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Abstract

Recent work on policy learning from observa-
tional data has highlighted the importance of ef-
ficient policy evaluation and has proposed re-
ductions to weighted (cost-sensitive) classifica-
tion. However, efficient policy evaluation need
not yield efficient estimation of optimal policy
parameters. We consider the estimation problem
given by a weighted surrogate-loss classification
reduction of policy learning with any score func-
tion — either direct, inverse-propensity weighted,
or doubly robust — and show that, under a correct
specification assumption, the weighted classifica-
tion formulation need not be efficient for policy
parameters. We draw a contrast to actual (possi-
bly weighted) binary classification, where correct
specification implies a parametric model, while
for policy learning it only implies a semiparamet-
ric model, and we show that efficiency in optimal
parameter estimation implies optimal regret. In
light of this, we instead propose an estimation
approach based on the generalized method of mo-
ments, which is efficient for the policy parameters.
We propose a particular method based on recent
developments on solving moment problems using
neural networks and demonstrate the efficiency
and regret benefits of this method empirically.

1. Introduction

Policy learning from observational data is an important but
challenging problem because it requires reasoning about
the effects of interventions not observed in the data. For
example, if we wish to learn an improved policy for medi-
cal treatment assignment based on observational data from
electronic health records, we must take care to consider
potential confounding: since healthier patients who were al-
ready predisposed to positive outcomes were likely to have
historically been assigned less invasive treatments, naı̈ve
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approaches may incorrectly infer that a policy of always as-
signing less invasive treatments will obtain better outcomes.

Various recent work has tackled this problem, known as
policy learning from observational (or, off-policy) data, by
optimizing causally-grounded estimates of policy value such
as inverse-propensity weighting (IPW), doubly robust (DR)
estimates, or similar (Beygelzimer & Langford, 2009; Jiang
et al., 2019; Kallus, 2017; 2018; Kallus & Zhou, 2018;
Kitagawa & Tetenov, 2018; Qian & Murphy, 2011; Swami-
nathan & Joachims, 2015; Zhao et al., 2012; Zhou et al.,
2017). In particular, Athey & Wager (2017); Zhou et al.
(2017), among others, highlight the importance of using
efficient estimates of policy value as optimization objec-
tives, i.e., having minimal asymptotic mean-squared error
(MSE). Examples of efficient estimators are direct modeling
or IPW when outcome functions or propensities are suffi-
ciently smooth (Hahn, 1998; Hirano et al., 2003), or DR
leveraging cross-fitting (Chernozhukov et al., 2018) in more
general non-parametric settings.

Regardless of which of these three estimates one uses, the
resulting optimization problem amounts to a difficult binary
optimization problem. Therefore many of the above lever-
age a reduction of this problem to weighted classification
(for two actions; cost-sensitive classification more gener-
ally) and leverage tractable convex formulations that use
classification surrogate loss functions for the zero-one loss,
such as, for example, hinge loss (Zhao et al., 2012; Zhou
et al., 2017, which yields a weighted SVM) and logistic
loss (Jiang et al., 2019, which yields a weighted logistic re-
gression). The recently proposed entropy learning approach
of Jiang et al. (2019) is particularly appealing, since the
logistic regression-based surrogate loss is smooth and there-
fore allows for statistical inference on the estimated optimal
parameters. In general however, one may consider using
any surrogate loss function that is classification-calibrated

(Bartlett et al., 2006), meaning that any policy that mini-
mizes the surrogate loss is optimal.

However, as we here emphasize, even if we use policy value
estimates that are efficient, this does not imply that we
obtain efficient estimation/learning of the optimal policy
itself, even if the surrogate-loss model is well-specified. For
example, in the case of logistic loss, we demonstrate that,
although logistic regression is statistically efficient for actual
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binary classification when well-specified (as is well-known),
in the case of policy learning via a weighted-classification
reduction well-specification only implies a semi-parametric
model, and therefore minimizing the empirical average of
the surrogate loss is not efficient in this case.

On the other hand, the implications of correct specifica-
tion can be summarized as a conditional moment prob-
lem. Such problems are amenable to efficient solution using
approaches based on the generalized method of moments
(GMM; Hansen, 1982). We demonstrate what an efficient
such estimate would look like, in terms of the efficient in-
struments for our specific policy learning problem. We
propose a particular implementation of solving our problem
based on recent work on efficiently solving conditional mo-
ment problems using a reformulation of the efficient GMM
solution as a smooth game optimization problem, which
can be solved using adversarial training of neural networks
(Bennett et al., 2019). In addition, we prove some results
relating the efficiency of optimal policy estimation to the
asymptotic regret of the surrogate loss, and also prove that
under correct specification the regret of the surrogate loss
upper bounds the true regret of policy learning.

We demonstrate empirically over a wide range of scenar-
ios that our methodology indeed leads to greater efficiency,
with lower MSE in estimating the optimal policy parame-
ter estimates under correct specification. Furthermore, we
demonstrate that in practice, both with and without correct
specification, our methodology tends to learn policies with
lower regret, particularly in the low-data regime.

