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Abstract. We study minimum-cost sensor placement on a bounded 3D sensing field, R, which
comprises a number of discrete points that may or may not be grid points. Suppose we have ℓ

types of sensors available with different sensing ranges and different costs. We want to find, given
an integer σ ≥ 1, a selection of sensors and a subset of points to place these sensors such that
every point in R is covered by at least σ sensors and the total cost of the sensors is minimum.
This problem is known to be NP-hard. Let ki denote the maximum number of points that can be
covered by a sensor of the ith type. We present in this paper a polynomial-time approximation
algorithm for this problem with a proven approximation ratio γ =

P
ℓ

i=1
ki−σ+1. In applications

where the distance of any two points has a fixed positive lower bound, each ki is a constant, and
so we have a polynomial-time approximation algorithms with a constant guarantee. While γ may
be large, we note that it is only a worst-case upper bound. In practice the actual approximation
ratio is small, even on randomly generated points that do not have a fixed positive minimum
distance between them. We provide a number of numerical results for comparing approximation
solutions and optimal solutions, and show that the actual approximation ratios in these examples
are all less than 3, even though γ is substantially larger.
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1. Introduction

Coverage is a fundamental issue in wireless sensor networks. It deals with problems
of deploying wireless sensors and constructing sensor networks to cover regions of
interest to detect, track, and report threats of mechanical, chemical, and biological
agents, or monitor environmental and structural changes. The regions of interest
could be areas of natural land forms and physical contours, and critical man-made
structures such as airports, bridges, city blocks, high-rise buildings, oil tanker engine
rooms, and oil platforms, to name just a few. Actual sensor deployments have so
far used up to 10,000 sensor nodes in a single application [6].

Research in sensor network coverage has mainly followed four directions:

1. Design communication protocols (e.g., [12, 13, 5]).

2. Investigate coverage measures and develop analytical expressions of coverage
properties based on these measures (e.g., [7, 12, 13, 8, 9, 11]).

* This research was supported in part by NSF under grant CCF-04080261 and by NSF of China
under grant 60273062.



2 J. WANG AND N. ZHONG

3. Achieve maximum lifetime of sensor networks (e.g., [3, 2]).

4. Find a minimum-cost sensor placement on sensing fields for surveillance (e.g.,
[4, 10, 14]).

We study in this paper the problem of minimum-cost sensor placement on collec-
tions of points that may or may not be grid points. Let R be a bounded 3D (or 2D)
region comprising n discrete points. These points are to be covered by sensors and
sensors may be placed on any of these points. Moreover, we assume that each point
can only be placed at most one sensor. For convenience, we call a point a site if it
is selected to place a sensor. Assume that we have several types of sensors available
with different costs and different sensing ranges. We want to find a selection of
sensors and sites to place these sensors such that each point in the sensing field is
covered by at least σ sensors and the total cost of sensors is minimum, where σ ≥ 1
is an integer. This problem is known to be NP-hard [4].

Chakrabarty et al [4] were the first to study this problem on grid sensing fields.
By a grid sensing field it means a collection of grid points in a given grid. They
formulated an ILP (Integer Linear Programming) model with Θ(ℓn2) variables and
Θ(ℓn2) constraints for solving the problem, where n is the number of grid points in
the sensing field and ℓ the number of different types of sensors. Their ILP model
is a linearization of an easy model that contains quadratic constraints. Taking
a different approach, we obtain a new ILP model with only ℓn variables and 2n
constraints. (Sahni and Xu also presented the same formulation in a recent paper
[14], but they did not provide efficient solutions.) Morever, this new model can be
applied to any set of discrete points. Namely, points do not have to be grid points
and the point sets may have irregular boundaries. The boundary of a given point
set is the line (or lines) connecting neighboring boundary points in the set. This
paper is based on the new ILP model.

The ILP problem is intractable when the given sensing field is large. A simple
method of handling a large grid is, as suggested in [4], dividing it into a number
of manageable small sub-grids and combine the optimal solution to each small
sub-grid as the approximation solution to the original grid. This is a simple divide-
and-conquer (d-n-c) scheme. Given a set of available sensors, let Np,m denote the
optimal number of sensors required for covering a cubic (or square) grid sensing
field, where m is the dimension of the sensing field and p the number of grid
points in each dimension. Let the corresponding cost of sensor deployment be
Cp,m. Chakrabarty et al [4] showed that

N2kp,m ≤ 2kmNp,m,

C2kp,m ≤ 2kmCp,m.

