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Efficient polygenic risk scores for biobank scale
data by exploiting phenotypes from inferred
relatives
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S. Hong Lee 3,4✉

Polygenic risk scores are emerging as a potentially powerful tool to predict future phenotypes

of target individuals, typically using unrelated individuals, thereby devaluing information from

relatives. Here, for 50 traits from the UK Biobank data, we show that a design of 5,000

individuals with first-degree relatives of target individuals can achieve a prediction accuracy

similar to that of around 220,000 unrelated individuals (mean prediction accuracy = 0.26 vs.

0.24, mean fold-change = 1.06 (95% CI: 0.99-1.13), P-value = 0.08), despite a 44-fold

difference in sample size. For lifestyle traits, the prediction accuracy with 5,000 individuals

including first-degree relatives of target individuals is significantly higher than that with

220,000 unrelated individuals (mean prediction accuracy = 0.22 vs. 0.16, mean fold-change

= 1.40 (1.17-1.62), P-value = 0.025). Our findings suggest that polygenic prediction inte-

grating family information may help to accelerate precision health and clinical intervention.
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G
enome-wide association studies (GWAS) have uncovered
many common variants associated with complex traits1,2.
In a standard GWAS, such associations are usually eval-

uated for many genome-wide single-nucleotide polymorphisms
(SNPs), one at a time, based on data from a large number of
individuals. For most complex traits and diseases, the effects of a
single SNP are small, and the proportion of phenotypic variance
explained by genome-wide significant SNPs is likewise small3,4.
Therefore, an increasing interest lies in the prediction of future
phenotypes for such traits from combined effects of a large
number of genome-wide SNPs, as known as a whole-genome
approach to genetic prediction5–8. There have been a number of
such approaches that jointly model all or most of common var-
iants across the genome. For instance, genome-based residual
maximum likelihood (GREML)9,10 can be used to estimate SNP-
based heritability, i.e., the proportion of phenotypic variance
explained by genome-wide SNPs. Best linear unbiased prediction
(BLUP) can fit a genomic relationship matrix to estimate the
genetic effect on the phenotype of each individual, and this
method has been termed genomic BLUP (GBLUP)11–15. Linkage
disequilibrium score regression (LDSC)16 use aggregated effects
from GWAS summary statistics of genome-wide SNPs to esti-
mate SNP-based heritability and predict the future phenotypes of
target sample for complex traits11,17–20.

Most existing GWAS use population-based designs, in which
close relatives are typically excluded or devalued from the ana-
lyses to avoid bias due to common family effects, i.e., biased SNP
effects or inflated SNP-based heritability due to confounding
between additive genetic and family effects. Especially when
estimating narrow-sense heritability based on the genome-wide
SNPs, individuals with pairwise genomic relationships >0.05 are
usually excluded4,21,22. This convention has generally been
extended to genomic prediction studies, which use similar
population-based designs as GWAS21,23,24. However, the purpose
of prediction should be clearly distinguished from that of herit-
ability estimation. The aim of genomic prediction is to maximise
phenotypic prediction accuracy. Unlike for the estimation of
heritability, it is not critical to disentangle additive genetic effects
from other common family effects in a genomic prediction
context. In fact, such family effects could be a valuable source of
information to improve prediction accuracy. Therefore, excluding
close relatives for phenotypic prediction may not be well justified.

Theoretical studies have demonstrated that information from
close relatives could improve prediction accuracy, even in the
absence of familial environmental effects25–28. In these studies, it
was shown that prediction accuracy depends on the effective
number of chromosome segments (Me), also known as the
number of independent SNPs. Me is a function of effective
population size (Ne) and it decreases when the number of high
relationships between reference and target samples increases,
which improves the phenotypic prediction accuracy28. Several
studies have shown that family information is useful for polygenic
risk prediction29–31. However, to our knowledge, there is no
large-scale study to verify the efficiency of using relatives in
polygenic risk prediction and its implications for clinical practice.

To predict the polygenic risk scores (PRS) of a new person for
which we have DNA data, all available data in the biobank should
be utilised, including any phenotypes of individuals that have a
pedigree relationship with that person. Here, we use UK Biobank
data and show an efficient polygenic prediction when we use
relatives in a PRS approach to predict phenotypes of complex
traits. We perform GWAS for 50 human complex traits including
12 disease traits using genotype and phenotype data in the
reference data and use the estimated SNP effects to obtain PRS for
the target sample. We investigate the contribution of information
from the relatives of the target sample in polygenic risk

prediction. The 50 traits are further categorised into three groups
of mental, physical and lifestyle traits, and we assess the predic-
tion performance for each group as family effects varies between
the categorised traits. In addition, we extend our approach to
integrate phenotypes of ungenotyped relatives of the target
sample to explore whether this can further increase the prediction
accuracy. We show that the efficiency of polygenic prediction
with close relatives, despite a 44-fold lower in sample size, is
equivalent or even higher (depending on traits) than that with
unrelated individuals. This result suggests that polygenic predic-
tion integrating family information will be a useful tool for pre-
cision health and preventive medicine.

Results
Overview of the approach. Genomic prediction accuracy, defined
here as the correlation coefficient between the phenotypes and
estimated PRS, can be determined theoretically by heritability, Me

and the sample size of reference data set25,28,32 (see ‘Methods’).
The lower the Me value, the higher the prediction accuracy is. Me

is a function of effective population size, and can be empirically
estimated from the variance of genomic relationships between the
reference and target samples25,27 (‘Methods’).

