
Efficient, Portable Implementation Of Asynchronous Multi-place
Programs

Ganesh Bikshandi
IBM STG, India

gbikshan@in.ibm.com

Jose G. Castanos
IBM T.J.Watson Research Center

castanos@us.ibm.com

Sreedhar B. Kodali
IBM STG, India

srkodali@in.ibm.com

V. Krishna Nandivada
IBM India Research Lab
nvkrishna@in.ibm.com

Igor Peshansky
IBM T.J.Watson Research Center

igorp@us.ibm.com

Vijay A. Saraswat
IBM T.J.Watson Research Center

vsaraswa@us.ibm.com

Sayantan Sur
IBM T.J.Watson Research Center

surs@us.ibm.com

Pradeep Varma
IBM India Research Lab
pvarma@in.ibm.com

Tong Wen
Interactive Supercomputing Inc.

tong.wen@gmail.com

Abstract
The X10 programming language is organized around the notion
of places (an encapsulation of data and activities operating on the
data), partitioned global address space (PGAS), and asynchronous
computation and communication.

This paper introduces an expressive subset of X10, FLAT
X10, designed to permit efficient execution across multiple single-
threaded places with a simple runtime and without compromising
on the productivity of X10. We present the design, implementation
and evaluation of a compiler and runtime system for FLAT X10.
The FLAT X10 compiler translates programs into C++ SPMD pro-
grams communicating using an active messaging infrastructure. It
uses novel techniques to transform explicitly parallel programs into
SPMD programs. The runtime system is based on IBM’s LAPI
(Low-level API) and is easily portable to other libraries such as
GASNet and ARMCI.

Our implementation realizes performance comparable to hand-
written MPI programs for well-known HPC benchmarks such as
Random Access, Stream, and FFT, on a Federation-based cluster
of Power5 SMPs (with hundreds of processors) and the Blue Gene
(with thousands of processors). Submissions based on the work
presented in this paper were co-winners of the 2007 and 2008 HPC
Challenge Type II Awards.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

General Terms Design, Languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’09, February 14–18, 2009, Raleigh, North Carolina, USA.
Copyright c© 2009 ACM 978-1-60558-397-6/09/02. . . $5.00

Keywords X10, SPMD, compiler, runtime, PGAS, APGAS,
asynchrony, HPC, HPC Challenge, Random Access, FFT, Stream

1. Introduction
The past several years have seen an explosion of mainstream ar-
chitectural innovation — multi-cores, symmetric multiprocessors,
clusters, and accelerators (such as the Cell processor, GPGPUs) —
that now requires application programmers to confront varied con-
currency and distribution issues. This raises the fundamental ques-
tion: what programming model can application programmers pro-
ductively use for such diverse machines and systems?

The X10 programming language [18] was designed to address
the challenges of “productivity with performance” on these diverse
architectures. Designed on a modern sequential object-oriented
base with an advanced type system, X10 is an explicitly concur-
rent language that introduces a few core constructs for communi-
cation and distribution. These constructs are language-independent
and form the basis of the Asynchronous Partitioned Global Address
Space (APGAS) model. The APGAS model organizes computa-
tion into a collection of logical places. A place encapsulates data
and one or more (asynchronously executing) activities that operate
on the data. Places capture the idea of locality (data in the same
place is “close”, data in a different place is “far”) and heterogeneity
(one place may be targeted for a collection of tightly integrated
cores, another may be targeted for a GPGPU). As in the Parti-
tioned Global Address Space (PGAS) model (see languages such
as UPC[5], Co-Array Fortran [15], and Titanium [12])) data in all
places resides in a global address space; thus a field of an object
can point to an object in a different place. Operations permit the
allocation of data in multiple places as part of a single global data-
structure (for example, a distributed array). In principle, an activity
may perform any operation – read, write, call procedures, spawn
other activities locally (at the same place), or remotely (at other
places) etc. Constructs are provided for detecting termination and
quiescence of activities, and for atomic execution.

With such flexibility comes an implementation challenge. Un-
like other PGAS languages such as UPC, Co-array Fortran and Ti-
tanium that are organized around the notion of SPMD computa-

271

tion (when a computation is initiated, a thread is started in each
place p0, p1, p2, ...), X10 is organized around active mes-
saging [20]: computation is initiated with a single activity exe-
cuting at place p0. Although, there has been research on how to
compile and run SPMD style input programs, we are not aware of
any work that tries to compile active messaging code onto multiple
places and run it efficiently.

This paper introduces a subset of X10, FLAT X10, designed to
be rich enough to express various HPC programs and yet retain
a simple performance model. The programs are comparable to
SPMD programs in languages such as UPC, but permit simple
ways of overlapping computation with communication using the
asynchronous features of FLAT X10. We also present a simple
runtime and syntax-directed compilation strategy for FLAT X10,
and evaluate its performance on several kernel programs. 1

The compiler translates FLAT X10 programs to C++ programs.
This strategy allows us to reuse powerful general purpose opti-
mizations already built into C++ compilers for various architec-
tures (e.g. x86, PPC).2 The (C++) runtime is implemented on top of
IBM’s LAPI [13], a low-level active-messaging library that is the
lowest programmable layer on the IBM Federation switch. LAPI
permits efficient communication between multiple processes run-
ning on a cluster. We have also ported the relevant portions of LAPI
on top of the Blue Gene Deep Computing Messaging Framework
(DCMF) to get an implementation of FLAT X10 on the Blue Gene.

As evidence for the interestingness of FLAT X10 and the im-
plementation in this paper, we remark that the FLAT X10 submis-
sions (based on the work presented in this paper) were adjudged co-
winners of the HPC Challenge Type II Awards for 2007, and also
for 2008. Additionally, we show that several FLAT X10 programs
achieve performance comparable to or better than corresponding
MPI programs.

Our work makes the following contributions:

1. We identify a subset of X10, FLAT X10, which is rich enough
to express many (SPMD) HPC programs of interest, while per-
mitting the programmer to overlap computation with communi-
cation.

2. We show how these parallel programs with explicit synchro-
nization primitives and asynchronous, fine-grained tasks may
be compiled into multi-process SPMD programs that use an
active-messaging library (LAPI).
We show how to implement the FLAT X10 rooted exception
model (which specifies how exceptions are propagated from
activities to an enclosing termination detection construct) using
the LAPI fence mechanism.
We show that for single-threaded processes, FLAT X10’s
atomic may be implemented as a no-op.
We also present efficient implementations of distributed arrays.

Additionally, we re-use several well-known techniques such
as scalar privatization (this replicates side-effect free computation
across places thus replacing communication with computation).

1.1 Rest of this paper
In the next section we motivate and introduce FLAT X10 and de-
scribe how its restrictions enable a particularly simple organization
of the run-time. Section 3 describes the basic compilation scheme.
Section 4 describes the organization of the runtime in more detail.