The d-n-c scheme can be applied to cuboid and rectangular grid sensing fields.
While one can apply d-n-c to a point set that contains irregular boundaries or
non-grid points, dividing it properly to yield a good approximation solution to the
original set could be difficult, especially when there is no clear indication of clusters.

We present in this paper a new approximation algorithm to the ILP problem
with a proven approximation ratio. Our algorithm using the standard technique of
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solving ILP models: We first loosen the integer requirement to allow variables in
the ILP model to take real values, turning it into a pure LP (Linear Programming)
model. After solving the LP problem (which has fast algorithms), we convert the
LP solution to an ILP solution in O(n log n) time.

The approximation in our algorithm depends on LP solutions. We observe that,
through a large number of experiments, the approximation ratio rarely reaches the
(worst-case) theoretical upper bound. Indeed, we have not been able to produce a
single case where the actual approximation ratio is even near this worst-case upper
bound. There is a good explanation for this; the reader is referred to the discussion
at the end of Section 3.1. In practice the actual approximation ratio tends to be
small, even though the theoretical upper bound is much larger.

In applications where any two points in a sensing field has a fixed positive lower
bound, the approximation ratio is a constant. This is a practical assumption in
certain applications. For examples, in grid sensing fields or in sensing fields of
highly structural objects such as bridges and oil platforms, only certain locations
with a fixed positive minimum distance may be points of interest to monitor or
to place sensors. In applications where several points are physically close, we may
simply consider a cluster of close points within a fixed distance a single point, where
the center of the cluster is the location of this point. Sensor coverage obtained
according to this simplification covers the centers of clusters, but may not cover all
the points in a cluster. To compensate this loss of coverage we could reduce the
effective radius of sensors in our algorithms so that the sensor placement we obtain
that covers centers of clusters will have an actual effect that also covers the points
in each cluster.

We show that, through experiments on all square grid sensing fields where op-
timal solutions can be obtained on a PC using the latest lpsolve package [1], the
approximation solution in each case is less than 3 times of the optimal solution,
although the theoretical upper bound of the approximation ratio is substantially
larger. Even if there is no fixed minimum positive distance between points, we show
that, through experiments on sets of points that are independently and uniformly
generated at random, including sets that are dense, the actual approximation ratio
in each case is still less than 3, although the theoretical upper bound ratios are
much higher.

In addition, we demonstrate a simple point set containing non-grid points, on
which our approximation algorithm is better than d-n-c. We note that the d-n-c
scheme is sometimes better than our approximation algorithm, especially on cubic
and square grid sensing fields. Thus, network designers may want to apply both
methods on a given point set and select the best sensor deployment plan.

The rest of the paper is organized as follows. In Section 2 we describe the ILP
model used in this paper. In Section 3 we present our approximation algorithm,
prove its correctness, time complexity, and approximation ratio. We then demon-
strate a simple point set with non-grid points on which our approximation algorithm
is better than d-n-c. In Section 4 we present a number of numerical results, com-
paring runtime of the ILP model used in this paper and the ILP model used in [4],
and comparing approximation solutions and the optimal solutions.
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2. The minimization problem and an ILP model

Let R be a bounded 3D (or 2D) region consisting of n discrete points, which may
or may not be grid points. For convenience, we simply view R as a set of points.
Let t1, . . . , tℓ be ℓ types of sensors with ranges (i.e., radius) r1, . . . , rℓ, where r1 <
· · · < rℓ. We assume that a sensor can only be placed on a point (also called a site)
and each site can only be occupied by at most one sensor. The sensor placement
problem is to find, given an integer σ ≥ 1, a selection of sensors and a subset of sites
to place these sensors such that every point in R is covered by at least σ sensors
and the total cost of the sensors is minimum.

We label the n points as 1, 2, . . . , n, and denote by d(i, j) the Euclidean distance
between point i and point j. Let

Ev = {(i, j) | 0 ≤ d(i, j) ≤ rv}, v = 1, . . . , ℓ.

Ev[i] = {j | (i, j) ∈ Ev}, i = 1, . . . , n.