In order to assess prediction accuracy, we used the UK Biobank
data comprising 408,218 individuals after quality control. We
identified 288,837 individuals that had no genomic relationships
>0.05 with any of the other individuals in the data set (see
‘Methods'). We randomly divided these unrelated individuals into
discovery (80%) and target data sets (20%). We refer to this
design as a ‘large-scale design’ (Fig. 1). Among all traits available
to us, we chose 50 traits (Supplementary Table 1) with the highest
heritability estimates according to estimates reported by the Neale
lab33. These traits can be categorised as mental, physical and
lifestyle traits. Trait name, type and SNP-based heritability
estimated based on various information sources are shown in
Supplementary Table 1. It is noted that narrow-sense heritability
estimates using the unrelated individuals in the large-scale design
generally agree with those from the Neale lab33 (Supplementary
Table 1).

In the large-scale design, we introduced the first-, second- or
third-degree relatives (Fig. 1; Supplementary Table 2) that were
identified from the total sample (408,218 individuals) according
to their kinship coefficients inferred from genotype information.
To perform a fair comparison with the analysis utilising the
unrelated sample, we substituted the same number of unrelated
individuals with the first-, second- or third-degree relatives such
that the same sample size (i.e., 288,837 individuals) was
consistently used across the genomic prediction analyses with
various degrees of relationships. Thus, there were four different
analyses with (1) unrelated sample only, (2) inclusion of first-, (3)
second- and (4) third-degree relatives. It was noted that the
number of substitutions in the analyses with first-, second- and
third-degree relatives in the large-scale design varied between
traits, depending on the number of available records for each trait
in the large-scale design (Supplementary Table 3). The number of
individuals in each level of relatedness for each trait is also
reported in Supplementary Table 3.

In contrast to the large-scale design, we also evaluated a ‘small-
scale design’ to quantify how the prediction accuracy was affected
by the sample size and the proportion of high relationships. We
selected 6000 individuals in each of first-, second- and third-
degree relatives (see Fig. 1), using a greedy algorithm34 that
allowed to maximise overall relationships among the selected
individuals, hence minimising Me (see ‘Methods’). The propor-
tion of relatives, hence the variance of relationship, was thereby
increased in the small-scale design, compared to that in the large-
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scale design (Supplementary Table 3), as expected. As in the
large-scale design, there were four different analyses in the small-
scale design of 6000 individuals with (1) the unrelated individuals
only, (2) the first-degree relationship pairs, (3) the second-degree
relationship pairs and (4) the third-degree relationship pairs (see
Fig. 1 and Supplementary Table 3).

In the target data set, prediction accuracy was empirically
calculated as the correlation between the polygenic scores based
on SNP effects estimated in the discovery data set35 and the
phenotypes adjusted for potential confounders (see ‘Methods’).

We also estimated Me and heritability using Eq. (2) (‘Methods’),
and further computed theoretical prediction accuracy using Eq.
(1) ('Methods’), which were used to evaluate the empirical
prediction accuracy of the designs. In this study, we defined
estimated heritability based on unrelated individuals as narrow-
sense heritability and estimated heritability based on familial
relationships as family-based heritability36 (see ‘Methods’).

Finally, we show how to utilise ungenotyped individuals to
increase prediction accuracy further. Ungenotyped siblings of a
target individual may have phenotypic information for the trait of
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Fig. 1 A schematic illustration for study designs and analyses. We made large- and small-scale designs, each having four analyses with unrelated, first-,

second- and third-degree relationships between discovery and target samples. Initially, we identified 288,837 unrelated individuals for whom any pairwise

relationship was less than 0.05 (green). We also identified first- (dark brown), second- (brown) and third-degree (light brown) relatives using the

information of kinship coefficients from the full UK Biobank sample. The analysis with the unrelated sample in the large-scale design was carried out for all

unrelated individuals with available phenotypic information who were randomly divided into discovery (80%) and target data sets (20%). For the analysis

with first-, second- or third-degree relatives in the large-scale design, the set of first-, second- or third-degree relatives were substituted with a set of the

same number of randomly selected individuals in the analysis with unrelated sample. For the analysis with unrelated sample in the small-scale design, we

used 6000 individuals (5000 as discovery, and 1000 as target sample), randomly selected from the analysis with unrelated sample in the large-scale design.

However, with the analysis with first-, second- or third-degree relatives in the small-scale design, we selected 6000 individuals from the set of first-, second-

or third-degree relatives, maximising the relationships among the selected individuals (see ‘Methods’).
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interest that is useful to predict the target individual. In practice,
the known pedigree relationships between a genotyped target
individual and ungenotyped relatives of the target individual can
be used to construct a (inferred) realised relationship matrix for
all individuals, including ungenotyped relatives (see ‘Methods’).
This realised relationship matrix is named as H-matrix37

(‘Methods’) that include the relationships between genotypes
and ungenotyped individuals as well. We fit the H-matrix in a
linear mixed model to obtain polygenic risk scores for the target
individual using BLUP approach13,38, which is referred to as
HBLUP14,38–40. We compare the prediction performance of
HBLUP and GBLUP that is based on genotyped individuals only
and analogous to PRS approach.

Improved polygenic prediction accuracy with decreased Me. In
the large-scale design, prediction with close relatives was not
significantly better than that with unrelated individuals only
(Fig. 2; Supplementary Table 4). This was probably due to the fact
that the effective number of chromosome segments was not much
different between using the analysis with close relatives or
unrelated individuals in the large-scale design (Fig. 2a). The
negligible difference of Me is not surprising because the number
of substituted individuals for the analyses with close relatives in
the large-scale design was small (Fig. 1; Supplementary Table 2)
such that the majority of individuals in each analysis with close
relatives were still unrelated.