1 Section 7 briefly discusses work completed after the submission of this
paper which extends the ideas in this paper to an implementation of full
X10.
2 We used C++ rather than C so that we could take advantage of the C++
object model in implementing the X10 object model.

Section 5 describes experimental results obtained on a cluster
of Power5 SMPs and on the Blue Gene. Finally we conclude with
a discussion of related work and future work.

2. X10 and FLAT X10
Restricting our attention to concurrency control constructs, the X10
(v1.5) programming language can be thought of as extending the
sequential subset of Java programming language (v1.4) with the
following:

S ::= Statement
finish S
when (cond) S
clock c = new clock();
async (p)[clocked(c1, . . . ,cn)]S
c.resume();
next;
seqS

E ::= Expression
new T[D](point p){E;};
seqE

Here, for a syntactic category X, we use seqX to name a
non-terminal whose productions specify the sequential constructs
for X. For instance, in X10, the productions for seqS include
conditionals (i.e. we have the production seq(S)::= if (e)
S), (scalar and array) assignments, local variable declarations,
(static and instance) method invocations, inner class declarations,
try/catch/finally statements, throw statements, loops etc. The pro-
ductions for seqE includes arithmetic operations, constructor in-
vocations, etc

In brief, finish S executes the statement S and waits for all
asyncs spawned (recursively) during its execution to terminate. A
when statement suspends until such time as (if ever) the condition
cond is true, and then it evaluates the body S. The successful
evaluation of cond and the execution of S are performed in a
single atomic step. Execution of the async statement creates a
new activity at the place p, clocked on the clocks c1, . . . ,cn (if
the clause is present). This activity executes S asynchronously with
the spawning activity. S is permitted to access final variables in its
lexical environment.

A clock in X10 is a dynamically created barrier. Clocks are de-
signed to permit determinate operations. Only activities registered
on a clock may participate in operations on the clock. An activity A
is automatically registered on a clock when it creates the clock. A
can register a new activity B it is creating on some subset of clocks
that A is registered on (using the clocked clause in async). The
statement c.resume() signals to the clock c that the activity has
completed its work in the current phase of the clock. The statement
next causes the current activity to suspend until all activities reg-
istered on the clock have completed their work in the current phase
of the clock. (Thus X10 supports dynamic, split-phase barriers.)

X10 provides a mapping (called distribution) from a collection
of indices(called points) to places. The global array creation ex-
pression specifies that an array of type T is created at one or more
places (as specified by the distribution D), with the element at index
p initialized with the result of executing e.

X10 also provides some constructs as syntactic sugar over the
basic constructs discussed above. For instance, atomic S abbre-
viates when(true) S. Similarly, ateach(point p: D) S
abbreviates for(point p: D.region) async (D.dist(p))
S.

As the BNF productions indicate, these control constructs can
be arbitrarily nested, subject to static semantic conditions. These
conditions are motivated and defined explicitly in [18].

272

M ::= finish Z Z ::= ateach P P ::= async (p)
T[.] a = new T[u] (point p) {e} clock c = new clock() [clocked (c1, . . . ,cn)] P
Z final T a = e atomic P
seqM P next;

seqZ seqP
Intuition: M (“Main”) statements may be executed only from the “top level” activity. An array initializer is considered a top-level statement
because it contains an implicit finish. Z (“place Zero”) statements may be executed only at place p0. P (“any Place”) statements may be
executed at any place.

Figure 1. FLAT X10 Grammar.

2.1 FLAT X10 specification
FLAT X10 is obtained from X10 by using the following intuitions.
A key source of power in X10 is the (unrestricted) finish state-
ment. finish S requires a full distributed termination detection
algorithm (e.g. see [3] as an entry point to the very rich litera-
ture on this topic), since S may spawn nested activities of arbi-
trary length, scattered across an arbitrary subset of places. How-
ever, most SPMD programs require a single global barrier. This
can be obtained easily by restricting finish to occur only at “top
level” statements, thus requiring finish statements to be flat.

Another source of expressiveness is arrays distributed over
some subset of places in some programmer-specified fashion (e.g.
block-cyclic). Such arrays are not hard to implement, at least con-
ceptually. For convenience we choose to restrict FLAT X10 to only
have arrays that are uniquely distributed across all places. (Arrays
with user-defined distributions over all places can be built up from
such arrays.)

We distinguish between two kinds of asyncs. The ateach
statement collectively spawns (one or more) asyncs at each place
in the underlying distribution. Since we are mostly interested in
representing SPMD computations, we permit only activities at
place 0 to execute ateach statements; further we require that
the underlying distribution be unique. No additional restrictions
are placed on the bodies of ateach statements.

Going beyond SPMD computations, we permit any activity to
launch an activity at any other place – such activities are the pri-
mary vehicle for supporting communication overlapping with com-
putation. For simplicity, we require that such asyncs be flat(i.e.
they do not in turn spawn further asyncs) non-blocking and not
throw any exceptions.3 The requirement that the async not throw
exceptions permits the implementation to reuse the LAPI comple-
tion notification mechanism (cf. LAPI FENCE) to determine (at
the source) that the async has terminated.

These restrictions are formalized in Figure 1. We further clas-
sify statements into three categories: Main statements (M), Place
Zero statements (Z) and Any Place statements (P). M statements
may be executed only from (methods called from within) the body
of the main method at place p0. Z statments may be executed
only at place p0. P statements may be executed at any place. (We
distinguish between M and Z statements – which are all executed
at place 0 – only to give a simple description of the restrictions
on finish.) These restrictions are checked by the compiler. Each
category permits method calls (as long as the body of the method
belongs to the same category), and is closed under the sequential
control constructs of the language. Figure 1 summarizes the pro-
ductions for M, Z and P. The productions should be self-evident,
given the motivation above; we remark that global array creation is
restricted to M since it implicitly involves a finish.

3 We have recently relaxed the flatness restriction to permit two-level asyncs
as necessary for remote method invocation with return, i.e. in the body of
an async A we permit an async back to the place which created A. A
discussion of this extension is beyond the scope of this paper.

2.2 Programming in FLAT X10

Is FLAT X10 expressive? A surprisingly large number of programs
can be expressed within this fragment. For instance the HPC Chal-
lenge benchmarks, NAS parallel benchmarks, stencil iteration, etc.
In essence, FLAT X10 corresponds to a “PGAS + (flat) Active Mes-
saging” computation model, which permits the expression of pro-
grams in PGAS languages such as UPC and programs which use
a message-passing API such as MPI or an active-messaging API
such as LAPI, GASNet or ARMCI.

We refer the reader to [10] for a detailed discussion on the
implementation of the benchmarks, save for one illustration of
overlap.

