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Abstract.

The study of an optical beam interacting with material structures is a fundamental of

nanophotonics. Computational electromagnetic solvers facilitate the rapid calculation

of the scattering from material structures with arbitrary geometry and complexity,

but have limited efficiency when employing structured excitation fields. We have

developed a post-processing method and package that can efficiently calculate the

full three-dimensional electric and magnetic fields for any optical beam incident on a

particle or structure with at least one axis of continuous rotational symmetry, called

an axisymmetric body (such as a sphere, cylinder, cone, torus or surface). Provided an

initial batch of plane wave simulations is computed, this open-source package combines

data from computational electromagnetic solvers in a post-processing fashion using

the angular spectrum representation to create arbitrarily structured beams, including

vector vortex beams. Any and all possible incident beams can be generated from

the initial batch of plane wave simulations, without the need for further simulations.

This allows for efficiently performing parameter sweeps such as changing the angle

of illumination or translating the particle position relative to the beam, all in post-

processing, with no need for additional time-consuming simulations. We demonstrate

some applications by numerically calculating optical force and torque maps for a

spherical plasmonic nanoparticle in a tightly focused Gaussian beam, a plasmonic

nanocone in an azimuthally polarised beam and compute the fields of a non-paraxial

Laguerre-Gaussian vortex beam reflecting on a multilayered surface. We believe this

package, called BEAMS, is a valuable tool for rapidly quantifying electromagnetic

systems that are beyond traditional analytical methods.

Keywords: beam physics, nanoparticle, scattering, surface, symmetry, optical force,

optical torque
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1. Introduction

Ever since the invention of the laser in the mid-twentieth century, there has been

immense progress in the field of wavefront engineering. The precise design and

manipulation of optical beams has found applications in most areas of science, including

physics, biology, chemistry, telecommunications, quantum computing and medicine

[1–16]. Collimated electromagnetic fields are rich with potential because of the variety

of ways in which they can be sculpted and generated. The field intensity can manifest

in the form of high order Gaussian modes like the Laguerre-Gaussian and Hermite-

Gaussian modes, and these alone can incite complex phenomena such as orbital angular

momentum [17–21]. Beyond intensity variations, the polarisation state of the beam can

be made inhomogeneous to create what is known as a vectorial vortex beam [22, 23].

These beams are now readily reproducible in laboratory conditions [24–33] and present

exciting new ways in which matter can interact with a light field. Their structure have

already found many novel applications including particle orientation analysis, magnetic

field localisation and inducing orbital motion in an isotropic particle [33–35].

It is only natural to combine sophisticated vortex beams with complex

material structures in the pursuit of unknown effects and future technologies.

Modern nanofabrication techniques have enabled the realisation of a rich variety of

nanostructures, each of which have properties that can be applied to drug delivery,

sensing, nanochemistry and photocatalyis [36–42]. The study of these structures and

their interactions with light is crucial for optimisation and further development. Whilst

analytical methods such as Mie theory [43,44] and Green’s method for multipoles [45–47]

do exist for calculating simple cases, many structures are not accurately portrayed by

these methods and often require numerical finite element solutions. This is particularly

relevant when a strongly interacting substrate is present, which is commonplace in

experimental measurements. However, many commercial solvers either do not support,

or require elaborate steps and big simulation regions, to simulate sophisticated optical

illumination fields. By contrast, plane wave simulations are always fast, efficient and

simple. This limitation usually dramatically slows down the study of tight-focusing

regimes and the fascinating physics that lies therein.

In this paper, we demonstrate a numerical approach to solving many systems

often encountered in nanophotonics whilst accommodating complete freedom over the

illumination properties. The advantage of this approach is that complex beams are

generated as a post-processing step purely from plane wave simulations. We combine

the generality of a finite element solver with the power of symmetry to generate full-field

3D solutions that can then be used to calculate any optical quantities desired, such as

optical forces, optical torques, power flow, spin density, helicity and momentum flow.

The only constraint is that the system must be axisymmetric; the matter’s geometry

must possess one axis of continuous rotational symmetry. Otherwise, the method is

still valid but unlikely to be efficient. Demonstrations involving a core-shell particle, a

plasmonic nanocone and a multilayer reflection problem are analysed with our method
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as examples to illustrate its generality, each illuminated with focused optical beams of

varying structures.

2. Methods

This section begins by introducing the angular spectrum approach and its formalism.

We explain how to represent any beam with this approach and then proceed to directly

incorporate the scattering of a spherical particle. This is then extended to a scattering

axisymmetric body and concludes with some expressions for optical force and optical

torque that are used in the Results section.

2.1. Adding structure scattering to an angular spectrum

The first principle behind our method lies in the angular spectrum approach for an

electromagnetic field of angular frequency ω which can be expressed as,

E(r) =

∫ 2π

φ=0

∫ π

θ=0

A(k) eik·(r−r0) sin(θ) dθ dφ︸ ︷︷ ︸
dΩk

, (1)

where E is the electric field at a position r = (x, y, z), r0 determines the phase centre of

the optical field‡, A is the electric field’s angular spectrum which is dependent on the

wavevector k = k
(
sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)

)
, and Ωk is the solid angle of the

k-sphere defined by all possible orientations of k.

The angular representation indicates that any monochromatic electromagnetic field

distribution can be decomposed into a linear combination of plane waves with varying

spatial frequencies. One can be sure that any linear combination of plane waves will

create another exact solution of Maxwell’s equations and vice versa, any exact solution

of Maxwell’s equations (in linear materials) can be produced as a superposition of plane

waves. We can further conceptualise the angular spectrum of any optical beam in free-

space as a collection of plane waves that can all be mapped onto a single common

propagating plane wave via some 3D rotations. This mapping is augmented by the

angular spectrum in order to change the phase and magnitude of each plane wave as

they are rotated. Instead of decomposing a known beam’s field distribution, one can

also conduct the inverse procedure, starting from a single plane wave, copy it a large

number of times and both rotate and modulate the various copies according to the

previously mentioned mapping. All the plane waves can be integrated and the resultant

linear combination is equal to the desired optical beam.