In the small-scale design, we observed significant fold changes
of 2.62 (95% CI: 2.02–3.22, P-value from a two-tailed paired
t test= 2.86E-06), 2.80 (95% CI: 2.23–3.36, P-value= 1.00E-07)
and 4.67 (95% CI: 3.78–5.56, P-value= 1.59E-10) when compar-
ing the prediction accuracy of the analyses with third-, second-
and first-degree relatives, respectively, to that of the analysis with
unrelated individuals only (Fig. 2c; Supplementary Table 4). This
significant improvement of prediction accuracy can be explained
by a dramatic decrease ofMe for each analysis with close relatives,
compared to that with unrelated sample only in the small-scale
design (Fig. 2a; Supplementary Table 5). Thus, the contrasting
results between the large and small-scale designs can be explained
by substantially larger proportion of close relatives in the small-
scale design than in the large-scale design (Supplementary

Table 2). Note that a small difference between Me values from
the analyses with 2nd and 3rd degree relatives in the small-scale
design was because the number of 2nd degree relatives was
substantially less than the number of the 3rd degree relatives (see
‘Methods’).

We also used 5000 discovery samples and two sets of target
data sets, each with 1000 target samples that were related (TA) or
unrelated (TB) to the reference samples, which were considered in
the same prediction analysis for a fair comparison (Supplemen-
tary Fig. 1). It was shown that the prediction accuracy for TA was
much higher than TB, confirming the results depicted in Fig. 2b.
The low prediction accuracy for TB was because of the fact that
the increase in accuracy is limited to the samples in the target set
that do have close relatives in the discovery set, as expected from
theory.

When reference sample size increased from 5000 to 10,000 or
15,000 for the analysis with first-degree relatives, the prediction
accuracy increased further (Supplementary Table 4). Compared
to using unrelated individuals in the large-scale design, the
prediction accuracy with 10,000 or 15,000 reference individuals
including first-degree relatives was significantly higher than that
with 220,000 unrelated individuals (fold change= 1.17, 95% CI:
1.10–1.25, P-value from a two-tailed paired t test= 4.12E-05, or
1.18, 95% CI: 1.11–1.25, P-value= 1.78E-05).

Supplementary Fig. 2 illustrates analytically how the Me value
of a single-target individual changes when adding his or her close
relatives to the reference data, given our study design. For
example, in the small-scale design, the Me value decreases from
50,000 to 10,000 when adding 2 or 3 full sibs (i.e., first-degree
relatives) of the target individuals in the reference data. When
adding 2nd or 3rd degree relatives, a higher number of relatives
are required to obtain the sameMe value (Supplementary Fig. 2a).
Given Eq. (1), it is likely that the prediction accuracy increases
with lower Me values (Supplementary Fig. 2b), which clearly
agrees with the observed empirical accuracy (Fig. 2).

Empirical prediction accuracy compared with theoretical pre-
diction accuracy. Because we used information from close rela-
tives, the empirical accuracy would be influenced by familial
environmental effects that are not accounted for when estimating
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Fig. 2 A decreased effective number of chromosome segments can improve the polygenic prediction accuracy. The effective number of chromosome

segments (M
e
) (a), the actual prediction accuracy (b) and the fold change of the prediction accuracy from each degree relatives with respect to that from

unrelated samples in the large- and small-scale design (c). Accuracy of polygenic scores was calculated as the correlation between the polygenic score and

the phenotype adjusted for batch, assessment center, sex, age and ten principal components of ancestry. M
e
is computed by the inverse of variance of

genomic relationships between discovery and target sample. The dot points and error bars in (b) and (c) represent the mean values and 95% confidence

intervals from the analyses of 50 complex traits. The boxplots (b) show the first to the third quartile of prediction accuracies for 50 complex traits and the

whiskers reflect the maximum and minimum values within 1.5 × interquantile range for each group.
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theoretical accuracy (Eq. (1) in ‘Methods’). In order to quantify
the familial environmental effects, we compared the empirical
and theoretical accuracy for the small-scale design (Fig. 3; Sup-
plementary Fig. 3), showing that the difference between the
empirical and theoretical accuracy was proportional to the degree
of relatedness. Note that we used estimates of both narrow-sense
and family-based heritabilities (see ‘Methods’) when obtaining
theoretical prediction accuracy (Supplementary Table 6).

When using narrow-sense heritability reported from the Neale
lab33, there were 1.88 (95% CI: 1.65–2.11, P-value from a two-
tailed paired t test= 9.58E-10), 1.94 (95% CI: 1.73–2.15, P-value=
1.225E-11) and 2.28-fold change (95% CI: 2.09–2.47, P-value <
2.2E-16) in the comparison of the empirical prediction accuracy to
the theoretical prediction accuracy for the analyses with third-,
second- and first-degree relatives, respectively, in the small-scale
design (Fig. 3). However, when using family-based heritability
estimated from the small-scale design, the difference between the
empirical and theoretical prediction accuracies reduced signifi-
cantly although the fold changes were still deviated from 1, that is,
1.21 (95% CI: 1.08–1.34, P-value= 0.002), 1.38 (95% CI: 1.23–1.54,
P-value= 1.1E-05) and 1.41 fold change (95% CI: 1.28–1.54,
P-value= 9.205E-08) for third-, second- and first-degree relatives,
respectively (Fig. 3).