Random Access The kernel of the RandomAccess computation
may be expressed by the following M method:
1. static void RAUpdate(final long NU,
2. final long LogLocalTableSize,
3. final LocalTable[.] Table) {
4. finish ateach(point [p] : UNIQUE) {
5. long ran=HPCC_starts(p*(NU/NP));
6. for (long i=0; i<NU/NP; i++) {
7. final long temp=ran;
8. final int placeID =
9. (int) ((ran>>LogLocalTableSize)&MASK);
10. async(UNIQUE[placeID])
11. Table[placeID].update(temp);
12. ran = (ran << 1)(̂ran < 0L ? POLY : 0L);
13. } } }

The method executes a finish/ateach; within the ateach
remote asyncs are spawned at Line 10. Note that FLAT X10 does
not permit the spawning activity to wait for these spawned asyncs
to terminate. Instead these asyncs are governed by the finish
in the M code at Line 4.

FT–Overlap The HPCC FT computation shows in a different con-
text that a P-procedure (called from a Z-procedure, Line 3) may
spawn a remote inlined async (Line 16). arrayCopy is a built-
in operation that moves bytes from a (possibly remote) array frag-
ments into a local array. The source spawns an async to copy the
newly computed array while it keeps going with the computation
for the next place. All the asyncs are governed by the finish at
Line 2. (See Figure 2.)

CG – Conditional Wait The kernel of the CG (Conjugate Gradi-
ent) benchmark uses an all-to-all “butterfly” reduction. This can
be expressed through the following P-procedure. The procedure
spawns a remote inlinable async which performs an atomic op-
eration at the destination. The main activity running at the remote
place performs a conditional wait (when (done[i]);).

In the implementation, such a conditional wait is implemented
with a “busy help” strategy: by entering the communication subsys-
tem, processing incoming active messages and subsequently testing
the condition. This is a correct strategy because each place is single-
threaded and hence the only activity that can change the condition
is an activity received over the network. (See Figure 2.)

273

1. static void transposeBA(final Block[:rail] FFT)
2. finish ateach(point [p]: UNIQUE)
3. FFT[p].transpose(FFT, false);
4.
5.void transpose(final Block[:rail] FFT,
6. final boolean a2b) {
7. final double[:rail] Y= a2b? A: B;
8. // local transpose
9. int rowStartA = I*nRows;
10. for (int k=0; k<NUM_PLACES; ++k) {
11. int colStartA = k*nRows;
12. transpose(Y);
13. for (int i=0; i<nRows;++i) {
14. final int srcI=(2*(i*SQRTN+colStartA)),
15. destI=2*(i*SQRTN+I*nRows);
16. final int kk=k;
17. async (UNIQUE[k])
18. Runtime.arrayCopy(Y, srcI,
19. (a2b? FFT[kk].B
20. : FFT[kk].A), destI, 2*nRows);
21. }}}

1. void sumReducePiecesComm(LocalVector[.] LV) {
2. for (point [i] : rowPartner) {
3. final int k = rowPartner[i];
4. final int index = I*parent.py+k;
5. final Vector myParent = parent;
6. Runtime.arraycopy(e,0,buffer, i*size, size);
7. async (UNIQUE[index]) {
8. LocalVector target = LV[index];
9. Runtime.arraycopy(buffer, i*size,
10. target.scratch,i*size, size);
11. atomic target.done[i]=true;
12. }
13. when (done[i]);
14. done[i]=false;
15. for (int m=0; m<size; ++m)
16. e[m] += scratch[i*size+m];
17. }
18.}

Figure 2. FT and CG related pieces of code

2.3 Runtime for FLAT X10 – Overview
The flatness restrictions permit a particularly simple organization
of the runtime library (X10LIB) which we now preview (details
in Section 4). FLAT X10 programs are compiled to a single exe-
cutable. Execution of an FLAT X10 program causes the executable
to be launched at the number of places specified by the user. Each
place is created with a single worker (thread), and this worker pro-
ceeds independently until it hits a global barrier operation. Three
barrier operations are provided: finishStart, signaling entry
into the body of a finish operation ; finishEnd, signaling exit
from a finish and variable broadcast permitting a value com-
puted at place p0 to be broadcast to all other places, where it is
stored in a local variable.

Local asyncs are executed inline. Remote asyncs are executed
by sending an active-message to the target place. Incoming asyncs
are handled by a worker when it enters the communication subsys-
tem on a subroutine call through an explicit poll call or because
of an outgoing communication. Incoming asyncs are executed in-
line to completion.4 Inline execution of asyncs does not introduce
spurious deadlocks since asyncs are non-blocking. Since asyncs
cannot throw exceptions, the message completion mechanism in
the underlying LAPI runtime can be used to communicate termina-
tion of the async to the originating thread.

Since only one worker is permitted per place, atomic S may
be implemented as S: there is no need to obtain a lock to guar-
antee atomicity. Similarly, there is no need for sophisticated load-
balancing schemes such as parallel depth-first scheduling or work-
stealing that are needed by full X10.

3. SPMD translation of FLAT X10 programs
We now discuss how FLAT X10 programs are compiled.

After type-checking, the FLAT X10 compiler first verifies that
the program is a valid FLAT X10 program and then translates the
source program into an SPMD sequential C++ program5 with calls
into the X10LIB runtime. This runtime is responsible for imple-

4 Thus, in the terminology of messaging systems such as LAPI, GAS-
Net and ARMCI, FLAT X10 semantics does not require an independent
progress guarantee for messages from the runtime. It is possible to extend
our implementation scheme to permit interrupt-driven handling of mes-
sages.
5 This means that the same program is run in all places.

menting the APGAS abstractions – remote references, inter-process
messages, barriers (see Section 4). We use a whole program anal-
ysis to do the verification; this involves resolving virtual function
targets using class hierarchy analysis [9] (the precision of our anal-
ysis can be improved by improving the precision of the CHA).

The design of X10 ensures that the only code that runs at places
other than p0 (“remote code”) is the code in the body of asyncs
and ateaches. The only interaction of the remote code with the
statement within which it is embedded is straightforward: (a) the
remote code may access final variables in the enclosing lexical
environment, (b) the remote code may spawn (local or remote)
asyncs, and (c) the remote code may throw an exception that
should be transmitted to the governing finish statement.

The design of FLAT X10 ensures that a finish is executed
only by p0 and is never nested. Therefore a correct design for the
implementation is as follows: (a) The code at places other than p0
is organized in an “event loop” which waits for an active message
to arrive, and executes it (the message specifies a function to be
executed and the arguments to the function). (b) On executing an
ateach, the thread at p0 sends an active message corresponding
to the body of the ateach to other places. (c) An async is
executed by sending an active message that is executed inline by
the thread at the target of the async. (d) On (normal or abrupt)
completion of active message corresponding to the body of an
ateach, and of all asyncs spawned by it, a message is sent to
p0 with this termination information. (e) On reaching the end of
the statement in the body of a finish, the thread at p0 waits for
acknowledgements (sent in from every other thread). (f) Based on
this termination status, the code at p0 determines the next statement
to be executed at p0 and execution continues. In what follows we
will refer to this design as the “Message passing” design. With
extensions to support full finish this design can be extended to
handle all of X10.