Let Cv denote the cost of a type-tv sensor. Let xv
i , v = 1, . . . , ℓ, be 0-1 integer

variables such that

xv
i =

{

1, if a type-tv sensor is placed at grid point i
0, otherwise

The sensor placement problem can be formulated as the following ILP problem:

Minimize

n
∑

i=1

ℓ
∑

v=1

Cvxv
i (1)

Subject to, for all i:

ℓ
∑

v=1

∑

j∈Ev [i]

xv
j ≥ σ (2)

ℓ
∑

v=1

xv
i ≤ 1 (3)

where Constraint 2 ensures that each point is covered by at least σ sensors, and
Constraint 3 ensures that each point can only be used as a site to place at most
one sensor.

3. Approximation algorithm

We first loosen the integer constraints in the ILP model by allowing integer variables
xv

i to take real values in [0, 1]. This gives rise to an LP model, which can be solved
using fast algorithms. We then convert the optimal LP solution to an integer
solution for the ILP problem. For simplicity we will first present our approximation
algorithm on two types of sensor (i.e., ℓ = 2). We then generalize the algorithm to
the general case.
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3.1. Coverage using two types of sensors

Denote by A and B the two types of sensors. Let {xA,∗
i , xB,∗

i ∈ [0, 1] | i = 1, . . . n}
be an optimal solution to the LP model with

OPTLP =

n
∑

i=1

CAxA,∗
i + CBxB,∗

i .

To convert this solution to an integer solution, we construct a graph G = (V, E)
with V = {1, . . . . , n}, where a pair of vertices are connected with an edge if and
only if a sensor placed at one end point also covers the other end point. There are
two types of connections. We use edge labels to mark these connections. That is,
for each i, j ∈ V with i 6= j, if d(i, j) ≤ rA, connect i and j and label the edge with
A. If rA < d(i, j) ≤ rB , connect i and j and label the edge with B.

Let kA denote the maximum number of points a type-A sensor can cover on
a given sensing field. Similarly, let kB denote the maximum number of points a
type-B sensor can cover. Namely,

kA = max
i∈V

{|EA[i]|}, kB = max
i∈V

{|EB[i]|}.

Without loss of generality, we assume that σ ≤ |EA[i]| + |EB[i]| for each point i.
(Otherwise, point i cannot be covered by σ sensors.)

The idea of our algorithm is this: Start from point i with the largest degree in R,
and select the σ largest values xA,∗

ij and xB,∗
ij that can over i. Set these σ variables

to 1. Remove point i and any other point from R that is also covered by these σ
sensors. Continue this process until all points are removed.

Algorithm A:

1. Let S = ∅ and L be a sorted list of nodes in V in non-increasing order according
to their degrees.

2. Select i0 ∈ L such that vertex i0 has the largest degree. Let

HA = {xA,∗
j | j ∈ EA[i0]}, HB = {xB,∗

j | j ∈ EB[i0]}, H = HA ∪ HB.

Sort H according to the values of the variables. Let hj1 , . . . , hjσ
be the σ

variables in H with the largest values (not in any particular order), where

hju
= xA,∗

ju
or xB,∗

ju
, u = 1, . . . , σ, such that ju 6= ju′ if u 6= u′.

3. Include hj1 , . . . , hjσ
in S. Let W be the intersection of the subsets of points

covered by corresponding sensors placed at points ju for u = 1, . . . , σ. Remove
W from L. That is, set

S = S ∪ {hj1 , . . . , hjσ
}, L = L − W.

(Note that W can be constructed as follows: Start with W = EA[j1] if hj1 ∈ HA

or W = EB[j1] otherwise. For u = 2, . . . , σ, if hju
∈ HA, set W = W ∩ EA[ju];

if hju
∈ HB, set W = W ∩ EB [ju].)
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4. Repeat Step 2 until L = ∅.

5. Set the value of each variable in S to 1, and the value of each variable in V −S
to 0.

Theorem 1 Algorithm A provides an integer solution to the ILP problem in O(n log n)
time.