1.1. Setting and Assumptions

Let X denote the context of an individual, T 2 {�1, 1}
the treatment assigned to that individual, and Y the resul-
tant outcome. In addition let Y (t) denote the counterfac-
tual outcome that would have been obtained for the corre-
sponding individual if, possibly contrary to fact, treatment
t had been assigned instead. We assume throughout that
we have access to logged data consisting of n iid observa-
tions, Sn = {(Xi, Ti, Yi) : i  n}, of triplets (X,T, Y )
generated by some behavior policy.

We make standard causal assumptions of consistency and
non-interference, which can be summarized by assuming
that Y = Y (T ). Furthermore, as is standard in the above
policy learning literature, we assume that X encapsulates all
possible confounders, that is, Y (t)?T | X 8t 2 {�1, 1},
as would for example be guaranteed if the logging policy is
a function of the observed individual context.

A policy ⇡ denotes a mapping from individual context to
treatment to be assigned. Concretely, given individual con-
text x, let ⇡(x) 2 {�1,+1} denote the treatment assigned
by policy ⇡ (we may also consider stochastic policies but

since optimal policies are deterministic we focus on these).

Let

1
J(⇡) = E[Y (⇡(X))]� E[Y (+1) + Y (

2
�1)]

= E[⇡(X)(Y (+1)� Y (�1))]

denote the expected value of following policy ⇡, relative to
complete randomization. Given the logged data and some
policy class ⇧, our task is to learn an optimal policy from
the class, defined by ⇡⇤ 2 argmax⇡2⇧ J(⇡) (notice that
offsetting by the complete randomization policy does not
affect this optimization problem). In particular we consider
policy classes where each policy ⇡ is indexed by some utility
function g and is defined by ⇡(x) = sign(g(x)), where in
turn the utility functions are parametrized by ✓ 2 ⇥ ✓ Rd

as G = {g✓ : ✓ 2 ⇥}, so that

⇧ = {sign(g✓(x)) : ✓ 2 ⇥}.

Correspondingly, we define

J(✓) = J(sign(g✓(·))) = E[sign(g✓(X))(Y (+1)�Y (�1))]

and ✓⇤ 2 argmax✓2⇥ J(✓). A prominent example is linear
decision rules, where g✓(x) = ✓Tx. Other examples include
decision trees of bounded depth and neural networks.

Unlike some past work that has considered non-parametric
policy classes (e.g.Zhao et al. (2012)), which have advan-
tages in terms of regret without having to rely on “correct
specification” assumptions, we make the decision to focus
on parametric policy classes only. This is because these
classes are more amenable to efficiency analysis, and are
very relevant in practice due to reasons such as interpretabil-
ity and implementability.

1.2. Efficiency

We briefly review what it means to estimate the optimal
policy parameters, ✓⇤, efficiently. For simplicity, suppose
that ✓⇤ is unique. A model M is some set of distributions for
the data-generating process (DGP), i.e., a set of probability
distributions for the triplet (X,T, Y ). A model is generally
non-parametric in the sense that this set of distributions can
be arbitrary, infinite, and infinite dimensional.

Consider any learned policy parameters ✓̂, that is, a function
of the data Sn with values in ⇥. Roughly speaking, we
say that ✓̂ is regular if, whenever the data is generated
from (Xi, Ti, Yi) ⇠ p 2 M, we have that

p
n(✓̂ � ✓⇤)

converges in distribution to some limit as n ! 1 and this
limit holds in a particular locally uniform sense in M (see
Van der Vaart, 2000, Chapter 25 for a precise definition).
Semiparametric efficiency theory (see ibid.) then establishes
that there exists a covariance matrix V such that for any
cost function c : Rd ! R for which the sublevel sets are
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{v : c(v)  c0} are convex, symmetric about the origin,
and closed, we have that

lim inf
n

E[c(
p
n(✓̂

!1
� ✓⇤))] � Ev⇠N (0,V )[c(v)] (1)

for any estimator ✓̂ that is regular in M. An important
example is MSE, given by c(v) = kvk22.

Efficient estimators are those for which Eq. (1) holds with
equality for all such functions c, which, by the portmanteau
lemma, would be implied if the estimator has the limiting
law

p
n(✓̂ � ✓⇤) ) N (0, V ). Regular estimators is a very

general class of estimators so the bound in Eq. (1) is rather
strong. So much so that, in fact, Eq. (1) holds in a local
asymptotic minimax sense for all estimators (see ibid., The-
orem 25.21).

Efficiency is important for practitioners because, in observa-
tional data, we only have the data that we have and cannot
experiment or simulate to generate more so we should use
the data optimally. Amongst other things, efficiency implies
we can construct optimally-tight confidence intervals for the
estimated optimal parameter values, and in Section 4.4 we
show that efficiency implies asymptotically-optimal regret.

