected in a special orde:

if the algovithm is to work correctly. Lempal, Even, und

. CeGerbaum. give no 1nn1cmenLaL101 or time bound for their

method; however, Tarjan {34) has implemznted the algorifhm

in a way which requircs o(v) space and O(V) time.
Hondshein [27] has recently proposed another constructive

algorithm., He adds onc vertex at a time-until the entiré

greph ‘is constructed. The ordasr otlgg;téx sclection is

again crucial. Mondshein's implomentaéion':cquires 0(y2)

tiwnse 'opcxo.t and farjan (24}, using dupth-’irst gaarch

-5 -

vin a complicated program, have devised a Qariant of Goldstéin's
algorithm with a time bound of 0(v log V). Subsequently

they discovered an improved algorithm with O(V) time bound,

an early version of which appears in Tarjan's dissertation [29}.
The algorithm to be presented here is a considerable simplication
of [29].

A few algorithms deserve mention because of éheir novel
approach. Fisher [23) gives en algorifhm which works directly
from the incidence matrix of a graph. This method, however,
is not very efficient, mnor is any method which uses incidence
matrices, Bruno, Steiglitz, and Weinberg [21] present an
" algorithm based'on some theorcns of Tutte relating to tri-
connected planax graphs. In;tcad of constructing a graph in
the plane, thay reduce it to simpler and simpler graphs. .
'Althbugh they give no explicit time bound, the algorithm does

not compare favorably with those mentioned above.

3. Preliminariesh

This section outlines some of the graph-theorctic
concepts needed to understand the planarity nlgorithm. It
' also~descr1bes how graphs are represented in a computer,
and hov a depthffirst search works., Ve use definitions
similar to those found in any text on graph theory, €.9.
(35,36,37,38]) .

A graph G = (V& is an ordered pair consisting
of a finite set of vertices Y and a finite set of cdges

&. v dcrotes the number of vertices in Gj E denotes the

nurber of edges, If each edge is an uno;dered pair of distinct
vortices, then the graph is undirected. 'If.each edge is an
ordercd pair of distinct vertices, then the graph is directed,
1f (v,w) is an edge in a directcd graph, we say cﬁe edge leaves
v and enters W, A gceph G = (1/1, &) is a ubgrnnh of a craph
G, = (1 &) it V1 <_:__?2 and &, &, 1f G is a dirccted

graph, the undirected version of G is the undirected graph

formed by converting cach cdge of .G * to'an undirccted edge and

. removing duplicate edges.
' i
A sequence of vertices vy, l<ign, and edges e,

1<4c<n, such that ¢; = Vievig) is callcd a path oé_g
from v, to v.. There is a path of no edgos'grgm any verte:

——

to itself, A vertex v is reachable from''a vertex v if thero

!= # path from vitow, A énth is simple'if all its vartices

are aistinct., A path from a vartex to itself is a closed nnth

A closed paLh from v to v with ona ox mor;“edges is a gycle i

all its edacs are distinct and the only ‘vertex to appear twice

is v, which zppears. exactly twice, Two cycles which are cycliq

permutations of each other are connideaad to be tha same cycle,

e uee p 1 V =>'u to dcnote that p i35 a path‘ftnm v t§ W,
An undirected graph G is conﬁectﬂd 1t any vertex in G

- is reachezble from any other vertex. The maximal connected

subgraphs of G are well-defined and vertex-disjoint [3e),

and are calléd the connacted components of G. If G contains

thrce distinct vertices x,v,w such that w is rcachable from
V but every path p : Vv = w contains x, then x is a cutnode

O L _mesonoradng of G, If G is connecied and contains no

‘3

—— - o

O

.

scparation points, then G is biconn ccted The maximal
biconnected subgraphs of G are well-defined and edge- .

disjoint {371, and are called the biconnected comnonencs

of G. If G 1s biconnected but contains four dxstintt

vertices k,y,v,w such that every path p ¢ Vv = ‘w . con- |

tains cither %X or Y, then (x,y) |is called a separation

pair of G. 1f G is biconnected and contains no scparation

pairs, G is triconnected. The triconnectcd comvonents of
a graph may be defined in several ways [8,39). We may extend

these definitions to directed graphs by considering their

‘undirected versions.

" A (directed,rooted) tree T is a directea graph with

one distinguished vertex, called the rcot r, such that every

: "ettex in T is reachahle from v, no edges enter r, and

evactly oné edge enters every other vertex in T. The rclation
“(v,w) is an edge in 7" is denoted by V + w. The relation

*
sthore is a path from v to W in T is denoted by Vv * w. |

1f v + w, v is the father of w and w is a son of v,

N .
1f v +w, v is an ancestor of w and w is a descendant

. of v. Every vertex is an ancestor and a dzccendant of itself.

If v 3 w and v #wv, V ‘is a proper_ancestor of w and W

is a proﬁcr descendant of v. If Ty is a tree and Ty is
a subgraph of a tree T, then’ Ti is a subtree of Ty- If
T ‘is.a tree uhich is a subgraph of a dirccted graph G and
r contains all the vertices of G, then T is a spanning tree

of G.

- Ktetisie

Lemma 1t If G 1is planar, E < 3V'3"¢

-8 -
A graph G is planar if and only'if there exists
a mapping of the vertices and edges of the graph into the

plane such that
(1) ‘each vertex is mapped into a distinct point,

(2) each edge (v,w) is mapped onto a simple curve,
with the vertices v and w mapped.onto the

endpoints of the curve, and

[!ll_,:4

(3) mappings of distinct edges have' only the mappings

of their coramon endpoints in comunon,

A wapping of G which satisfies the conditions above is

called a planar erhzdding of G. (If G ;isfblannr, there

is & planar cmbedding of € i whigh the edgés are nanpod

© into straight lines.) We need two lemmasagyg%svplanar graphs,

4y

Comrm - -

Proof; This lemma is an immediate consequence of Euler's

theorem relatina the number of veortices, faces, and edges

Ly -

in a planar graph {35).
Lemma_li Let G be a planar graph cmbedded in. the plane.
?o# brovity we identifx each cago of G with its embedd-
" ing. Letﬁtpl, Pys P3 be three paths leading from x. to
'y such that any two of the paths hile only x and y as

connon vcrticos; Let (x,vl), (x,vz), (x.,vs) ba the

fivat ofues of py, Py P34 respoctivaly, and let Gy a¥),

(wz,y), (wa,y) be the last edges of Py+ Pys P3e If
the orientation of edges clockwise around x in the
plana is (x,vl), (x,vz), (x,vs) , then the ;¥igntation
~of edges clﬁckwise around y is (wl,y), (wa,y), (wz,y)
(?igur£‘2). '

Proof; This lemma is a corollary of the Jordan curve Theorem,

ﬁhich states that a simple closed curve divides the plane
into okactly two connccted regions. We accept the lemma
without proof; the Jordan Curve Thcorem is very hard to

prove. (See [40,41).)

An arbitrary (undirected) graph with "V vertices may

have as many as E = V(V-1)/2 edges. However, a planar

graph has E § 3vV-3 by Lemma 1, Thus it may be possible

to devise a planarity algorithm with a time bound which is

linear in the number of vertices. One way to represent a

graph in a computer is to use a VxV adjzcency matrix

M= (mij)' wperc ngy = 1 if (i,j) is an cdge, miy - 0
otherwise. HNowever, the amount of storage space requircd

by an adjacency matrix is O(Vz) , &nd it can be shown
rigorously that many graph vroblems (including the planarity

problem) require examination of every bit in the matrix

and thus have a computation time proportional to at least

V2[42]. For this reason wec use a list structure called an

adjacency structure to represent a graph. We construct

"a set of adjacencv lists A(v) , one for each vertex v.