Efficient polygenic risk prediction using small-scale design
with relatives. It is well known that the prediction accuracy
increases when using a larger sample size21,23,24. Here, we

investigated how the prediction performance was affected by
integrating information from close relatives. When using unre-
lated sample only, the large-scale design performed better than
the small-scale design (4.13-fold change, CI 95%: 3.45–4.82, P-
value from a two-tailed paired t test= 5.99E-12), as expected.
However, when using analyses with close relatives, the difference
between the large and small-scale design became negligible, i.e.,
no difference for the analysis with first-degree relatives (mean=
1.00-fold change, 95% CI: 0.92–1.07, P-value= 0.905) (Fig. 4)
although the difference in sample size is 44-fold. Notably, the
empirical prediction accuracy with the average discovery sample
size of ~220,000 unrelated individuals was not better than that
with the 5000 individuals with first-degree relationships (mean=
0.96-fold ratio, 95% CI: 0.88–1.03, P-value= 0.289; Supplemen-
tary Fig. 4).

Next, we classified the traits into three types, namely mental,
physical and lifestyle traits (see ‘Methods’ and Supplementary
Table 1). With unrelated individuals only, the prediction accuracy
using the large-scale design was significantly higher than that
using the small-scale design for all types of traits (Fig. 5a).
However, for the analyses with first-degree relatives, the
performance of PRS with the large-scale design was not
significantly different from that with the small-scale design in
mental or physical traits (Fig. 5b). For lifestyle traits, the
prediction accuracy of the small-scale design with first-degree
relatives was even significantly higher than that of the large-scale
design (mean prediction accuracy= 0.22 vs. 0.16, fold change=
1.40, 95% CI= 1.17–1.62, P-value from a two-tailed paired
t test= 0.025) (Fig. 5b), which is remarkable. For analyses with
2nd and 3rd degree relatives, we found that PRS using a large
sample size would be more predictive of phenotypes, compared to
using a small sample size although the difference was marginal in
general (Supplementary Fig. 5).

Clinical impact of polygenic risk scores when using close
relatives. Given the efficient predictive performance from the
small-scale design with first-degree relatives, we evaluated the
prevalence and odds ratio in the decile analyses of PRS using 12

Narrow-sense heritability

Family-based heritability

3rd degree 2nd degree 1st degree

F
o
ld

 r
a
ti
o

0.0

0.5

1.0

1.5

2.0

2.5

Levels of relatedness

Fig. 3 The ratio between the empirical and theoretical prediction

accuracies in the small-scale design. The theoretical prediction accuracy

was calculated with family-based heritability or narrow-sense heritability.

Narrow-sense heritability is pre-computed by Neale lab33 from the original

UKB data with unrelated individuals. Family-based heritability of each trait

is estimated for each trait by GREML using small-scale design10.

Theoretical prediction accuracy is formulated as a function of the effective

number of chromosome segments, heritability and the number of

phenotypic observations for each trait. The effective number of

chromosome segments is estimated as the inverse of the variance of

relationships between reference and target sample. The main bars

represent the mean values averaged over the analyses of 50 traits. The

error bars show the 95% confidence intervals of the mean values. The red

horizontal line indicates a ratio of 1.

1st degree

2nd degree

3rd degree

Unrelated

F
o
ld

 c
h
a
n
g
e

0

1

2

3

4

5

Levels of relatedness

Fig. 4 The ratio of the empirical prediction accuracies between large- and

small-scale design. The empirical prediction accuracy of the large-scale

design is compared to that of the small-scale design for each level of

relatedness. The main bars represent the mean values of ratios averaged

over the analyses of 50 traits. The error bars show the 95% confidence

intervals of the mean ratios. The red horizontal line indicates a ratio of 1.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16829-x ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3074 | https://doi.org/10.1038/s41467-020-16829-x |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


binary traits selected from the 50 complex traits (Supplementary
Table 1). The prevalence in the top PRS above the 1st–9th decile
of PRS varied and increased on average from 37.9% to 47.3% in
the analysis with unrelated individuals in the large-scale design.
Similarly, in the analysis with first-degree relatives in the small-
scale design, the prevalence increased from 38% to 48.1%.
However, the prevalence of these dichotomous traits with unre-
lated individuals from the small-scale design was low (a pre-
valence of 41.9% even for the top 10% PRS) (Fig. 6a). The ratio of
case–control odds ratio for the top decile against the whole UK

Biobank population was 1.62 (95% CI: 1.45–1.78, P-value from a
two-tailed paired t test= 1.48E-05) and 1.81 (95% CI: 1.41–2.20,
P-value= 0.002) when using unrelated individuals in the large-
scale design and first-degree relatives in the small-scale design,
respectively (Fig. 6b). On the other hand, PRS using unrelated
individuals in the small-scale design had negligible power to
contrast the top decile and the whole population (Fig. 6b). The
large-scale design (using unrelated sample) could reach an odds
ratio of 4.08 (95% CI: 2.95–5.21, P-value= 0.0002) in the top
0.05% of PRS (Supplementary Fig. 6). Due to the limited sample
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10= highest). The prevalence was calculated as the proportion of cases in the target individuals above each decile. The odds ratios were calculated from
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The dot points and error bars represent the mean value and 95% confidence interval over the analyses of 12 traits.
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size in the small-scale design, we could not compare the perfor-
mance in the extreme percentile groups. Detailed prevalence and
odds ratio for each dichotomous trait are provided in Supple-
mentary Table 7 and Supplementary Table 8.