1.3. Related Work

There has been a variety of past work on the problem of
policy learning from observational data. Much of this work
considers formulating the objective of policy learning as a
weighted classification problem (Beygelzimer & Langford,
2009; Dudı́k et al., 2011), and either minimizing the 0-1 loss
directly using combinatorial optimization (Athey & Wager,
2017; Kitagawa & Tetenov, 2018; Zhou et al., 2018), using
smooth stochastic policies to obtain a nonconvex but smooth
loss surface (Swaminathan & Joachims, 2015), or replacing
the 0-1 objective with a convex surrogate to be minimized
instead (Beygelzimer & Langford, 2009; Dudı́k et al., 2011;
Jiang et al., 2019; Zhao et al., 2012; Zhou et al., 2017).
In addition there is work that extends some of the above
approaches to the continuous action setting (Chernozhukov
et al., 2019; Kallus & Zhou, 2018; Krishnamurthy et al.,
2019); our focus will be solely on binary actions. Of these
methods the convex-surrogate approach has the advantage of
computational tractability and, when the convex surrogate
is smooth (e.g. Jiang et al., 2019), the ability to perform
statistical inference on the optimal parameters. Our paper
extends this work by investigating how to solve the smooth
surrogate problem efficiently. Although much of this past
work has used objective functions for learning based on
statistically efficient estimates of policy value (Athey &
Wager, 2017; Chernozhukov et al., 2019; Dudı́k et al., 2011;
Zhou et al., 2018), to the best of our knowledge our paper is
novel in investigating the efficient estimation of the optimal
policy parameters themselves.

In addition there has been a variety of past work on solving
conditional moment problems (see Bennett et al. (2019);
Khosravi et al. (2019) and citations therein). Our paper
builds on this work as it reformulates the problem of pol-
icy learning as a conditional moment problem, which we
propose to solve using optimally weighted GMM (Hansen,
1982) and DeepGMM (Bennett et al., 2019).

2. The Surrogate-Loss Reduction and Its

Fisher Consistency

In this section, we present the surrogate-loss reduction of
policy learning and the implications of correct specification.

Many policy learning methods start by recognizing that the
policy value can be re-written as

J(✓) = E[ sign(g✓(X))] (2)

where  is any of the following score variables, which all
depend on observables:

 IPS = TY
eT (X) ,  DM = µ1(X)� µ�1(X),

 DR =  DM +  IPS � TµT (X)
eT (X) , (3)

where et(x) = P (T = t | X = x) and µt(x) = E[Y (t) |
X = x]. Equation (2) arises once we recognize that all of
these satisfy E[ | X] = E[Y (1)� Y (�1) | X].

Then we can approximate Eq. (2) using its empirical version:

Jn(✓) =
1 Pn
n i=1  i sign(g✓(Xi)). (4)

In particular, Athey & Wager (2017); Kitagawa & Tetenov
(2018); Zhou et al. (2018) prove bounds of the form
sup✓2⇥ |Jn(✓)� J(✓)| = Op(1/

p
n) given that the policy

class has bounded complexity. This shows that optimizing
✓̂ 2 argmax✓ ⇥ Jn(✓) provides near-optimal solutions in2
the original policy learning problem, since J(✓⇤)� J(✓̂) 
J(✓⇤)�J(✓̂)+Jn(✓̂)�Jn(✓⇤)  2 sup✓2⇥ |Jn(✓)�J(✓)|.
Given that in practice the nuisance functions et and µt are
estimated from data, we denote the corresponding score vari-
able when such estimates are plugged in as  ̂ to differentiate
it from the variable  that uses the true nuisance functions.
We correspondingly let Ĵn(✓) = 1 Pn ˆ

n i=1  i sign(g✓(Xi)).
When Ĵn(✓) is efficient for J(✓) one can generally addition-
ally prove that sup✓2⇥ |Ĵn(✓)� Jn(✓)| = op(1/

p
n).

Given the non-convexity and non-smoothness of the em-
pirical objective function Eq. (4), it is not necessarily clear
how to actually optimize it. Many works (Beygelzimer &
Langford, 2009; Jiang et al., 2019; Zhao et al., 2012) rec-
ognize that this optimization problem is actually equivalent
to weighted binary classification (in our two-action case),
since  i sign(g✓(Xi)) = | i|(1�2Isign(g✓(Xi))= i

), so any
classification algorithm that accepts instance weights can

6
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perhaps be used to address Eq. (4). Specifically, many clas-
sification algorithms take the form of minimizing a convex

surrogate loss:

Ln(✓) =
1 Pn
n i=1 | i|l(g✓(Xi), sign( i)), (5)

where l(g, s) acts as a surrogate for the zero-one loss
Isign(g✓(Xi))= i

. For classification, Bartlett et al. (2006)
studies which losses are appropriate surrogates, i.e., are
classification-calibrated. The population version of the sur-
rogate loss, which Ln(✓) is approximating, is

L(✓) = E[| |l(g✓(X), sign( ))]. (6)

Following Jiang et al. (2019), we will focus on the logis-
tic (or, logit-cross-entropy) loss function, which is defined
according to

l(g, s) = 2 log(1 + exp(g))� (s+ 1)g.