If a spherical particle is added to the beam system, the fields are perturbed by

the scattering. However, if we again take a single plane wave, this time incident on

the spherical particle, and rotate the total vector field (complete with the sphere’s

scattering), we know that the solution is physically identical to the unrotated version

because the particle is rotationally symmetric. Therefore with the simulation of a single

‡ When the optical field is a beam, r0 is the focus of the beam.
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plane wave incident on the spherical particle, we can repeat the process of rotating the

fields and mapping the results to an angular spectrum of a beam, transforming this plane

wave scattering system into the field distribution of a beam incident on the spherical

particle. From this, we gain a strikingly general conclusion. Given a single simulation of

a spherical particle with an incident plane wave, we can transform the plane wave into

any optical illumination that we desire in simple post-processing steps. The rotational

symmetry of the system reduces the number of required plane wave simulations (PWS)

from infinite to just one. This is the second principle behind our method. Whilst

this alone can still prove useful for simulating many common photonic systems, we can

further extend this principle to cylinders, cones, tori, and any other particle shapes that

possess continuous rotational symmetry (i.e. any axisymmetric body [48]) as follows.

We choose the convention that the particle is orientated such that an axis of

rotational symmetry is along the z-axis (θ = 0) and a plane wave is incident at an

azimuthal angle φ and an angle from the z-axis θ. The entire system can be rotated

around the z-axis (i.e. varying the azimuthal angle φ) and still remain physically

identical. However, any change in θ will not follow any symmetry in the system and

so the scattering will be different. This indicates that a new simulation is needed for

every value of θ, whilst all plane waves whom share the same value of θ are related to

each other by a simple rotation about φ. We therefore need to sample a number of

simulations with different values of θ to accurately extract the change in the scattering

behaviour as θ changes. When compared with the general case where the particle has no

symmetry at all and a large number of PWS would be required, we can still reduce the

number of simulations needed significantly because the rotational symmetry effectively

reduces the dimensionality of the problem.

Before we can apply symmetry arguments to simplify the problem, we must first

be able to place particle scattering into a beam’s fields via the angular spectrum

approach. We can mathematically apply this to Eq. (1) by first expanding A into

an orthogonal basis. We use a spherical polarisation basis with p/s naming conventions

often used in surface optics. The êp and ês unit vectors correspond to the θ and φ

unit vectors in spherical coordinates respectively. Details of this polarisation basis

decomposition are provided in the Supplementary Information in Section 4. A then

splits into Ap(k) êp + As(k) ês and Eq. (1) becomes,

E(r) =

∫∫ [
Ap(k) êp e

ik·r︸ ︷︷ ︸
plane wave

+As(k) ês e
ik·r︸ ︷︷ ︸

plane wave

]
e−ik·r0 sin(θ) dθ dφ, (2)

The scalar functions Ap and As are derived fromA via dot products such that Ap = A·êp
and As = A · ês. Eq. (2) explicitly highlights which terms correspond to plane waves

of each polarisation state because these are the terms that PWS fields can replace via

substitution to incorporate particle scattering into the beam fields E(r). That is to say,

E(r) transitions from the free-space beam to a beam incident on a scattering structure

when êp,s e
ik·(r−r0) → EPWS

p,s (r). The vector field EPWS
p,s (r) varies with θ and φ because

it represents the material structure being illuminated by a plane wave of all possible
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orientations. Symmetry arguments can then be applied to EPWS
p,s (r) to greatly reduce

the number of simulations required and instead implement a series of computationally

cheap 3D rotations to map a small number of simulations to all possible EPWS
p,s (r).

The final step before numerical implementation is to discretise the continuous

integrals over θ and φ into finite sums, and we arrive at the fundamental expression

for numerically generating the fields of an arbitrarily structured beam incident on a

material structure,

E(r) ≈
∑
p,s

∑
θ

∑
φ

Ap,s(k) EPWS
p,s (r) e−ik·r0 sin(θ) ∆θ∆φ. (3)

The first of the three summations indicate a sum over the two polarisation states p and

s. The latter two sum over the plane wave orientations in spherical coordinates.

In some cases, it is desirable to simulate the scenario where the symmetric particle

is not located at the beam’s focus. A common example of this would be for doughnut

beams where the focus has a low electric field intensity. In this case, optical forces

due to the electric field intensity are likely stronger away from the focus of the beam.

The e−ik·r0 term allows for the translation of the beam’s focus without the need for

recalculations of EPWS
p,s (r) by changing the relative phases of different PWS components.

This allows for the efficient creation of informative graphs such as a force maps, in which

the optical force is plotted as a function of the particle position within the beam, in a

post-processing manner. This is demonstrated in Section 3.2.

2.2. Angular spectrum of non-paraxial beams

One of the key features of this method lies in its ability to rapidly compute a wide

range of illumination types from the same numerical simulation data files. In the case

where a numerical solver is capable of illuminating an object with a sophisticated beam

structure (more than a single plane wave), any change in the beam parameters such as

angle of incidence, focus position, beam waist and polarisation will always necessitate a

completely new and potentially costly simulation. Any parameter sweeps will therefore

be computationally expensive. Our method requires a minimal number of preliminary

numerical simulations with plane waves and then manipulates this minimal data to

achieve any illumination structure. Crucially, this allows for parameter sweeps such as

angle of illumination or translating the beam’s focal point to be performed efficiently

by post-processing the same initial plane wave simulations.