Further improvement of prediction accuracy using ungeno-
typed relatives. Ungenotyped relatives of target sample have
potential to contribute to predicting future phenotypes15,30,41. For
the analysis with first-degree relatives in the small-scale design
(n= 6000), we assumed that only a random half of the sample
was genotyped, and the other half was not genotyped. Among the
genotyped individuals (n= 3000), 2000 and 1000 individuals
were used as discovery and target sample, respectively, in the
prediction using the PRS approach or GBLUP (see ‘Methods’).
We also used HBLUP that could additionally utilise the infor-
mation from the ungenotyped relatives (n= 3000) of genotyped
individuals (n= 3000). The prediction performances across the
methods, PRS, GBLUP and HBLUP, were compared. Figure 7a
showed that the prediction accuracy with 2000 remaining indi-
viduals was invariant whether using PRS or GBLUP (0.99-fold
change, 95% CI: 0.98–1.01, P-value from a two-tailed paired
t test= 0.48). When including ungenotyped individuals, HBLUP
outperformed other methods. For instance, with 3000 ungeno-
typed individuals, the prediction accuracy achieved by HBLUP
with additional ungenotyped individuals was better than GBLUP
with only 2000 genotyped individuals (1.289-fold change, 95% CI:
1.207–1.37, P-value= 8.23E-09) (Fig. 7a). The prediction accu-
racy was positively correlated with the number of ungenotyped
relatives (i.e., sample size) and heritability (Supplementary Fig. 7
and Supplementary Table 9). As expected, the best prediction
performance could be achieved when all individuals were

genotyped (Supplementary Fig. 7). The values of prediction
accuracies across various methods can be found in Supplemen-
tary Table 10 and Supplementary Fig. 8. It is noted that the
prediction accuracy of HBLUP was invariant whether or not
using pedigree information between ungenotyped relatives and
the other discovery sample (Fig. 7b).

Discussion
We demonstrated that the polygenic prediction utilising close
relatives between reference and target samples outperformed the
analyses with unrelated individuals only by using the small-scale
design. Compared with the analyses with second- or third-degree
relatives, or unrelated individuals, a higher prediction accuracy
was observed from the analysis with first-degree relatives, which
was because of a lower value of Me that required fewer inde-
pendent parameters to be estimated25–27. Moreover, this higher
prediction accuracy was also probably due to the fact that close
relatives share some unknown (unmodeled) factors in addition to
additive genetic effects, which may be dominance, gene-by-family
interaction and familial environmental effects. It was also shown
that the analyses with second- and third-degree relatives out-
performed the analysis with unrelated individuals although they
were less efficient to improve the prediction accuracy, compared
to first-degree relatives.

The approach of including close relatives will be most useful in
applications where accuracy matters more than delineating
between causal genetic effects and other effects. It is known that
family-based heritability estimates can be inflated if nonadditive
genetic effects or common environmental effects shared between
close relatives are confounded with additive genetic effects3,
which can be considered biased according to the concept of
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Fig. 7 Prediction performances with and without phenotypic information of ungenotyped relatives of the target sample. a The fold change of prediction

accuracy using PRS from GWAS summary statistics with respect to that using GBLUP (PRS2000 vs GBLUP2000) and the fold change of HBLUP accuracy

with respect to GBLUP accuracy (HBLUP5000 vs GBLUP2000). The main bars represent the mean values of the fold changes averaged over the analyses of

50 complex traits. The error bars show the 95% confidence intervals of the mean fold changes. The red horizontal line indicates a ratio of 1. The subscript

in the name of each method represents the sample size in the discovery data set. b HBLUP prediction accuracy with (HBLUP5000) and without

(HBLUP*5000) using pedigree information between ungenotyped relatives of the target samples and other individuals in the discovery sample. The boxplots

show the first to the third quartile of prediction accuracies for 50 complex traits, and the whiskers reflect the maximum and minimum values within 1.5 ×

interquantile range for each group. PRS2000: Polygenic Risk Score with 2000 genotyped individuals only, GBLUP2000: best linear unbiased prediction

integrated with genomic relationship matrix with 2000 genotyped individuals only. HBLUP5000: best linear unbiased prediction with H-matrix including

2000 genotyped and 3000 ungenotyped relatives of the target samples in the discovery sample.
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narrow-sense heritability that includes the additive genetic effects
only. However, this bias should not be an issue when predicting
the future phenotypes of target sample (i.e., a new-born baby)
because such nonadditive genetic and common environmental
effects can be a valuable source to improve the prediction
accuracy28,42. Indeed, family history has been widely used as a
biomarker to predict disease risk43,44, and it can also be used to
increase the power to identify causal variants in GWAS45–47. We
consider that our method is a more systematic approach to utilise
information of family history as well as within-family
segregation48.

The prediction performance with close relatives varied,
depending on traits. For example, the prediction accuracy from
the analysis with first-degree relatives in the small-scale design (a
discovery sample size of 5000) was significantly higher than the
prediction accuracy with unrelated individuals in the large-scale
design (a discovery sample size of 220,000) for lifestyle (beha-
vioural) traits such as drinking, smoking and qualification.
However, this was not observed in mental or physical traits. This
observation agrees with a previous study showing that educa-
tional achievement is more similar in dizygotic twins, compared
with a mental trait such as neuroticism scores49. This suggests
that polygenic prediction should be based on information from
close relatives particularly for lifestyle and behavioural traits.