We note that although we focus on this loss in our discus-
sions and experiments, all of our theoretical results, except
for Lemma 1 which is specific to logistic regression loss,
still hold with any other surrogate loss that satisfies the
following assumptions.
Assumption 1. The surrogate loss l is convex and twice

differentiable in its first argument, and classification-

calibrated.

The classification-calibrated property is from Bartlett et al.
(2006). We describe this property and justify that it is satis-
fied by logistic regression loss in the appendix. We also note
that the other parts of Assumption 1 are clearly satisfied by
logistic regression loss.

Furthermore, we note that some of our results can be ex-
tended to other convex, classification-calibrated losses that
are not smooth, such as the hinge loss. We provide details
of this in the appendix.

Given Assumption 1 and an additional regularity assump-
tion, the following theorem follows immediately.
Assumption 2. E[ | X] = E[Y (1) � Y (�1) | X], and

E[| |] < 1.

Theorem 1 (Fisher Consistency Under Correct Specifica-
tion). Suppose the policy class ⇧ is correctly specified for

the surrogate loss in the sense that

✓ ◆
G \ argmin E[

g unconstrained

| |l(g(X), sign( ))] = ?. (7)

Then given Assumption 2, any minimizer of the surrogate-

loss risk is an optimal policy:

J(✓⇤) = max J(⇡)
⇡ unconstrained

for all ✓⇤ 2 argminL(✓).
✓2⇥

6

6

Theorem 1 establishes that, under correct specification, if
we minimize the population surrogate loss, L(✓), then we
obtain the optimal policy. Therefore, a natural strategy
for policy learning would be to directly minimize the em-
pirical loss Ln(✓), as was done by the above. Although
the above arguments indicate that this approach would be
computationally tractable, and also consistent under mild
regularity conditions that ensure that optimizers of Ln(✓)
would converge to optimizers of L(✓), it is not clear that
it is statistically efficient, even if we use an efficient score
variable for policy value estimation.

We provide a cautionary note that, as discussed e.g.in Qiu
et al. (2019); Wager (2020), hoping for correct specification
to hold for a simple low-dimensional policy class such as
linear policies could be unreasonable. In such a case, it is
possible that using this surrogate objective could system-
atically lead to incorrect policy decisions (Wager, 2020).
On the other hand, if we use a flexible policy class such
as neural networks of a given architecture, it is reasonable
to assume that correct specification holds (at least approxi-
mately), so the surrogate objective may be better justified.

3. The Conditional-Moment Reformulation of

the Surrogate-Loss Reduction

In this section we establish a new interpretation of the
surrogate-loss reduction as a conditional moment problem
and we discuss the implications of this in terms of the model
implied by correct specification. This will enable us to
conduct efficiency analysis and to design algorithms with
improved efficiency in the next section.

3.1. The Conditional Moment Problem

First, we define l0 as the derivative of l with respect to its
first argument. In the case of logistic regression loss this is

l0(g, s) = 2�(g)� (s+ 1),

where �(g) = exp(g)/(1 + exp(g)) is the logistic function.
Theorem 2 (Conditional Moment Problem Under Correct
Specification). Suppose Assumption 2 holds and the policy

class ⇧ is correctly specified for the surrogate loss in the

sense that Eq. (7) holds. Define

m(X; ✓) = E [| |l0(g✓(x), sign( )) | X] .

Then we have that

✓⇤ 2 argminL(✓)
✓2⇥

() m(X; ✓⇤) = 0 almost surely. (8)

Theorem 2 arises straightforwardly from the observa-
tion that, under correct specification, g✓(x) minimizes
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E[| i|l(g✓(X), sign( )) | X = x] for almost every x. Us-
ing smoothness and convexity, this latter observation is
restated using first-order optimality conditions. Dominated
convergence theorem allows us to exchange differentiation
and expectation and we obtain the result. Theorem 2 pro-
vides an alternative characterization of ✓⇤ as solving a con-

ditional moment problem.

Notice that Eq. (8) is equivalent to the statement that, for
any square integrable function f of X , we have the moment
restriction

E [m(X; ✓)f(X)] = 0 .1 (9)

This alternative characterization makes the problem
amenable to efficiency analysis.

Notice that by first-order optimality, if ✓⇤ 2 interior(⇥), op-
timizing L(✓) in Eq. (6) exactly corresponds to solving the
set of d moment equations given by E[m(X; ✓)r✓g✓(x)] =
0. Similarly, optimizing the empirical loss Ln(✓) in Eq. (5)
corresponds to solving these d equations with population
averages (E) replaced with empirical sample averages.

However, Eq. (9) gives a much broader set of equations.
Leveraging this fact will be crucial to achieving efficiency.
Indeed, it is well-known that even if a small number of
moment equations are sufficient to identify a parameter
(e.g., in the above, the d equations identify ✓⇤ via first-order
optimality), taking into consideration additional moment
equations that are known to hold can increase efficiency in
semiparametric settings (Carrasco & Florens, 2014).

3.2. The Semiparametric Model Implied by

Specification

In order to reason about efficiency, we need to reason about
the model implied by Eq. (8). To do so, we first establish
the following lemma.