We shall now discuss how an incident beam field can be expressed with the

angular spectrum and implemented in our approach, but we emphasise that the angular

spectrum representation is not limited to beam structures; any electromagnetic field

incident on an object can be represented with the angular spectrum approach using

Eq. (1). Optical beams are often expressed in their paraxial approximation forms to

simplify calculations [49] but in doing so, one loses both an exact solution to Maxwell’s

equations and some physical properties related to focusing such as a longitudinal field

component [50–56]. We do not wish our method to suffer from these limitations. To
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rectify this, one can use the angular spectrum approach to begin with a paraxial equation

and then determine the longitudinal component to create a 3D field distribution that

obeys the laws of electromagnetism in all regimes and across all of space. This is

possible because the angular spectrum is based on a linear combination of plane wave

solutions, and each plane wave is an exact solution of Maxwell’s equations. To do this,

we implement the following procedure.

2.2.1. Integrating a paraxial beam We begin with the fields of a paraxial beam with a

propagation axis denoted by K̂. To start our argument, lets restrict the propagation to

the z-axis (i.e. K̂ ‖ ẑ) and only require the fields in the focal plane, which we specify

as z = 0. The paraxial field is therefore denoted by E
K̂‖ẑ
⊥ (x, y, 0), where the ⊥ symbol

indicates that the fields are only polarised in the plane transverse to the propagation

direction. The fields of the beam may be defined in Cartesian coordinates so it is

convenient to recast Eq. (1) into the Cartesian basis with k = (kx, ky, kz),

E
K̂‖ẑ
⊥ (x, y, 0) =

∫∫
k2x+k2y≤k2

F K̂‖ẑ
⊥ (kx, ky) e

i(kx x+ky y) dkx dky. (4)

Here F denotes the angular spectrum, but defined on the 2D z = 0 plane rather than a

sphere dictated by θ and φ (refer to the Supplementary Information for more details).

We relate F to the A that appears in Eq. (1) later in this procedure. The inverse of

this Fourier transform is,

F K̂‖ẑ
⊥ (kx, ky) =

1

4π2

∞∫∫
−∞

E
K̂‖ẑ
⊥ (x, y, 0) e−i(kx x+ky y) dx dy. (5)

For a simple paraxial Gaussian beam centred at the origin, E
K̂‖ẑ
⊥ (x, y, 0) =

(Ex, Ey, 0) e−
x2+y2

w2 , where w is the beam waist, and Ex and Ey are complex scalars

that determine the phase, amplitude and polarisation of the beam’s transverse

field [46, 57–60]. The corresponding angular spectrum would be F K̂‖ẑ
⊥ (kx, ky) =

(Ex, Ey, 0)w2 e−
w2

4
(k2x+k2y). This step can be streamlined by referring to the table in

the Supplementary Information Section 3 which lists forms of F K̂‖ẑ
⊥ for some common

beam modes.

2.2.2. Extending from focal plane to all space To extend the fields on the z = 0 plane

from Eq. (4) to all space, we specify that the exact field E (which we wish to compute

in the end) must fulfil the wave equation k · k = k2 and consists of only propagating

components (k2
x+k2

y ≤ k2). This leads to the propagator eikzz where kz =
√
k2 − k2

x − k2
y

and kz > 0. The field can therefore be extended to all space via this propagator so that,

E
K̂‖ẑ
⊥ (r) =

∫∫
k2x+k2y≤k2

F K̂‖ẑ
⊥ (kx, ky) e

ik·r dkx dky. (6)
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2.2.3. Correcting for longitudinal fields F K̂‖ẑ
⊥ only has components (Fx,Fy, 0) in the

transverse plane and lacks a longitudinal field component, owing to the fact that it is

derived from a paraxial field. Now consider the field:

EK̂‖ẑ(r) =

∫∫
k2x+k2y≤k2

F K̂‖ẑ(kx, ky) e
ik·r dkx dky. (7)

This is the full true Maxwell field including longitudinal components, with no

approximation, and its only condition being that its transverse components match

E
K̂‖ẑ
⊥ (r). Explicitly, F = Fxx̂ + Fyŷ + Fzẑ whilst F⊥ = Fxx̂ + Fyŷ. The missing

component can be retrieved by invoking Maxwell’s equation ∇ · E = 0 and applying

it to Eq. (7) to obtain the condition k · E = 0. This condition explicitly states that

kxFx + ky Fy + kz Fz = 0 and so,

Fz = −Fx kx + Fy ky
kz

. (8)

This is to say that when the fields in the transverse plane are known, the longitudinal

field can be easily reconstructed using this simple equation and turns F K̂‖ẑ
⊥ → F K̂‖ẑ. For

our Gaussian beam example, this results in F K̂‖ẑ(kx, ky) = (Ex, Ey, Ez)w
2 e−

w2

4
(k2x+k2y),

where Ez = −Ex kx+Ey ky
kz

.

2.2.4. Defining a piecewise angular spectrum Since Eq. (2) computes the integration of

A over the surface of a 3D sphere and Eq. (7) integrates F over the 2D z = 0 plane when

kz > 0, F must be related toA with a piecewise mapping and accounting for the different

Jacobians in the integrals. The differential solid angle dΩ = sin(θ) dθ dφ = 1
k kz

dkx dky
[46] and results in,

AK̂‖ẑ(k) =

{
k kz F K̂‖ẑ(kx, ky), if kz > 0

0, if kz ≤ 0
(9)

For our simple Gaussian beam example, this indicates that AK̂‖ẑ(k) =

(Ex, Ey, Ez) k kz w
2 e−

w2

4
(k2x+k2y).