Proof: It is obvious that Algorithm A provides an integer solution (see Step 5).
Note that a previously selected variable at Step 2 can be selected again at a later
time. Since the variables selected at Step 2 have different indexes, variables that
are given the value of 1 at Step 5 all have different indexes. This implies that each
point can only be occupied by at most one sensor. The set W constructed at Step
3 in each iteration of the algorithm is nonempty, for it contains at least one point
i0 ∈ L, and W consists of points that can be covered by exactly σ sensors of the
current selection. Removing W from L in each iteration, the algorithm will stop
within n iterations. Since additional sensors may be selected at a later step that
may cover some of the points included in a previously constructed W , we know
that each point will be covered by σ or more sensors.

Graph G can be constructed in O((kA + kB)n) time and the descending list L
can be constructed in O((log(kA + kB)n log n)) time. At Step 2, i0 can be found in
constant time, H can be constructed in O(kA + kB) time, and the σ variables with
the largest values in H can be selected in O(σ(kA log kA + kB log kB)) time. At
Step 3, the set W can be constructed in O(σ(kA + kB)) time. Removing W from
L can be carried out in O(σ) ≤ O(kA + kB) time using a proper data structure for
implementing L. We note that Steps 2 and 3 can only be iterated at most n times,
and kA and kB are independent of n. Thus, Algorithm A runs in O(n log n) time.

Let OPTILP denote the optimal solution of the original ILP problem and ∆ the
solution of Algorithm A. Let xA,∆

i and xB,∆
i denote the values assigned to variables

xA
i and xB

i , respectively, at Step 5 in Algorithm A. Let β = kA + kB − σ + 1.

Theorem 2 ∆ ≤ β · OPTILP .

Proof: We first note that OPTLP ≤ OPTILP . We then show that for any variable
h put in S, we must have

h ≥ 1/β. (4)

Assume that h is put in S with respect to point i0 selected at Step 2. We note that
σ − 1 other variables from HA and HB are also included in S at the same time as
h is included. Let h1, . . . , hσ denote these variables in the descending order. From
Constraint 2 we have

∑

j∈EA[i0]

xA,∗
j +

∑

j∈EB [i0]

xB,∗
j ≥ σ.
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We note that there are at most kA variables xA,∗ and kB variables xB,∗ in this
inequality. Thus, h1 ≥ σ/(kA + kB). Since

∑

j∈EA[i0]

xA,∗
j +

∑

j∈EB [i0]

xB,∗
j − h1 ≥ σ − 1,

we have

h2 ≥
σ − 1

kA + kB − 1
.

A straightforward induction leads us to the following inequality:

hi ≥
σ − i + 1

kA + kB − i + 1
, i = 1, . . . , σ.

This implies that Inequality 4 is true. Hence,

OPTLP =
∑

i

CAxA,∗
i + CBxB,∗

i

≥
∑

x
A,∗
i ∈S

CAxA,∗
i +

∑

x
B,∗
i ∈S

CBxB,∗
i

≥
1

β

(

∑

i

CAxA,∆
i +

∑

i

CBxB,∆
i

)

= ∆/β.

It follows from OPTILP ≥ OPTLP that ∆ ≤ β · OPTILP .

The approximation ratio β we show here is a worst-case upper bound. The actual
approximation ratio depends on the optimal solution xA,∗

j and xB,∗
j . The theoretical

upper bound β may be reached only if in Constraint 2 in the LP model, for each
point i selected in Algorithm A, and for each j ∈ EA[i] and j ∈ EB[i], we have

xA,∗
j = xB,∗

j = σ/(|EA[i]| + |EB[i]|). This situation is rare. In practice, the actual
approximation ratio tends to be small, although the theoretical upper bound is
significantly larger. This is because the LP solutions often provide sufficiently good
values of xA,∗

j and xB,∗
j to select from for the approximation algorithm; namely,

these values are seldom all equal; some of them are either equal to 1 or close to 1,
while some others are equal to 0 or close to 0. We will present numerical experiments
in Section 4. Indeed, we have not seen a single case where the actual approximation
ratio is even near the worst-case theoretical upper bound.

3.2. Coverage using more than two types of sensors

We generate Algorithm A to allow sensors of more than two types; i.e., ℓ > 2. As
in Section 3.1 we construct a graph G = (V, E) with V = {1, . . . . , n} such that
for each pair of vertices i and j and for each v = 1, . . . , ℓ, if rv−1 < d(i, j) ≤ rv,
connect i and j and label the edge with a label v, where r0 = 0.
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Let kv denote the maximum number of points the type-tv sensor can cover on
the given point set. Assume that σ ≤

∑ℓ
v=1 |Ev[i]| for each point i. Similar to

Algorithm A we have the following approximation algorithm.

