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EFFICIENT POINT LOCATION IN A CONVEX
SPATIAL CELL-COMPLEX*

FRANCO P. PREPARATAt AND ROBERTO TAMASSIA*

Abstract. In this paper a new approach is proposed to point-location in a three-dimensional cell-
complex 7, which may be viewed as a nontrivial generalization of a corresponding two-dimensional
technique due to Sarnak and Tarjan. Specifically, in a space-sweep of 7), the intersections of the
sweep-plane with P occurring in a given slab, i.e., between two consecutive vertices, are topologically
conformal planar subdivisions. If the sweep direction is viewed as time, the descriptions of the
various slabs are distinct "versions" of a two-dimensional point-location data structure, dynamically
updated each time a vertex is swept. Combining the persistence-addition technique of Driscoll,
Sarnak, Sleator, and Tarjan [J. Comput. System. Sci., 38 (1989), pp. 86-124] with the recently
discovered dynamic structure for planar point-location in monotone subdivisions, a method with
query time O(log N) and space O(N log N) for point-location in a convex cell-complex with N
facets is obtained.
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1. Introduction. Point-location in three-dimensional space, called spatial point-
location, is a natural generalization of the well-known planar point location (see,
e.g., [6], [11], [12]). The space is partitioned into polyhedral regions, called cells,
and the resulting subdivision is frequently referred to as a cell-complex. The problem is
so stated: Given a cell-complex 7 and a query point q, determine the cell ofP contain-
ing q.

Unlike its two-dimensional counterpart, spatial point-location has not yet received
extensive attention. In all reported research, the cell-complex satisfies some restric-
tive condition. Cole’s Similar Lists method [4] has been applied to the cell complex
determined by an arrangement of n planes, and yields query time O(log n) but uses
space O(n4/logn). The space bound has been recently improved by Chazelle and
Friedman [2] to O(n3), by a modification of the random sampling technique of Clark-
son [3]. Chazelle’s earlier Canal Tree technique [1] trades space for query time, and
achieves space O(n3) and query time O(log2 n). The same technique can be applied to
a convex cell-complex with N facets, yielding query time O(log2 N) and space O(N);
the cell-complex, however, is subject to the restrictive condition that the vertical
dominance relation on the cells be acyclic.

Two recent results can be profitably combined to provide a new attractive ap-
proach to spatial point-location: the persistence-addition technique of Driscoll, Sar-
nak, Sleator, and Tarjan [5] and the dynamic planar point-location technique of
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Preparata and Tamassia [13]. Our result is a new method with query time O(log2 N)
and space O(N log2 N) for a convex spatial cell-complex with N facets.

The general methodology of [5] is designed to add persistence to a dynamic linked
data structure (referred to as ephemeral). In an abstract setting, the ephemeral data
structure supports accesses and updates, and each update produces a new version of
the structure. Thus the history of the data structure is the sequence of its versions,
terminating in the current version. Persistence is the ability to access past versions,
and it is full or partial depending upon whether updates are also permitted in past
versions or not. In [5] a systematic and efficient technique is presented to transform
an ephemeral linked data structure into a persistent one, provided that the ephemeral
structure satisfies the weak condition that its nodes have bounded in-degree. This
methodology was applied in a companion paper [14] to planar point-location, by
viewing one dimension (e.g., the y-direction) as "time," so that the planar subdivision
is swept over in time by a horizontal line. The dictionary of the sequence of intersected
edges is the ephemeral data structure, a new version of which is created each time
a vertex of the subdivision is reached in the sweep. The persistent version of the
dictionary becomes therefore the data structure for planar point location; in other
words, static two-dimensional point-location is modeled by a partially persistent one-
dimensional dictionary process.

The last observation is the clue to higher-dimensional generalizations. Until re-
cently, however, the obstacle to a three-dimensional generalization was the lack of
a suitable (ephemeral) dynamic planar point-location structure. The recent discov-
ery [13] of an efficient such structure for monotone planar subdivisions provides the
missing component that, combined with the technique for the addition of persistence,
yields the method for point location in a spatial convex cell complex discussed in this
paper.