2.2.5. Rotation of beam axis Eq. (5) requires the paraxial beam’s propagation to be

parallel to the z-axis, otherwise the integral will not converge. However, AK̂‖ẑ can be

mapped to any arbitrarily orientated but otherwise similar beam by use of conventional

3D rotation matrices (see Supplementary Information section 2 for details). This is the

step where A becomes more convenient than F because it is defined on the surface of

a sphere and so rotates easily without the need for additional corrections. In this way,

the beam axis and polarisation state can be changed, via simple rotations, to match

whatever configuration is desired, such that AK̂‖ẑ → A.
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2.2.6. Obtaining non-paraxial 3D fields The rotated angular spectrum A can now be

decomposed into Ap,s in the manner described in Sec. 2.1 and Eq. (3) is used to generate

the fields of the desired beam, complete with any inserted particle scattering. See the

Supplementary Information for more details. At this stage, one can now obtain the

fields of a non-paraxial beam E(r) with any K̂ by simply starting with E
K̂‖ẑ
⊥ (x, y, 0).

For our Gaussian beam example propagating along ẑ, the non-paraxial electric field takes

the form E(r) =
∫ 2π

φ=0

∫ π/2
θ=0

(Ex, Ey, Ez) k kz w
2 e−

w2

4
(k2x+k2y) eik·(r−r0) sin(θ) dθ dφ, where

(kx, ky, kz) ≡ k
(
sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)

)
.

We note that whilst we focus on the electric field in this paper, the same method

applies to the magnetic field, and magnetic components of structured beams are

calculated and used in the Results section.

2.3. Optical force and torque

When a beam is incident on a particle, it can manipulate its position and orientation

via optical forces and optical torques. These phenomena are driven by the transfer

of linear and angular momentum from the beam to the particle respectively, and can

be readily calculated from 3D electromagnetic field data via the Maxwell stress tensor

(MST) method. The MST, denoted by
↔
T, represents the flow of momentum in the field

and can be expressed as [46],

〈
↔
T〉 =

1

2
Re

{
εE⊗ E∗ + µH⊗H∗ − 1

2

(
ε|E|2 + µ|H|2

)↔
I

}
, (10)

where E and H are the total electric and magnetic fields, ⊗ denotes the outer product

of two vectors, asterisks represent complex conjugations,
↔
I is the 3× 3 identity matrix

and ε and µ are the permittivity and permeability of the medium, respectively. The

angular brackets indicate a time-averaged quantity. A force occurs when there is a net

inward or outward flow of momentum into the body experiencing the force and can be

quantified by the flux surface integral [46],

〈F〉 =

∫
S

〈
↔
T〉 · n̂ dS, (11)

where F is the optical force and n̂ is the outward normal vector of any arbitrary closed

surface S enclosing the body. Likewise, the torque can be calculated by imposing the

definition of angular momentum with a cross product such that,

〈N〉 =

∫
S

(
r×

〈↔
T
〉)
· n̂ dS, (12)

where N is the optical torque and r is the position vector from the axis of rotation.

The collective cross product term in the brackets is sometimes referred to as the

angular momentum flux tensor [61, 62]. With these expressions, one can immediately

determine particle dynamics originating from electromagnetism regardless of the
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particle’s properties. The only quantities required to calculate forces and torques from

Eqs. (11) and (12) are the full electromagnetic fields (both electric and magnetic) of the

incident beam scattering on the particle, which our method provides.

3. Results

The strength of our approach lies in its high degree of generality and applicability. To

demonstrate this, we provide analysis of three distinct nanophotonic systems. The PWS

were conducted in CST Microwave Studio.

3.1. Core-shell particle in focused Gaussian beam

Multilayered spherical particles are a common solution when a particle’s scatter-

ing/absorption needs to be engineered. Such particles can be fabricated with mod-

ern nanofabrication techniques [63] and have been proposed for applications including

photocatalysis, nanolasers, spontaneous emission enhancement and as a basis for non-

linear phenomena. In this example, we use the gold-core silicon-shell design outlined

by Feng et. al. [64] which exhibits a pure magnetic dipole resonance at a wavelength of

λ = 1.3µm. This core-shell particle therefore probes the magnetic field of any incident

beam. The core radius is 62 nm and the shell radius is 180 nm. The rotational symme-

try of this geometry means that only two PWS are needed (one for each polarisation)

in order to calculate the interaction between a multilayered sphere and a beam of any

structure.

Fig. 1b shows a schematic of the system with the beam propagating along the

positive z-axis. The beam waist w is set to 0.5λ where λ = 1.3µm, and the surrounding

medium has n = 1. After a very quick simulation of two plane wave simulations

scattering on the particle in CST Microwave Studio, our post-processing code was

applied to them. The output is the full fields for an incident circularly polarised tightly

focused Gaussian beam scattering on the core-shell particle. The angular spectrum of

this illumination is conveniently provided by the package’s analytical workbook. Fig.

1c shows a cross section of |E| in the y = 0 plane and the particle is outlined with

a black dotted line. The interference between the incident beam and the particle’s

scattering is clearly visible in the bottom half of the image. This 3D electromagnetic

field distribution was used to calculate the optical force and torque on the particle using

the MST method. A cubic surface enclosing the particle was chosen for the integration.

In principle, any size of this cube enclosing the particle should result in the same force

and torque. Numerically, however, there are always variations, so it is important to check

consistency and obtain a statistically accurate value for these quantities by varying the

size of the integration surface (see Fig. 1d). Fig. 1d shows the Cartesian components

of the force and torque calculated across a range of integration cube sizes, and flat

lines indicate a reliable result. The yellow region (a < 360 nm) indicates where the

integration surface is too small and intersects with the particle, resulting in inaccurate
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Figure 1. a) By incorporating plane wave simulation data into the angular spectrum

and utilising the symmetry of the system, the scattering of a particle in an arbitrarily

structured beam can be calculated from a single simulation data set. b) A gold-core

silicon-shell particle illuminated with a focused Gaussian beam with right-hand circular

polarisation (RCP). Diagram not to scale. c) A cross-section of |E| through the beam

and particle in the y = 0 plane. The outer boundary of the particle is indicated with a

black dotted line. d) The time-averaged force and torque on the particle located at the

focus as a function of the integration surface size a, normalised by the beam power.