Algorithm B:

1. Let S = ∅ and L be a sorted list of nodes in V in non-increasing order according
to their degrees.

2. Select i0 ∈ L such that vertex i0 has the largest degree. For v = 1, . . . , ℓ, let

Hv = {xv,∗
j | j ∈ Ev[i0]}, H =

ℓ
⋃

v=1

Hv.

Sort H according to the values of the variables. Let hj1 , . . . , hjσ
be the σ

variables in H with the largest values (not in any particular order), with σv

variables from Hv, where for each u with 1 ≤ u ≤ σ: hju
= xv,∗

ju
for some v with

1 ≤ v ≤ σ, such that ju 6= ju′ if u 6= u′.

3. Let U = {v ∈ [1, ℓ] | (∃u ∈ [1, σ])[hju
∈ Hv]}. Set

S = S ∪ {hj1 , . . . , hjσ
}, L = V −

σ
⋂

u=1

⋂

v∈U

[

⋂

hju∈Hv

Ev[ju]

]

.

4. Repeat Step 2 until L = ∅.

5. Set the value of each variable in S to 1, and the value of each variable not in S
to 0.

Let xv,∗
i ∈ [0, 1] be an optimal LP solution. Let OPTLP =

∑n

i=1

∑ℓ

v=1 Cvxv,∗
i .

Let ∆σ denote the solution of Algorithm B. Let γ =
∑ℓ

v=1 kv − σ + 1. Similar to
Theorems 1 and 2 it is straightforward to show the following result, and we omit
its proof.

Theorem 3 Algorithm B provides an integer solution to the ILP problem in O(n log n)
time, and ∆σ ≤ γ · OPTILP .

3.3. Approximation and d-n-c

Finding a good d-n-c plot is not easy, even on simple sets of points. To this end, we
present a simple point set that contains non-grid points on which our approximation
algorithm is better than d-n-c on regular plots.

The notion of grid points depends on the ranges of given sensors. Let r1 < r2 <
. . . < rℓ be the ranges of ℓ types of sensors. Let r = gcd(r1, r2, . . . , rℓ). Let R be a
given point set. We form a grid so that each edge on the smallest cube (or square)
has length r, where the corner points are grid points. We place this grid to R in a
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natural way to make R fall on grid points as much as possible. The points in W
that do not fall on grid points are the non-grid points.

Our example consists of a set of 48 grid and non-grid points (see Figure 1(a))
and two types of sensors A and B, where rA = 100 and rB = 200 under the
same distance unit; CA = 100 and CB = 200 under the same currency unit. For
convenience, we omit the distance unit (which may be feet, meters, etc.) and the
currency unit (which may be American Dollars, Euros, etc.).

Note that there always exist d-n-c plots that provide the optimal solution to the
original set. Finding such a plot, however, could be as hard as finding the optimal
solution itself. Points in our example are evenly distributed and so there is no clear
advantage of one d-n-c plot over the other. Thus, what we will demonstrate is that
our approximation algorithm is better than the regular d-n-c plots.

(a) (b) (c)

(d) (e) (f)

Figure 1. (a) A sensing field with 48 points shown as small circles. There are 24 grid points and
24 non-grid points. The length of each edge in the smallest square is 100. The non-grid points are
in the middle of the corresponding columns. (b) Optimal sensor deployment plan produced by
the ILP model, where the grey square denotes a type-A sensor and the black solid circle denotes a
type-B sensor. (c) Sensor deployment plan produced by Algorithm A. (d)–(f): Three d-n-c plots
and the corresponding sensor deployment plans, where the grey square denotes a type-A sensor
and the black solid circle denotes a type-B sensor.

Figure 1(a) is a 1:100 scaled sensing field consisting of 48 points, shown as small
circles, where 24 points are grid points and the rest non-grid points. Figure 1(b)
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illustrates the optimal sensor deployment plan produced by the ILP model. Figure
1(c) illustrates the sensor deployment plan produced by Algorithm A, which hap-
pens to be optimal as well. Figure 1(d) to (f) illustrate three normal d-n-c plots
and the corresponding sensor deployment plans. Table 1 provides a comparison of
sensor cost of each sensor deployment plan.