Previous studies reported the potential of PRS in clinical
practice7,50,51. For instance, Khera et al. reported that the top
2.5% (high-risk group) identified by PRS was at fourfold changed
risk compared with the remaining 97.5% for coronary artery
disease, which is a similar predictive power when comparing
carriers and non-carriers of a rare monogenic mutation asso-
ciated with increased cholesterol7. Our finding emphasises on an
implication of using close relatives that can increase the predic-
tion accuracy substantially, compared with the existing PRS
approaches. In the near future, it is likely that more close relatives
can be genotyped, and this information should be efficiently used
in clinical care.

We investigated if the predictive power increased when using
ungenotyped relatives of target individual in polygenic risk pre-
diction. Utilising information of ungenotyped relatives has been
widely used in the genomic prediction of economic traits in other
species, such as cattle15,37,41. However, to our knowledge, this has
never been verified in human population studies in the context of
polygenic risk prediction. Here, we explicitly verified the
approach that could enhance the predictive power, using a large-
scale human biobank data. We show that phenotypic information
of ungenotyped relatives can be useful in polygenic risk predic-
tion, which may have important implications in clinical practice.

There are a number of limitations in this study. A potential
caveat of our analysis is the limited number of relatives in the
data (i.e., only less than three close relatives for each target
individual on average). This limitation obscured the actual pre-
dictive power as the number of relatives of each target individual
should have been more than that from the UKB data that only
include genotyped samples. It may be possible to trace the
information of relatives of the genotyped individuals in the UKB
data, and HBLUP can be used to integrate the information even
though relatives do not have genotypic information, which is,
however, beyond the scope of this study. We anticipate that the
number of relatives will increase as the scale of biobank data
increases. Another limitation is that the number of lifestyle traits
is only four and a further study may be required to confirm the
finding about the prediction of lifestyle traits. It is also note-
worthy that our study focused on individuals with European
ancestry only. More studies on other ethnicities will be desirable.
This caveat has been recently raised when a PRS application
comes to clinical practice52. Thirdly, although it is well

established how to obtain the theoretical prediction accuracy
based on genotypic infromation25,32,53, or based on pedigree
information (e.g., using selection index theory)54, there is no
unified theoretical approach to derive the expected prediction
accuracy that can be applied to combined genotyped and unge-
notyped samples, i.e., in HBLUP framework. Lastly, HBLUP is
computationally demanding, which prevents using the ungeno-
typed relatives of target individuals in a large-scale data. It is
required to develop an efficient HBLUP method, i.e., based on
summary statistics.

Polygenic risk scores based on genome-wide SNP information
will provide useful information to predict the future phenotypes
of target individual, which allows an early prevention of complex
diseases. The cost of genome-wide genotyping has been drama-
tically reduced in the last decade, and multiple genotyping ser-
vices are publicly available. In fact, genomic databases such as
biobank datasets (e.g., UK, All of us, Estonian, Japanese and
Chinese-Kadoori)52 and commercial genotyping databases
(23andMe, Ancestry and MyHeritage)55 have clinical measures or
can be linked with existing national clinical databases with rela-
tive information available. Moreover, prenatal genetic tests with
information from close relatives have shown a prospective to
provide insights for several phenotypes56,57. In the near future, it
is likely that there is a high probability of finding genotyped close
relatives of a random sample58, and the prediction of their
(future) phenotypes benefits from the information of already
known genotypes and phenotypes of their relatives. Here, we
show how to use the information of relatives and highlight the
importance of their phenotypes and genotypes in polygenic risk
prediction. Our findings will have a useful implication for future
investigations into precision health and preventive medicine.

Methods
UK Biobank’s scientific protocol has been reviewed and approved by the North
West Multi-centre Research Ethics Committee (MREC), National Information
Governance Board for Health & Social Care (NIGB), and Community Health Index
Advisory Group (CHIAG). UK Biobank has obtained informed consent from all
participants. Research Ethics approval was obtained from University of South
Australia Human Research Ethics Committee (HREC).

Data and quality control. The UK Biobank (UKB) enrolled 488,377 individuals
and 92,693,895 imputed SNPs across autosomes59. For each individual, a trained
nurse or an automatic device undertook a series of anthropometric measurements
and surveys. In our study, a stringent quality control protocol was applied. SNPs
were excluded according to the following criteria: INFO score < 0.6, MAF < 0.01,
Hardy–Weinberg Equilibrium P-value < 1E-7 and missingness > 5%, one SNP was
randomly chosen to keep if there is duplicated SNPs. We only used SNPs from
HapMap 3 due to their reliability and robustness to bias in the estimation of
narrow-sense heritability. In terms of individuals filtering, individuals with a
genotype calling rate <0.95 were excluded. We performed analyses on the samples
of white British only. These filters remained 1,133,273 SNPs and 408,218 indivi-
duals. In addition, we removed ambiguous or duplicated SNPs. We calculated the
discordance rate between imputed genotypes of the first and the second release of
UKB data, and individuals and SNPs with a discordance rate larger than 0.05 were
removed. Moreover, we excluded individuals whose first- or second-principal
components exceeded 6 standard deviations from the population mean (white
British). We also randomly excluded one individual from any pair of related
individuals with a genomic relationship larger than 0.05. After these QC steps,
288,837 unrelated individuals and 1,130,918 SNPs remained.