The design can be improved to permit fewer notifications of
completion of ateach bodies to p0. (For discussion of related
issues, see the discussion of “fork join” execution vs. SPMD exe-
cution in [6].) Consider the code:
finish {

stm1;
ateach(point p: UNIQUE) stm2;
stm3;
ateach(point q: UNIQUE) stm4;

}

274

cputime = -mysecond(); // begin timing
finish ateach(point [p]: UNIQUE)
for (i=0;i<N;i++) {
final int placeID= ...;
async (UNIQUE[placeID])
Table[placeID].
array[(int) (temp &Table[placeID].mask)]++;}

cputime = +mysecond(); // end timing
System.out.println (cputime);

if (here == p0) cputime = -mysecond();
finishStart(0);
Exception z = null;
try { for (i=0;i<N;++i) {

const int placeID=...;
LibAsync(...);// code to invoke the async.

}
} catch (Exception e) {z=e}
finishEnd(z);
if (here == p0) {
cputime += mysecond();
System.out.println(cputime); }

Figure 3. Core of FLAT X10 RandomAccess program (left) and its SPMD translation into C++ (right).

In the “Message passing” design, notifications will be sent to p0
from each place on completion of stm2. Assume that stm1 and
stm3 do not throw any exceptions or otherwise exit the finish
scope (stm2 and stm4 are permitted to throw exceptions). Under
this condition, all places will execute stm2 and stm4. If we ensure
that the bodies of ateachs are executed at all places in “program
order” (i.e. stm2 is executed before stm4 in the example above),
the notification of completion of stm4 will imply the completion
of stm2. Hence the thread at p0 does not need to wait for a
completion message corresponding to stm2.6

This motivates the design of the alternative “SPMD” code gen-
erator (the topic of this paper). In this design, a single notification
of completion is sent to p0 (from all threads) for each finish (as
opposed to one notification for each ateach within the scope of
the finish). The statement in the body of a finish is translated
compositionally to SPMD code. The translation of the sequential
constructs of X10 to C++ is routine and is skipped in what follows
except for a few illustrative examples. In some cases for a phrase X
of syntactic category χ we specify the translation σχJXK by speci-
fying the resulting C++ code directly. In other cases we specify it
indirectly through the translation of X into another FLAT X10 frag-
ment X’ of category χ′ (i.e. σχJXK=σχ′JX′K). The rules are defined
carefully so there is no infinite regress.

Main programs (M). We translate the FLAT X10 finish state-
ment to a pair of finishStart and finishEnd statements.
The functions finishStart and finishEnd are global fence
routines (Section 4.2).
σMJfinish UK =

if (CS==0)
CS=finishStart(0);

Possibly jump rest of this code segment based on CS
Exception z=null;
σZJUK // z is inscope in U.
finishEnd(z);
CS=0;

Array initialization. This is translated into an ateach loop, sur-
rounded by a finish. We omit the details for lack of space.

Sequential control constructs are dealt with in a straightfor-
ward fashion. We illustrate with sequencing, conditionals and while
statements. Note: σMJM1 M2K=σMJM1KσMJM2K.

if statements derived from M are translated by evaluating the
predicate at place p0 and then broadcasting (using the X10LIB call
sendReceive) the value to all the other places. This predicate
value is used as a guard for executing the body of the if statement.
Thus:

6 The requirement that stm1 and stm3 not exit the finish scope perma-
turely is necessary; if they do, then according to the semantics of finish,
either stm1 or stm3 (or both) should never be executed, and this scheme
will fail.

σMJif (e) MK =
bool flag;
if (here==p0) flag=σMJeK;
sendReceive(flag);
if (flag) σMJMK
while statements are translated similarly. Before every itera-

tion of the loop, place p0 evaluates the predicate of the loop and
broadcasts this value to all the other places. The body of the while
statement is executed (at any place) only if the predicate evaluates
to true. (for loops are treated similar to the while loops.) Thus:
σMJwhile (e) MK =

while (true){
bool flag;
if (here==p0) flag=e;
sendReceive(flag);
if (!flag) break;
σMJMK

}

Place zero programs (Z). FLAT X10 admits ateach loops that
iterate only over a unique distribution. Thus the translation of
ateach(pointp : UNIQUE)P is the translation of
try {

final point p=[here.id];
P

} catch (Exception u) {
push(u, z);

}

Here z is the local variable introduced by the enclosing finish
to record exceptions thrown locally.

Clock creation statements are translated to the empty statement.
The FLAT X10 language permits in-scope final variables to
be visible across all places. The initialization of a final variable
involves evaluation of an expression e at place p0. The value is
broadcast to all places in case the variable is referenced within an
async.

A P-statement is translated thus:
σZJPK = if (here==p0) σPJPK
(Note that Z statements must be executed only at p0; hence the
check.) Final assignments final T a = e; are translated in a
similar fashion:
σZJfinal T a = e;K =

T a;
if (here==p0) a=e;
sendReceive(a)

The value is broadcast to other places since it might be referenced
in an async later in the code; see below for a discussion of
optimizations.

Sequential control constructs for Z are dealt similar to the trans-
lation shown for the sequential control constructs of M.

275

All-place programs (P). atomic S is implemented
as just S. This is possible because the single-threaded runtime
implementation at each place executes S without any context
switches. The X10 language guarantees that S is sequential and
non-blocking. The translation of such a statement generates no
LAPI calls. In the absence of such calls, the runtime is guaranteed
to execute S without any context switches (and hence there is no
need to obtain locks).

Similary, next is translated to GlobalSync();, an invoca-
tion of a global barrier (Section 4.2).

Asyncs are dealt with thus. We convert the body of an async
into a closure. The X10LIB routine LibAsync is responsible
for invoking the closures and passing arguments to it. Thus the
async statement is replaced with a call to LibAsync. The body
of the async is outlined into a separate function with a uniquely
generated name. LibAsync uses the name of the function to
locate the function and execute it.
σPJasync (p) [clocked(c1, . . . ,cn)] PK =

// clocked arguments if any are ignored
// environment required by async body
// is sent as arguments.
LibAsync(p, func-async1-id, args)

with the following code generated on the side:
void func-async1 (async-args-t args) {
// args explicitly unpacked here,
σPJPK

}

The FLAT X10 language design ensures that clocks can be im-
plemented through a global barrier (GlobalSync). Hence there
is no need to implement a separate mechanism for tracking which
activities are registered on which clocks. We omit details for lack
of space.

3.1 Optimizations
The rules described above are basic SPMDization rules. Our im-
plementation includes many additional optimizations:

• The value of a predicate is broadcast to all the places only if it
is needed (body of the if-condition/while condition contains an
ateach).

• The final variables whose initialization depends only on
scalar variables and values and does not have any side effects
(e.g. I/O) are not broadcast. Instead, the code is replicated
across all the places (this reduces communication overhead).

• The value of a final variable is broadcasted/replicated, only
if it is used in an ateach block or a remote async.