Table 1. Sensor cost comparison.

methods
number of sensors

cost
type-A type-B total

ILP 2 8 10 1800
Algorithm A 0 9 9 1800
d-n-c plot a 0 10 10 2000
d-n-c plot b 4 8 12 2000
d-n-c plot c 0 12 12 2400

4. Implementations and experiments

We compare the runtime of the ILP model used in this paper (referred to as the
new ILP) and the ILP model used in [4] (referred to as the old ILP), and compare
the optimal solutions produced by the ILP model and the approximation solutions
produced by our approximation algorithm. We implemented the two ILP models
using lpsolve 5.5 [1]. We wrote a C program to generate input files and a C program
to implement Algorithm A. We performed all of our experiments on a Dell Optiplex
GX 260 PC, equipped with a 2.26 GHz Pentium-4 CPU and 1 GB RAM.

4.1. Grid sensing fields

We first provide numerical results on square grid sensing fields for the purpose to
compare with the numerical experiments presented in [4]. For each square grid, its
point set consists of exactly all the grid points.

In Table 2, the first column is the grid size. The second column is σ. The third
and the fourth columns are the runtime in seconds for solving the new and the old
ILP models, respectively. The fifth column is the optimal solution. We use the
following two types of sensors A and B as in [4]: rA = 100m, rB = 200m, CA = 150
USD, and CB = 200 USD. We omit the measurement unit and the currency. When
a sensing field is bigger than 9 × 9 (81 grid points in total), executions of the old
ILP model are suspended with an “out of memory” error message, partly due to
the large input size of the old IPL model. For a 10×10 grid, for instance, the input
size of the old model is 2.69 MB, while the input size of the new model is only 16.7
KB. For a 20× 20 (400 grid points in total), the runtime of the new ILP model for
σ = 1 surges to 14 hours.

Since LP problems have polynomial-time algorithms (available also in lpsolve 5.5),
our approximation algorithms can produce results efficiently on very large grids. For
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Figure 2. Sensor cost comparison of IPL and Algorithm-A solutions. Also compared are the
number of type-A sensors and the number of type-B sensors occurred in the optimal solutions in
the form of their costs.



12 J. WANG AND N. ZHONG

Table 2. Runtime (in seconds) comparison of the new and the old ILP
models, where “o.m.” stands for ”out of memory.”

grid size σ
runtime of runtime of optimal solution

new ILP old ILP # of A # of B cost

9 × 9 1 1.593 151.297 0 9 1800
9 × 9 2 3.828 279.875 3 15 3450
9 × 9 3 13.812 273.906 1 25 5150

10 × 10 1 2.484 o.m. 1 10 2150
10 × 10 2 15.516 o.m. 1 20 4150
10 × 10 3 53.969 o.m. 1 30 6150

11 × 11 1 1.547 o.m. 0 12 2400
11 × 11 2 22.047 o.m. 0 24 4800
11 × 11 3 274.73 o.m. 0 36 7200

12 × 12 1 6.735 o.m. 1 14 2950
12 × 12 2 323.016 o.m. 1 28 5750
12 × 12 3 1704.187 o.m. 1 42 8550

13 × 13 1 27.315 o.m. 0 17 3400
13 × 13 2 1742.235 o.m. 4 30 6600
13 × 13 3 80670.469 o.m. 2 48 9900

example, Algorithm A produces a solution in less than 3 seconds on the 20 × 20
grid sensing field with σ = 3, while the execution of the new IPL model is still not
reaching an optimal solution after 168 hours of continuous running.

In the following experiments, we fix rA = 100, rB = 200, and CB = 200. We let
CA take different values of 50, 75, 100, and 125. Shown in Figure 2 are some of the
numerical results for CA = 75 and CB = 100, respectively.

Let ρ = rA

CA
· CB

rB
. If ρ > 1, it means that a type-A sensor can cover more points per

dollar than a type-B sensor and so a type-A sensor is more likely to be selected in
optimal deployment plans. This is confirmed by the three graphs in the left-hand
column in Figure 2, where ρ = 4

3 . To see this we just need to convert the cost
curves of type-A sensors and type-B sensors in Figure 2 in terms of the number
of sensors. Likewise, if ρ < 1, then type-B sensors are more likely to be selected.
This is confirmed by Table 2, where ρ = 2

3 . If ρ = 1 then both types of sensors
would have the same likelihood to be selected. This is confirmed by the three
graphs in the right-hand column in Figure 2. We have performed a large number
of other experiments (not presented here due to space limitation); all confirm this
observation.