This paper is organized as follows. In 2 we review the separator-tree structure
that is the basis of the two-dimensional point-location primitive, as well as the es-
sentials of the persistence-addition technique. Section 3 illustrates the modifications
required to adapt the ephemeral data structure to the projected spatial point-location
method, described in its most general version in 4. Finally, in 5 we describe the sim-
plifications obtainable when exploiting the specific nature of particular cell-complexes
such as Voronoi diagrams and those determined by arrangements of planes.

2. Preliminaries.

2.1. Planar point location. Let 7) be a three-dimensional cell complex, i.e.,
a partition of the three-dimensional space into polyhedra. We say that ’ is convex
if either each of its cells is a convex polyhedron, or at most one is nonconvex (in
this case, the nonconvex cell is the complement of a convex polyhedron). Any planar
section of ’ is a planar convex subdivision (with the analogous exception of at most
one nonconvex region), which is a special case of a monotone subdivision [9]. We
shall now review the essentials of the dynamic point-location method of Preparata
and Tamassia [13] for planar monotone subdivisions, in order to bring into sharper
focus the requirements for the addition of persistence.

An edge is either a segment or a half-line in the plane (for simplicity, no edge is

horizontal). A (polygonal) chain is a sequence of edges, so that two consecutive edges
share a terminus; it is monotone if each horizontal line intersects it in at most a single
point. A polygon is monotone if its boundary is partitionable into two monotone
chains. A subdivision T is monotone if each of its regions is a monotone polygon.
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(a) (b)

FIG. 1. Dynamic point location technique: (a) monotone subdivision T (the dashed circle
represents the line at infinity); (b) planar st-graph G associated with T.

A separating chain (or, more succinctly, a separator) a of a monotone subdivision
T is a monotone chain consisting of edges of T, whose extreme points are at infinity.
Given two separators al and (72, (71 is to the left of (72 if any horizontal line intersects

al not to the right of (72. A complete family of separators E of T is a sequence of
separators (a,a2,... ,at) such that ai is to the left of ai+ (i 1,... ,t- 1), and
every edge of belongs to at least one separator a E E. For a given E, each a E E
is associated with a node (briefly referred to as "node a") of a balanced binary tree
:T (called separator tree). An edge e of 7 belongs, in general, to a nonempty interval
(a,a+l,... ,aj) of separators. However, it is assigned to the least common ancestor
ak of (a,..., aj) in :T, and is called a proper edge of ak. Correspondingly, proper
denotes the set of proper edges of (Tk, which are stored in a secondary component (a
dictionary) appended to node ak of /-. Since each edge of 7 is stored exactly once,
the above data structure has size O(n), where n is the number of vertices of T. It
is well known [9] that point location in 7 corresponds to traversing a path from the
root of :T, and performing at each node a point/chain discrimination by means of the
secondary component. Thus point-location can be done in O(log2 n) time.

The underlying topological structure of a monotone subdivision is a planar st-
graph, i.e., a planar acyclic digraph with exactly one source (vertex without incoming
edges), s, and exactly one sink (vertex without outgoing edges), t, embedded in the
plane with vertices s and t on the boundary of the external face. Namely, we associate
a monotone subdivision 7 with the planar st-graph G defined as follows (see Fig. 1):

1. The vertices of G are the vertices of 7, including vertices at infinity deter-
mined by edges that are rays, plus vertices s and t corresponding to the points
at negative and positive infinity on the vertical axis, respectively.

2. The edges of G are the edges of 7, oriented from the lower to the upper
endpoint, plus two chains from s to t that connect the vertices at infinity.

There are two main obstacles to the dynamization of :T for an arbitrary family of
separators E:

1. It may be difficult to rebuild the secondary components of the nodes partic-
ipating in a rotation of the primary component. Indeed, in the worst case
rotation takes time (n).

2. The deletion of an edge may break many separators of E, with t(n) time
used for restructuring the complete family E.
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FIG. 2. Dynamic point location technique: (a) monotone subdivision T; (b) subdivision T*
and its chains of proper edges; (c) separator tree of T*.