The list for vertox v contains cach vertex .w such that

_— - L

e T
{v,w) is an cdgﬁ of the graph, If G gs an undirccted '
graph, cach edge (v,v) is represented twice: w appears
in A(v) and v appears in Al(w), If‘ c"ig'diractod,
cach cdge (v,w) is represented onces ;"'apﬁcg;s in A(v).

Graph algorithms recquire a sys;cmatic ﬁay of explor-

ing a graph. We use one called depth~first‘search. ¢ start

from some vertex s of G and choosc aniédge leading from
s, Traversing tha cdge lcads to a new vertox., IQ.goneral wa
continue the search b§ selecting and tr;;;;zzhé'ap unoxplored _
cdge leading from the most recently reached vertex which still’
has pnexplored_edges. If G is cannected, each edga will be
traversed exaétly once. T
) 1¢ G is wndivectea, a depth-first sdaich of G 1m§cses
Q direction 5n cach edge of G ‘given by the direction in.
vhich the edge is traversed during the pearch, Thus.tha
search cuavézts_ G into a adirccted graph G'. The search)
also partitions the (now~-directed) cdgas'into tvo clasnés:
a set of tree arcs, defining a spanning trec T of G,
and a set of fronds (v,w) vhich satisfy v : v in T [6).
A directed g}nbh G' whose édges may be partitioned in
this wey is cgilod-a galm'trqg. Depth-first search is
imporfnnt beéausc the structure of paths in a palm trez
is very simple, . : '

f'To 1mb1cment a depth-first scarch of a connected,
undircated graph, ve use a simple recursive procedure
whlch facps a skack 0 the old verticta with possibly

unexplorced edges. The procedurc uscs a set-of -adjaconcy

-11 -

lists of the graph to be scarched, and the exact search
order depends on the order of edges in the adjacency lists,
-The procedure numbers the vertices from 1 to V in the order
they are reached during the scarch, in addition to identify-

ing tree arcs and fronds.

begin cornent routine for depth-first search of a graph G
o represcnted by udjacency lists A(v). Variable
, n‘denotes the last number assigned to a vertex;
integer n;
'gxoccdurc DFS(Q,u); comeent vertex u is the féthquof

vertex v in the spanning trce being constructed.

begin
n: = NUMBER(v): = n+l;
a: commont duruny statement;
for v € A(v) do begin .
if NUMBER(w) = 0 then bagin
comment a is a new vertex;
_ mark (v,w) &as a trece arc;
< DPS (w,v);
5; comnent dunmy statcment;(
else if NUNBER(w) < NUMBER(v) and w # u then begin
comment this test is necessaéy to avoid exploring

,an cdge in both dircctions;

-12 -

maxk (v,v) as a frond;
c: corment dummy statcmént;
ends ' -
end; '
end;
for is= 1 until V do NUMBER({):=0;
ni=0; .
. comment the search starts at'vertex 8.
D¥s (s,0); ‘

end;

Lerma 33 The procedﬁre ahave correctly carries out‘a
’ depth—firét search of an undirected grapﬁ and requires
O(V+F) time if the graph has V Gerticés and E. edges.
.%he vercices aze mudheced so that if (v,w) ie a tree
arc, NUMBER(v) < NUXBER(w); and if (v,v) 15 a frond,
NUMBER (u) < NUMDER (V). L

k

Proof: See [C). -

Figure 3 shows & conncated graph G and a palm tree

gencrated from G using depth-first search.

4. An Outline of the Planarxity Algorithm

This Qcction cketches the ideas behind the planarity
algorithm, Fections 5 and 6 develop the dectailed components
and Scction 7 prescnts the algorithm in toto. The first
step of tho algorithm gets rid of grapﬁé with too
any edges, We count the nunher of idgas in the exiph 4

and if the count cver excecds 3V-2, we declaxe the -graph

non-planar. Next, we divide thc graph into biconnccted
éomponcnts. (A graph is planar if and only if all its.
biconnected components are planar {35).) References {5)
and [6) describe how to divide a graph into bicon£céted
componenﬁs in O(V+E) time. Then we test the plaqarity.
of each compoﬁent. 4]

To test the plénarity of a component, we apply DFS,
converting the graph into a palm tree P 2nd numbering tho
vertices, .Now we use huslander, Parter, and Goldstein's
algorithm. This algorithm finds a cycle in the 9raph and
* deletes it, leaving a set of disconnectea pieces. Then the

alqofithm checks the planarity of each piece Plus the
original cycle (by applying itself recursively);‘and
‘deternines whether the cmbeddings of the pieces can be
conbined to give an embedding of the entire gfuph. Let us
'sepatatoly exanine the cycle-finding part of this process
and the planarity-testing part.
Each recursive call on the algorithm requires that

ve find a cycle in the piece of the graph to be tested

for planarity. This cycle will consist of a cimple path

of edges not in previously found cyclee, plus a simple path
of edges in old cycles. Ve usc depth-first scarch to divide
the graph into simple paths which may be assembled into the
éycles necessary for planufity testing. We nced a second
search to find'éaths, because the secarch must be carried
out in a special order if the pianarityltést is to be

elficient, Section 5 describey th2 paih firding nrocess
. .

I e e '""_"'l

fo
ﬁ

in dctail and proves some impoxtant propertics of the generatcd
. : &

paths.

' Now consxdet the first c;cla c. It will consist of a . ;
‘_ scqrence of tree arcs folloued by one frond in. P. The -
nuabering of vartices ir such that the vertices are in ordar
by nurber along the ¢scle, Each pieco not part of the cyclo'
will consitt either of a single frond (v, w), or of a trco'a;c'
{v,w) plus a subtrec with roout v, plus all “fronds which lead
from the subtree, Wo ptocess the pieces and ‘add them to &
pléuar yeprcsentation in deércusing order of v. Each piece
can go either *inside" or “outside” ¢ by the Jordan Curve .
Theoren, then we add a picce, certain other piecas must
ba mnvéd from the inside to.the outsidz or from tha outsida
to the inaide of.C. {see Figuru 4.) W continus to add
new pieces and move old picces if necessary until eltpar a
pieca cannot be added or the eatire graph is cmbedded in
tha plane. gaction 6 describcs the data strxuctures nocensary
to keop track of the pleces us they exe moved, Below is &n

outline of the entire hlgorithm. ' 2

p:n(ﬂdufe PLRNnRITY(G),
bcain corment an ouLline af Lhe planarity : alqorithm;
intoger Ti |
1230,
£2£‘°“°h cége of G do begin | .
E:=sE+); ay
if 1 - IV-3 Ehﬁﬂ ¢o_to nonplanir;

end;

o

e o o S mme ST e R . N -

divide G into biconneccted components;
for each bioonnected component G do begin .
explore © to numbex vertices and transfotm C into
.:a palm tree P;
£ind a cycle ¢ in P;
‘construct planar rcpresentation for T
for each piece formed vhen ¢ is deleted do beain
apply algorithm recursively to determine if
» piece plus cycle is planar;
if picée plus cycle is planar and piece.wmay be’
added to pianar representation then add it
glgé go to nonplanar; '

end;’

5. Pathfinding

Hencaforth we assume that G is a biconnccted graph
whigh has Eeen explored using DFS to nuaber the vertices
and generate a palm tree P, We will identify vertices by

tﬁeir numbex: If v is a vertex, let
*
5, = {w|du(v » u and u - > w).

:SVA is tha set of vertices reached by fronds from descend-
ants of v. Let LOWPTL(v) = mxn((v} us), and

LOWPT2 (v) = nin’ (v} u s, ~{ronom) (v)))_}. LOMPTL (v) is the

e

- an v . o

lowest vertex below v reachable by a frond from a descendant

of .v, and LOWPT2(v) is the second lowest vertex below v reach-

Y man

able by a frond from a descendant of v. By conv%néinn,_;hesa

values are equal to v if they are not defined;' LOWPTL (v) #LOWPT2 (V)

unless LOWPTL (v)=LOWPT2(v)=v." The LOKPT values of a vertex v
dcpend only on the LOWPT values of sons of 'v'and on the fronds
leaving v; thus it is easy to calculate'ipy?r;yq}uel using DFS.