A flat line indicates a stable and reliable result. The yellow region indicates when the

integration surface intersects with the particle, and so these results are invalid and

ignored. The purple and orange dashed lines indicate the theoretical values for the

force and torque, respectively, calculated via Mie theory.

results.

A spherical particle is a special case in scattering problems because Mie theory

provides an exact analytical solution to the problem. Therefore, we can evaluate the

accuracy of our numerical method by comparing with the results obtained through Mie

theory. The details of these analytical calculations are provided in the Supplementary

Information, and the theoretical values for the force and torque (denoted by Fth and

Nth) are plotted in Fig. 1d with blue and orange dotted lines, respectively. We observe
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a strong agreement between theoretical and numerical results, indicating a reliable

numerical calculation.

As described in detail above, we could now vary any parameter of this beam (waist,

size, focus location, type of beam, etc) and simply run the post-processing steps on the

same two PWS to obtain the new fields, force and torque.

3.2. Plasmonic nanocone in azimuthally polarised beam

The next phase in this demonstration is the use of sophisticated structures that are

more difficult to solve. Without spherical symmetry, analytical methods such as Mie

theory no longer provide an immediate answer to the scattering problem. Cylinders are

commonplace in nanophotonics [41] but cylindrical symmetry applies to a far wider range

of geometries than just cylinders; structures such as cones [65, 66], tori/rings [67–70],

tubes and core-shell cylinders [38] are examples of this. Out of these structures, a

conical geometry is perhaps one of the most difficult to calculate because it lacks the

cross-sectional mirror symmetry that would enable a further reduction in the number of

PWS from 0 ≤ θ ≤ π to 0 ≤ θ ≤ π
2
. For this reason, the next example uses a nanocone.

Gold nanocones are already experimentally viable and the plasmonic nature enables

stronger scattering [65]. The illuminating beam’s complexity has also been increased

by selecting a focused azimuthally polarised vortex beam to emphasise the range of

possible beam options. Furthermore, the angle of incidence is set to 45◦ to highlight

that the beam axis can be chosen independently of the cylindrical symmetry axis. The

wavelength is set to 532 nm to match the plasmonic resonance range of gold, and the

beam waist is set to 0.8 λ. Once again, PWS were carried out in CST Microwave Studio

for plane waves incident on the nanocone at different angles of incidence θ (but always

keeping φ = 0). This PWS data was then post-processed using our code to obtain the

full field distributions under the desired incidence.

Fig. 2a shows the y = 0 cross-section plane of the beam’s electric field distribution

in free-space and Fig. 2b introduces the gold nanocone to the beam at the point of

highest intensity. The nanocone has a height of 240 nm and a maximum radius of 50

nm. Similar to Fig. 1b, we clearly observe the nanocone’s scattering interfering with the

incident beam and further see a hot spot at the base of the cone. This hot spot agrees

with previous results in literature [65] where a similar excitation is seen with the same

material and a similar wavelength. Fig. 2c shows the optical force and torque on the

nanocone and is analogous to Fig. 1c. The force is directed along the beam’s propagating

direction so can be explained as a simple radiation pressure on the nanocone. Fz is

also slightly larger than Fx, suggesting that the nanocone’s hot spot is being pushed

towards the maximum of the beam. The torque along the −y direction indicates that

the nanocone will rotate anti-clockwise from Fig. 2b’s perspective. Further iterative

calculations could be conducted in order to determine an orientation with rotational

equilibrium.

Finally, in order to highlight the method’s power and without requiring additional
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Figure 2. a) An azimuthally polarised beam propagating in the (1, 0, 1) direction

in free space with λ = 532 nm and w = 0.8λ. b) The same azimuthally polarised

beam is translated 300 nm down and 150 nm to the right and the gold nanocone is

introduced. Its height is 240 nm and the base radius is 50 nm. c) The optical force

and torque in b) is plotted against the MST integration cube’s side length to confirm

a stable result. The yellow region indicates where the integration cube intersects with

the nanocone, and these results can be neglected. d) A cross section of the azimuthally

polarised beam in a) depicting the electric field polarisation. e) A force map of the gold

nanocone in the same cross section plane as d). The arrows indicate the components of

the time-averaged force in the cross section plane, and the colours represent the total

magnitude of the force.



13

plane wave simulations, we applied the post-processing code to sweep the nanocone

position across the beam by changing r0 in Eq. (3) and calculated a force map shown

in Fig. 2e. Each arrow in this figure represents a full post-processing simulation each

including MST integration in a cube around the particle. Producing a force map would

have been a tedious process if performing individual numerical simulations for each

nanocone position, but we can use our approach to create such a plot in a matter of

minutes on a standard desktop computer, all from the same set of PWS.

3.3. Vortex beam reflection

The previous examples focused on standalone particles, but this calculation method

is equally valid for configurations involving planar structures. A planar interface is

naturally axisymmetric and so rotations around the surface’s normal axis yield physically

identical results and therefore can be exploited to reduce the dimensionality of the

problem. A multilayered or stratified structure is merely an extension of this problem

and can be calculated in a similar manner to the previous examples by also applying

the well-established transfer matrix method [71].

We demonstrate this case with a p-polarised focused vortex beam (Laguerre-

Gaussian with l = 1 and m = 0) reflecting off of a glass-gold multilayered structure,

and the resulting electric field distribution is portrayed in Fig. 3. The beam has a

wavelength of 808 nm and is focused at the origin to a beam waist of 0.75λ. The glass,

with a refractive index of 1.5, is 1 µm thick and semi-infinite gold [72] is placed beneath

it. The incident polarisation singularity is clearly visible along the z = −x line and an

interference pattern is observed around the air-glass interface.