It has been shown in [13], however, that a modification (consisting of virtually du-
plicating a subset of edges) transforms IR into a new subdivision 7* that admits a
unique complete family of separators E* such that, for any (r E E*, proper (a) consists
of a single chain. This permits an O(log n)-time execution of a rotation in the corre-
sponding separator tree T* by standard operations on concatenable queues. Also, the
restructuring of E* after a deletion can be done with O(log n) split/splice operations
on the chains of proper edges. The family E* enjoying these properties is associated
with the following total order "-" on the regions of 7 (see Fig. 2):

1. rl is below r2 (rl r2) if there is a monotone chain in 7 from the highest
vertex of rl to the lowest vertex of r2 (such chain corresponds to a directed
path in digraph G);

2. r is to the left of I"2 (rl -- r2) if there is sequence of regions r r, r,...,
is to the left of it (iand share an edge and rrs r2 such that ri r+

1,.-., s 1). Partial orders "" and "4" are shown to be complementary, so
that their union is the desired total order "-";

3. The members of any maximal sequence of regions r - r2 - - rs, con-
secutive in "-C and such that ri 1" ri+l (i 1,-.., s- 1) are merged into a
generalized region called cluster by duplicating the vertices and, when they
exist, the edges of the (unique) monotone chain connecting the highest vertex
of ri to the lowest vertex of ri+l, for 1,..., s 1. This gives the subdivi-
sion T4*. E* is the unique complete family of separators for T*, each member
of which separates contiguous clusters.

By using the correspondence between monotone subdivisions and planar st-graphs,
the topological underpinning of the total order - on the regions of7 can be found in
the theory of planar st-graphs and planar lattices [8], [10], [15].

We shall use, where appropriate, a string notation to illustrate the order -, so
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that AB denotes that the partial subdivision described by the string A precedes in -the one described by B.
The repertory of updates considered in [13] consists of: insertion/deletion of a

vertex internal to a segment, and insertion/deletion of a chain of edges between two
vertices, under the condition that monotonicity be preserved. For these specifications
the following performance is achieved.

THEOREM 2.1 [13]. Let be a monotone subdivision with n vertices. There ex-
ists a dynamic point-location data structure with space O(n) and query time O(log2 n),
which allows for insertion/deletion of a vertex in time O(log n) and insertion/deletion
of a k-edge chain in time O(log2 n + k).

2.2. The technique for the addition Of persistence. We now review the es-
sentials of the technique of Driscoll, Sarnak, Sleator, and Tarjan [5] to add persistence
to a dynamic linked data structure, which supports access and update operations. (A
conventional dynamic data structure is called ephemeral if its instantiation preceding
an update is not recoverable after the execution of the update.) The m updates are
chronologically numbered from 1 to m, and the ith update generates version of the
ephemeral data structure. A fully persistent structure supports both accesses and
updates to any of its versions; a partially persistent structure supports accesses to any
of its versions, but updates only to its most recent (current) version. In this paper
we are concerned exclusively with partial persistence.

The persistent structure embeds all versions of the ephemeral structure, so that
access to any of them can be effectively simulated. Specifically, an access is the traver-
Hal of a path in an ephemeral version; the simulation of this access is possible if the
persistent structure contains an image of this path. This is effectively accomplished
by replacing each outgoing pointer of the ephemeral structure with a bundle of instan-
tiations of that pointer in the persistent structure, each one time-stamped with the
index of the update that established it, and ordered accordingly. Thus simulation of
an access to version j is effectively accomplised by following at each step the appro-
priate pointer with maximum time-stamp not exceeding j. Arbitrarily large bundle
size, however, negatively affects access time and storage. To avoid this shortcoming,
Driscoll, Sarnak, Sleator, and Tarjan enforce a bound K on the number of pointers
issuing from any given node and introduce the device of limited node copying, to be
briefly outlined below.