~rting the follcwing statements for the dummy gtatements

a,b, and ¢ in DFS will produce a :outing.t? compute LOWPT values.

comment additions to DFS for calculation of LOWPTL, iONPTZ;

a: LOWPT1 (v):= LOWPT2(v):= NUMBER(V);

b: 4if LOWPTI(w) < LOWPTL(v) then begin:'*'
L. -y ,v.'r"'

t-
o

1

oWPT2 {v

V3= min{roupTi(v), LOWPT2{w)}.

LOWPTL (v) 1= iowPTl(w),

else if LOWPT) (w) = LONPTI(V) then
LOWPT2 (v) := min{LOWPT2 (v), LOWPT2(w)}
else LOWET2(v)i= min{LOWPT2(v), LOWPT1(w)};

c: if NUMBER(w) < LOWPT1(v) then begin
LOKPT2 (v) ;= LOVPTL (V) ;
LOWPTI (v) i= NUMBER(W); o

“else if NUMBER({w) > LOWPT1(v) then

LOWPT2 {v) := nin{LOWPT2 (v), NUMBER(w)};

.~

- 17 - - ‘ : o .. e

It is easy to verify that DFS as modified above will
compute LOWPT values correctly in O(V+E) time. . (see 16,8,29].)
LOWPT1 may be used to test the biconnectivity of G, as described

“in~ (8,967, 1Qne related lemma is important:

‘Lemma 43 If G 'is biconnected and v ~ w, LOWPTL.(y) < Vv unless.

v = 1, in vwhich case LOWPTL (w)=v=1, Also, LOWPT1(1l)=l.

Proof: See (6].

4

To génerate paths, we sort the adjacency lists of P according
to LOWPT values and perform another depth-first search. Let

¢ be a function defined on the edges (v,w) of P as follows:

6,2-w - ifv--w
2-LOWETIL (W) : if v —> w and
- ¢llv,u)) = ¢ o ' LOWPT2(w) 2 V
0 2 +LOWPT1 (w)+1 if v —> w and
N ‘t‘ LOWPT2(w) < Vv

‘We calculate ¢((v,w)) for each edge-in P and order the
"adjacency lists according to increasing value of § , using
a radix sort to achicve an O(V+E) time bound. This can be

‘implemanted as follows:

" comment construction of ordered adjacency lists;
" for i:=1 until 2*V+l do BUCKET(i):=the empty list;
for (v,v) an edge of G do begin - . .
computn Gi(v,w});

add (v,w) to BUCKET (¢ (lv,w)))s

- 40 = meh eiasem emamimn s

end;
for i:=l until V do A(v):= the empty list;
for ii=l until 2*V+l do ' -

for (v,w) € BUCKET(i) do add w to end of A(V);

This routine gives a set of properly ordered adjacency
1ists representing P, Now we generate paths by aéﬁlying depth-
first search to P, using the new adjacency 1{dts, “‘Bach time

.we traverse an edge we add it to the path being built. Each
time we traverse a frond, the frond becomes the last edge of
the current path. The next edée starts a new path, Thus each
path consists of a sequence of tree arcs followed -by a single

frond. To accomplish this, we use the following steps:

‘begin cormaent routine to generate paths in a biconnected
" palm tree with specially ordered adjacen2y4iis;s Av).,
Vertex s is a global variable, the start vertex of the
current path, and is initialized to 0; ‘

%

procedure PATHFINDER(V) ;

ey o)

for w € A(v) do

if v > w then begin
_if & = 0 then beain
§i= Vi .
staét new path;
endy

add (v,w) to current path;

PATH: INIDER (W) ;

e pm——— e o e e

-19 -

end
else begin
comment v - + W;
if 8 = 0 then begin
S3=V;
start new path
end;
add (v,w) to current path}
output éurrent path;
8:=0;
end;
;:-0{

| comment vertex 1 is the start vertex of the search;

The paths generated in this manner have several .
important properties, which are summarized in the following °
lemmas, Figure 5 shous a set of paths genexated from the

graph in Figure 3.

* .
Lemma 5: Let p: s => £ be a generated path, If we conside)

the fronds which have not been used in any path when

the first edge in p is traversed, then f is the
lowest vertex reachable via such a frond from a
descendant of s. If v§#s, vFfE, and v lies on P

then f is the lowest vertex recachable from a descendant

of v via any ‘frond.,

Proof: This lemma is an immediate coniédﬁdEEQVO! the

+ ordering of the adjacenéy lists.
]

Lemma 6: Let p:s = f be a ganerated path, Then
b 4 : s in the spanning tree of P,. If p: 10 the
first path, p is a cycle; otherwise p is simpl..
If p is not the initial path, p contains exactly

two vertices (f and s) in common with pteviously

generated paths,

Proof: Let p i1 s => £ be any generated path, If the
path consists of a single frond, thewpathbis simple
and £ : s. If the path contains a tree arc, let s + v

be the first such tree arc. Then £ = LOWPTl(v) by

. t e ‘
Lemmz §. If 5 o=)1 the path 1o 2 cyele, and if g 1

 the path ib sinple, by Lemma 4, In an§!;a83 4 : s,
If £ is reached during the pathfinding search, then s
. has already been reached, so any path except the first
has exactly two vertices, £ and s, iﬂ common with

previously generated paths,
_* . -u“‘.
Lerma 7: Let p, : 8) => £ and p, : 5y => £, be two-
generated paths., If P is generated before P, and

5 is an ancestor of Sz.‘thcn.tl < fz.

Proof: " The frond which erds p, leads from a descendant
oé,_gl apd‘ls unused whep'_plw is generated. By

Lemma 5,-£, < f&.

- 21 -

Lemma 8: Let Py ; s = f and Py ¢ 8 = f be two generated
paths with the same start and finish vertices. Let bl be
the second vertex of By and let v, bé'the second vertex
of py.’ Suppos; P is genergted before P, + V) # £, and

(
LOWPT2 (v,) < s. Then v, # £ and LOWPT2 (v,) < s.

Proof#: Vertex v, must appear before vertex v, in A(s)

because 121 is generated before Py The lemma follows

from the ordering imposed on A(s).

‘Lgmma 8 is the reason we nead to include LOWPT2

ﬁalues in the pathfinding algorithm. When we consider
" the Embeddinq of paths in the plane, we shall see why

this léwma i3 imps:::$;.

If p: s = f is a generated path, we may form

a cycle by adding the set of tree arcs £ : s to p. The cycles
- formed in this way are the cycles generated by recursive calls

in the Auslander-Parter-Goldstein planarity algorithm.

They have a very simple structure; each corresponds to

a frond of é. We need one more definition before we

consider the emﬁédding of paths. If. p : s :> f is

a simpf? path generaté@ by the péthfinding algorithm,

let py @ 5, = fo be the earliest generated path

containing vertex s. If £, < £ , then,.p is called

‘a normal path. If fb = £ then p is called a special

path. The case f, > f cannot occur by Lemma 7.