We analysed 50 complex traits (see Supplementary Table 1) without missing
information in individual data and have the highest SNP-based heritability
estimates, which were significantly different from zero (P-values from a Wald test
<0.05) reported by Neale lab33. The number of individuals with available
information ranged from the lowest number of 237,191 individuals with heel bone
mineral density (BMD) T-score (automated) (UKB ID= 78) to the highest number
of 407,938 individuals with alcohol intake frequency (UKB ID= 1558). These 50
traits could be categorised into mental, physical and lifestyle traits.

For a continuous trait with multiple response items, we calculated the averaged
value of multiple responses, i.e., diastolic/systolic blood pressure and pulse rate.
For categorical traits, e.g., Qualifications: College or University degree, individuals
with College or University degree were marked as cases and the remaining
individuals are marked as controls.
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Large- and small-scale design for risk prediction. In the large-scale design, we
used four different analyses with (1) unrelated individuals only, (2) inclusion of
first-, (3) second- and 4) third-degree relatives according to their kinship coeffi-
cients. In each analysis with relatives, we substituted the same number of unrelated
individuals with the first-, second- or third-degree relatives available in the data.
The kinship coefficients and (genomic) relationships used to classify the analyses in
the large-scale design were derived in the following process.

Genomic relationship matrix is computed by PLINK version 1.960. Level of
relatedness is determined by kinship coefficient which is defined as the probability
that a pair of randomly homologous alleles are identical by descent. Kinship
coefficient is inferred by KING software version 2.161. Relatedness thresholds and
the proportion of close relatives substituted in the sample of unrelated individuals
for the analyses of first-, second- and third-degree relatives are described in
Supplementary Table 2.

With 288,837 unrelated individuals of pairwise genomic relationship < 0.05, we
identified 279,020 individuals with available phenotypic information on average.
For the large-scale design, we partitioned these unrelated individuals into a
proportion of 80% (223,215 individuals) and 20% (55,803 individuals) for
discovery and target samples, respectively. To compare with analysis with unrelated
sample, we replaced unrelated pairs with close relatives identified by kinship
coefficient. We introduced the first-, second- or third-degree relatives (Fig. 1;
Supplementary Table 2) that were identified from the total sample (408,218
individuals) according to their kinship coefficients inferred from genotype
information. We removed duplicated individuals within and between discovery
and target sample to avoid bias in the analyses.

In the small-scale design, we used four different analyses with (1) unrelated
individuals only, (2) first-, (3) second- and (4) third-degree relatives, in a similar
manner as in the large-scale design, but with a small sample size. For the analysis
with unrelated individuals only, we randomly selected 6000 individuals from
279,020 unrelated individuals. For the analyses with each level of relatedness, we
used a graph and network analysis tool62 to maximise the average relatedness
among selected individuals from the set of each level of relatedness. For example,
for the first-degree relatives, each individual, who has one or more of first-degree
relatives, is represented as a node and their first-degree relatives are linked through
undirected edges, using igraph version 1.2.5 package62. The number of individuals
in each group varied from 2 to 6 members. We then selected groups with the
highest number of individuals starting from groups with six members to groups
with two members until we achieved 6000 individuals. Based on the selected
individuals, we randomly assigned 5000 individuals into the discovery data set and
the remained 1000 individuals were used as the target sample. These steps were
equally applied to second- and third-degree relatives. The average numbers of
individuals per family for each level of relatedness is reported in Supplementary
Table 11.

To compare prediction accuracies between analyses, for instance, using first-
degree close relatives in the large-scale design against small-scale design, we
computed the mean fold change across a variety of different traits with its 95%
confidence interval and assessed the statistical significance level whether the fold
change was significantly different from 1 with a two-tailed paired t test.

Estimation of Polygenic Scores in UK Biobank sample. Polygenic Risk Score
(PRS): The phenotypes of each trait were adjusted for batch information, centre,
sex, age and population stratification (using the first ten principal components),
using a linear regression. The pre-adjusted phenotypes were used for the following
GWAS and PRS analyses. We estimated SNP effects by conducting GWAS for each
of 50 traits using the discovery sample of 223,215 and 5000 individuals in the large-
scale and small-scale design, respectively. PRS were calculated for the target indi-
viduals (55,803 and 1000 individuals for large-scale and small-scale sample,
respectively), as the sum of the risk alleles weighted by the estimated SNP effects
from the GWAS using the discovery sample only. Then, we obtained the corre-
lation between the PRS and pre-adjusted phenotypes in the target data set. For
these analyses, we used PLINK version 1.960 and PRS were computed using PRSice
version 2.1.1135.

Genomic best linear unbiased prediction (GBLUP): We used GBLUP14,38–40,63,64

to generate polygenic score for each individual utilising the genomic relationships
between individuals. GBLUP fits a genomic relationship matrix that is estimated
based on the 1,130,918 genome-wide SNPs, which can be written as

G ¼ WW0=M;

where G is genomic relationship matrix, W is the matrix for individual genotypic
information coded as 0, 1 or 2 and M is the number of SNPs. This analysis is
conducted by MTG2 version 2.1565.

A matrix-based best linear unbiased prediction using pedigree information
(ABLUP): ABLUP can be used to estimate polygenic scores, fitting A matrix that is
based on pedigree information only without genotypic information.