4.2. Sensing fields with randomly generated points

In Section 4.1 we have seen that in grid sensing fields, the actual approximation
ratio provided by our approximation algorithm is small, even though the theoret-
ical upper bound is significantly larger. In each of our experiments, the actual
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approximation ratio is less than 3. In this section we show that even when points
are randomly generated that do not have a fixed minimum distance between two
points, including very dense sets of points, the actual approximation ratio produced
by our algorithm is still less than 3. In particular, we generate points in a fixed
area independently and uniformly at random, from a small number of points to a
large number of points.

We present here a set of numerical results on randomly generated points in a
10×10 area with σ = 1 and two types of sensors A and B, where rA = 0.5, rB = 1,
CA = 100, and CB = 200. The numbers of points are 50N , where N = 1, 2, . . . , 10.
Figure 3 shows, respectively, 300 points and 500 points in the 10× 10 area that are
generated independently and uniformly at random. The latter is an example of a
dense set of points.
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Figure 3. (a) A sensing field with 300 randomly generated points in a 10× 10 area. (b) A sensing
field with 500 randomly generated points in a 10 × 10 area.

Table 3 shows the optimal solution, the approximation solution, kA, kB , actual
approximation ratio, and the worst-case approximation ratio β of Theorem 2 in each
of these 10 cases. In each case the time used to obtain its approximation solution
is less than 3 seconds, while the time used to obtain its optimal solution, although
still manageable, is much longer. The case of 450 points and the case of 500 points
have similar optimal solutions, but the time required to obtain the optimal solution
in the case of 500 points is substantially longer than that of 450 points. Generating
more than 500 points will not result in much difference in optimal solutions, for the
extra points will likely fall in the existing coverage. In all these cases the actual
approximation ratio is less than 2.17, while the theoretical approximation ratio β
is substantially larger in each case.

Figure 4 compares the minimum costs, actual approximation costs, and the the-
oretical upper bound of the approximation costs for each of the 10 cases. The
(worst-case) theoretical upper bound of the approximation cost is calculated by
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Table 3. Comparison of optimal cost, approximation cost, actual approxi-
mation ratio, and the theoretical approximation ratio β.

number Optimal Appr. kA kB actual theoretical

of points solution solution appr. ratio appr. ratio β

50 3700 3900 3 4 1.05 7
100 5500 5500 4 7 1 11
150 6000 6700 5 9 1.12 14
200 6600 9700 6 12 1.47 18
250 7100 10300 7 12 1.45 19
300 7000 11000 9 14 1.57 23
350 7300 12300 9 15 1.68 24
400 7200 13900 11 17 1.93 28
450 7300 15600 12 19 2.14 31
500 7500 16300 12 21 2.17 33

50 100 150 200 250 300 350 400 450 500
0.03
0.08
0.13
0.18
0.23
0.28
0.33
0.38
0.43
0.48
0.53
0.58
0.63
0.68
0.73
0.78
0.83
0.88
0.93
0.98
1.03
1.08
1.13
1.18
1.23
1.28
1.33
1.38
1.43
1.48
1.53
1.58
1.63
1.68
1.73
1.78
1.83
1.88
1.93
1.98
2.03
2.08
2.13
2.18
2.23
2.28
2.33
2.38
2.43

2.475
x 10

5

Number of points

C
os

t

σ = 1

Minimum cost from ILP

Approximation cost from Algorithm A

Theoretical upper bound of approximation cost

Figure 4. Comparisons of optimal costs, actual approximation costs, and the theoretical upper
bound of approximation costs. Points are generated independently and uniformly at random in a
10 × 10 area.
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β ×OPT , where OPT is the optimal solution. The actual approximation costs are
close to the minimum costs, although the theoretical upper bounds are far away.

We also run experiments with increased sensor radii to generate denser networks.
For example, let rA = 1 and rB = 2. For the same sets of points, kA can be as high
as 26 and kB can be as high as 60. The actual approximation ratio in each case is
still within the range of 3, while the theoretical upper bound can be as high as 86.
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