• Instead of broadcasting the value of the predicate of an if-
statement separately, we use the parameters and the return value
of the finishStart function to communicate the value of
the predicate (besides working as the starting point of a bar-
rier). Thus avoiding the cost of invoking the sendReceive
function. 7

• Using finishStart function to communicate the success or
failure of predicates is an overhead for finish statements that
are not within any if-statement. Thus we make a special case for
finish statements that are within an if-statement and those
which are not. For the later case, the finishStart function
is only used as a barrier.

• While translating for-loops and while-loops, we can avoid
broadcasting the loop-guard values and instead replicate the

7 We ignore the parameters and the return value in our presentation of rules
in this section.

computation, if the computation does not involve any place
specific data.

• We transform certain runtime calls into distributed array reduc-
tions by identifying specific patterns. In our experience, array
initialization has been the chief beneficiary of such an optimiza-
tion.

A related optimization that we perform as part of our compiler
is that of merging of remote reductions. Instead of sending each
remote reduction separately, our runtime aggregates remote reduc-
tions and then sends an aggregated reductions for evaluation. This
has an impact on the communication overhead.

4. The FLAT X10 runtime: X10LIB

4.1 Activities and Messages
A FLAT X10 computation is defined by a FLAT X10 virtual ma-
chine, which consists of a collection of processes running on one
or more computational nodes connected by a high-performance
switch. Each process contains a single application thread and has
a unique rank. These threads communicate by means of a messag-
ing layer (and through shared memory). During the lifetime of the
computation a thread may execute a large number of activities.

At any time, a thread is in one of two modes. Either it is per-
forming local computations or it is executing an X10LIB call im-
plemented in the messaging layer. There is no thread pre-emption
or its related overhead in this model. While executing a library call,
the thread may help the runtime library progress by handling in-
coming messages from other processes. We are concerned with
three kinds of messages: gets, puts and active messages. A get mes-
sage returns some data from the remote processor, and a put mes-
sage places some data on the remote processor. An active message
executes some user-specified code on the remote processor. The
get and the put messages are used to transfer data between differ-
ent computational nodes. The active messages implement remote
inlinable asyncs, discussed in Section 2, and are executed as soon
as they arrive.

Messages are not assumed to be delivered in order between pairs
of processes or executed in the order in which they are delivered.
Indeed, a message may be decomposed at the network layer, the
pieces traveling to the final destination through different routes, and
the message is then re-composed at the destination. Each message
is acknowledged. The acknowledgment for a get message is the
response to the get operation. The response for a put message is
sent after the put operation has been performed at the remote node.
The response for an immediate active message is sent as soon as
all the packets for the message have been received and the (inline)
completion handler has been run. The response for an eventual
active message is sent once the packets for the message have been
received (without waiting for the message processing to terminate).

4.2 Fences
The FLAT X10 runtime only provides a global fence. All threads
must enter a global fence in order for any thread to exit the global
fence. At the point in time at which a thread exits from a call to
the global fence, the runtime guarantees that all asyncs issued by
threads prior to their entry into the global fence have completed.
Thus in the context of FLAT X10 programs, Flat finishes can
be implemented with a global fence. (A more general distributed
termination detection scheme is required for general finish.)

The global fence is made up of two functions finishStart
and finishEnd that must be called in pairs (and must bracket
the body of the finish statement that they implement). Figure 4
describes these functions in detail.

276

A finishEnd is a collective operation that combines a
one-way barrier with a fence. Each process must wait (on a
LAPI Fence) to ensure that the data transfers associated with
all messages sent by it have been completed. (LAPI also guaran-
tees that all inline completion handlers have been executed. Since
(inlinable) asyncs are implemented through such handlers, a re-
turn from LAPI Fence is also a guarantee that all asyncs initi-
ated by this thread have terminated.) An exception encountered by
any process inside the finish (the argument of finishEnd) is
communicated to the parent process (at place 0). The parent process
deals with the set of exceptions as a part of the finish barrier.

On receipt of exception information from other processes, the
p0 thread determines where control should flow in all threads. This
information (the “continue status”) is communicated to other pro-
cesses by finishStart through the ContinueStatus field
in each child process. This integer carries the jump location for
(guarded statements in) SPMD processes based on control flow de-
cisions made in the p0 thread. Only the p0 thread writes a non-
zero value into the ContinueStatus location of any child. The
compiler generates code with these jump values, as discussed in
section 3.

Figure 4 details the parent and child finish implementations.
The value of ContinueStatus is used as the ContinueCounter.
We reserve the special value 0 to mean that ContinueStatus
has not been updated yet.

Thus on return from a global fence, it is guaranteed that the
FLAT X10 computation is data quiescent(=no messages in flight)
provided that all active messages sent by any process before it
entered the global fence were inline messages.

4.3 Messaging Library
The FLAT X10 runtime (X10LIB) uses LAPI (Low Level Applica-
tion Programming Interface) as its transport layer. X10LIB is de-
signed for use by both programmers and compilers. It provides an
API that implements the FLAT X10 constructs. Efficiency is the
central challenge in designing a run-time for a high-performance
language. X10LIB achieves this in the following ways.

• Polling mode and single thread of execution: LAPI supports
both interrupt and polling for communication progress. As the
interrupt cost is high, we use the polling mode and disabled
the interrupt mode. LAPI also spawns a separate thread for ex-
ecuting the active message handler. We disable that thread and
inline the execution in the user thread. This saves thread switch-
ing and synchronization overhead, at the same time providing
determinate performance guarantees (each LAPI call involves
polling).

• Small message optimization: LAPI supports efficient handling
of messages that are only one packet in size. The method allows
the active message handler to directly read the message from
the network FIFO queues, without any intermediate software
buffering. X10LIB uses this optimization for short messages.

• Aggregation and Buffering: Instead of immediately dispatching
short asyncs, X10LIB aggregates them till a pre-defined thresh-
old is reached (or a barrier is encountered), and sends those
asyncs in a single message. X10LIB also provides API calls that
avoids buffering of large chunks of data (for example, asyncs
containing distributed array copies). The provided API call di-
rectly sends the user buffer to the remote place. It is the respon-
sibility of the users of X10LIB (in our case the code generated
by our compiler) to ensure the safe release of the buffer mem-
ory. Since LAPI is a non-blocking communication API, a return
from a function does not signify that a buffer is ready for reuse.
Our compiler releases or reuses the buffer after the next bar-
rier point. The scheme also avoids the usage of LAPI counters

to wait till the messages are sent, thus precluding LAPI from
buffering large messages or using other costly techniques to en-
sure local completion.