Figure 3. The electric field distribution of a p-polarised Laguerre-Gaussian vortex

beam incident at 45◦ focused onto a glass slab with a thick gold substrate, with

λ = 808 nm and w = 0.75λ. The white arrows indicate the incident and reflected

beam propagation directions.
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The 3D electromagnetic fields were calculated in Fig. 3 using both a commercial

frequency-domain numerical solver with periodic Floquet boundary conditions and

with an analytical calculation of the multilayer scattering of plane waves. The latter

is naturally faster computationally but is limited to homogeneous layered systems.

Numerical solvers enable the calculation of more complicated axisymmetric structures

such as an isolated nanorod or nanocone on a substrate, or a recess like an isolated

nanopore. Whilst these structures are regularly found within tightly packed periodic

metamaterials, the isolated structure results still provide valuable information about the

structure’s resonant behaviour under complex beam illumination, and how the substrate

augments these properties. In this way, we expect our package to prove a valuable tool

for experimental groups looking to gain a deeper understanding of their experimental

nanomaterials that consist of these elements when illuminated with a complex beam.

In the event where the rod/cone/pore separations are large enough for neighbouring

element interactions to become negligible, this axisymmetric angular spectrum approach

will yield approximate quantitative results.

4. Discussion

This paper proposes a theoretical beam-generation method which strength lies in its

generality, and its applicability extends beyond the cases discussed here. One such

example is that of optical pulses. Our examples are all monochromatic but this is

for the sake of simplicity, rather than evidence of a limitation. To extend to pulses,

the angular spectrum of the pulse must include a further integral over the temporal

frequency. The frequency spectrum of the pulse can then be inserted into the integrand

and the equations for the electromagnetic fields are equally valid.

The demonstrations in the previous section only incorporate a single propagating

beam for the illumination of a target object, but nothing prevents additional beams

being added to these systems. Multiple incident beams can be calculated either by

adding the fields of single beam systems together or by combining the angular spectra

of each beam. Areas such as levitating optomechanics regularly implement counter-

propagating beams to trap particles inside of a standing wave [73–75]. These types of

systems can be analysed in detail with our method. Likewise, optical lattice systems

can be calculated by defining a discrete symmetry in the angular spectra.

Lastly, this method is innately suited to anisotropic systems. Figs. 2 and 3

illustrate cases where the geometry of scattering object is anisotropic, whereby the

material dimensions extend into each Cartesian direction differently. However, one can

also consider cases where the intrinsic material properties, such as the refractive index,

are fundamentally anisotropic as long as the material anisotropy respects the rotational

symmetry around the z-axis. In this case, even a spherical particle can become a

difficult problem. The combination of geometrical anisotropy and material anisotropy

would invoke sophisticated near-field and far-field scattering and may be of interest in

some areas of optics.
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The interaction between electromagnetic fields and matter is at the heart of

countless technologies and the full-wave 3D calculation of these fields is a constant

problem in photonics. We have demonstrated a complete method for computing

the interaction between an arbitrarily complicated incident beam and a rotationally

symmetric structure with a high degree of generality, requiring only the prior simulation

of plane wave incidence, which is a simple and fast calculation that can be performed by

all electromagnetic solver packages. There is no need for additional approximations

in the tightly focused limit and vastly increases the range of systems that can

be calculated with numerical solvers. Subwavelength and near-field scattering is

accurately constructed and electromagnetic quantities such as optical forces and

torques can be reliably calculated with the resultant complex field data. Many

structures used in nanophotonics today, including spheres, rods, tubes and cones,

fall within the capabilities of this method and thus a many types of analysis can be

conducted on said structures with a minimal number and efficient use of numerical

solvers. We believe that this will prove a valuable tool for many researchers and so

provide an open-source software package called BEAMS (Beams scattering through

Electromagnetic Axisymmetric Multilayers and Structures) where this post-processing

method is implemented in MATLAB and provided at Ref. [76].

Acknowledgements

J. J. Kingsley-Smith thanks Dr M. F. Picardi for helpful discussions over software design.

This work was supported by the European Research Council Starting Grant ERC-2016-

STG-714151-PSINFONI.

References

[1] B. P. Abbott et. al. Observation of Gravitational Waves from a Binary Black Hole Merger. Physical

Review Letters, 116(6):061102, feb 2016.

[2] Jeffrey R. Moffitt, Yann R. Chemla, Steven B. Smith, and Carlos Bustamante. Recent Advances

in Optical Tweezers. Annual Review of Biochemistry, 77(1):205–228, jun 2008.

[3] M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garćıa de Abajo, and
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Supplementary Information

The development of our package required many programming technicalities that have

to be addressed, both to ensure accurate results and to improve performance. The

Methods section of the main text discusses the overall process but various technical

issues that were considered are detailed in Sections 1-4 of this document. Section 5

defines the polarisation basis vectors used throughout this work. Section 6 provides

additional information on how the theoretical force and torque was calculated for the

core-shell particle results in the main paper.

In Sections 1-3, we will discuss the various technical issues that were encountered

whilst constructing the package and how they were resolved. We believe this information

may prove useful to any reader that wishes to create their own software using our

approach. In Section 4, additional information is provided on how the theoretical force

and torque was calculated for the core-shell particle results in the main paper.

1. Mesh in k-space

The angular spectrum approach is fundamentally a summation of plane wave

components each with a distinct wavevector, polarisation, amplitude and phase. In the

monochromatic case and in the absence of evanescent fields, all possible propagation

directions (wavevectors) for a plane wave in 3D space can be mapped onto the surface

of a sphere (which we call the k-sphere).

For the purposes of generating beams incident on axisymmetric structures from

plane wave simulations (PWS), one must discretely sample the angular spectrum of

the beam. This is done with a regular spherical mesh, depicted in Fig. S1 because it

reduces the likelihood of artefacts arising due to undersampling in a particular direction.