-22 -

6. Embedding the Paths

If G is a biconn;cted graph with a set of baths
generated by the pathfinding algorithm, we test the planarity
of G by attemétiﬁq to embed the paths oneiat a time in
the plane. Let ¢ be the first path (a.cycle). - The cycle
consists of a set of tree arcs 1 =+ V)TVt e vn '
followed by a frond Vo & © 1., Tne vertex nupbering is
. such that 1 < v, < ees < v . When c {s removed, G
falls into several connectea pieces, cailed secments,
Each segment S consists either of a single frond (vi'")'
or of a tree arc (vi,w) plus a subtree with root w blus
all fronds leading from the subtree. The dféer of path

In
aticn ig such that 21) pathe in one gegment are

generated before paths in any other seémﬁﬂ}, and the -
segments are explored in decreasing orde; of vy

A segment must be embedded complepeiifbn one side ..
of ¢ ﬁy the Jordan Curve Theorem. A éeqmént is attached
to ¢ by one arc (vi,w) leading from c and by one or’'more
fronds leading to c. (if the segment is a sinqleifrond,'both
endpoints of the frond are on c.) We say the segment S is
embedded on the lggg'(of c) if the orieqtationlof edges
(clockwise in the plane) around vy is SX&rl,vi),fvi,w),
(vi,vi+1). The segment is embedded on the-pight if the
orientatidn of‘edées.around"vf ‘s (vi_iSV{),‘(vi,vi~l), (vi,w)“
We say §’£ron5 which enters ¢ is embedded on the left
{richt) if th; segment to which it belongs is on tho left

(right) of c. If (x,vj) is a £r3nd which enters ¢ on the

o,

- 23 - , . e

left, the orientation of edges around vj is (vj_l;vj),

(x,vj), (vj'vj+1) by Lemma 2, N
Suppose ¢. and segments explored before § have been
' *
somehow embedded in the plane. - Let p vy = vj be the
first path found in S. The next lemma gives a neceésary'

and sufficient condition for adding p to the embedding.

Lemma 9: Path p : vy = vj may be added to the planar
embedding by placing it on the left (right) of c if and
only if no frond (x,vk) previously embedded ‘on the left:

(right) sa;i;fies vy < vy < v

Proof: If no frond satisfies the condition, then no
embedded edge of any sort enters or 1éaves c.on the
left {right) batwssn Vj and vy Pat§ D mAY ba
embedded on the left (right) of c if it is placed
sufficiently close to ¢. Conversely, suppose we want
tqrembéd p on the left but some embedded frond (x,v,)
with vj <.v < vy enters ¢ on the left. Either
x lies on ¢ (say x = Vl) or (xlvk) is part of a
segment S' with first edge (v,,w). We know v, > v,
by the o}def of path generation. Ve must consider two

cases.

Case 1: vy, > v, (Figure 6 (a)).
Supﬁose. p is embedded on the left. From p, a
. path in 8' joining \7 and. Vi and the path of tree
arcs from vj to .vi we can construct thrce péths fron

vy to Vi which violate Lemma 2, Thus p cannot be embedded
. X) > . .

on the left,

Case 2:

.v’.'vi.

let p, 3 V => v_ be the first path found in segment
1 L m e [.

g,

We have v, < V4 by Lemma 7. There aye two subcases,

subcase At Vv < v, (Figure6 (b)).
———— m b} .
suppose p is embedded on: tha'lefc. From path

LY

p. a path in S' from v, to vm, and the path of tree:
arcs from Vv, to vy we may form thxee.pathg from
vy to vj which violate Lemm3 2. Thus P cannot be

.

embedded on the left.’ T

. Subcase Br v, =Yy (Figure §(c)).

Let y be the second vertex on p (w is already
defined as the second vertex on pl)i~ gince segment S'
containy frund (N, vk); LI A znd Lowped i)« vy.
Comparing P and Py and applying Lemma 8, we have'

y# vy and £OWPT2(y) < vy ?uzthernore ‘LOWPT2 (y) > vy
, since LOHPTl(y) = vy by Lemma . ‘'Suppose p 18 embedded
on the left. From p , Py ¢ 2 path'from a vertex on p
to LOWPT2(y), a path from a vertex on’ Py ‘to Vi ot and

a (possibly empty) path of tree: .arcs joining vy and

LOWPT2 (y) we may forn three paths which violate Lemma 2,

first

Thus p cannot be embedded on_ the left.

We use Lemma 9 to test planarity, in the following way:

we cmbed the cycle c in the plane.,'Then we embed the

segments one at a time in tho orxder they are exploxed during

pathfdnding. 70 embed a scgment §, wa find a path in it,

say p.

We choose a side, say the left, on which to embed p.

- 25 -

HWe compare P with previously embedded fronds to determine if

p . can be embedded. If not, we move segments which have fronds

"blocking p from the left to the right. If p can be embedded

. after movinq segments, we embed it. However, if we move seg-

ments from the left to the right we may have to move other seg-
ments from the right to the left. Thus it may be impossible to
embed p. If so, we declare the graoh non-plaﬁar. If p can
be embedded, we try to embed the rest of :S by in essence
using the algorithm recursively. Then we try to embed the next
segment., ' '

We need some good data structures to efficiently implement

this method If we are about to erbed a segment vwhich starts

at vertex Vi we must know which vertices on the tree path from

1 ote vy have fraonds cntering them frxom tbe lﬂft and the right

We use two stacks (L and R) for this purpose. Stack L will con-
tain (in order) vertices v, such that 1 : Vi 3 Vioe 1<wv <
and sone embedded frond enters v, on the left. L need only

1nclude a vertex v, once for each segment whxch has a frond 1eac

'ing to Vi but sometimes two fronds from the same segment nay

lead to thé §§ma,vettex Vi oo and this may cause V. “to appear
twice on the stack eveu thoﬁgh vy is only représenting a single
ment. Stack R fullfxlls the sane function as L for embedded
fronds entering ¢ on the right.’

stacks L and R nust be updated in four ways.

(1) After all segments starting at v; ., are explored and
embedded, all occurrences of v; on L and R must

be deleted, since segments %ft to be explored start at

-

(2)

o

4)

-26- e

vertices no greater than vy This updating requires

removing a4 few of the entries on top of L and R,

If p: s LN £ lis the first pach in a segmgnc s, and

p is normal, £ must be added to a stack when p is
cpbedéed. (Since s lies on ¢ , p is normal if and
only if £ > 1l.) By Lemma 9, p can only be embedded ©oB

the left (right) when evary vertex on L(R) is no greater

than £ , so £ may be added to the|top of L(R).

-
I“!

Recuvsive application ot ‘the algorithm nust add cntriel
for other paths in the segment S. We shall examlne re-

cursive application of the algdxlthm later.

1

Entries must be shifted from one stack to pnother as

. the correspondir-g segnents are moved. 'l‘he embedding of

a frond, say on the left, forces fronds in tha same
segment to be embedéed on the left by Lemma 2 and may
force fronds in other segments to be embeddod on the ".
right by Lemma 9. Let a block B be a maximal set of

entries on L and R which correspond to tronda such

_that the placement of any‘ona of the fronds determines

the placcment of all the others. The blocks change as
ho contént of the stacks change, but the blocks always
pa:titicn the stack entries. ?urthermote, the blocks

have a simple structure given by the next Lemna.