• In FLAT X10, a reference is either local or remote. Local ref-
erences point to objects, which are always word- (4- or 8-byte
depending on the target machine) aligned. Remote references
are represented by a tagged pointer to a proxy record that stores
the actual address and the home place of the reference. The tag
makes remote pointer checks efficient (no memory dereference)
and uses the least-significant bit, which is conflict-free, since
the language disallows interior pointers. (Remote references in
X10 cannot be dereferenced directly, but only by spawning a
remote async in the appropriate place.) Captured variables are
serialized into a buffer during async invocation, and the result-
ing buffer is transmitted. Serialized primitive values become
endianness-agnostic. Serialized remote references are simply
the proxy record, which can become a local or remote reference
when de-serialized. References to value objects are serialized
by contiguously encoding each data member into a serial buffer
(applied recursively if the data members refer to value objects).
Polymorphic value references are encoded with a unique class
identifier to allow dispatching to the de-serialization of the right
type, which can be optimized for known hierarchies.

4.4 FLAT X10 on Blue Gene
The Blue Gene/L and Blue Gene/P port of FLAT X10 are built
on top of X10LIB. We have implemented a LAPI port on top of
a new low level Blue Gene communications library called DCMF
(“Deep Computing Messaging Framework”). DCMF is the stan-
dard low level communications library in Blue Gene/P and supports
higher level message libraries such as MPI, ARMCI and the UPC
runtime. Like all Blue Gene communications libraries, DCMF is
a user-space library, and relies on the characteristics of the Blue
Gene networks such as guaranteed delivery of messages by the
hardware, partition of messages into small self-contained packets,
low latency, torus interconnect and high ratio of bandwidth to pro-
cessor speed.

The decision to base the X10LIB port for Blue Gene on top of
the LAPI API has the major advantage of abstracting the FLAT X10
development from the hardware. It allows us to run unmodified
FLAT X10 programs on both Blue Gene and Power systems, and
compare their performance. It simplifies tracking the evolution of
the FLAT X10 environment. But it also has the disadvantage of
not utilizing some Blue Gene features (such as the global network)
which are not easily expressed through LAPI calls.

4.5 Limitations
Our methodology and the implementation have a few limitations:
FLAT X10 is a garbage-collected language. The FLAT X10 com-
piler and runtime do not support garbage-collection. The imple-
mentation does not yet fully support separate compilation. Cur-
rently verification of valid FLAT X10 programs is fairly conser-
vative: the culprits include a coarse grained termination detection
mechanism, dependence of function inlining to enforce the pro-
gram structure, and a compile-time assumption that implicit excep-
tions are not thrown in the programs.

These limitations are intended to be removed in future work.

5. Experimental Results
We implemented four programs: Stream, RandomAccess and FT
from the HPC Challenge (HPCC) benchmark and FT from NAS
parallel benchmark suite (NPB). The programs were implemented
in FLAT X10 from first principles, following the HPCC and NPB
guidelines. The base HPCC programs are pure C programs, while

277

int finishStart(int CS) {
if (here == p0) {

write CS into ContinueStatus for each child;
LAPI_Fence;
// Guaranteed that CS was written into every child
return CS;

} else {
Wait on ContinueStatus, while continuing to
process incoming messages;
CS = ContinueStatus;
ContinueStatus = 0;
return CS;
}

}

void finishEnd(const Exception* e) {
LAPI_Fence;
if (here == p0) {
if (e != null) {

-- append e into Error buffer
}
Wait until FinishEnd Counter reaches N-1,
while continuing to process incoming messages;
if (Error buffer not empty)
throw MultipleExceptions(Error buffer);

}
} else {

if (e != null) {
perform an ActiveMessageSend that

– appends e into Error buffer on parent.
– Increment FinishEnd Counter at parent;

} else {
Increment FinishEnd Counter at parent;

}
LAPI_Fence;

}

Figure 4. Finish processing

the NPB FT program is a Fortran program. The FLAT X10 pro-
grams are compiled to C++ using the compiler presented in this
paper. The base HPCC programs, NPB program and the compiled
FLAT X10 programs are compiled using a native XL compiler and
linked with IBM MPI and X10LIB respectively. For the sake of a
fair comparison, we disable all the exception checking code (for
example, null pointer check, array bounds check and so on) in the
generated C++ code.

The resulting executables are executed in a cluster of nodes run-
ning the AIX operating system. Each node is a shared memory ma-
chine with 16 1.9 GHz P575 CPUs and 64 GB of physical memory.
The nodes are connected by a high performance interconnection
switch (HPS) which supports a user space communication proto-
col. The cluster has a maximum of 128 nodes. Irrespective of the
number of nodes, we always assign equal number of processes to
all the nodes and set the maximum number of processes per node
to 16.

On Blue Gene/L, we run FLAT X10 programs on the compute
nodes, using the light-weight kernel in the “Virtual Node Mode”:
every node is partitioned into two equivalent processes each of
which uses half the 512MB main memory of each node. We also
use the GNU tool chain for compilation – unfortunately, this does
not take advantage of several optimizations in the dual floating
point unit.

The code for Random Access, Stream and HPCC FT used for
the performance numbers may be found in [10]. We have compared
our results with that of the corresponding hand written programs in
MPI on PowerPC clusters, and UPC programs (which perform way
better compared to MPI) on Blue Gene/L. A rack consists of 2048
processors on these Blue Gene/L systems.

5.1 Stream
Stream is a simple benchmark program that measures sustainable
memory bandwidth (in Gbyte/s) and the corresponding computa-
tion rate for four simple vector kernels: Copy (c ← a), Scale (b
← α c), Add (c← a + b) and Triad (a← b + α c). Implementation
of this benchmark is straight forward. The vectors a, b and c are
1-d distributed arrays. The computation is equally split among the
places and does not involve any communication. The comparative
results (GB/s) for Stream are shown in Figure 5.

5.2 RandomAccess
The RandomAccess benchmark measures the rate at which random
memory locations in a distributed table of 64-bit integers can be
updated. The update is a read-modify-write XOR operation. The
benchmark reports the results as Giga Updates Per Second. Up-
dates can either local or remote. In case the update is to a remote
memory location, communication is required to transmit the update
to the remote processor which owns the fragment of the table. Upon
receiving the update, the processor then applies it to its part of the
table.

The HPCC benchmark suite distributes an MPI version of the
program. This MPI version employs a benchmark-specific aggre-
gation scheme. This aggregation cannot be done inside the MPI
library, rather needs to be specially crafted by the programmer. Un-
fortunately, the distributed benchmark makes too many MPI Test
calls to poll for incoming messages. For a fair comparison, we fur-
ther optimized the MPI version of the benchmark and came up with
a version that makes less frequent calls to MPI Test. Our version
improved performance by a factor of 5 on a single processor. Oth-
ers have employed such techniques when dealing with this bench-
mark [11].

Figure 6 presents the results of our experiments with these two
versions of the program. Generally, as we go towards full loading
(16 processes) of a node, performance dips significantly. Since
FLAT X10 programs demonstrates large GUP/s than MPI, this
effect gets visible resulting in an non-smooth graph.