Lemma 1. Assume Assumption 2, and that we are using

logistic regression loss. Then given a policy class ⇧, the

model of DGPs (distributions on (X,T, Y )) where ⇧ is

correctly specified for the surrogate loss (in the sense of

Eq. (7)) is given by all distributions on (X,T, Y ) for which

there exists ✓⇤ 2 ⇥ satisfying

E[| | { > 0} | X = x]
= �(gE[| | | ✓⇤(X)) almost surely.

X = x]
(10)

This model is generally a semiparametric model. That is,
while Eq. (10) is a parametric restriction on the function
E[| | { > 0} | X = x]/E[| | | X = x], the set of
corresponding distributions on (X,T, Y ) that satisfy this
restriction is still infinite-dimensional and non-parametric.

3.3. Comparison with Logistic Regression for

Classification

One question the reader might have at this point is why
an approach different than empirical loss minimization is
necessary for efficiency, given that the surrogate loss for-
mulation seems mathematically identical to binary classi-
fication using logistic regression, which is known to be
efficient.2 The difference between the problems is that for
actual classification we have that  is a binary class la-
bel, i.e.,  2 {�1, 1}. If we assume the policy class is
well-specified and  2 {�1, 1}, the characterization of our
semiparametric model from Lemma 1 reduces to

P ( = 1 | X) = �(g✓⇤(X)),

which implies that our model is parametric, since the choice
of ✓⇤ now fully characterizes the distribution of the la-
bel  given X . E.g., usually for logistic regression we
let g✓(x) = ✓Tx so that the above says that the logit of
P ( = 1 | X) is linear. Therefore, performing logistic
regression corresponds to MLE for this parametric model,
which is efficient.

However in our more general setting this is not the case
and there is a non-trivial nuisance space, since there is a
complex, infinite-dimensional space of conditional distri-
butions for  given X = x that could result in the same

function E[| | { > 0} | X = x]/E[| | | X = x]. This
suggests that we may need to be more careful in order to
obtain efficiency and that there may exist estimators that are
more efficient than empirical loss minimization.

4. Efficient Policy Learning Reductions

In this section we propose some efficient methods for policy
learning based on the above conditional-moment formula-
tion. In addition, we provide some analysis of these methods
in terms of efficiency and regret.

4.1. FiniteGMM Policy Learner

We begin by proposing an approach based on using multi-
step GMM to solve the conditional moment problem, which
we will call FINITEGMM. This approach works by opti-
mally enforcing for the moment conditions given by Eq. (9)
for a finite collection of critic functions F = {f1, . . . , fk}.
Specifically, given some initial estimate ✓̃n of ✓⇤, define:

m(✓)j =
1 Pn
n i=1 | ̂i
Pn

|l0(g (X ), sign( ̂✓ i i))fj(Xi)

C(✓̃ 1 ˆ2
n)jk = n i=1  i l

0(g✓̃ (X ), sign( ̂ ))2i i fj(Xi)fk(Xi)n

O(✓; ✓̃ ) = m(✓)Tn C(✓̃n)m(✓).

1This is because in an inner product space , v = 0 if and only
if hv, v0 = 0 for every v0 . Here is L2

V
i 2 V V .

2This is because logistic regression performs maximum like-
lihood estimation (MLE), which is statistically efficient for well-
specified parametric models.
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We then estimate ✓ by ✓̂n = argmin✓ O(✓; ✓̃n). We can re-
peat this multiple times, plugging in ✓̂n as ✓̃n and resolving.

An important issue with this estimator, however, is how to
choose the critic functions. Standard GMM theory requires
that the k moment conditions are sufficient to identify ✓⇤.
And even then, the above is only the most efficient among
estimators of the form argmin✓ k(m1(✓), . . . ,mk(✓)k for
any norm k · k, but there may still be more efficient choices
of critic functions.

4.2. The Efficient Instruments for Policy Learning

One nice result from the theory of conditional moment prob-
lems is the existence of a finite set of critic functions ensur-
ing efficiency in the sense of Section 1.2. Define:

⌦(x) = E[ 2l0(g✓(X), sign( ))2 | X = x]

h✓⇤(x) = r✓g✓(x) |✓=✓⇤
D(x) = E[r✓(| |l0(g✓(X), sign( ))) |✓=✓⇤ | X = x]

= E[| |l00(g✓⇤(X), sign( ))h✓⇤(x) | X = x]

D(x)
fi
⇤ i(x) = .

⌦(x)

We call F⇤ = {f1⇤, . . . , fd⇤} the efficient instruments, and
as long as the span of F contains these instruments then
FINITEGMM is guaranteed efficiency (Newey, 1993). We
can observe that these equations correspond to linearizing
the moment equation at ✓⇤, and ⌦ is akin to the Fisher
information matrix. We refer readers to Newey (1993) for
more details on the derivation of these efficient instruments.

Given this, one approach would be to let F be flexible
with the hope of approximately containing F⇤. Letting, for
example, F be the first k(n) functions in a basis for L2 such
as a polynomial basis and letting k(n) ! 1 can be shown
to be efficient under certain conditions (Newey, 1993). This,
however, can perform very badly in practice, especially
when the number of features is high, due to known curse
of dimensionality issues with such classical nonparametric
regression methods (Bauer et al., 2019; Geenens et al., 2011;
Nagler & Czado, 2016).