A new copy v of a node v is to be created at update j either when an information
field of v is modified or a pointer field of v is modified, and, in either case, the
corresponding update would cause the number of pointers issuing from v to exceed
the bound K. In both cases, node v is declared dead, while the live node v is time-
stamped j; in addition, node v must be correctly linked within the structure. This is
facilitated if each pointer from live node to live node is paired with a reverse pointer
(which need not be time-stamped). Specifically, we have the following actions, which
implement copying of node v following an update of field f at time j:

1. All fields of v, but f (which receives the updated value), are copied into v.
Among these, for each pointer field to a live node w, the corresponding reverse

pointer in w is switched from v to v.
2. Each reverse pointer from v to some (live) w is suppressed, and (if the time-

stamp of the direct pointer from w to v is less than j) a new pointer time-
stamped j is established from w to v (along with the corresponding reverse
pointer).

The actions of step 2 deserve further discussion. First, to ensure that copying of
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FIG. 3. (a) Operations Insert and Delete. (b) Operations Expand and Contract.

a node be accomplished in O(1) time, it is sufficient to require that the in-degree of
a node in the ephemeral structure be bounded by a constant. (Under this condition,
only a bounded number of reverse pointers must ever be suppressed.) Second, step 2
introduces additional pointers outgoing from an existing node w and may cause the
total number of outgoing pointers of w to exceed bound K. Consequently, node copy-
ing may "bubble up" the linked data structure. However, amortized over a sequence
of updates, Driscoll, Sarnak, Sleator, and Tarjan [5] show that there are only O(1)
nodes copied per update.

This is summarized as follows.
THEOREM 2.2 [5]. If an ephemeral data structure has nodes of constant bounded

in-degree, then the structure can be made partially persistent at an amortized space
cost of0(1) per update step and a constant factor in the amortized time per operation.

Considerable simplifications arise when the ephemeral data structure is a red-
black tree [7]. In this case the node in-degree is at most 1, and rebalancing after an

insertion/deletion requires O(1) rotations.

3. The ephemeral planar point location structure. In this section we de-
scribe algorithms and data structures designed to support the following repertory of
update operations on a monotone subdivision R (see Fig. 3).
Insert(e,r, vl, v2;rl,r2): Insert edge e between vertices v and v2 inside region r,

which is decomposed into regions rl and r2 to the left and right of e, respec-
tively.

Delete(e, v, v2, r, r2; r): Remove edge e between vertices v and v2 and merge into
region r the two regions r and r2 formerly to the left and right of e, respec-
tively.

Expand(e, v, r, r2; v, v2): Expand vertex v into vertices v and v2 connected by edge
e, which has regions r and/’2 to its left and right, respectively.

Contract(e, rl, r2, v, v2; v): Contract edge e between vertices v and v2 into vertex
v. Regions r and r2 are those formerly to the left and right of e, respectively.

The present techniques represent modifications of those described in [13], where
only operations Insert and Delete are supported, and nodes of the data structures do
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not have the now required bounded in-degree. Note that, in terms of the underlying
topological structure of a monotone subdivision discussed in 2.1, operations (Insert,
Expand) and (Delete, Contract) form dual pairs, the first term acting on the primal
graph (coincident with the subdivision), the second term acting on its dual graph..The
data structure, however, will not explicitly reflect this duality; indeed, the vertices of
T play a central role, since the geometry ofT is determined by the coordinates of its
vertices.

In the original data structure [13], a vertex was pointed to by all of its inci-
dent edges and by all regions having it as the lowest/highest point. Since a vertex
can receive (n) such pointers, the original representation both prevents an efficient
implementation of operations Expand/Contract and violates the bounded in-degree
requirement. Therefore, we propose the following modified structure, which com-
prises a main constituent, called the "augmented separator tree," and an auxiliary
constituent, called the "dictionary."