1
Lemma 10: Let B be a block. Then the entries in BN L (B n R)
are adjacent on L{R}). Also, there are vertices vj, v, on

c such that for v, €L UR:

(1) if vj_< v,
(2) if vy < vy or v, > vy tﬁeqjvziﬂ B,

< vy then v, €B

.gggggx The proof is by induction on the‘nuﬁber of segments
embedded and the number of entries deleted from L and R.
The lemma is certainly true before any segments are embedded
since both stacks are empty. 1If the lemma is true before
-all occurrences of v, are deleted from the top of L and R,
the'lemma is certainly true afterwards, since deleting
.qccurrences of vy from L and R may only cause complege
hlneks (connisting only of vi) to be deleted pius causing
thé top remaining block to lose occurences of its top vertex.
Suppose the lemma is true before segment S is embedded.
Let p .8 = £ be the first path in’ S'{ Suppose S is
to 5e embedded on the left. When entries correspondinq'tox
S are added to L , a new block B is formed containing the
entries corresponding to S and also containing all Ald hlocks
B with an entry v, in R satisfying £ < v, <s, by Lemma 9.
All ent:ies vy in other old blocks satisfy vi < £. The
new block B' consists of old blocks with entries on top of
..L'ané R, plus the new entries corrésponding to S, which are
on top of L. Block B' thus satisfies the lemma with vj ; 4
‘and vy = S. oOther old blocks are unchanged. The lemma folld

by induction oa the nurber of segments erbedded and the

number of entries deleted from L and R.
>

- 28 -,

Lemma 10 indicates how we can keep g:;ckfot-thc blocks.
The blocks give us enough information to easily move entries
from one stack to nno@her; We use linked lists to store L
and R. Then to switch a block of entries between stacks we
nead only switch list pointers at the beginning and: the end
of the block. We use a stack B to keep track/of: the blocks.
Each entry on B represents a blc:x and.@s an ordered pair
(x,y), with x pointing to the last block entry on L and Yy
ﬁointinq to the last block entry gn R.. If x = 0 (y = 0),
the block has no entries on L(R). The routine-whiéh follows
implements the émbedding algorithm, Thalnocesiﬁry list-

processing operations are presented in detail. in, Section 7.
- |

te
proveduis ZNEI0; beégdin R
comment routine to embed a properly ordered graph in the
plane, if possibie;
L:=R;=Bi= the empéy stack; to- . . s
find first cycle c; ..
“while some segment is unexplored do begin
1n§tiate search for path in next segment S; A
when backing down F:ee arc v + w delete : “ "
entries on L and R and blocks on B containing
. vertices no smaller than v; '
let p:s = f be first path found in segmen£ S
while position of top block determines ;&éition of p do begin .
dolete top block from B;
ig block has entries on left then switch block of entries

. . >
from L to R and from R to L by switching list pointers;

e

T T - 29 - o ’ - 3o
i! block still has‘an entry on left in cpnflict with é
Sﬁiﬂ go_to nonplanary; ,
end;
if p is normal add last vertex of p to L;
2dd new block to B corresponding to p and bloqks jusF
removed from B;)
d: apply algorithm recursively to embed other paths in §;
comment Details of the recursive application are diséussed
later. After completion of this“step, other paths in §
which lead to ancestors of S will be rep;;sented on L.
One new block corresponding to these paths will appear
oﬂ B;
combine top two blocks on B;

end;

end;

Lemma 11: Procedure EMBED runs to completion if and only if G is
planar. Otherwise the procedure branches to location "non-

planax.*”

Proof: " EMBED is a straightforward implementation of the algorithm

previousiy described. At all times, stacks L and R contain
entries for the fronds embedded on the left and right of the
cycle ¢, and stack B contains information about the end of each
"block of entries. Lemma 9 is used to test planarity, and Lemma
is used to modify the blocks as the routine exécutes. Assuming
that Step d (recursive application of the.algorithm) is imple~

mented correctly, it is straxghtforwa d to prove by inductidn

>

‘thit' . .

1) embedding any frond in a block completely determines
the embedding of all fronds in a Blgcks" .

"(2) the embedding of a frond from one blpck'40¢§ not restrict
the embedding of a frond not in the block.

By Lemmas 9 and 10 the rouéine correctly tests planarity.
Consider Fhe embedding of the second’ and subsequent
‘paths in a segment. Suppose cycle ¢, all segments before S,
and the first path p:s ;> f in S have Been embedded. It is easy
to see that the test of S can be added to:the embédding if and
only if s and ¢ together form a planar gtaph.rl(ln fact, this
follows fxom Auslander and Parter's results [1]) Figuxe 7
- shows S and c, Path p and che path of tree arcs from f to s .
- form a oyrls a; nead far raaursive nnp]ira;i;;-of the embedding
algorithm. ‘ .
After p is embedded on the left by EMBED, the top entry
on L is £. All fronds in S lead to vertices no less than f by
Lemna ;. Suppose we place an end-of~-stack marker on top of ﬁ
and apply the embedding.algozitbm recursively to determine if
cycle c plus the segments in § formed when c''is deleted can be
embedded in the plane. If the recursion: is finlshed successfully,
stacks L and R uill contaxn entries corresponding to fronds
ending normal paths in §, and stack B may contain a few new blocks.

The xes; of cycle ¢ can be added to the embadding of § and c* if

. and only if no new block has entriel on both ‘'R and L . If no
new block has gntrles on both R and L, then any new block with

an entry on R can be moved to L with the resul: that no new block

>

will have an entry-on R.

- 31 -

Thus to finish testing the planarity of ¢ and S, we musé
atéempt to move the new blocks from R to L. To concinue with
the top-level applicationAof the algorithm, we mustxcombine

_all the new blocks into one block corresponding tb paths in §
minus p and we must delete the end-of-stack marker on R. Then
"R will be :estofedr L will have entries for fronds in S on top
‘of its other entries, and B will contain one extra block co;re-
sponéing to the fronds in § minus p. skep d can be iﬁplemented

as fdllowsx . .

. d: - comment gpply algorithm recursively to embed
the rest of S;
add eqd-bfistack marker to R;
call embedding algorithm recursively;
* for each new block (x,y) on B do begin
‘ 'if (x ¥ 0) and (y # 0) then go_to non planar;
if (y # 0) then move entries in block to L;
. delete (x,y) from B; o
end;

delete end—of -stack marker on Rj —

. add one block to B to represent S minus path P’

" Lemma 12: If Step d is implemented as above, the embedding

algorithm correctly tests planarity.

Proof: This 1emma follows from Lemma 11 and Auslander
. and Parter's result that S minus p can be added to
the planar embedding if and only if S plusr ¢ is planar.

014 entries on L, R, and B cannot interfere with-re- -

': . . - 34 - .- [P

cursive application of the algorithm, since R has
an end-of-stack' marker and all entries on L are
no greater than £. When the recursive application
is completed, the information on L, R: a;d B is
exactly what.is needed to continue cob-level applica~
‘tion of the algorithm. Figure 8 illustrates the
contents of the stacks L, R, and B as the embedding
algorithm is applied to the graph in Figure §. .The

. next section gives the comp;ete.éﬁbedding.a%gorlthn
in detail. . .

*e

=33 -

7. The Comolete Path Embedding Alcorithm

Since paths are embedded as they are found, the emb
ing algorithm may be combined with the pathfinding algorii
A complete implementation appears below. Steps involving
and R are implemented in detail to make the running time ¢

the algorithm obvious,

procedure EMBED(G); begin
comment procedure to determine if G_is embeddable in tt
plane. G is repre%ented by'a set of properly ordere
adjacency lists A(v). Stacks L and R are stored as
linked lists using arrays STACK and NEXT. STACK(i)
gives a stack entry, and NZXT(i) points to the next
en;ry on tha came céack NEVT(0) ats ¢
entry on L. NEXT(-1l) points to the first entry-on F
FREE is the first unused location in STACK. Variabl
p denotes the number of the céitent path. If v is
a vertex PATH(v) denotes the number of the first pat
containing v. If i is the number AE a path, £(i) de
the last vertex on the path numbered i. Blocks are
- represented as ordered pairs on stack B. If (x,y)
:15 on B, k denotes the last entry on L in the block,
and y denotes the last entry on R in the block. If
x =0 (y =0), the block has no entries cn &(R). SA

is a temporary variable used far switchings

integer array STACK(0::E), NEXT(~ 1:;5), t(lz.E-V+1), <o

PATH(1l::V); B(l::E):)

grocedute PATHFINDER(V), begin T

1"

.
¢

“omNLnt this recursive procedure finds: paths and embeds them

if posaible. "It is based on the’ magerial in Sections §

and 6, Variable v is the cu:rent vertex in the depth-

first search used to find paths- s is the start vertex

of the current path;

for w € A(v) do

if v - w then begin) - o

[
————

*if s=0 then begin

s81=v;
p:-p+1;
PATH (W) 1 :
PATHFINDER (w) ;
comment delete stack entries and blocks corresponding

to vertices no smaller than.v) Cee

- while (x,y) on B has ((STACK(x)2v) or (x=0)) and

((STACK(y)}>v} or (y=0)) ‘
'ég'delete (x,y) from B; '~ .