The wavevector components (kx, ky, kz) are calculated from spherical mesh coordinates

(ρ, θ, φ), where ρ is fixed and the angles are defined by,

θ = cos−1

(
kz
k

)
,

φ = tan−1

(
ky
kx

)
. (S1)

The number of evenly-spaced samples in θ and φ are defined as Nθ and Nφ respectively,

and are user-defined input parameters.

Once this sampling mesh is established, optimisations can be made to speed up

the calculation time. If the angular spectrum of a beam is highly localised to a small

region in the kx-ky plane, large values for Nθ and Nφ may be needed to fully resolve

the beam, but this in turn will cause a large number of samples to occur in areas where

the angular spectrum has close to zero intensity. Every sample point corresponds to

additional computational time but the contributions from these near-zero samples are

negligible to the final result and can safely be skipped. The skipping of these negligible
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Figure S1. a) A regular sampling of plane wave orientations with a spherical mesh.

The arrows trace out the (upper hemisphere) surface of the k-sphere. The arrows have

random colours to provide contrast. b) The same spherical mesh is mapped onto the

kx-ky plane.

sample points is done with the introduction of a cropping parameter C as an optional

input for the MATLAB package, and takes a value of 0 ≤ C < 1. For an angular

spectrum A, a sample point can be denoted Aij. A logical if -statement can then check

if Aij should be skipped by computing the inequality,

Aij
max{|A|}

≥ C. (S2)

If this statement is false, Aij is deemed to be negligible and is skipped. If it is true, Aij
is included in the integration of A. In other words, C = 0.01 implies that all points in

the angular spectrum that have a value less than 1% of the peak value will be skipped.

If C = 0, all points in the k-space mesh are included.

2. Rotation of an angular spectrum

Starting from a beam with z-propagation, the angular spectrum can later be rotated to

match the desired beam propagation direction in a process equivalent to rotating the

k-sphere. We make use of the well-known matrix
↔
R for a 3D rotation around a given

normalised rotation axis û = (ux, uy, uz) with the general rotation angle Θ,

↔
R =

 cos(Θ) + u2
xg(Θ) uxuyg(Θ)− uzsin(Θ) uxuzg(Θ) + uysin(Θ)

uyuxg(Θ) + uzsin(Θ) cos(Θ) + u2
yg(Θ) uyuzg(Θ)− uxsin(Θ)

uzuxg(Θ)− uysin(Θ) uzuyg(Θ) + uxsin(Θ) cos(Θ) + u2
zg(Θ)

 (S3)

where g(Θ) =
(
1− cos(Θ)

)
and the identity for rotating a generic vector field,

V(r) =
↔
R VK̂‖ẑ

(
↔
R
−1

r

)
, (S4)

where VK̂‖ẑ is a vector field propagating along the z-axis described by the real-space

coordinates r, and V is the desired vector field.
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When calculating the fields on a beam incident on a scattering structure, the angular

spectrum A is numerically sampled into a discrete set of points. Each point in A
corresponds to a PWS with a particular incident k. Therefore, each point must be

mapped to the k of the incident plane wave in the relevant simulation data EPWS.

This mapping is provided by two vector field rotations which preserve the simulation’s

polarisation state. These rotations are simplified by using the convention that all

numerical PWS raw data have their plane wave incident in the xz-plane, and that any

material structure in the simulation must have its axis of continuous rotational symmetry

around the z-axis. The rotation axes are therefore the y-axis for the θ rotation (when

the structure is spherical) and then the axisymmetric z-axis for the φ rotation. If the

structure lacks spherical symmetry, the plane wave must be simulated for all values of

θ and then all the results are rotated around the z-axis to match the required values of

φ and complete the integration in k-space.

3. Angular spectra of beam classes

Since our approach of obtaining the angular spectrum of a beam always begins with

the beam propagating along z, it is convenient to pre-calculate the angular spectrum of

some types of beams commonly used in optics. These are shown in Tab. S1. The

polarisation of a beam with a homogeneous polarisation in the transverse plane is

denoted by η⊥ = ηx x̂ + ηy ŷ. The beam waist is w and the functions Hl(x) and

Llm(x) correspond to Hermite and Laguerre polynomials respectively, with argument x

and orders l and m. These expressions are derived

Table S1. The transverse electric field distribution in the focal plane for various types

of paraxial beams and their corresponding angular spectra, obtained from Eq. (5). The

beam axis is denoted by K, and sgn(l) is the sign function of l (i.e. sgn(l) = +1 if l > 1

and sgn(l) = −1 if l < 1. The expression for the Laguerre-Gaussian angular spectrum

is not valid if l < 0 and m > 0.
Beam type E

K̂‖ẑ
⊥ F K̂‖ẑ

⊥

Gaussian η⊥e
−x

2+y2

w2 η⊥
w2

4π
e−

w2(k2x+k
2
y)

4

Hermite-Gaussian η⊥Hl

(√
2x
w

)
Hm

(√
2y
w

)
e−

x2+y2

w2 η⊥
w2

4π
Hl

(
kxw√

2

)
Hm

(
kyw√

2

)
e−

iπ
2

(l+m)e−
w2(k2x+k

2
y)

4

Laguerre-Gaussian η⊥

(√
x2+y2

w

)|l|
Llm

(
2(x2+y2)

w2

)
eil tan−1( y

x
)e−

x2+y2

w2 η⊥
w2

4π
Llm

(
w2(k2x+k2y)

2

)
(−1)m

(
− iw

2
(kx + sgn(l) iky)

)l
e−

w2(k2x+k
2
y)

4

Azimuthal 2
√

2
w
e−

x2+y2

w2 (yx̂− xŷ) − iw3

2
√

2π
e−

w2(k2x+k
2
y)

4 (kyx̂− kxŷ)

Radial 2
√

2
w
e−

x2+y2

w2 (xx̂ + yŷ) − iw3

2
√

2π
e−

w2(k2x+k
2
y)