On Blue Gene, we compare with a UPC program that ran on
an earlier (faster) version of the low-level messaging layer on Blue
Gene. A more recent run of the X10 Random Access program (as
submitted to the HPC Challenge 2008 competition) shows the same
performance as the UPC program for 8 racks (16384 processes).

5.3 FT
HPCC FT measures the floating point rate of execution of double
precision complex one-dimensional Discrete Fourier Transform of
a vector of size m. In the distributed version, the vector is split
equally among the processors. The vector is viewed as a logical
two dimensional array, distributed along the x-dimension.

The global transposition involves communication among all the
processors. Various trade offs like in-place or out-of-place trans-
position, blocking (the local transposition loop) or not, using col-
lective communication or point-wise communication, overlapping

278

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000 1200

G
B

/s

Processes

GB/s of Stream on Power5

MPI
Flat X10

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2 4 6 8 10 12 14 16

G
B

/s

Racks

GB/s of Stream on BlueGene

UPC
Flat X10

Figure 5. HPCC Stream

(the communication with local transposition) or not, lead to several
possible versions of the global transposition step. We present the
best performing design alternatives in this section.

In FX10-VER1, each processor identifies the chunk to be sent
to processor p, locally transposes it, and copies it to p using one-
sided arrayCopy interface. A series of num procs local transposi-
tion followed by arrayCopy completes the global exchange. The lo-
cal transposition uses blocking for optimal cache utilization. Each
array copy is overlapped with the local transposition of the next
chunk:

finish ateach(UNIQUE) {
for (int k = 0; k < N ; k++) {

perform local transposition of the block k;
async (k) { Arraycopy(...); } } }

The HPCC version uses MPI Alltoall, whereas the FX10-VER1
uses array copies and overlapped transpositions. Thus the com-
parison between FX10-VER1 and the HPCC version may not look
fair. Hence, we wrote a version of FT in FLAT X10 (FX10-VER2)
that mimics the HPCC version in all aspects except that it uses
a point-to-point array copies loop to achieve the
same thing that MPI Alltoall achieves. After the compilation, the
point-to-point loop was replaced by MPI Alltoall by hand. This
way, we ensure that both the programs are equivalent. Inclusion of
MPI collectives in the X10 language is an ongoing research topic.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600

G
U

P
/s

Processes

GUP/s of RandomAccess On Power5 (tablesize = 228 longs / place)

MPI
Flat X10

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10 12 14 16

G
U

P
/s

 o
f R

an
do

m
A

cc
es

s

Racks

GUP/s of RandomAccess on BlueGene

UPC
Flat X10

Figure 6. HPCC RandomAccess

The first graph in Figure 7 compares the Giga-flops of FX10-VER1
and FX10-VER2 with those of the HPCC program. The second
graph in Figure 7 shows that FLAT X10 (FX10-VER1) outper-
forms the UPC FT on Blue Gene. For a fair comparison, the local
Fourier transform is computed using same external FFT routines in
all the programs.

5.4 NPB FT
The FT program from the NAS parallel benchmark (NPB) set per-
forms a three dimensional Fourier transform, unlike HPCC FT. The
input array is still one-dimensional, but viewed as a logical three
dimensional array. The last dimension of the array is distributed
among the processors, while the other two dimensions are kept
local. Local Fourier transform is applied along the two local di-
mensions. Then, a transposition is performed to exchange the dis-
tributed dimension with one of the local dimensions. Finally, an-
other Fourier transform is applied along that dimension.

The above steps can be modified slightly to allow overlapping
of computation and communication (similar to the snippet shown
in section 5.3). In this version, for every XY plane, the following
steps are applied in every place:

1. Compute the Fourier transform of all the columns of the XY
plane.

2. Compute the Fourier transform of a row of the XY plane.

279

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

G
flo

p/
s

Processes

Gflop/s of FT on Power5 (256 MB / place)

MPI
FX10-VER1
FX10-VER2

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8

G
flo

p/
s

Racks

Gflop/s of FT on BlueGene

UPC
Flat X10

Figure 7. HPCC FT

3. Send the row to transposition partner.

4. Repeat steps 2 and 3 for the remaining rows of the XY plane.

5. Compute the Fourier transform of all the columns of XY plane.

The steps 2 and 3 are overlapped which minimizes the com-
munication latency. We applied this optimization to both the FLAT
X10 and MPI programs. The experimental results (Megaflops) of
FLAT X10 and the NPB MPI FT program is listed in Figure 8.

6. Related Work
Darema et al. [7, 8] present the SPMD parallel model and tech-
niques for direct coding of SPMD programs. SPMD programs are
written directly by users with macros and macro-processing sup-
port to ease the coding task. No automatic SPMDization of non
SPMD programs is carried out. A technique of generating serial
sections is described, wherein only one process executes the sec-
tion while others jump to the end of the section. In our work, serial
sections are generated automatically according to this method. Our
work goes one step further by communicating jump labels across
the machine for conditional control flow. A conditional execution
of a parallel section is carried out by communicating the condition’s
(serial) evaluation result as a control flow variable that decides to
the jump label that individual processes skip to.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 200 400 600 800 1000 1200

M
flo

p/
s

Processes

Mflop/s of FT on Power5 (CLASS D)

MPI
Flat X10

Figure 8. NPB FT

Cytron et al. [6] present an approach for transforming code writ-
ten in fork-join style to SPMD code. The approach is specific to
nested fork-join parallelism and merges fork-join regions at one
nesting level so that the intervening connecting sequential code also
executes with (redundant) parallelism. The approach assumes that
the execution of parallel loops in the input program is determin-
istic: that there are no data dependencies among parallel threads
so that no race conditions are present and that no synchroniza-
tion constructs beyond the implicit fork-join barriers are present.
Tseng [19] follows up on Cytron et al. in translating fork-join par-
allel loops into (merged) SPMD regions. Once SPMD regions have
been formed, the barrier communications among them are targeted
for optimization using communication analysis.

Amarsinghe et al. [1] present distributed-memory SPMD code
generation techniques starting with sequential Fortran-77. The
compiler generates send and receives, eliminates redundant com-
munications, aggregates small messages, allocates space locally on
each processor and translates global addresses to local addresses.

Paalvast et al. [17] describe SPMD code generation for a high-
level, parallel, programming language called Booster using a func-
tional calculus called the view calculus. No benchmarks of any
Booster implementation are provided. The calculus is used to build
an annotation model for generating SPMD programs in [16].

Wallach et al. [21] propose optimistic active messages as a
mechanism for allowing arbitrary user code to execute in handlers,
with normal constraints on handler-executed code being met by dy-
namic checking and a run-time mechanism similar to lazy task cre-
ation [14] when needed. Code failing to meet handler constraints
(e.g. code that reaches a blocked state) is detected and shifted from
handler execution to a thread-based task that is created on the fly,
or a negative acknowledgment sent back for possible revised active
message(s). In contrast to this, our work establishes compliance (or
non-compliance) with handler constraints statically and bypasses
all run-time costs. This keeps our run-time footprint very light. In
addition, our runtime utilizes LAPI [13] which provides a very ef-
ficient implementation of Active messages on a variety of network-
ing technologies.