*if (x,y) on B has STACK(x)2v then replace (x,Y)

.on B b} (e, y}; -
1£:zx,y) on B has STACK(y)2v then replace (x,¥)
‘on B by (x,00; e :
gg;ig NEXT (=1) #0 aAd" STACK (NEXT{-1)) v
" do NEXT(-1) :=NEXT(NEXT(~1));

— gL - ,. ‘ . :

while NEXT(0)#0 and STACK(NEXT(0))2v
* do NEXT(0) :=NEXT (NEXT(0));

if PATH(U) # PATH(V) then begin

'/

;chMENT all of segment with first edge (v, w) has
B heen embedded. New blocks must be moved from
right to left;
L':%0;
vhile (x,y) on B has (STACK(x)>£(PATH(w))) or
;STAcx(y)>f(9ATH(w))) ggg (STACK (UEXT(-1)#0)) do }
if STACK(x)>£ (PATH(w)) then begin
if STACK (y)>£ (PATH(w)) then go to nonplanar;
| L':=x; end
. glég begin ccmment STACK (y) >£ (PATH (W)) ;

BI"” _l"‘vﬂ\l LI
meov e ThNea

NEXT (L') :=NEXT(-1);
NEXT(-1) :=NEXT(Y);
.'NBXT(y)==SAVB; e o s
L':=y; '
end;
‘delete (x,y) from B;
" ends
comment block on B must be combined with
-new blocks just deleted;
delete (x,y) from B;
if x # 0 then add (x,y) to B
else if (L'#0) or (y#0) then add (L',y) to B;
comment delete end-of-stack marker on right stack;
NEXT(-1) s« NEXT(NEXT{-1));)

end; end

R -5 e

e

‘else begin comment v -+ w. Current path is completa.
~ Path is' normal if f(PATH(s)) < wi '
if s=0 then beain .
pi= p+l;.) . Ty
si= Vi
229.3. . ! . e -
£(p)i= w;
comment switch blocks of entries from left to right

so that p-may be embedded on left;

L'=0; ' .
RYe=1; ' RRERY
" while (NEXT(L')#0) and (STACK (NEXT (L'})W) or
(NEXT(R')#0) and (STACK(NEXT(R'})>w) do begin
1£ (e,yh on B an (x#0) pidd (y#0). then Leuds - '
" Af STACK(NEXT(L'))>w then ‘begin’
if STACK(NEXT(R'))iwngggg gé gg:nonpiana:;

SAVE:=NEXT(R');

usxr(a'):-NBXT(L');
NEXT(L') :=SAVE;
‘.. SAVE:=NEXT(x);
' NEXT (x) s =NEXT(y) ;
NEXT(y) s=SAVE;
Liw=y; {:
R' imx; Vot e

.. = "end else begin comment STACK(NEXT(R'))>w;

L'i=x;
R'i=y; end

>

L T _ ‘ -36-" -

! ' end else if {x,y) on B has x7#0 then beéiﬂ comment

STACK (NEXT(L'))>w;
SAVE:=NEXT (x) ;
) NEXT (x) : =NEXT(R') ;
e - CNEXT(R'):=NEXT(L'); o
i NEXT (L") :=SAVE;
E : | Rex; end S
i else if (x,y) on B has y ¥ 0 then R' = y;
é_ . ‘delete (x,y) from B; .
| end; ’ .
comment add P to left stack it'p_is.normaly
if £(PATH(s)) < w then begin
if L'=0 then L':=FREE;
i " STACK(FREE):=f;
L - o - NFXT(TRTE} :=NEXT(8);
NEXT (0) : <FREE;

FREE:=FREE+1;

[
[~

n
' .
| comment Add new block corresponding to combined old

——————

blocks. New block may be empty if segment con-

.
: e

I

g

: . . : taining current path is not a single frond;
_if R*i= -1 then R':=0;
B ' if (L'#0) or (R'#0) or v#s then add (L',R) to B;
comment if segment containing curfent path 15 not

o : a single frond, add an end-of-stack marker to

right stack; . ,

Lf v#s then beain .
 STACK(FREE):=0; ‘ .
NEXT (FREE) :xNEXT (-1);
.NEXT (- 1).-?RE£;
FhEE:-FREE+1;) .
. ﬂ‘_q_? ’
8:1=0;
" end; end;
" comment initiaiization;
NEXT (~1) s=NEXT (0) 120 v
FREE:=l; 3
STACK(0) :=0;
B:= the empty stack;
D= !t-ﬁi .
PATH(1) 113 L ey
comment vertex 1 is the start vertex of the search;
PATHFINDER(1) ; ' ' .
end; . : e

‘- Lemma 13: EMBED correctly tests the planarity of a graph G.

Proof: EMBED is a straightforward implementation of the

pathtindiﬁg and embedding algorithms described in Sec-
3

tions 5 and 6.

— e .]

e

" Lemma 14:- ‘EMBED requires O (V+E) time to test a graph with

V vertices and E edgés.

- 38 -

!

" Proof: The pathflnding part of the algorithm :equixes

O(V+E) time since it is a depth-first search with a

few additional calculations. Only a finite amount of

‘computation is performed by EMBED before some. entry

is addgd to L, R, or B, or deleted from L, R, or B.
The total number of entries made to L, R,.and B, is
O(V+E). Thus the stack calculations require O (V+E)

time. Initialization requires finite time, sé the

_ enitre algorithm requires O (V+E) time. -

Lemma 15: The planarity algorithm requires O (V) time

to test the planarity of a graph with V vertices.

-Proof: The algorithm stops if the number of edges of

programmed in Algol W,
and run on an'IBM 360/67.

discussion appear in [29).

G exceeds $Vr3, so counting tne edges takes U(V] tiwe.

If G has O(V) edges, the initial depth-first search
requires o(V) time, the sorting of edges using LOWPT
vplues reguires O (V) time, and the pathfinding/embedding-
algorithm requires O (V) time. Thus the total time is
o(V). It is also easy to see that the algorithm re-

quires 0(V) storage space.

Imolementation and Experinents

A more complicated version of the planarity algorithm w
the Stanford University version of Alg
A program listing and a more ccnpl

The program was extensively taste

The planarity algofiﬁhm was applied to a group ofvplanar and

- . >

i,

-39 - «"M.
nonpl;nar graphg to verify that the 1mpl¢mentatlon was correct,
The algotithu was also applied to a series lof xapdomly qeue:ated
complete planar q:aphl,_in order to decerqugﬂthp axporimental

running time.) ’ Co ﬂ:;.ir. ' .
These tcst graphs were generated by: starting with a ‘com=
plete graph ot three vertices, ' At esach ;;;p, a’ trlanqula: face
of the graph was selected at random and tplit‘into three new

triangnlar faces by adding one vertex and thzee edgcs. A graph

of this type has the p:operty that Ve 32 L 6; no ‘new edge may

_be added without destroying the planarity ot the graph, Although

not 31l complete planar graphs can ba ggndrqﬂed by dividing tri-

-

angular taces in this way, the test qraﬁhs saemAA to givc the

_planarity program a satisfactory wozkout. i -

. ghe +c3% zesulis ind cd that for this class of nraphq

¥

T = 0125V - ,07
jee 1

R
whete LT the running time of the proééam in seconds and .-
V is the number of edges in the grﬁph.wfﬁhé‘progran indedd
requiras time linear in the humber of ve:cicés of the graph.
The data may be summarized in another wayi '‘the program will
analy:e a graph at the rate of 80 vertices/:econd (or faster,
1£ B < 3V - 6). Non—planar graphs generally require less time
than planar ones, since the algorithm halt$-as soon as the graph
1s'£ound to be non-planar. 'The planarity' program was space-
lluited fathaf than time-lPmited;'’a 1000 ‘vertex, 2994 edge
graph could not be analyzed in the space’ aVailabll (417,792

bytes) although no more than 12,5 seconds would be required

s te —, . .
.