The dictionary has a record for each vertex, edge, and region of T, as follows:
1. The record of vertex v stores the coordinates of v and pointers to two balanced

binary search trees, denoted in(v) and out(v), and called the incidence trees
of vertex v. The leaves of tree in(v) represent the incoming edges of v (i.e.,
the edges (u, v) with y(u) < y(v)), and the internal nodes of in(v) represent
the regions of whose highest vertex is v, where the in-order sequence of the
nodes of in(v) corresponds to the counterclockwise order of the corresponding
edges and regions around v. Each node of in(v) has a pointer to the record
of the corresponding edge or region. Tree out(v) is similarly defined with
respect to the outgoing edges of v. Also, the record of vertex v contains a
pointer to the representative node of v in the (secondary component of the)
augmented separator tree, to be described below.

2. The record of edge e (u, v) stores pointers to the representative nodes of
e in the trees in(v) and out(u). Also, the record of e stores pointers to the
two representative nodes of e in the (secondary component of the) augmented
separator tree, to be described below.

3. The record of region r stores pointers to the representative nodes of r in the
trees in(v) and out(u), where u and v are the lowest and highest vertex of r,
respectively. Also, the record of region r stores a pointer to the representative
node of r in the (secondary component of the) augmented separator tree, to
be described below.

The dictionary allows us to find the endpoints of an edge and the lowest and
highest vertices of a region in O(log n) time. The dynamic maintenance of the dic-
tionary can be performed in O(logn) time per update, and will not be explicitly
discussed. Note that an Expand or a Contract operation corresponds to performing
O(1) split/splice operations in the incidence trees.

The augmented separator tree, denoted :r*, has a primary and secondary com-
ponent. The primary component is a balanced separator tree for *, i.e., each of
its leaves is associated with a region of T* (a cluster of ), and each of its internal
nodes is associated with a separator of T*. The left-to-right order of the leaves of
the primary component of r* corresponds to the order - on the regions of *. The
secondary component is a collection of balanced search trees, each associated with a
node of

1. Each internal node a of :T* points to a balanced search tree proper(a) rep-
resenting the chain proper(a), and to a balanced search tree double(a) asso-
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ciated with the proper edges of a that do not form a channel (called double
edges). Whereas in [13] the detailed organization of the concatenable queues
describing a separator was left unspecified, here the bounded in-degree re-
quirement can be achieved as follows, without affecting the efficiency of point-
location queries. Tree proper(a) is organized so that each leaf represents an
edge, and each internal node represents a vertex, where the in-order sequence
of the nodes corresponds to traversing the chain of proper edges of a from
bottom to top. Each node of proper(a) points to the record of the correspond-
ing vertex or edge in the dictionary. Tree double(a) is organized so that each
node represents an edge, and the in-order sequence of nodes corresponds to
the bottom-to-top subsequence of the double edges of proper(a). Note that
each edge e of 7 has exactly two representative nodes in the secondary com-
ponents of the augmented separator tree 7"*.

2. Each leaf X of T* (i.e., the leaf representing cluster X) points to a balanced
search tree regions(x) associated with the sequence of regions that form clus-
ter X, in bottom-to-top order.

The following theorem summarizes the properties of the ephemeral structure.
THEOREM 3.1. Let T be a monotone planar subdivision with n vertices. There

exists a dynamic point-location data structure for T that (i) has bounded record in-
degree, (ii) uses O(n) space, and (iii) supports queries and update operations Insert,
Expand, Delete, and Contract, each in O(log2 n) time.

Proof. (i) It is straightforward to verify that the above data structure has records
with bounded in-degree. (ii) The space used is O(1) per vertex, edge, and region.
Hence, by Euler’s formula, the total space requirement is O(n). (iii) The algorithms
for queries and operations Insert and Delete are essentially as described in [13], with
the following minor modifications to take into account the variations of the data struc-
ture. In the query algorithm, tree proper(a) is used to discriminate the query point
with respect to separator a. Once the cluster X containing the query point has been
determined, finding the region of X containing the query point takes time O(log2 n),
since the lowest and highest vertices of each region in regions(x) are retrieved in
O(logn) time through the dictionary. As shown in [13], the Insert and Delete al-
gorithms determine a partition of the subdivision into O(1) partial subdivisions,
called canonical components, each represented by an augmented separator-tree. The
augmented separator-trees of the canonical components are obtained by splitting the
augmented separator tree of T. The canonical components are subsequently reassem-
bled, to yield the updated subdivision, and their augmented separator-trees are appro-
priately spliced to yield the updated augmented separator-tree of T. Each split/splice
operation of the augmented separator-tree is achieved with O(log n) rotations of the
primary separator-tree, for a total time complexity O(log2 n).