4 (kxx̂ + kyŷ)

Note that all these angular spectra F K̂‖ẑ
⊥ can be later converted into the piecewise

angular spectra A which is used in Eq. (1) from the main text to calculate non-paraxial

fields. The longitudinal field can be reconstructed for all of these beams using Eq. (7)

from the main text.
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4. Polarisation basis decomposition

Eq. (2) of the main text shows the angular spectrum of a beam being decomposed into

plane waves of two orthogonal polarisation states. This step makes use of the orthogonal

p and s polarisation basis unit vectors êp and ês defined as,

êp =

cos(θ) cos(φ)

cos(θ) sin(φ)

sin(θ)

 ≡ 1

k kt

kx kzky kz
−k2

t

 , ês =

−sin(φ)

cos(φ)

0

 ≡ 1

kt

−kykx
0

 . (S5)

These are the usual polar and azimuthal unit vectors in spherical coordinates. In our

approach, these vectors are used to decompose the 3D vector field A into the complex

scalar fields Ap and As that appear in Eq. (2) of the main text. This is computed via dot

products, Ap = A· êp and As = A· ês. Note that A must be a full 3D angular spectrum

with longitudinal components included. If the longitudinal component is missing, Ap,s
will be inaccurate for tightly focused beams.

5. Mesh in real-space

In a numerical simulation (e.g. PWS), the electromagnetic field is usually sampled by

a discrete real-space cubic mesh. Our method requires the rotation of this field and

ultimately the sum of many rotated versions of this field. These rotations are not so

straightforward for a discrete vector field because if one were to rotate a cubic mesh by

a small angle, most of the mesh points would not align with the original points. This

means that the discrete fields cannot be summed since there will be a mismatch in the

xyz coordinates. This summation is necessary in order to perform the integration of the

angular spectrum in Eq. (3) of the main text. In essence, all the rotated electromagnetic

field data must be defined on the same coordinate mesh.

Our solution is to rotate the original real-space mesh rPWS in the opposite direction

to which the vector field will be rotated,

rR =
↔
Rφ(−φ)

↔
Rθ(−θ) rPWS. (S6)

It is important to note that the axes of rotations and the order of the rotations must

be chosen to preserve the polarisation state of any rotated fields (i.e. the polar angle

unit vectors êp and azimuthal angle unit vectors ês must be preserved). For a package

ingesting PWS data with the plane wave incident along z, first the θ rotation occurs

around the negative y-axis and after that, the φ rotation occurs around the z-axis. The

original unrotated vector field EPWS is then interpolated onto this backwards-rotated

mesh rR, such that EPWS(r) → EPWS(rR). So long as the resolution of the mesh is

sufficiently subwavelength, linear regression was found to provide adequate interpolation

results. The interpolated fields and the new mesh are then forward-rotated to the desired

orientation. This ensures that the final mesh is identical to the original PWS mesh, and

all the various rotated fields can be integrated.



24

These real-space rotations also give rise to another issue. Since the simulated fields

are evaluated on a simulation box with a given size, some data points near the corners

of the mesh may rotate into a position that is outside of the boundaries of the original

mesh. This can cause the interpolation algorithm to inaccurately extrapolate out to

this region and introduce a large error in these points. To compensate for this, the

mesh for the final integrated fields must be smaller than the mesh of the simulation,

such that any rotation of the smaller mesh is contained within the simulation mesh.

The user provides the coordinates that they wish to use for the optical beam (the beam

mesh) and the package uses the data from the simulations (defined on the simulation’s

mesh) to generate the beam. The two meshes are not related in any way, and linear

interpolation acts as the bridge between the two.

Since the rotations always occur around the centre of the mesh, the furthest a point

on a cube can get from the rotation axis is when the point is located on a vertex. If the

beam’s mesh is a cube with side length dbeam and the simulation’s mesh is a cube with

side length dPWS, the following inequality must be satisfied,

dPWS ≥
√

3 dbeam. (S7)

This corresponds to a spherical locus traced out by the vertices of the cube under

all possible 3D rotations. If this relation is not met, the vertices of the beam’s field

distribution are prone to large inaccuracies.

6. Theoretical force and torque on the core-shell particle

Fig. 1d in the main text demonstrates some optical force and torque results that can

be obtained with our beam-generation approach. Since the particle in question is a

subwavelength body with spherical symmetry, Mie theory is employed to provide an

alternative calculation method with which to compare and judge reliability of the results.

Mie theory is a technique widely used in scattering problems and describes the scattering

behaviour of a sphere via a series of electric and magnetic Mie coefficients, an and bn
respectively [43,44]. When the particle’s size is subwavelength as is the case of Fig. 1d,

the first-order dipole coefficients a1 and b1 are dominant. The electric and magnetic

dipole polarisabilities αe and αm respectively are related to the Mie coefficients by,

αe = a1
i6πε

k3
, αm = b1

i6π

k3
. (S8)

From the polarisabilities, electric and magnetic dipole moments p and m respectively

can be calculated using,

p = αeE, m = αmH. (S9)

In this section, E and H are strictly the fields incident on the particle, as opposed to

the total fields including the particle’s scattering.
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The following equations can then be used to calculate the theoretical force and

torque, Fth and Nth respectively, on the spherical particle considered in Fig. 1 of the

main text,

〈Fth〉 =
1

2
Re

{
(∇⊗ E)p∗ + µ(∇⊗H)m∗ − k4

6πεc
(p×m∗)

}
, (S10)

〈Nth〉 =
1

2
Re

{(
p∗ ×E + µm∗ ×H

)
− k3

6π

(
1

ε
Im{p∗ × p}+ µIm{m∗ ×m}

)}
. (S11)

In this case, the only non-zero components of Fth and Nth are the ẑ-components with

magnitudes Fth = 0.959 nN/W and Nth = 44.0 aNm/W (once normalised by the beam

power).
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