There have been various efforts to realize remote pointers.
These include the well known “fat” pointer technique (a struct with
address and location of the pointer), the “current memory pointer”
approach of Berkeley-UPC [5] run-time (every allocation request
at any thread should start from the memory pointer kept at thread
0 and the allocating thread should send the new pointer value back

280

to the thread 0), and the heavyweight Shared Variable Directory
(SVD) approach of Barton et al. [2] (a distributed symbol table
SVD has to be maintained across all partitions). The X10lib im-
plementation of remote references is very efficient in that it neither
increases the C pointer sizes (like fat pointers) nor introduce com-
munication and synchronization overhead (like current-memory-
pointer) nor uses heavy-weight data structures (like SVD).

7. Conclusion and Future work
In this paper we have identified a subset of X10, FLAT X10, that
is rich enough to express SPMD programs augmented with asyn-
chronous messaging that may be used to overlap communication
with computation. We have shown that a set of simple compilation
techniques and a simple runtime may be used to implement this
language efficiently. We have demonstrated performance compara-
ble to MPI for several benchmarks on a cluster of Power5 SMPs
and on the Blue Gene.

Our main objective for future work is to extend the compilation
scheme described in this paper to full X10. This is concerned with
the following major extensions:

• The introduction of an explicit framework for scheduling mul-
tiple activities at a single (multi-threaded) place. This will al-
low the compiler to handle non-inlinable asyncs. We have de-
veloped a work-stealing scheduler for X10, extending the Cilk
work-stealing scheduler [4]. The compilation scheme presented
here needs to be extended with a continuation-passing analysis
to permit generation of efficient work-stealing code.

• The introduction of non-global barrier operations (multi-place
clocks), and nested finish operations. This entails significant
work in the runtime – extending the single-process JAVA-based
implementation in our open source release.

Acknowledgments
We thank Guojing Cong, Nathaniel Nystrom, Mark Stephenson,
Vipin Sachdeva, Gheorghe Almasi, Calin Cascaval and Vivek
Sarkar for extensive discussions. The HPC Challenge 2008 sub-
mission was done jointly with the IBM UPC team led by Calin
Cascaval and Gheorghe Almasi. We thank the LAPI team (partic-
ularly Hanhong Xue, Chulho Kim, Robert Blackmore, Bill Tuel
and Kevin Gildea) for their support. We thank Lauren Smith for
efficiently shepherding this submission.

This material is based upon work supported in part by the
Defense Advanced Research Projects Agency under its Agreement
No. HR0011-07-9-0002.

References
[1] Saman P. Amarasinghe and Monica S. Lam. Communication Op-

timization and Code Generation for Distributed Memory Machines.
In Proceedings of the ACM SIGPLAN conference on Programming
language design and implementation, pages 126–138. ACM, 1993.

[2] Christopher Barton, CĆlin Casçaval, George Almási, Yili Zheng,
Montse Farreras, Siddhartha Chatterje, and José Nelson Amaral.
Shared memory programming for large scale machines. In Pro-
ceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, pages 108–117. ACM, 2006.

[3] Stephen M. Blackburn, Richard L. Hudson, Ron Morrison, David S.
Munro, and John Zigman. Starting with termination: A methodology
for building distributed garbage collection algorithms. Aust. Comput.
Sci. Commun, 23:2001, 2001.

[4] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk:
an efficient multithreaded runtime system. In Proceedings of the

ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 207–216. ACM, 1995.

[5] UPC Consortium. UPC language specifications, v1.2. Technical
Report LBNL-59208, Lawrence Berkeley National Laboratory, 2005.

[6] Ron Cytron, Jim Lipkis, and Edith Schonberg. A Compiler-Assisted
Approach to SPMD Execution. In Proceedings of the ACM/IEEE
conference on Supercomputing, pages 398–406. IEEE Computer
Society, 1990.

[7] F. Darema-Rogers, D. A. George, V.A. Norton, and G.F. Pfis-
ter. A Single-Program-Multiple-Data Computational Model for
EPEX/FORTRAN. Parallel Computing, 7:11–24, 1988.

[8] F. Darema-Rogers, V.A. Norton, and G.F. Pfister. Using A Single-
Program-Multiple-Data Computational Model for Parallel Execution
of Scientific Applications. Technical Report RC 11552, IBM T. J.
Watson Research Center, Yorktown Heights, NY, 1985.

[9] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of
Object-Oriented Programs Using Static Class Hierarchy Analysis.
In Proceedings of the European Conference on Object-Oriented
Programming, pages 77–101. Springer-Verlag, 1995.

[10] V. Saraswat et al. HPC challenge 07: X10, 2007.

[11] R. Garg and Y. Sabharwal. MPI and Communication - Software
Routing and Aggregation of Messages to Optimize the Performance
of HPCC RandomAccess Benchmark. In SuperComputing, Nov
2006.

[12] Paul N. Hilfinger, Dan Bonachea, David Gay, Susan Graham, Ben
Liblit, Geoff Pike, and Katherine Yelick. Titanium Language
Reference Manual. Technical report, University of California at
Berkeley, 2001.

[13] IBM International Technical Support Organization Poughkeepsie
Center. Overview of LAPI. www.redbooks.ibm.com/ redbooks/ pdfs/
sg242080.pdf, 2008.

[14] Eric Mohr, David A. Kranz, and Jr. Robert H. Halstead. Lazy
task creation: a technique for increasing the granularity of parallel
programs. In Proceedings of the 1990 ACM conference on LISP and
functional programming, pages 185–197. ACM, 1990.

[15] R. Numrich and J. Reid. Co-array fortran for parallel programming,
1998.

[16] E. M. Paalvast, L. C. Breebart, and H. J. Sips. An expressive
annotation model for generating SPMD programs. In Scalable
High Performance Computing Conference, pages 208–211. IEEE
Computer Society, 1992.

[17] Edwin M. Paalvast, Arjan J. van Gemund, and Henk J. Sips. A
method for parallel program generation with an application to the
Booster language. SIGARCH Comput. Archit. News, 18(3b):457–
469, 1990.

[18] Vijay A. Saraswat. X10 Language Report. Technical report, IBM
Research, 2004.

[19] Chau-Wen Tseng. Compiler optimizations for eliminating barrier
synchronization. In Proceedings of the ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 144–155.
ACM, 1995.

[20] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and
Klaus Erik Schauser. Active messages: a mechanism for integrated
communication and computation. In Proceedings of the 19th annual
international symposium on Computer architecture, pages 256–266.
ACM, 1992.

[21] Deborah A. Wallach, Wilson C. Hsieh, Kirk L. Johnson, M. Frans
Kaashoek, and William E. Weihl. Optimistic active messages: a
mechanism for scheduling communication with computation. In
Proceedings of the ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 217–226. ACM, 1995.

281