Now, we discuss operation Expand(e, v, rl, r2; Vl, v2). (Operation Contract is sym-
metric.) We consider two cases, depending on the relative order of r and r2 in -prior to the execution of Expand:

Case 1. r2 rl (see Fig. 4(a)). Note that in this case we must also have r2 T r.
The sequence of regions before the expansion, sorted according to the order 4, can
be written as a string of the form:

As r2B /Cr 5D.
Here, Greek letters denote clusters or portions of clusters, capital letters denote sub-
sequences of regions that contain complete clusters, "--" denotes a channel, and
denotes a potential channel. (Some of the letters may denote empty subsequences.)
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FIG. 4. Four cases for operation Expand(e,v, rl,r2;vl,v2): (a) r2 T rl; (b) rl T r2; (c) rl r2
and same lowest vertex for rl and r2 (d) rl r2 and same highest vertex for rl and

After the expansion, the new sequence of regions is:

A 3’CrrB 5D.
Case 2. rl -4 r2 (see Figs. 4(b)-(d)). The sequence of regions before the expansion

is now of the form:
As rl /B C’ r2 5D,

where some of the letters may denote empty subsequences. The expansion leaves the
sequence of regions unaltered.

Hence, operation Expand(e, v, rl,r2; v, v2) can also be performed by decompos-
ing the subdivision 7 into its canonical components A, B, C, D, c,/, y, 5, r, and
r2, which are subsequently reassembled in the new order to yield the updated 7.
We conclude that operation Expand and its symmetric Contract take O(log2 n)
time. D

It is important to observe that the dynamic point-location data structure of Theo-
rem 3.1 depends on the topology, and not on the specific geometry, of the subdivision.
This is formally expressed by the following straightforward lemma.

LEMMA 3.2. Let Tt and T2 be monotone subdivisions whose associated planar
st-graphs G and G2 are isomorphic. A dynamic point-location data structure for

(as discussed in Theorem 3.1) can be used for dynamic point-location in T2 after
implementing the appropriate modifications of values of the vertex coordinates.



276 F.P. PREPARATA AND ROBERTO TAMASSIA

Note, however, that for a given monotone subdivision T, there are several versions
of the dynamic point-location data structure, corresponding to equivalent versions of
the primary separator-tree and of the secondary trees.

4. Spatial point-location. Let P be a convex cell-complex with n vertices and
N facets. Note that both n and the number of edges ofP are O(N). The z-coordinates
of the vertices are denoted zl,..., zn, from bottom to top. Let P(z) be the intersection
of P with the plane r(z) parallel to the x and y axes and at height z. It is easy to
verify that P(z) is a convex subdivision. Also, we define G(z) as the planar st-graph
associated with P(z).

By viewing z as a measure of "time" we consider the process of making plane
r(z) sweep the cell complex :P. While the geometry of P(z) continuously evolves in
time, its topology changes only when plane r(z) goes through a vertex v of :P. This
is formalized as follows.

LEMMA 4.1. For z’, z" such that zi < z’, z" < zi+ the digraphs G(z’) and G(z")
are isomorphic.

Proof. The vertices and edges of P(z) are the intersections of the edges
and facets of :P with (z), respectively. Let f(z) be the edge of P(z) generated
by the intersection of facet f with r(z). The slope of f(z) in the plane r(z) is the
same for all z such that r(z) intersects f. Since there are no vertices of :P in the
region of space z’ < z < z", we conclude that the digraphs G(z’) and G(z") are iso-
morphic.

By Lemmas 3.2 and 4.1 the same point-location data structure can be used for
all query points whose z-coordinate is in the open range (z, z+), provided the x and
y coordinates of the vertices are expressed as (linear) functions of z.