4.3. ESPRM Policy Learner

Motivated by the above concerns, we now present our pro-
posed approach: ESPRM (efficient surrogate policy risk
minimization). This is based on the extension of Bennett
et al. (2019) to our conditional moment problem. In the
setting of instrumental variable regression, Bennett et al.
(2019) proposes an adversarial reformulation of optimally-
weighted GMM, which allows us to consider critic functions
given by flexible classes such as neural networks. Then if
this class provides a good approximation for the efficient in-
struments, this approach should be approximately efficient.

Specifically, we define:

u(X, ; ✓, f) = | |l0(g✓(X), sign( ))f(X)

U(✓, f ; ✓̃) = 1 Pn
n i=1 u(Xi,  ̂i; ✓, f)]

� 1 Pn
4n i=1 u(Xi,  ̂i; ✓̃n, f)2,

where as above ✓̃n is some initial consistent estimate of ✓⇤.
Then following Bennett et al. (2019), the ESPRM estimator
is defined as

✓̂ESPRM = argmin✓ supf U(✓, f ; ✓̃),2F

where F is our flexible function class (henceforth assumed
to be a class of neural networks). In brief, the moti-
vation of this objective is as follows. First, if we let
F = span(f1, . . . , fk} in this objective, it follows from
a generalization of Bennett et al. (2019, Lemma 1) that ES-
PRM is identical to FINITEGMM using critic functions
{f1, . . . , fk}. It follows that ESPRM is equivalent to re-
placing the span of the critic functions in FINITEGMM with
a generic function space. Therefore, instead of trying to ap-
proximate the efficient instrument using a growing basis
for L2 — an approach which is known to suffer from curse
of dimensionality issues — we can instead use a flexible
function space, such as a space of neural networks, that is
designed to handle flexible function approximation without
such issues (Bauer et al., 2019). We describe the theory
behind this estimator in more detail in the appendix.

It remains to describe how this adversarial game is to be
solved, and how to define ✓̃n. As in Bennett et al. (2019) we
optimize the objective by performing alternating first-order
optimization steps using the OAdam algorithm (Daskalakis
et al., 2017), which was designed for solving smooth game
problems such as generative adversarial networks (GANs).
In addition, we continuously update ✓̃n during optimization,
where at each step of alternating first order optimization we
set ✓̃n equal to the previous iterate of ✓̂n.

4.4. Efficient Learning implies Optimal Regret

Finally we prove that efficiency not only ensures minimal
MSE in estimating ✓⇤ but also implies regret bounds. Let

RegretJ(✓) = argmax J(⇡) J(✓)
⇡ unconstrained

�

RegretL(✓) = L(✓)� inf L(✓).
✓2⇥

Theorem 3 (Regret Upper Bound). Suppose Assumptions 1

and 2 hold and that the policy class ⇧ is correctly specified

for the surrogate loss in the sense that Eq. (7) holds. Then,

for any ✓ 2 ⇥ we have

'(RegretJ(✓))  RegretL(✓) ,

for some continuous ' that depends only on l, and satisfies

'(0) = 0 and '(↵) > 0 for ↵ > 0. Furthermore, in the
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case of logistic regression loss this bound reduces to

RegretJ(✓)  2RegretL(✓) .

This theorem implies that the regret of a policy is upper-
bounded by the excess risk of the surrogate loss. Next, we
make the following regularity assumption about the loss L:

Assumption 3 (Uniquely Minimized Loss). L has a unique

minimizer ✓⇤ in the interior of ⇥.

We note that this assumption is very strong, and may be
unrealistic for classes such as neural networks where multi-
ple different parameter values can correspond to the same
function (for example by permuting the units in hidden
layers). However, we argue that in practice this is not a
major issue, and can be addressed for example by using
symmetry-breaking constraints.

Given Assumptions 1 and 3, a Taylor’s theorem expansion
yields RegretL(✓̂n) = (✓̂n�✓⇤)TH(✓⇤)(✓̂n�✓⇤)+o(k✓̂n�
✓⇤k2), where H(✓⇤) is the Hessian of L at ✓⇤. For for any
regular estimator ✓̂n, we can also define the asymptotic

regret ARL as the limiting distribution:

nRegretL(✓̂n) !d ARL(✓̂n),

which exists since regularity implies that
p
n(✓̂n � ✓⇤) has

a limiting distribution. Given this we can prove the follow-
ing optimality result of our efficient estimators in terms of
asymptotic regret:

Theorem 4 (Optimal Asymptotic Regret). Given Assump-

tion 3 and any non-negative, non-decreasing �, we define

the risk R�(✓̂n) = E[�(ARL(✓̂n))]. Given this, there exists

a risk bound B� such that R�(✓̂n) � B� for every regular

✓̂n, with equality if ✓̂n is semi-parametrically efficient.