Polygenic prediction for ungenotyped relatives (HBLUP): In the small-scale
design, we randomly chose 3000 individuals in the discovery set to set as missing
genotyped. We first reconstructed the pedigree from genotypic information by
PRIMUS66 version 1.9.0 to obtain pedigree. After reconstructing pedigree, we
removed individuals with ambiguous information identified by PRIMUS. With the
reconstructed pedigree, we computed genomic-pedigree relationship matrix (H-

matrix) from genomic relationship matrix (G) and numerator relationship matrix
(A)15,37,41. A matrix was solely based on pedigree information. H-matrix is
computed as follow37,67:

H ¼
H11 H12

H21 H22

� �

¼
A11 þ A12A

�1
22 G� A22ð ÞA�1

22 A21 A12A
�1
22 G

GA�1
22 A21 G

" #

:

Here, we use the subscript 1 for ungenotyped and 2 for genotyped individuals. This
approach is also known as the single-step approach in livestock genetics15,37. We
applied a BLUP approach to calculate polygenic scores fitting the H-matrix
(HBLUP). All calculations were computed in MTG2 version 2.1565.

Theoretical genomic prediction. The theoretical accuracy of genomic prediction
can be derived, taking into account heritability (h2), the number of effective
chromosome segments (Me) and the sample size in the reference data set (N)25,32.
Me can be empirically estimated as the inverse of the variance of genomic rela-
tionships between the discovery and target sample25,28. In the large-scale design, we
estimated Me from samples who were available for standing height trait (UKB ID
50), and used the estimated Me to obtain theoretical prediction accuracies for the
50 traits. This was because the empirical estimation of Me was computationally
demanding and samples available for other traits were mostly overlapping and
homogeneous with those for standing height trait. To obtain the theore-
tical accuracy of genomic prediction, we used Equation 125,28,32. Pasanuic68 and
Dudbridge53 et al. introduced a theoretical prediction accuracy when using
random-effects model (i.e., GBLUP) although it is not substantially different from
Eq. (1).

Previous studies25,28,32 have shown theoretical genomic prediction accuracy for
a trait, which can be formulated with

ry;ĝ ¼ h ´ rg;ĝ ¼ h ´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2

h2 þ Me

N

s

¼
h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ Me

N

q ; ð1Þ

where ry;ĝ is the correlation coefficient between the true and estimated genetic

scores, h2 is the heritability of a trait, Me is the effective number of chromosome
segments25–27 and N is the number of phenotypic observations. Equation (1) shows
that Me plays a key role in the prediction performance in addition to h2 and N. A
smaller number of independent chromosome segments can be estimated more
accurately with the same number of records. Me is a function of effective
population size and can be empirically estimated as25,27

Me ¼
1

var Gij

� � ; ð2Þ

where Gij is the genomic relationship between individual i in discovery and
individual j in the target sample28. It is expected from Eq. (2) that including high
relationships in G (i.e., close relatives) reduces the values ofMe, hence increases the
prediction accuracy.

Analytically derived Me values for a single-target individual when adding its

relatives. When adding relatives of a single-target individual in the reference data
set, the variance of genomic relationships between the target individual and
reference sample is changed, hence Me value is also changed. We considered
various numbers of relatives of a single-target individual in the discovery sample in
both small- and large-scale design to analytically quantify how Me values were
changed and to assess the prediction accuracy using Eq. (1). In the analytical
derivation, we used the existing genomic relationships between the target indivi-
dual and the discovery sample from the large- and small-scale designs, and added
0.125, 0.25 or 0.5 to the relationships when adding third-, second- or first-degree
relative of the target individual.

Heritability estimation. Heritability can be estimated using unrelated individuals,
whose covariances would be determined by the additive genetic effects only,
therefore it is a narrow-sense heritability. On the other hand, family-based herit-
ability36 from a sample with familial relationships included both additive genetic
effects and remaining family effects. We define two kinds of models and herit-
abilities as

yj ¼
gj þ ej;

gj þ fj þ ej;

(

and

h2 ¼
σ
2
g= σ

2
g þ σ

2
e

� �

; for narrow � sense heritability ð3Þ
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g þ σ

2
f
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2
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e
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>

<

>

:

where yj, gj, fj and ej is the phenotypic value, additive genetic effects, and familial
effects, and residual effects for the jth individual, respectively. Similarly, σ2g ; σ

2
f and

σ
2
e are the variance of the genetic, family and residual effects, respectively. We used

both narrow-sense and family-based heritabilities to compare empirical and the-
oretical prediction accuracies (Eq. (1)).
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We used LDSC16 to estimate narrow-sense heritability as it is appropriate to
deal with a large number of individuals while estimating family-based
heritability could be done by GREML10 using MTG2 version 2.1565 because of a
small number of close relatives.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw genetic and phenotypic data used in this study are available from UK Biobank.

The UK Biobank data are publicly accessible through the procedure described in the

webpage, http://www.ukbiobank.ac.uk/using-the-resource/. The source code for MTG2

version 2.15 is publicly available in https://sites.google.com/site/honglee0707/mtg2. The

source data underlying Figs. 1–7 and Supplementary Figs. 1–8 are provided as a Source

Data file. All other intermediate data generated in the downstream analyses in this study

are available upon request. Source data are provided with this paper.

Code availability
Code reported in this paper is available from: for LDSC, see https://github.com/bulik/

ldsc; for MTG2, see https://sites.google.com/site/honglee0707/mtg2; for UK Biobank, see

http://www.ukbiobank.ac.uk/; for PLINK1.9, see https://www.cog-genomics.org/plink/

1.9/; for PRIMUS, see https://primus.gs.washington.edu/primusweb/; for PRSice, see

https://choishingwan.github.io/PRSice/; for igraph, see https://igraph.org/redirect.html.

Source data are provided with this paper.
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