An event occurs when plane r(z) goes through a vertex v of T’, and results in
updating the subdivision :P(z) (see Fig. 5). Let z_ and z+ be "instants" immediately
preceding and following z. The transformation from :P(z_) to :P(z) consists of con-
tracting a subgraph G_ into vertex v. The vertices (respectively, the edges) of G_ are
those associated with the edges (respectively, the facets) of :P whose highest vertex is
v. Conversely, the transformation from :P(z) to :P(z+) consists of expanding vertex v
into a subgraph G+. The vertices (respectively, the edges) of G+ are those associated
with the edges (respectively, the facets) of :P whose lowest vertex is v.

The following lemma shows that the above contractions/expansions of sub-
graphs into/from vertices can be performed by a sequence of elementary contrac-
tions/expansions of edges into/from vertices.

A subgraph S of a planar st-graph G is said to be contractible if S is vertex-
induced and the graph Gs obtained from G by contracting S into a single vertex is
itself a planar st-graph.

LEMMA 4.2. Let G be a planar st-graph, and S a contractible subgraph of G
with rn edges. There exists a sequence ofm elementary updates, each a deletion or a
contraction, that transforms G into Gs.

Proof. Consider in turn each edge e of S, and recall that any edge of a planar
st-graph is either removable or contractible [15]. If e is contractible, then contract
it, otherwise remove it. We claim that this process will correctly produce graph
Indeed, the process would fail if the current edge e (vp, v") is a bridge (separation
edge) of the graph to which S has currently transformed, but is not contractible
(see Fig. 6). This implies that the graph to which G has currently transformed
has a directed path from v to v that contains at least one vertex w not in S.
Hence, Gs has a directed cycle containing vertex w. This contradiction establishes the
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FIG. 5. (a) Cell complex. (b) Graph G(z_). (c) Graph G(z). (d) Graph G(z+).

FIG. 6. Example o] contraction o] a subgraph S of a planar st-graph by means of elementary
deletions and contractions of edges. A contradiction is achieved if edge e is a bridge of the current
S but is not contractible.

claim.
The proof of the above lemma shows that the contraction is executable in total

time m (update time). The symmetric pair (Insertion, Deletion) and their dual pair
(Expansion, Contraction) readily establish the following complementary result.

LEMMA 4.3. Let G be a planar st-graph, and S a contractible subgraph ofG with
m edges. There exists a sequence ofm elementary updates, each an insertion or an
expansion, that transforms Gs into G.

THEOREM 4.4. Space-sweep of a convex cell complex with N facets can be per-
formed in O(N log2 N) time so that at any time point-location queries can be answered
in O(log2 N) time and the space requirement is O(N).

Proof. By Lemmas 3.2 and 4.1 the space-sweep process goes through the 2n + 1
topologically different subdivisions {P(zj): j 1,... ,n} and {P(z): j 0,-..,n;
zj < z < zj+l; zo -oo; Zn+ +oo}. By Lemmas 4.2-4.3 the updates of the
ephemeral point-location data structure are no more than 2N. By Theorem 3.1 each
such update can be processed in time O(log2 N).

The (ephemeral) dynamic point-location data structure of Theorem 3.1 verifies the
conditions for the applicability of the technique of [5], and can therefore be converted
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into a partially persistent one that supports queries in past versions. Therefore, we
obtain the central result of this paper in the following theorem.

THEOREM 4.5. Let be a convex spatial cell-complex with N facets. Point-
location in can be performed in time O(log2 N) using an O(Nlog2 N)-space data
structure that can be constructed in time O(N log2 N).

The result of Theorem 4.5 can be easily extended to a nonconvex spatial cell-
complex :P such that each subdivision P(z) (-c < z < +) is connected and
monotone.

5. Adding persistence to special cell-complexes. In this section we illus-
trate the simplifications of the general technique which occur when exploiting special
properties of the cell-complex and the prior knowledge of the problem instance before
executing the space-sweep. (Note that the latter feature is, in general, a potential
source of simplification in persistence-addition techniques.) Specifically, we shall con-
sider Voronoi diagrams and the cell-complexes determined by arrangements of planes.
We shall show that the update of the order on the set of regions of subdivision
(which defines the ephemeral point-location data structure) requires only insertions
and deletions, but no substantial restructurings (corresponding to the swaps of sub-
strings occurring in the general case). We begin with Voronoi diagrams.