Together with Theorem 3, this means that both the actual
regret (RegretJ ) and the surrogate regret (RegretL) of poli-
cies given by efficient estimators ✓̂ are Op(1/n), and the
surrogate regret has an optimal constant.

Note that this is not the first regret result for policy learning
based on convex surrogate losses. Of particular interest,
Zhao et al. (2012) previously provided optimal regret re-
sults for nonparametric policy learning using hinge loss.
However, unlike us they showed that their regret obtains
an optimal rate but not optimal constants, and their result
depends on various additional technical assumptions.

5. Experiments

5.1. Synthetic Scenarios

First we investigate the performance of our algorithms on a
variety of synthetic scenarios, using logistic regression loss

for l. In all these scenarios X is 2-dimensional, and X and
Y (t)� µt(X) are standard Gaussian distributed for each t;
the scenarios only differ in the functions µt and et. In none
of the scenarios is our policy class actually well-specified
in the sense of Eq. (7).

We consider the following kinds of synthetic scenarios:

• LINEAR: µt(x) = aTt x + at0 and e1(x) =
sigmoid(bTx+ b0) for some vectors a�1, a1, b.

• QUADRATIC: µt(x) = xTAtx + aTt x + at0 and
e1(x) = sigmoid(xTBx + bTx + b0) for some sym-
metric matrices A and B, and vectors a�1, a1, b.

In addition we experiment with the following policy classes:
a linear policy class, where g✓(x) = ✓Tx+ ✓0, and a flexi-

ble policy class where g✓(x) is given by a fully-connected
neural network with a single hidden layer of size 50, and
leaky ReLU activations.

In all cases we use the surrogate loss method of Jiang et al.
(2019) described in Section 2 as a benchmark, which we
henceforth refer to as ERM. We note that although in the
prior work they used  ̂IPS, we instead use  ̂DR, both because
it is theoretically better grounded given its double robust-
ness property (Athey & Wager, 2017; Zhou et al., 2017) and
we found that it gives stronger results for all methods. For
our ESPRM method we let F be the same neural network
function class as for flexible policies, and perform alternat-
ing first-order optimization as described in Section 4.3 for
a fixed number of epochs. For FINITEGMM we experi-
mented with function sets F based on various polynomial
basis expansions, and also various finite-dimensional ap-
proximations of Gaussian kernel basis expansions using the
method of Random Kitchen Sinks (Rahimi & Recht, 2009).
We provide details of these function sets in the appendix.

For all methods, except where otherwise specified, we use
the  ̂DR weights described in Eq. (3), with nuisance func-
tions fit using correctly specified linear regression or logistic
regression algorithms on a separately sampled tuning dataset
of the same size as the training dataset.3 We provide some
additional results in the appendix where nuisances were
instead fit via flexible neural networks, which show that this
has little effect on our results. In all cases except for ES-
PRM we perform optimization using LBFGS. Additional
optimization details are given in the appendix.

For all configurations of scenario kind and policy we ran
our experiments by sampling random scenarios of the re-
spective kind, by setting all scenario parameters to be inde-
pendent standard Gaussian variables. Specifically, for each

3By correctly specified we mean that for LINEAR we fit using
linear/logistic regression on X , whereas for QUADRATIC we fit on
a quadratic feature expansion of X .
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Figure 1. Difference in performance between ESPRM and ERM. We plot RMRR against training set size for each combination of policy
class and scenario kind. Shaded regions are 95% confidence intervals, constructed from bootstrapping using the 64 replications.

n 2 {100, 200, 500, 1000, 2000, 5000, 10000} we sample
64 random scenarios of the respective kind, and for each
random scenario we sample n training data points and run
all methods on this data. Results for FINITEGMM, which
generally did badly as predicted for all the basis function
sets described above, are given in the appendix.

Define Relative Mean Regret Reduction (RMRR), given by:
 !

RMRR(✓̂
E[Regret

n) = 1� J(✓̂n)]

E[RegretJ(✓̂
ERM]
n )]

⇥ 100%,

where each expectation in the fraction is taken over the
joint distribution of randomly sampled scenarios, and the
corresponding random estimates ✓̂. Then for each scenario
kind and policy class, we plot predicted RMRR against
number of training data based on our ESPRM estimates in
Fig. 1. In addition, we provide plots for this experiment on
a raw utility scale in the appendix. Note that the confidence
intervals in all these plots for each data point are with respect
to the joint distribution over randomly generated scenarios
and corresponding random estimate ✓̂.

We see that ESPRM consistently obtains policies on aver-
age that are lower regret or on-par than those obtained by
ERM (typically with around 10% to 20% RMRR), with
the 95% confidence intervals indicating clearly better per-
formance in almost every case, except for in the case of
training flexible policies in the quadratic scenario where
there are a couple of outlier points, although even there the
two methods seem at worst roughly on-par. We can also
observe that the most significant regret benefits tend to occur
with smaller training set sizes (since the same RMRR im-

plies a larger absolute decrease in regret), indicating that the
statistical efficiency of our method is leading to improved
finite sample behavior.