I
fox processing su?h a graph. No special care was taken in
conserving storage space; careful reprogramming or use of
auxiliary storage!devices would allow mucﬁ'largér graphs to
be analyzed. 1t is also expected that implementing the
simpler algo;ithm'presented,here would cut down thé space
* and time rquirements considerably.

It is difficult to compare the ;xperimental ranning
times of different algorithms, since imélementa%ions aqd
machin;s vary greatly. However, an algorithm devised by
Bruno, Steiglitz, and Weinberg (21]) required about 30 seconds
to process a 28 vertex planar graph using an IBM 360/65.

. The aiéorithm presented here required 0.4 seconds to test

‘the sama graoph, (The timc ciscrepansy weould be much yeselsy”
on larger éraphs: The experimental tesulfs_ﬁere quite satis-
factory, ané they demonstrate that the planarity algorithm
prOanted here is of significant practical as well as theo-.

retical value.

1

9. Applications and Conclusicns

Thélplangrity algorithm as described here only tests
a grapﬁ G for planarity; it does not construct a planar '
:epreéentation éf G. However the algorithm collects enough
"i{nformation to make the consgruction of a planar representation
easy, and the.algorithm may be modified slightly to carfy

‘out this step, :One way to accdmplish this is to construct

a deoendancv_gravh D; The vertices of the dependency graph

will correspond to the paths found in G. Two paths will be
! > - ..

o
o'

-joined by an edge if. the oosition of one ‘path, determines the. .

T

¥

position of the other path. Edges are ot ‘two type:, dépending

upon whether the paths must be embedded on the same, side or on

- opposite sides of the appropriatc cycle. ''A coloring of the

vertices of D with two colors in a way which satisfies the edgo
constraints then corresponds to an embeddihg‘of G. Por details
see {29). Figure 9 shows a dependency yraph and an embedding

for the graph in Figures 3 and 5. Itlih*oncy to oodity tho
embedding algorithm s0 that it constructs ‘and cplors a dependcncy
graph., This modified algorithm nay ho tised to accomplish tasks

sucn as laying out electronic circuit boards..

The planarity algorithm may be combined with algorithms
for determining connectivity propertiés of graphs [5,6,8) and

with an algoritnm of Hopcrort's 145,1/)"to!test isomorphism

. of triconnected planar graphs,to give’an' algorithm for deter-

mining whether two arbitrary planar graphs are isomorphic (7,16].
This algorithm requires o(v log v) time and’ 0 (V) space. The
algorithm promises to be of value to chemists, since most
molecules may be represented as planar: graphs. A canonical

form for molecules which follows from the isomorph’sm algo-
rithm might be used to speed searches of the chemical literature.
The algorithm may also bo used for c*aﬁeration az various types
of planar graphs. (Sec Grace (43) for instance.)

Thc planarity algorithm and the othdr algorithms which

use dcpth:firlt search illustrate the value of this technique

as an efficient, systematic method for exploring graphs. The'

" planarity algorithm also illustrates the value of carefully

chosen data structures. These ideas may find application

in efficient algorithms for solving many other problems.

- . - H

- . R L

REFERENCES : C P ‘ .
[1] Auslander, L. and Parter, S.V., "On Imbedding Graphs in

the Plane," Journal of rathematics and Mechanics, Vol, 10,

No. 3 (May, 1981), 517-524, R l

. -y ey v] .

(2) Goldstein, A.J., "An Efficient and Constructive Algorith
for Testing Whether a Graph Can Be Embedded in a Plane,"
Graoh and Combinatorics Conference, Office of Naval Research
ogistics Proj., contract.No., GilR 1858-(21), Dept. of Math.,
Princeton University (May 16-18, 1963), 2 unno. pp.

. {3) Golumb, S.W. and Baumert, L.D., "Baéktrack Programming,”
JACM, Vol, 12, No. 4 (Oct., 1965), $16-524.

{4) Nilsson, N., "Problem-Solving Mathods 'in Artificial
Intelligence, McGraw-idill, New York, 1371. .~

[S) Hopcroft, J, and Tarjan R., “Efficient Aldorithms for
Graph Manipulation," STAN-CS-71-207, Computer Science
Department, Stanford University (March, 1971). .
h S .
(6} Tarjan, R., "Depth-First Search and, Linear Graph Algorithms,®
SIAM J. Comout., Vol, 1, No. 2 (June, :1972), pp. 146-159,
: g Eeen '
{7} Ecporcft, J. ond Tarjan, R, “Isemogphi;m of Planar A~rapis,”
" Complexitv of Computer Comoutations’;"R.E, Miller and J. W,
Thatcher (eds.), Plenum Press, New York, 1972, pp. 143-150.

[8) Mopcroft, J. and Tarjan, R., *Dividing a Graph into Tri-
connected Components", SIRM J. Comput., to appear.

. . . . LN
{9] Tarjan, R., “Finding Dominators in Directed Graphs,*
unpublished, Cornell University (December, 1972),

[10) Hecht, M.S, and Ullman, J.D,, 'Fléw-Graph Reducibility,"
sIan’ J. Comput., Vol., 1,.No. 2 (June, 1972), pp. 188-202,

[11} Tarjan, R., “Testing Flow Graph Reducibility,” TR 73-159,
pept. 0f Computer Science), Cornell University (December, 1972),

{12) Cook, S., "Linear Time Simulation of Deterministic Two-Way
Pushdown Autonata," IFIP Congress. « Foundations of
Information Processing, Ljucljana, yugoslavia (August, 1971y, .
North Holland Publishing Co., Amsterdam, pp. 174-179. .

(13] Sites, RiL., "Algol W Reference Manual,” STAN-CS-71-230,
. Computer Science Department,. Stanford University (August,
1971). . . :

,

—— e

{14)

(1s)

{16}

(17}

(18]

(19)

(20}

f21)

(22)

(23]

- 44 -

" - - -
Lederberé, J., "DENDRAL-64: A System.for Computer ",
Construction, Enumeration, and liotation of Organic
Molecules as Tree Structures and Cyclic Graghs,

Part II:. Topology of Cvclic Graohs,” Interim Report

to the National Aeronautics and Space Adninistration,
Grant Nos. G 81-80, NASA CR 68898, STAR No. N-66-14074
(December 15, 1965). ’

t
Hopcroft, J., "An n log n Algorithm for Isonorphism
of Planar Triply Connected Graphs," STAN CS-71-192,
Computer Science Department, Stanford University
(January, 1971). ' '

Hopcroft, J. and Tarjan, R., "A V2 Algorithm for
Determining Isomorphism of Planar Graphs," Information
Processing letters, Vol. 1, No. 1 (1971), pp. 32-34.

Hopcroft, J. and Tarjan, R., "A v log V Algbtithm '
for Isomorphism of Triconnected Planar Graphs," JCSS,
to appear.

Weinberg, L., “"Plane Representations and Codes for
Planar Graphs," DProca2sdincs: Third Rnnual 3llerton
Conferenge on Circuit and Svsten Theorw, University
of Illinois, Allex:on Xouse, onticello, Illinois
{October, 1965), pn. 733-744.