THEOREM 5.1. Let P be the cell-complex induced by the Voronoi diagram of n
sites in three-dimensional space. Processing an event in the space-sweep of 7) takes
O(log n) time.

Proof. Excluding degeneracies, every vertex of P has degree four. Hence process-
ing an event consists of expanding a vertex v into a triangle r, or of contracting r into
v. Instead of simulating such transformation by means of elementary updates, we
consider directly its effect of the ordering of the regions of P(z). We use the extension
of the order - to the set of vertices, edges, and regions of a monotone subdivision
introduced in [15], and the local characterization of such ordering given in [16]. First,
consider the expansion of vertex v into a triangle r. The update of the extended order
is performed by simply replacing v with r and its vertices and edges. Hence, the se-
quence of the regions is modified by the insertion of r. Symmetrically, the contraction
of r into v causes the deletion of r from the sequence of regions.

Since the primary separator-tree is modified only by insertions and deletions, we
implement it as a red-black tree [7], so that rebalancing after an insertion or deletion
is done with O(1) rotations. The time bound follows from the fact that a rotation of
the primary separator-tree takes O(log n) time, due to the split/splice operations on
the trees of proper edges attached to the nodes involved in the rotation.

The technique for arrangements of planes uses a simpler ephemeral planar point-
location structure, especially designed for space-sweep of arrangements.

THEOREM 5.2. Let 7) be the cell-complex induced by an arrangement of n planes
in three-dimensional space. Processing an event in the space-sweep ofP takes O(log n)
time and involves O(1) changes of pointers.

Proof. For an arbitrary z, let/1,/2,"" ,ln be the intersections of the planes of the
arrangement with the sweep-plane r(z). On this plane we establish Cartesian axes x
and y, which are projections according to z of the homologous axes of the space. Let
x0 be an abscissa such that, for j 1,..., n, xo <_ xj, where xj is the abscissa of the
intersection of lj with the x-axis. We denote by j the half-plane determined by lj and
not containing point (x0, 0). With each region r of the planar arrangement P(z) we
associate an integer weight w(r) E {0, 1,..., n}, denoting the number of half-planes in
{1,’", n} containing r. A complete family of n edge-disjoint separators for 7)(z) is
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(Yj+I

FIG. 7. Update of the secondary components for the cell-complex induced by an arrangement
of planes.

obtained by defining separator ai (i 1,..., n) as the monotone chain leaving to its
left the regions of weight less than or equal to (i- 1) and to its right the regions of
weight greater than or equal to i. (Note that this family of separators is, in general,
not associated with the order - defined in 2.1.)

When processing an event, the primary component of the separator tree undergoes
no modification. Updates occur only in the secondary components. Specifically, an
event point z of the space-sweep corresponds to a point in space where three planes
meet. Let li, lh, and lk be their intersections with P(z) and let aj-1, aj, and a+l be
the three separators sharing their common intersection. Suppose that, prior to the
update, a-i does not contain any portion of lh; then, the update consists of deleting
a segment of lh from aj+l, inserting one such segment into aj_, and exchanging the
order of segments of li and lk in aj (see Fig. 7). (A symmetric action takes place when
aj+ contains no portion of lh.) Assuming that the triplet (/i, lh, lk) corresponding to
z has been precomputed, the update of the secondary components, globally involving
a bounded number of pointer changes, is executed in time O(log n). D

Theorems 5.1 and 5.2 lead to the following corollary.
COROLLARY 5.3. Let 7) be the cell-complex in three-dimensional space induced

either by the Voronoi diagram of n sites or by an arrangement of n planes. Point-
location in P can be performed in time O(log2 N) using an O(N)-space data structure
that can be constructed in time O(N log N), where N is the number of facets ofP (N
is O(n2) for the Voronoi diagram and O(n3) for the arrangement of planes.)
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