In Fig. 2 we plot the convergence in terms of the MSE of the
estimated parameter from ESPRM and ERM, for the LIN-
EAR setting and linear policy class (where parameters are
low-dimensional and correctly specified). We plot both the
MSE convergence, and the average difference in the squared
error between the estimates, across the random scenarios.4
It is clear from these results that ESPRM consistently esti-
mates optimal policy parameters with lower squared error
on average compared to ERM across these random sim-
ulated scenarios. This provides strong evidence that the
methodology indeed provides an improvement in statistical
efficiency for solving the smooth surrogate loss problem.

5.2. Jobs Case Study

We next consider an application to a dataset derived from
a large scale experiment comparing different programs of-
fered to unemployed individuals in France (Behaghel et al.,
2014). We focus our attention to two arms from the experi-
ment: a treatment arm where individuals receive an intensive
counseling program run by a public agency and a treatment
arm with a similar program run by a private agency. The
hypothetical application is learning a personalized alloca-
tion to counseling program, with the aim of maximizing the
number of individuals who reenter employment within six
months, minus costs. (The original study’s focus was not

4All parameter vectors are normalized first given that the policy
function is scale-invariant.
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Figure 2. Above we plot the convergence in MSE of the predicted
✓̂n for each method with a linear policy class, over the random
scenarios of the LINEAR class. Below we plot the average differ-
ence in the squared error of ESPRM and ERM (positive numbers
indicate improvement over ERM). All shaded regions are 95%
confidence intervals constructed from bootstrapping.

personalization.) Our intervention is simply the offer of the
counseling program; we therefore ignore the fact that some
individuals offered one of the programs did not attend.

In order to make our policies focus on heterogeneous effects,
so that a constant-treatment policy wouldn’t be optimal and
policy learning would be non-trivial, we set the costs of
each arm to be equal to their within-arm average outcome
in the original data. That is, the outcome we consider is
equal whether one reentered employment within 6 months,
minus the average number of individuals who entered em-
ployment within 6 months in that arm, so therefore each arm
has a mean outcome of zero. The covariates we consider
personalizing on are: statistical risk of long-term unemploy-
ment, whether individual is seeking full-time employment,
whether individual lives in sensitive suburban area, whether
individual has a college education, the number of years of
experience in the desired job, and the nature of the desired
job (e.g., technician, skilled clerical worker, etc.).

We then consider 64 replications of the following proce-
dure. Each time, we randomly split the data 40%/60% into
train/test. We then introduce some confounding into the
training dataset. We consider the following three binary
variables: whether individual has 1–5 years experience in
the desired job, whether they seek a skilled blue collar job,
and whether their statistical risk of long-term unemployment
is medium. After studentizing each variable, we segment
the data by the tertiles of their sum. In the first tertile, we
drop each unit with probability 7/8. In the second tertile, we

Policy ERM ESPRM Difference

�Linear 0.96± 4.32 4.42± 3.78 5.38± 5.06
Flexible 1.75 4.64 7.68 3.16 9.42 5.17� ± ± ±

Table 1. Average predicted policy value (multiplied by 1000) for
the Jobs case study for ERM versus ESPRM over 64 repetitions.
The ± interval provides the 95% confidence intervals.

drop private-program units with probability 1/4 and public-
program units with probability 7/8. In the third tertile, we
drop public-program units with probability 1/4 and private-
program units with probability 7/8. Given a policy learned
on this training data, we evaluate it on the held-out test set
using a Horvitz-Thompson estimator.

Of the training data, 20% was set aside for training nui-
sances, and an additional 20% as validation data for early
stopping. We then trained both linear and flexible policies
using ERM and ESPRM as in our simulation studies, with
the exception that nuisances were fitted using neural net-
works (of the same architecture as the flexible policy class).

We summarize the mean estimated outcome for the policies
from each method in Table 1. We note from these values
that on average ESPRM seems to be learning higher value
job-assignment policies than ERM. In addition, we con-
ducted paired two-sided t-tests to test the hypothesis that
the two algorithms lead to different mean policy values on
this data, under the randomness in our data splitting and con-
founding procedures as well as the estimation algorithms.
We obtained p-values of .0429 for the linear policy class
and .0007 for the flexible policy class, clearly highlighting
the benefit of our ESPRM method.

6. Conclusion

We considered a common reduction of learning individu-
alized treatment rules from observational data to weighted
surrogate risk minimization. We showed that, quite differ-
ently from actual classification problems, assuming correct
specification in the policy learning case actually suggests
more efficient solutions to this reduction. In particular, even
if we use efficient policy evaluation, this may not neces-
sarily lead to efficient policy learning. Specifically, under
correct specification, the problem becomes a conditional
moment problem in a semiparametric model and efficiency
here translates to both better MSE in estimating optimal
policy parameters and improved regret bounds.

Based on this observation, we proposed an algorithm, ES-
PRM, for efficiently solving the surrogate loss problem. We
showed that our method consistently outperformed the stan-
dard method of empirical risk minimization on the surrogate
loss, both over a wide variety of synthetic scenarios and in
a case study based on a real job training experiment.
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