Weinberg, L., "Algorithms for Determining Isomorphism
Groups for Planar Graphs," Proceadings: Third Znnual
Allerton Conferenc2 on Circuit and Svsctem Thsorv,
University of Zllinois, :ilerton unouse, ronticeilo,
Illinois .(October, 1965), pp. 913-929.

Weinberg, L., “A Simple and Efficient Algorithm for
Determining Isomorphism of Planar Triply Cornected
Graphs," I.E.E.E. Transacticns on Circuit Theory,
Vol. CT-13, No. 2 {Juna, 1366), cp. 1l42-1i8.

Bruno, J;, Steiglitz, K., and Weinberg, L., "A New
Planarity Test Based on 3-Cornectivity," I.E.E.E.

* Pransactions on Circeit Theorw, Vol. CT-17, No. 2

Tlay, 1970), pp. 197-206.

i
Chung, S.H.,and Roe, P.H., "Algorithms for Testing
the Planarity of a Graph," Proceedincs of the

- Thirteenth Midwest Symposium on Circtiic aneory,

University Of innesota, WLINNEapilIis, RINicsSota
(May, 1970), VII. 4.1 - VII, 4.12.

Fisher, G.J., "Computer Recognition and Extraction
of Flanar Granshs fron the Incidence Matrix," I.E.E.E.
Transactions ‘on Circuit Theory, Vol, CT-13, No. 2
(June, 1966), pp. 154-163,

.

co

[24] Hopcroft, J. and Tarjan, R., “pPlanarity Testing in

: V log V Steps: Extended Abstract," IFIP Conaress 713
Foundations of Information Processing, Ljubljana,
Yugoslavia (august, 1971), MNorth holland Publishing
Co., Amsterdam, pp. 18-22, f pee .

- {25} Lerpel, A., Even, S., and Cede:baum,ﬁl..f“hn Algo-
. rithn for Planarity Testing of Graphs," Theory of

Grachs: Internaticnal Svmvosiun: Pome Julv,

P. Rosenstiehl (ed.), Gordon an Breachy"iiew York,

1967, pp. 215-232. .

{26] Mei, P. and Gibbs, N., "A Planarity Algorithm Basaed
on the Kurztowski Theorem," AFIPS Conference Procéedings
Vol. 36, 1970, Soring Joint Tormuter Ccnierence,
tlantic City, wgw Jersey (May, 10}, PP. =95, .

{27) Mondshein, L., "Combinatorial Orderings. and Embedding
of Graphs," Technical Note 1971-35, Lincoln Laboratory,
‘Massachusetts Institute of Technology‘(August, 1971).

{28) shirey, R.W., "Implementation and Rnalysis of Efficient
Graph Planarity Testing Algorithms,™ Ph.D. Thesis,
University of Wisconsin (June, 1969):

. X ARy Aeer [.

1201~ Tarian, R, “An Efficient’Planavity-Algorithm,™ STAN— " .
05-244-71, Compuier Science Depi., Stanford Unlverslity -
(November, 1971). Vo

* {30} Tutie, 9.J., “"How to Draw a Gtaph;' Proceedings of the

London llathenatical Sociéty, Series T, vol, 13 (15637,

pp. .743-1768,

| froin s

{311 *Wing, O., "On Drawing a Planar Graph) ;*EHE;EL;[:nngnn--

ory, Vol. CT-13, No, 1 (March, 1966),
R

-

pp. 112-114. L

B

{32) Youngs, J.W.T., "Minimal Imbeddinés and the Genus of a
Graph," Journal of vatheratics and Mechanics, Vol. 12,
No. 2 (1963), pp. 303~ .

(33) Kuratowski, C., "Sur le Probiere de§ Corbes Gauches en
Topologie,” Fundamenta Mathematicae; Vol. 15 (1930),
pp. 271-283, e '

(34] ‘Tarjan, R., "Implementation of an Efficient Algorithm
‘for Planarity Testing. of Graphs," unpublished (December,
1969). - : i ;

n, Y ¥4 : [g, :

{35] Berge, C., The Theorv of Grachs aad its Aoolications,

translated By Alision Paig, fletauen and Co., Ltd.,

Lonédon, 1964. ' .

" 136]

(371

[38]

(39]

f40]

(41}

f42)

1431

. L™ 40 =

.

. el L e e R P N

.

Busacker, R,, and SaatQ, T., Finite Grashs and Networks:
An Introduction with Roplicatians, WcGraw-Hill, uew York,
1965. ’ . .

Harary, P., Graoh Theory, Addison-Wesley,'Reading,
Massachusetts, 1369.
:]

Ore, O., Thdorv of Graohs, American Mathematical Society
Colloguiunm Pubi, Vol. 38, American Math. Soc., Providence,
Rhode Island, 1962. “ ' s .

Tutte, W.T., Connectivity in Graohs, Oxford University
Press, London, 1966.

Hall, D.W. and Spencer, G., Elementary Tooologyv, Wiley
and Sons, Inc., New York, 1955,

Thron, W.J.; Introduction to the Theory of Functions .
of a Complex Variabie, Tiley and sons, Inc., ~ew York,

1953.

Holt, R.C. and Reingold, E.M., “on the Time Reguired to

Detect Cycles and Connectivicy 1in Directed Graphs,"
TR 70-63, Department of Computer Science, Cornell Univer-

ity (Jung, 1770).
. . ' i

Grace, D.W., "Computer Search for Non-Isomorghic Convex
Polyhedra,” Tecknical Report Cs15, Computer Science Dept.,
stanford University (January, 1965). ,

. . o RO v aatliev e
.
. f . o L4
. ? -
. s e
e . A
.
A
.
. [
. .
N .
N . CRNN S)
.
. . wt
N A
Y) N
.
. "
.t .
. PREE it
.

e e ‘-5. R T K

\ wgr
Figure 1: The Kuratowski Subgraphs '

). \.\
i .
.
|
|
| i
)
' x ! / 1
/ Y2 \ "x
x y
. .\\ ‘ (l //

Figure 2:

——

Illustration of Lemma 2.

.

Path P, is inside the

simple closed curve formed by Py and P3-

« . LR T

s S

15"

' P
[

Pigure 3: (a) A graph G to be tested for planarity.

Figure 3:

(b)

A palm tree P generated from G. Upward,
solid edges are tree arcs. Downward,
dotted edges are fronds. Vertices are
numbered in search oxder.

Fiqure 4:

e

+
~

PR

Conflict between pieces. To add dotted piece §
on the inside of ¢ and maintain planarity, pieces
. 8§, and S, nmust be moved from the inside to the
’ ‘o&tside. Piece S, must be moved from the outside
to the inside. ’ .

.

Figure 5: (a) Paths gererated by PATHFINDER from the graph
in Figure 3. .

A: (1,2,3,4,5,6,7,8,9,10,11,12,1) B: (13,14,15,5)
c: (15,9) D: (15,13) E: (14,11) P: (10,16,2)
G: (16,3) A: (8,6) I (7,4)

(b) Segments with respect to initial cycle.

Vi

vk

,vi
(a)

Figure 6:

(a) vy > vy,

{c) v,.-vi and v -vj

Illustration o! the cases in Lemma 9.
ermbedded leads from v
leads from v, to vk to

k\'.vk o

LOWPT2(y)

v
I

Vn'vj
{c)

1

‘Path to be
to vj. Blocking segment
Vo)

(b) vy =vy and Vo < V.

(Note: the order of v, and
LOWPT2(y) is undatexhlned).

Fiqure 7: Recursive épplication 6f the embedding algorithm.

Segment S consists of first path p and new segments Sl,

Sy 53.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif

