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polynomial chaos expansion
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[1] This study reports on two strategies for accelerating posterior inference of a highly
parameterized and CPU-demanding groundwater flow model. Our method builds on
previous stochastic collocation approaches, e.g., Marzouk and Xiu (2009) and Marzouk and
Najm (2009), and uses generalized polynomial chaos (gPC) theory and dimensionality
reduction to emulate the output of a large-scale groundwater flow model. The resulting
surrogate model is CPU efficient and serves to explore the posterior distribution at a much
lower computational cost using two-stage MCMC simulation. The case study reported in
this paper demonstrates a two to five times speed-up in sampling efficiency.

Citation: Laloy, E., B. Rogiers, J. A. Vrugt, D. Mallants, and D. Jacques (2013), Efficient posterior exploration of a high-dimensional

groundwater model from two-stage Markov Chain Monte Carlo simulation and polynomial chaos expansion, Water Resour. Res., 49,

2664–2682, doi:10.1002/wrcr.20226.

1. Introduction

[2] Parameterization of groundwater flow models can be
a challenging task, especially for heterogeneous media
[e.g., Koltermann and Gorelick, 1996]. Hydraulic conduc-
tivity and porosity are difficult to measure in the field and
poorly known a priori. This necessitates the use of inverse
methods that indirectly estimate these properties from other
observed subsurface variables. In this procedure, one itera-
tively proposes new parameter values until the model fits
the observed data up to a prespecified precision. Yet, high-
parameter dimensionality and significant model nonlinear-
ities pose considerable challenges to inverse methods.
Also, incomplete knowledge of the hydrogeology of the
site of interest and presence of measurement errors intro-
duce considerable uncertainty in the model parameters and
predictions. This is in part due to the limited information
content of the available calibration data, typically ground-
water head observations.
[3] Furthermore, another important source of uncertainty

originates from sparse measurement data that do not con-
tain sufficient information to reliably constrain flow and
transport properties of the hydrogeologic domain under

consideration. This might result in an ill-posed inverse
problem with multiple (parameter) solutions that fit the
data equally well. Quantification of uncertainty is not only
of crucial importance in decision making but also helps
diagnose which components of the model are well con-
strained by the available data, and which processes in the
model are not very well resolved [e.g., Carrera and Neu-
man, 1986a, 1986b; Kitanidis, 1986, 1997; Carrera et al.,
2005; Cooley and Christensen, 2006; Hernandez et al.,
2006; Tonkin and Doherty, 2009; Keating et al., 2010;
Troldborg et al., 2010; Nowak et al., 2010; Zeng and
Zhang, 2010, and many others].
[4] In recent years, Bayesian approaches are becoming

increasingly popular for aquifer and reservoir characteriza-
tion, and parameter and model predictive uncertainty analy-
sis [e.g., Oliver et al., 1997; Efendiev et al., 2005; Fu and
Gomez-Hernandez, 2009; Mariethoz et al., 2010; Mondal
et al., 2010; Cui et al., 2011]. These methods allow for a
rigorous statistical analysis of uncertainty [Kennedy and
O’Hagan, 2001], and use Markov chain Monte Carlo
(MCMC) simulation to generate samples from the posterior
target distribution. Despite significant advances in sam-
pling efficiency [e.g., Haario et al., 2001; Vrugt et al.,
2003; Christen and Fox, 2005; Haario et al., 2006; ter
Braak, 2006; ter Braak and Vrugt, 2008; Vrugt et al.,
2008; Cui et al., 2011; Laloy and Vrugt, 2012], MCMC
simulation might require a prohibitively large number of
model calls, especially in the presence of high-parameter
dimensionality. This is particularly true for CPU-intensive
hydrogeologic models, and hence MCMC simulation
becomes a daunting task [e.g., Tonkin and Doherty, 2005,
2009; Keating et al., 2010].
[5] Marzouk and Xiu [2009] recently proposed to extend

the stochastic collocation approach of Xiu [2007] to Bayes-
ian solution of nonlinear inverse problems. This method
uses the generalized polynomial chaos (gPC) framework to
construct a polynomial approximation of the forward
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solution over the support of the prior parameter distribu-
tion. This approximation defines a surrogate posterior dis-
tribution that can be derived at a minimal computational
cost. Convergence properties of this approach have been
studied in detail by Marzouk and Xiu [2009]. The rate of
convergence of the surrogate posterior to the true posterior
depends in large part on the smoothness of the original for-
ward model. For relatively simple low-dimensional models
significant speed ups in sampling efficiency have been
reported [Marzouk and Xiu, 2009]. Yet, applicability of this
methodology to complex parameter-rich models, common
in groundwater hydrology, has still to be demonstrated.
Such models pose specific difficulties, in particular because
the (spatially) simulated head and fluxes might not vary
smoothly enough with changes in the parameter values, and
the parameter space might simply be too large to develop a
sufficiently accurate emulator. Another complicating factor
is that groundwater models are typically CPU-demanding.
This severely limits our ability to exhaustively sample the
parameter space and build a reliable surrogate model that
provides an accurate characterization of the posterior distri-
bution. The scope of the present paper is thus to extend the
technique further in order to derive the posterior distribu-
tion of a highly parameterized, and computationally expen-
sive groundwater model.

2. Approach

[6] In this work we propose and evaluate two strategies
to accelerate Bayesian inference of a highly parameterized
and CPU-demanding groundwater flow model. Our first
approach proceeds in the two following steps. First, a gPC-
based surrogate model is constructed using the least possi-
ble amount of deterministic forward simulations, and the
corresponding surrogate posterior distribution is subse-
quently derived with MCMC simulation at a negligible
computational cost. Next, samples from this surrogate dis-
tribution are then used to initialize the DREAM ZSð Þ algo-
rithm [ter Braak and Vrugt, 2008; Vrugt et al., 2009;
Laloy and Vrugt, 2012] and MCMC simulation proceeds
with the original flow simulator. Note that this first strategy
is similar in spirit to the recently published approach of
Zeng et al. [2012] in which draws from an interpolation-
based surrogate posterior is employed as initial position for
posterior exploration of a lowly parameterized transport
model using the DRAM [Haario et al., 2006] sampler.
[7] The second strategy uses the gPC-based surrogate

model derived following Xiu [2007] within a two-stage
MCMC simulation scheme [e.g., Liu, 2001; Christen and
Fox, 2005; Efendiev et al., 2005; Kaipio and Somersalo,
2007; Mondal et al., 2010; Cui et al., 2011], using
DREAM ZSð Þ. In this two-stage MCMC framework, a
reduced-order (either coarse or approximated) model is typ-
ically used that approximates the original model but oper-
ates at a much coarser spatial resolution, possibly with
simplified processes. Then, each time a proposal is gener-
ated using MCMC simulation, the reduced-order model is
first evaluated and only those proposals that are accepted
are being evaluated by the original model. We combine
herein the latest advances in two-stage MCMC simulation
[Cui et al., 2011] with polynomial chaos expansion (PCE)
to create a reduced-order model in the first evaluation step.

This approach has some common features with the study of
Dostert et al. [2009] who used standard two-stage MCMC
simulation with a reduced order model based on stochastic
collocation and Lagrange interpolation. A salient feature of
the two-stage MCMC methodology used herein is the
adaptive construction of a stochastic model for the reduced
order to original model error [Cui et al., 2011], which con-
siderably improves efficiency over the classical two-stage
MCMC scheme.
[8] We illustrate our methodology using the hydrogeo-

logical characterization of a three-dimensional multilay-
ered aquifer. Steady-state groundwater flow is simulated
using MODFLOW-2005 [Harbaugh, 2005] and measured
heads serve as calibration data. As the inverse problem
involves more than 26,000 unknown parameters, we take
advantage of the Karhunen-Loève [Loève, 1977] transform
to significantly reduce the dimensionality of the parameter
space. Note that this dimensionality reduction technique is
commonly employed to represent Gaussian spatial fields
such as observed for the log conductivity, and several stud-
ies have used this approach in conjunction with MCMC
simulation [e.g., Dostert et al., 2006, 2009; Marzouk and
Najm, 2009].
[9] We would like to stress that polynomial chaos based

surrogates have mainly been used in the hydrologic litera-
ture for stochastic analysis with known parameter distribu-
tions [e.g., Li and Zhang, 2007; Li et al., 2009] or global
sensitivity analysis [e.g., Fajraoui et al., 2011; Ciriello et
al., 2013], but rarely within the context of parameter esti-
mation [some notable exceptions are Saad and Ghanem,
2009; Zeng and Zhang, 2010; Fajraoui et al., 2012] and
MCMC sampling. Indeed, the recent review of Razavi et
al. [2012] on surrogate modeling in water resources does
not address polynomial chaos expansion. Those studies that
have used gPC with MCMC simulation [Dostert et al.,
2009; Marzouk and Najm, 2009; Marzouk and Xiu, 2009]
were limited to relatively simple case studies, often involv-
ing synthetic data, low-dimensional models and simple
search methods.
[10] Thus the main novelty of our work lies in the state-

of-the-art techniques implemented for speeding up MCMC
simulation of hydrologic models with gPC, together with a
challenging CPU demanding and highly parameterized
real-world application. This paper therefore presents an im-
portant step forward as it bridges the gap between earlier
theoretical work on relatively simple simulation models
[e.g., Dostert et al., 2009; Marzouk and Najm, 2009; Mar-
zouk and Xiu, 2009] and more complex real-world infer-
ence problems.
[11] We foresee several potential advantages of gPC

with two-stage MCMC simulation. While a surrogate
model based on a coarser mesh and/or model abstraction
may involve difficult decisions about the extent to which
the physics of the model can be consistently simplified,
gPC expansion is relatively straightforward. Second, the
gPC-based surrogate model is computationally cheap com-
pared to the original model. This may not necessarily be
the case for reduced-order models that nevertheless require
numerical solution of partial differential equations in space
and/or time. Third, the gPC surrogate can be setup such
that it uses the exact same calibration parameters as the
original model. The surrogate posterior derived from
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MCMC simulation is therefore easily analyzed and used in
the original model. Finally, it is worth noting that we
employ herein a linear gPC, that is, a gPC of order 1. This
approximation suffices for the purpose and high dimension-
ality of the present study, but arguably is rather simple.
Constructing accurate higher-order approximations was
found to be computationally intractable.
[12] This paper is organized as follows. Section 3

presents the theoretical underpinning of the inversion strat-
egy used herein. This is followed in section 4 with applica-
tion to a highly parameterized groundwater model. In this
section, we are especially concerned with the CPU time
and compare the results of the proposed inversion techni-
ques against a classical MCMC inversion of the original
model. Finally, in section 5 we provide a summary with
conclusions.

3. Methods

[13] This section describes the inversion methodologies
followed herein. We first provide a brief description of the
Karhunen-Loève (KL) representation of a spatial Gaussian
process such as the log conductivity field. We then give an
overview of the generalized polynomial chaos, and the sto-
chastic collocation method of Xiu [2007]. This section con-
cludes with a description of the traditional and two-stage
MCMC strategies used herein to sample the posterior pa-
rameter distributions of the surrogate and original flow
models.

3.1. Karhunen-Loève Expansion

[14] Let’s consider a three dimensional spatial domain
D � R

3, let x be the spatial location, Y xð Þ be a real-valued
random field with mean � xð Þ and a parametric covariance
kernel C that is continuous on D� D. Then, the KL expan-
sion of Y xð Þ is given by [e.g.,Marzouk and Najm, 2009]

Y xð Þ ¼ � xð Þ þ
X

1

i¼1

ffiffiffiffi

�i
p

ci�i xð Þ; (1)

where �i xð Þ and �i are eigenfunctions and eigenvalues of
the covariance kernel C

Z

D

C x1; x2ð Þ�i x2ð Þdx2 ¼ �i�i x1ð Þ: (2)

[15] The covariance kernel C is symmetric and positive
semidefinite and thus we have

C x1; x2ð Þ ¼
X

1

i¼1
�i�i x1ð Þ�i x2ð Þ; (3)

where the eigenfunctions �i xð Þ form a complete orthonor-
mal system in L2 Dð Þ. The random variables ci, hereafter
referred as KL modes, are uncorrelated with zero mean and
unit variance. If Y xð Þ is multi-Gaussian, then by definition
the ci are standard normal, ci � N 0; 1ð Þ.
[16] For a concise representation of the considered ran-

dom field, one can truncate the KL expansion up to a
desired accuracy using the k largest eigenvalues

Yk xð Þ ¼ � xð Þ þ
X

k

i¼1

ffiffiffiffi

�i
p

ci�i xð Þ; (4)

with covariance function of Yk xð Þ given by

Ck x1; x2ð Þ ¼
X

k

i¼1
�i�i x1ð Þ�i x2ð Þ: (5)

[17] The number k is commonly taken so that 95% of the
total variance or ‘‘energy’’ of Y(x) is preserved

Z

D

E Y xð Þ � � xð Þð Þ2dx ¼
Z

D

C x; xð Þdx ¼
X

1

i¼1
�i;

X

k

i¼1
�i

X

1

i¼1
�i

¼ 0:95: (6)

[18] A complete derivation of the KL expansion, can
be found in, e.g., Marzouk and Najm [2009] and inter-
ested readers are referred to this publication for more
details.
[19] In this work, we assume a Gaussian covariance

model of the form

C x1; x2ð Þ ¼ �2exp

� �3 x1;x � x2;x
� �2

L2x
þ x1;y � x2;y
� �2

L2y
þ x1;z � x2;z
� �2

L2z

" # !

; ð7Þ

where �2 is referred to in the hydrogeologic literature as
the sill and taken as the field variance, and Lx; Ly, and Lz
denote the correlation lengths or ranges along the spatial
dimensions x; y, and z, respectively.

3.2. Generalized Polynomial Chaos

[20] Generalized polynomial chaos (gPC) is an approxi-
mation methodology that emulates the output of a simula-
tion model using orthogonal polynomials. The parameters
in these polynomials are transformations of the parame-
ters of the original CPU-intensive model. The gPC has
been introduced in the field of engineering by Ghanem
and Spanos [1991] and subsequently used by various
authors to build simple CPU-efficient surrogate models
[Xiu and Karniadakis, 2002; Le Mâıtre and Knio, 2010].
We provide a general overview of the gPC approach
herein and refer the reader to the cited literature and refer-
ences therein for a more comprehensive description of
this methodology.
[21] Let z ¼ z1; . . . ; znð Þ 2 Rn; n � 1 be a set of inde-

pendent continuous random variables characterizing the yet
unknown parameter values of a system of partial differen-
tial equations. We assume each zi; i ¼ 1; . . . ; n to have a
prior probability density function (pdf) p zið Þ. The joint
prior pdf of z therefore becomes
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p zð Þ ¼
Y

n

i¼1
p zið Þ: (8)

[22] Let d ¼ d1; . . . ; dNð Þ 2 RN ;N � 1 be a set of true
measurements of one variable, and F be a deterministic,
error-free ‘‘forward model’’ that expresses the relation
between the uncertain parameters z and d

F zð Þ ¼ d: (9)

[23] In the context of groundwater flow and transport
modeling, F typically involves numerical solution of a
large system of partial differential equations (PDEs).
Note that model and measurement errors will be considered
later on.
[24] In the following, we describe the gPC expansion of

equation (9) for N ¼ 1. If N > 1, it is straightforward to
apply the approximation separately to each component of
F. The P-degree gPC approximation of F zð Þ is given by

FP zð Þ ¼
X

U�1

j¼0
ajWj zð Þ; (10)

where the deterministic coefficients a1; . . . ; aU are
unknown, and U denotes the total number of n-dimensional
orthogonal polynomials Wj zð Þ of degree not exceeding P in
a total-order expansion. The value of U is simply computed
as U ¼ Pþnð Þ!

P!n!
. It is worth noting that a full tensor-product

expansion may also be employed. In this case, the polyno-
mial order in each dimension of the parameter space is at
most P, with total number of polynomial basis functions
Pþ 1ð Þn. The latter grows prohibitively fast with parameter
dimensionality and is therefore rarely used in practice. The
Wj zð Þ are products of the monodimensional polynomials
for expansion terms j ¼ 1; . . . ;U : Wj zð Þ ¼  j;1 z1ð Þ�
 j;2 z2ð Þ; . . . ;� j;n znð Þ.
[25] Various polynomial types can be used in equation

(10) depending on the available prior information about the
variable zi. For instance, Jacobi polynomials are typically
associated with a beta distribution, Hermite polynomials
with a Gaussian distribution, Laguerre polynomials with a
gamma distribution, and Legendre polynomials, that repre-
sent a special case of the Jacobi polynomials, with an uni-
form distribution [Xiu and Karniadakis, 2002]. Different
polynomial bases can also be combined, which is done in
the present study, where a mixture of Legendre and
Hermite polynomials is used (see later).
[26] According to classical approximation theory, the

convergence of FP zð Þ to F zð Þ as P! 1 requires F zð Þ to
be square integrable with respect to p zð Þ. The rate of con-
vergence is controlled by the regularity of F zð Þ [e.g., Le
Mâıtre and Knio, 2010], and hence the smoother the for-
ward model, the faster the convergence.

3.3. Spectral Projection

[27] Linear regression and spectral projection are two
common methods to compute the expansion coefficients aj
in equation (10) without affecting the original model equa-
tions. The first method uses a single least squares solution
to solve for the complete set of coefficients that best match
the respective predictions of the original CPU-intensive

model at predefined grid points. This requires the use of at
least

Pþnð Þ!
P!n!

parameter combinations, and thus forward
model simulation runs, to warrant a well posed problem.
The spectral approach, which is used herein, obtains the aj
expansion coefficients by projecting the model response
against each individual basis function. The aj are defined as
follows

aj ¼
hF zð Þ;Wj zð Þi

hW2
j zð Þi

¼ 1

hW2
j zð Þi

Z

F zð ÞWjp zð Þdz: (11)

[28] The denominator in equation (11) is the inner prod-
uct of the respective multivariate orthogonal polynomial,
which can be computed for j ¼ 0; . . . ;U � 1 using

hW2
j zð Þi ¼

Y

n

i¼1
h 2i;ji; (12)

where the univariate inner products of each respective
polynomial have a simple closed form solution for which
analytical expressions are readily available. The computa-
tional effort therefore resides in the time it takes to evaluate
the numerator in equation (11).
[29] In the spectral projection framework of Xiu [2007],

the expansion coefficients, ~aj, are approximated using

~aj ¼

X

Q

k¼1
F zkð ÞWj zkð Þwk

hW2
j zð Þi

; (13)

where the vector zk denotes one of the Q points in the
model parameter space, and the wk’s are the associated
weights of an integration (cubature) rule on Rn. This leads
to the following approximation of FP in equation (10)

~FP zð Þ ¼
X

U�1

j¼0
~ajWj zð Þ: (14)

[30] The use of an integration rule in equation (13)
causes FP to differ from ~FP. This deviation is also
referred to as the ‘‘aliasing’’ error [Xiu, 2007] and
decreases with Q in equation (13). Hence, ~FP converges
to the true forward solver, F, as P! 1 and Q! 1.
This introduces a tradeoff between the accuracy of the
surrogate model ~FP and associated computational
burden.
[31] A key issue in the use of the spectral projection

framework is the choice of the nodal set zk ;wkf g in equa-
tion (13). Ideally, the integration rule should be as accurate
and efficient as possible using the least number of nodal
points and thus deterministic forward simulations. Several
approaches have been proposed in the literature to approxi-
mate a multidimensional integral by a weighted discrete
sum. Tensor product formulas, e.g., Gauss quadratures, are
probably the most effective but are rather inefficient and
cumbersome in parameter spaces of more than five to six
dimensions. Indeed, if m denotes the prescribed number of
points in each parameter dimension, the total number of
sampling points obeys the simple quadrature rule Q ¼ mn
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and therefore grows exponentially with parameter dimen-
sionality. In contrast, sparse grid approximation methods
[e.g., Smolyak, 1963; Gerstner and Griebel, 2003; Xiu and
Hesthaven, 2005; Babuska et al., 2007; Nobile et al.,
2008a, 2008b] can drastically reduce the required number
of collocation points while preserving a high level of accu-
racy for moderately large dimensional parameter spaces.
[32] As we consider both uniform and standard normal

prior parameter distributions (more details to follow), we
employ a mixture of Legendre and Hermite polynomials
using a mixed sparse grid whose factors are distinct one-
dimensional quadrature rules. More specifically, we com-
bine a Gauss-Paterson (GP) rule on the interval �1; 1½ � for
the uniform variables to be employed with the Legendre
polynomials, with a Gauss-Hermite (GH) rule defined over
�1;1½ � for the standard normal random parameters of the
Hermite polynomials. This is schematically illustrated in
Figure 1. The computer program and implementation
details can be downloaded from http://people.sc.fsu.edu/
�jburkardt/m_src/sparse_grid_mixed/sparse_grid_mixed.
html.

3.4. Bayesian Inference

[33] Acknowledging that measurement error and model
inadequacy are inevitable, a common stochastic representa-
tion of the inverse problem is

F zð Þ ¼ dþ e; (15)

where the noise term e lumps measurement and model
errors. In this work, it is assumed that e follows a zero-
mean multivariate Gaussian distribution, i.e., e � N 0;Reð Þ.
Prior information can help refine this assumption. Given
reasonably sparse measurements, we further consider a
constant error variance, �2e , and thus Re ¼ �2eI, where I sig-
nifies the identity matrix. These assumptions will be veri-
fied a posteriori.
[34] In the Bayesian paradigm, the unknown model pa-

rameters z are viewed as random variables with posterior
pdf p zjdð Þ given by

p zjdð Þ ¼ p zð Þp djzð Þ
p dð Þ / p zð ÞL zjdð Þ; (16)

where L zjdð Þ � p djzð Þ signifies the likelihood function of
z. The normalization factor p dð Þ ¼

Z

p zð Þp djzð Þdz is

obtained from numerical integration over the parameter
space so that p zjdð Þ scales to one. In the remainder of this
paper, we will focus on the unnormalized posterior
p zjdð Þ / p zð ÞL zjdð Þ. If we assume e to be Gaussian distrib-
uted, uncorrelated and with constant variance, the likeli-
hood function can be written as

L djzð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2��2e
p

 !N

exp � 1
2
��2e
X

N

i¼1
di � Fi zð Þ½ �2

 !

: (17)

3.5. MCMC Simulation of p zjdð Þ
[35] An exact analytical solution of p zjdð Þ is not avail-

able in many practical cases, and we therefore resort to
MCMC simulation to generate samples from the posterior
distribution. The basis of this technique is a Markov chain
that generates a random walk through the search space and
iteratively finds parameter sets with stable frequencies
stemming from the parameter posterior pdf. To explore the
posterior target, an MCMC algorithm generates trial moves
from the current state of the Markov chain, z, to a new con-
figuration z0. The earliest MCMC approach is probably the
well-known random walk Metropolis (RWM) sampler [Me-
tropolis et al., 1953]. Assuming that a random walk has al-
ready sampled the points z0; . . . ; zf g, this algorithm
proceeds in the following three steps. First, a candidate
point z0 is sampled from a proposal distribution q 	; 	ð Þ that
is symmetric, q z; z0ð Þ ¼ q z0; zð Þ and may depend on the
present location, z. Second, the candidate point is either
accepted or rejected using the Metropolis probability ratio:

� z; z0ð Þ ¼ min p z
0jdð Þ

p zjdð Þ ; 1
� �

: (18)

Figure 1. Illustration of a mixed sparse grid in two dimensions, z1 and z2. (a) Level five (321 nodes)
Gauss-Patterson (GP) sparse grid for uniformly distributed variables, (b) level five (181 nodes) Gauss-
Hermite (GH) sparse grid for standardized normally distributed variables, and (c) associated level five
(261 nodes) mixed Gauss-Patterson/Gauss-Hermite (GP/GH) sparse grid in which z1 has an uniform dis-
tribution and z2 a standard normal distribution.
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[36] Finally, if the proposal is accepted, the chain moves
to z0 ; otherwise the chain remains at z.
[37] This produces a Markov chain which, under certain

regularity conditions, has a unique stationary distribution
with pdf p zjdð Þ. Hastings [1970] extended equation (18) to
include nonsymmetrical proposal distributions, i.e.,
q z; z0ð Þ 6¼ q z0; zð Þ, in which a proposal jump to z0 and the
reverse jump do not have equal probability. The resulting
algorithm is called the Metropolis-Hastings (MH) algo-
rithm, and has become the main building block of many
existing MCMC sampling schemes.
[38] In practice, the MCMC sampling efficiency strongly

depends on the assumed proposal distribution, q 	; 	ð Þ, used
to generate transitions in the Markov chain. When the pro-
posal distribution is too wide, very few candidate points
will be accepted, and the chain will converge rather slowly
to the posterior target distribution. On the other hand, if the
proposal distribution is too narrow, the chain will remain in
close vicinity of its current location, and a prohibitively
large number of iterations is needed before the entire poste-
rior distribution has been explored. The choice of the pro-
posal distribution is therefore of crucial importance in
determining the efficiency of MCMC simulation.

3.6. Accelerating Posterior Exploration of a Complex
CPU-Intensive Flow Model

[39] The gPC-based Bayesian algorithm of Marzouk and
Xiu [2009] simply replaces the true but unknown forward
solution of equation (15) with the surrogate solution (14) to
compute the likelihood of z. This leads to an approximated
(surrogate) posterior distribution ~p zjdð Þ. If ~FP is suffi-
ciently close to the true model, ~p zjdð Þ will converge to
p zjdð Þ and posterior inference can thus be achieved at neg-
ligible computational cost. Unfortunately, our preliminary
tests (not shown herein) demonstrated that mildly and
highly parameterized groundwater flow models may be
hard to approximate accurately at an affordable computa-
tional cost for constructing ~FP. The assumption that
p zjdð Þ 
 ~p zjdð Þ may hence be invalid, especially with
increasing dimensionality of the parameter space. This is
the motivation for the two different strategies detailed
below.
3.6.1. Strategy A
[40] Our first methodology capitalizes on the fact that,

though not exactly similar, the surrogate posterior, ~p zjdð Þ,
is in most cases likely to be closer to the desired posterior,
p zjdð Þ, than the prior distribution, p zð Þ. Our first strategy is
therefore to (1) build a surrogate solution ~FP using the least
amount of computational time, (2) determine ~p zjdð Þ using
MCMC simulation, and (3) explore the posterior distribu-
tion of the original model, p zjdð Þ, using samples from (2)
as a starting point. In the remainder of this paper, we refer
to this approach as strategy A.
[41] The state-of-the-art DREAM ZSð Þ [ter Braak and

Vrugt, 2008; Vrugt et al., 2009; Laloy and Vrugt, 2012]
algorithm is used to generate posterior samples. A detailed
description of this sampling scheme including a proof of
ergodicity and detailed balance can be found in the cited
literature. We construct the initial archive of parameter sets
used by DREAM ZSð Þ by drawing m0 ¼ 10n samples from
~p zjdð Þ. Consequently, the search is initiated in the neigh-
borhood of the mode of ~p zjdð Þ, and the initial proposals

honor the correlation structure of ~p zjdð Þ. We purposely do
not approximate p zð Þ with a mixture distribution of ~p zjdð Þ.
Reasons for this are twofold. First, we prefer a data-
driven problem that is not overly constrained by the prior
distribution, p zð Þ. Second, the marginal prior distribution
of the KL modes is known beforehand to be standard
normal.
3.6.2. Strategy B
[42] In our second sampling scheme, herein referred to

as strategy B, we adopt a state-of-the-art two-stage MCMC
approach [Cui et al., 2011], in which ~FP is constructed
beforehand and serves as reduced-order model in the first
stage. The DREAM ZSð Þ scheme is again used to propose
candidate points, but without the optional snooker update
[see ter Braak and Vrugt, 2008]. In addition, the initial
archive of parameter samples is constructed similarly as in
strategy A. An excellent description of the two-stage or
delayed acceptance MCMC technique, including its exten-
sion to the reversible jump method of Green [1995], can be
found in Cui et al. [2011]. We therefore present a short
summary of the main elements of the methodology.
[43] In the two-stage MCMC approach, one first sam-

ples a candidate point z0 from a proposal distribution
q z; z0ð Þ and calculates an approximate posterior, ~p� zjdð Þ,
that accounts for the model reduction error, R zð Þ (see
later), using the standard Metropolis-Hastings (MH)
acceptance probability [Metropolis et al., 1953; Hastings,
1970] of equation (18). This filtering of the unacceptable
proposals z0 essentially defines a modified jump probabil-
ity q� z; z0ð Þ. In the second step, the accepted draws from
q z; z0ð Þ are evaluated with the original model in conjunc-
tion with the MH rule applied to q� z; z0ð Þ. This avoids
unnecessary and expensive computation of p zjdð Þ when
proposal points are rejected in the first step. The lower the
acceptance rate (AR) in the first step and the higher the AR
in the second step, the larger the computational gain. Note
however, that this gain in computational effort compared
to standard MCMC simulation schemes comes at the
expense of a potential increase in autocorrelation between
the posterior samples [Christen and Fox, 2005; Cui et al.,
2011].
[44] If we assume R to be multivariate normally distrib-

uted and independent of z, that is, R � N lR;RRð Þ, we derive

~p� zjdð Þ ¼ p zð Þ

� 1

2�ð ÞN=2jRcj1=2
exp � 1

2
kR�1=2

c d� ~FP zð Þ � lR
� �

k2
� �

; ð19Þ

where k 	 k denotes the Euclidean norm, Rc ¼ RR þ Re,
with lR and RR derived from the Q prior parameter sam-
ples. If the analysis of the relationship between ~FP and F
supports the assumptions of lR ¼ 0 and a constant var-
iance, �2R, of R, that is, RR ¼ �2RI, equation (19) can be
reformulated as

~p� zjdð Þ ¼ p zð Þ

� 1
ffiffiffiffiffiffiffiffiffiffi

2��2c
p

 !N

exp � 1
2
��2c
X

N

i¼1
di � ~FP;i zð Þ
	 
2

 !

; ð20Þ

where �2c ¼ �2R þ �2e .
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[45] For symmetric proposal distributions such as used in
DREAM ZSð Þ; q z; z

0ð Þ ¼ q z0; zð Þ and the MH ratio, � z; z0ð Þ
reduces to

� z; z0ð Þ ¼ min 1; ~p
� z0jdð Þ
~p� zjdð Þ

� �

: (21)

[46] Furthermore, for an approximate posterior of the
form of equations (19) and (20), the MH acceptance proba-
bility in the second step, hereafter referred to as �, can be
written as [Cui et al., 2011]

� z; z0ð Þ ¼ min 1; p z
0jdð Þ~p� zjdð Þ

p zjdð Þ~p� z0jdð Þ

� �

: (22)

[47] The acceptance rate of this second step is controlled
by the validity of the approximate posterior ~p� zjdð Þ. This
inspired Cui et al. [2011] to locally adapt ~p� zjdð Þ during
sampling, to better mimic the true posterior p zjdð Þ. For a
proposal z0, the reduced-order model becomes

~FP;z z
0ð Þ ¼ ~FP z

0ð Þ þ F zð Þ � ~FP zð Þ
	 


; (23)

which leads to the following form of the approximate
posterior

~p�z z
0jdð Þ ¼ p zð Þ

� 1
ffiffiffiffiffiffiffiffiffiffiffiffi

2��2c;z

q

0

B

@

1

C

A

N

exp � 1
2
��2c;z
X

N

i¼1
di � ~FP;z;i z

0ð Þ
	 
2

 !

; ð24Þ

where �2c;z ¼ �2R;z þ �2e , and �
2
R;z signifies the error between

~FP;z z
0ð Þ and F z0ð Þ which is adaptively adjusted [Cui et al.,

2011]. Using this local correction, equation (21) can be
written as

� z; z0ð Þ ¼ min 1; ~p
�
z z

0jdð Þ
~p�z zjdð Þ

� �

; (25)

and equation (22) takes the following form

� z; z0ð Þ ¼ min 1;
p z0jdð Þ �min 1; ~p

�
z0 zjdð Þ

~p�
z0 z

0 jdð Þ

h i

p zjdð Þ �min 1; ~p
�
z z

0jdð Þ
~p�z zjdð Þ

h i

8

<

:

9

=

;

; (26)

the proof of which is given in appendix A.
[48] If the magnitude of �2R;z is negligibly small com-

pared to the magnitude of �2e , one can further simplify
equation (26) by assuming ~p�z0 z

0jdð Þ ¼ p z0jdð Þ and
~p�z zjdð Þ ¼ p zjdð Þ. In this study, �2R;z 2 0:05�2e ; �

2
e

	 


. Conse-
quently, we do not use this simplification as it would lead
to corrupted values of � and �.
[49] To account for the loss of ‘‘statistical efficiency’’ or

increase in posterior sample autocorrelation that accompa-
nies the computational gain in two-stage MCMC, the overall
computational speed up can be assessed as [Cui et al., 2011]

	

	�
1

�̂þ ts�

ts

; (27)

where �̂ is the average acceptance rate in the first step, and
t�s and ts signify the computational costs of calculating
~p� zjdð Þ and p zjdð Þ, respectively. The ratio 	

	� is smaller
than one and measures the increase in posterior sample
autocorrelation that directly follows from � < 1. The varia-
bles 	 and 	� can be estimated for some statistics of interest
of the Markov chain using, e.g., the inverse of the relative
numerical efficiency of Geweke [1992], or the integrated
autocorrelation time [IACT; Wolff, 2004]. In this work, we
follow Cui et al. [2011] and benchmark strategy B using
the IACT of log-likelihood values of the sampled parame-
ter values. The IACT values reported in this paper represent
an average of the different Markov chains created with
DREAM ZSð Þ.
[50] Ideally, a two-stage MCMC simulation should have

a relatively low value of � for the highest possible � value,
while preserving that the product �� � is sufficiently
large, say not less than 10%, to produce a reasonable mix-
ing of the chains. In this respect, it is worth noting that
there is an intrinsic tradeoff between � and � in equations
(19)–(26). The smaller the distance between the current
state in the Markov chain, z, and the proposal point, z0, the
closer ~FP z

0ð Þ to ~FP zð Þ and F z0ð Þ to F zð Þ, respectively, and
hence the better ~FP;z z

0ð Þ approximates F z0ð Þ. This leads to
a relatively large acceptance rate in the second stage. How-
ever, candidates z0 that differ only marginally from their
current position z will also have a high chance to be
accepted in the first step. This will cause the Markov
chain(s) to converge slowly, hence decreasing search effi-
ciency. Striking a appropriate balance between � and �
may therefore not be easy.
[51] Besides autocorrelation, it is also important to assess

when convergence of the sampled Markov chains to a lim-
iting (posterior) distribution has been achieved. The Gel-
man and Rubin [1992] and Raftery and Lewis [1992]
diagnostics help to monitor convergence of the sampled
chains. Note that these statistics essentially measure effi-
ciency, without recourse to estimating the validity of the
sampled posterior distribution. To quantify search effec-
tiveness, one can either compute the distance to the actual
target distribution if this is known beforehand [e.g., Laloy
and Vrugt, 2012], or simply assess whether the posterior
mode coincides with the maximum a posteriori parameter
values derived separately with an optimization method.

4. Case Study

4.1. Site and Model Description

[52] We test our two strategies A and B by calibration
and predictive uncertainty analysis of a highly parameter-
ized groundwater model involving a subbasin of the Kleine
Nete catchment in the region of Mol/Dessel, Belgium (Fig-
ures 2a and 2b). A hydrogeological site characterization to
depths up to approximately 180 m, of which the first 40–50
m was very detailed, has been carried out in 2008–2009
[Beerten et al., 2010; Rogiers et al., 2010, 2012a, 2012b],
using several cored boreholes, and more than 200 cone pen-
etration tests (CPT) (Figures 2b and 2c). This site charac-
terization complements monthly head data from 86
piezometers covering a 25 year period (Figure 2c).
[53] The hydrostratigraphy of the site can be summarized

as follows. The upper aquifer with an average thickness
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ranging from 25 to 35 m, consists of Quaternary, Mol and
Kasterlee Sands (see layers 1 and 2 in Figure 3a). This is
followed by an highly heterogeneous 5–10 m thick aquitard
known as the Kasterlee Clay (layer 3 in Figure 3a)), and a
lower aquifer about 150 m thick, consisting of the Diest,
Dessel, Berchem and Voort Sands (layers 5–7 in Figure
3a)), with a less permeable top of a few meters (Diest
clayey top, layer 4 in Figure 3a) at the interface with the
aquitard. The lower boundary of the lower aquifer corre-
sponds to the Boom Clay aquitard [Yu et al., 2013]. The
geometry of the hydrogeological units depicted in
Figure 3a was derived from classification and geostatistical

modeling of the CPT data [see Rogiers et al., 2010, for
details]. A very thin additional unit, referred to as Mol
Clay with unit index 1’, occurs locally between units 1 (Qua-
ternaryþMol upper) and 2 (Mol lowerþKasterlee sands)
but is too small to be conveniently represented in Figure 3a.
[54] Core samples from the boreholes were used to define

the upper and lower bounds of the conductivity (K) values of
each hydrogeological unit. In the absence of detailed prior
information about the parameters at the scale of interest, a
uniform prior distribution was used. Since the heterogeneous
aquitard (layer 3) controls the flow and transport between
the upper and lower aquifers, the hydraulic conductivity of

Figure 2. Geographical location of the study area and site investigations, including location of the
cored boreholes, cone penetration tests, and piezometers. (a) Flanders region (Northern Belgium), (b)
Nete basin, and (c) groundwater model extent.

Figure 3. (a) Hydrostratigraphy and model grid of a two-dimensional East-West profile through the
study area, (b) upper layer boundary conditions, (c) upper aquifer boundary conditions (not including the
upper most numerical layer), and (d) lower aquifer boundary conditions (Diest clayey top and below). A
very thin additional unit, referred to as Mol Clay with unit index 1’, occurs locally between units 1 (Qua-
ternaryþMol upper) and 2 (Mol lowerþKasterlee sands) but is too small to be conveniently repre-
sented in Figure 3a.
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this unit is of major importance in our model-data synthesis
efforts and will be treated as a spatially variable parameter.
A joined analysis of the core samples and CPT measure-
ments showed that the vertical component, kv, of the three-
dimensional aquitard conductivity tensor field can be
adequately described with an isotropic Gaussian covariance
function with sill of about 0.32 (in base 10 logarithmic scale
of the conductivity in ms�1), and range, L, of about 2000 m
[Rogiers et al., 2010, 2012a]. The other stratigraphical units
were observed to be fairly homogeneous and hence a single
isotropic K value was used to characterize the conductivity
of each of these units.
[55] MODFLOW-2005 [Harbaugh, 2005] was used to

solve the governing partial differential equation

@

@x
Kxx

@h

@x

� �

þ @

@y
Kyy

@h

@y

� �

þ @

@z
Kzz

@h

@z

� �

þW ¼ 0; (28)

in its finite difference form in the discretized model do-
main. The variables Kxx;Kyy, and Kzz represent the hydrau-
lic conductivity along the x; y, and z coordinate axes
(assumed to be parallel to the major axes of hydraulic con-
ductivity), respectively, h is the potentiometric head, and W
represents sources and/or sinks of water. The model
domain of 12,500 m by 9000 m by 200 m in the x� y� z
domain was discretized into 250 � 180 � 14¼ 630,000
cuboid voxels with a horizontal side length of 50 m and
variable height in the vertical (depth) direction.
[56] The initial heads were obtained by interpolation

from the coarser regional Neogene Aquifer Model
[Gedeon, 2008], with boundary conditions illustrated in
Figures 3b and 3c. No flow conditions were represented by
a Neumann boundary condition (in this case a zero flux),
and Dirichlet boundary conditions were used to specify the
fixed head boundaries. The latter were also interpolated
from the calculated heads using the regional Neogene
Aquifer Model. The river boundaries are a combination of
no flow boundaries with an additional source/sink in the
uppermost voxel. At the few locations where the model
boundary does not follow river paths, fixed heads are used
in the uppermost voxels to bridge these gaps (Figures 3b
and 3c). Water flow between the river and underlying aqui-
fer is calculated from Darcy’s law using a fixed hydraulic
head within the stream, and a spatially variable hydraulic
conductivity for each individual cell of the aquifer. Due to
the presence of the Kasterlee Clay aquitard, only the main
river is assumed to significantly influence the heads of the
lower aquifer. Different boundary conditions were there-
fore specified for the layers above (Figures 3b and 3c) and
below (Figure 3d) the aquitard. The bottom layer of the
deepest hydrogeologic unit is assumed to be impermeable,
which is represented by a zero flux boundary condition
(Neumann). As upper model boundary, we used a constant
recharge of 307 mm y�1, with a complex network of rivers
and drains (Figure 3b). For a more detailed model descrip-
tion, we refer the reader to Gedeon et al. [2011] and
Gedeon and Mallants [2012].
[57] Under steady-state flow conditions, a single model

run required about 2–3 min of CPU time on a 64-bit Intel
VR

CoreTM i7–2820 CPU 2.30 GHz processor, but sometimes
lasted up to 70 min depending on the values of the model
parameters.

4.2. Model Parameterization

[58] The observational data set comprises monthly pie-
zometric heads from N ¼ 86 locations averaged over a 25
year period. The inferred model parameters are the homo-
geneous and isotropic K values of the aquifer units 1, 1’, 2,
and 4–7 shown in Figure 2a, and the 250� 180¼ 45,000
dimensional log10 khð Þ and log10 kvð Þ fields of the aquitard
unit 3. The kh component of unit 3 was assumed to be iso-
tropic, that is, k h;xð Þ ¼ k h;yð Þ, and linearly related to kv by
an anisotropy factor, ANI3;h ¼ kh=kv, which is estimated
jointly with the other unknown parameters. In practice, we
only estimate kv and derive kh for those grid cells that
appear within the active modeling domain of the basin
considered herein (Figure 3c). This is equivalent to 26,112
hydraulic conductivity values for both spatial fields.
[59] We take advantage of the KL transform described in

equations (1)–(7) to substantially decrease the dimensional-
ity of log10 kvð Þ. For the assumed correlation length and co-
variance model of equation (7), a total of 92 KL modes
were deemed sufficient to preserve 95% of the total field
variance (see Figure 4). We numerically evaluated the
eigenfunctions, �i xð Þ, and eigenvalues, �i, of the kernel C
(equations (1)–(6)) based on the observed covariance
model (equation (7)). For computational tractability, �i xð Þ
and �i were computed using a voxel horizontal side length
of 100 m instead of 50 m, thereby reducing the size of the
numerical domain from 250� 180 to 125� 90. Each kv
field was then interpolated from the coarser 125� 90 grid
to the actual finer 250� 180 mesh.
[60] The Gaussian covariance function and correlation

length used herein is supported by geostatistical analysis of
field data [Rogiers et al., 2010, 2012a]. The Gaussian
covariance function has important computational advan-
tages in that only a relatively small number of KL modes
are needed to preserve 95% of the field variance. The use

Figure 4. Decay of the KL eigenvalues, �i, with the
selected covariance model. NKL and NTOT denote the num-
ber of KL modes and total number of field voxels, respec-
tively. The blue solid line depicts the fraction of the
unresolved field variance as function of the number of KL
modes used in the analysis. A total of 92 KL modes is
required to preserve 95% of the field variance (intersection
between the blue and red dashed line).
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of a less smooth covariance model, such as the exponential
covariance function, on the contrary, would allow a much
higher level of spatial detail and variability, but at the
expense of several hundreds of KL modes to preserve 95%
of the variance of the log conductivity field [e.g., Li and
Cirpka, 2006].
[61] Note that inferring the covariance function and cor-

relation length along with the unknown KL modes from the
available piezometric data would pose significant computa-
tional challenges, whereas the final results might not honor
the prior variogram analysis of the field data. For instance,
the calculation of the KL representation associated with
each proposed parameter set might take a prohibitively
long time for large parameter spaces. Indeed, derivation of
a single set of KL eigenvalues and eigenfunctions requires
more than 12 h of CPU time for the Gaussian covariance
kernel considered herein. Moreover, each time a different
covariance function and correlation length is used, the
number of KL modes needs to be rederived to preserve
95% of the field variance. The MCMC inference then
becomes trans-dimensional in a sense that the dimensional-
ity of the parameter space varies from one proposal to the
next. In principle, this can be solved by reversible jump
MCMC simulation [Green, 1995], but this methodology is
not straightforward to implement in practice.
[62] The standard deviation of log10 kvð Þ; �, simply acts

as a scaling factor of the covariance matrix C in equation
(7), and therefore does not affect the shape of the decay of
the KL eigenvalues displayed in Figure 4. For greater flexi-
bility, we therefore use � ¼ 1 in equations (1)–(6), and sub-
sequently estimate the � value of the field along with the
other parameters. Note that for a fixed value of �, a slight
deviation of the KL mode distribution from a distribution
with zero mean and unit variance will also impact the var-
iance of the reconstructed field. Hence, we compute the
field variance from a range of posterior realizations. In
practice, we multiply

ffiffiffiffi

�i
p

derived from � ¼ 1 in equation
(1) by the estimated value of �. The log10 kvð Þ field is hence
characterized by 94 parameters including the mean and var-
iance parameter, MK3;v and SK3;v, respectively, and the 92
KL modes that honor the observed Gaussian covariance

structure with a range of 2000 m. The vector z thus con-
tains n ¼ 102 parameters. The prior distribution of the
NKLT ¼ 92 KL modes is given by a multinormal distribu-
tion where the individual KL modes are initially assumed
to be uncorrelated. The prior distribution of the ten remain-
ing parameters is taken to be ‘‘uniform’’ with ranges listed
in Table 1. The prior distribution of z; p zð Þ, thus reduces to

p zð Þ ¼ 1
ffiffiffiffiffiffi

2�
p
� �NKLT

exp � 1
2

X

NKLT

i¼1
KL2i

 !

: (29)

4.3. Surrogate Construction and Posterior
Exploration Using MCMC Simulation

[64] To construct ~FP in equations (8)–(14), we combine
p zð Þ with Legendre polynomials for
K1;K10 ;K2;K4;K5;K6;K7;ANI3;h;MK3;v, and SK3;v, respec-
tively, and Hermite polynomials for KL1; . . . ;KL92. For the
nodal set zk ;wkf g in equation (13), we use the GP/GH
mixed sparse grid depicted in Figure 1 with a sparse grid of
level one. For 102 dimensions this leads to a total of 205
sparse grid points (Q in equation (13)) for which the for-
ward model has to be evaluated.
[65] In all our numerical experiments, we use an expan-

sion order of P ¼ 1. While this order does not account for
correlation between the different parameters, its value is
appropriate for the following reasons. In the first place,
P ¼ 1 performs well for the surrogate model considered
herein. An average RMSE of approximately 0.20 m is
found in Figure 5 between the simulated heads of the surro-
gate and original hydrogeologic model. The use of P ¼ 2
does not improve the results, but rather deteriorates the
RMSE because the number of 205 nodes used in equation
(13) becomes insufficient to adequately capture the behav-
ior of the original CPU-intensive model. Moreover, a larger
number of 21,217 grid points and corresponding model
calls are required to increase the resolution of the selected
mixture of GH/GH quadrature rules, that is, to reach a

Table 1. Description of the Inferred Model Parameters With

Their Prior Uncertainty Intervala

Parameter Units Prior

Units 1, 1’, 2, and 4–7
K1 m d-1 1–25
K10 m d-1 0.1–1
K2 m d-1 1–25
K4 m d-1 0.1–1
K5 m d-1 1–25
K6 m d-1 0.1–2.5
K7 m d-1 1 � 10-3–2.5 � 10-2
Unit 3
ANI3;h 1 � 10-4–1 � 10-3
MK3;v �9.3 to �6.7
SK3;v 0.02–0.75
KL1; :::;KL92 �3 to 3
aThe subscripts 1–7 refer to the layering shown in Figure 3a. Subscript

1’ signifies the very thin and locally occurring clay layer between horizons
1 and 2 in Figure 3a. MK3;v and SK3;v denote the mean and variance of
log10 kvð Þ, respectively, and KL1; :::;KL92 refer to the associated KL
modes. Other parameters are defined in the main text.

Figure 5. Pair wise comparison of the simulated heads of
the original (F) and surrogate model (~FP) for 200 different
parameter combinations randomly drawn from the prior
distribution. The ensemble of simulated heads at each mea-
surement location is coded with a different color.
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sparse grid of level two. This defeats the purpose of our
method. Also the computational burden of 21,217 model
runs is much higher than the total CPU time required for
strategy B to converge to the posterior parameter distribu-
tion (about 2500 additional original model simulations, see
later). Nevertheless, for illustrative purposes we did com-
pute the associated results of P ¼ 2 using distributed com-
puting of the 21,217 deterministic simulations. The
resulting aliasing error of ~FP remains too high to accurately
reproduce the original model behavior. In other words,
such a large number of sparse grid nodes is still insufficient
to derive accurate degree-two expansion coefficients in
equation (13), that properly capture the pairwise first-order
mixed effects between the model parameters. Further
increase of the sparse grid resolution to a grid level of three
necessitates numerical solution of such a large number of
grid points (1,477,865) that computation becomes virtually
impossible. Note, however, that the proposed approach is
not limited to P ¼ 1. It can be employed with a gPC
approximation up to any order, if the required computa-
tional effort for constructing an accurate expansion is
affordable.
[66] To verify whether the 205 points of the sparse grid

of level 1 sufficiently well resolve the order-one expansion
coefficients, we also compute the coefficients of the order-
one polynomials on the basis of the 21,217 points of the
grid of level 2. A significant difference between the coeffi-
cients obtained from both levels of the sparse grid would
demonstrate that the order-one gPC model resulting from
level 1 is under resolved and that the level of the sparse
grid should be increased. Figure 6 summarizes the results
of this comparison. Fortunately, the coefficients of both
grid levels appear to be relatively similar. Evidence of this
is given by the RMSE between both sets of coefficients.
This value is about 0.014 with coefficients ranging between
�1.5 and 25.5 for the 86 model outputs. The average
mismatch (in absolute value) between the two sets of

coefficients is 0.0021. The main difference between both
sets of coefficients occurs for parameter SK3;v. The associ-
ated coefficients derived from the grid of level 1 are zero,
whereas the grid of level 2 results in nonzero coefficients
for SK3;v, demonstrating some sensitivity of the gPC model
to this parameter.
[67] The correspondence between the coefficient values

calculated from both grid levels is further confirmed by a
pair wise analysis of the simulated heads of the original
and surrogate models for the 200 different prior parameter
realizations used previously in Figure 5. The associated
RMSE is about 0.20 m for the coefficients obtained from
the sparse grid of level 1 (Figure 5), whereas this value
reduces to 0.19 m for the coefficients derived from the
sparse grid of level 2 (not shown). These findings inspire
confidence that a sparse grid of level 1 provides sufficiently
accurate coefficients of the order-one gPC expansion used
herein.
[68] The stochastic expansion used herein assumes inde-

pendence between the uncertain parameters. This assump-
tion is consistent with the selected prior pdf, which is given
by the product of independent uniform distributions and
independent standard normal distributions (see equation
(29)). If available prior information reveals the presence of
correlation between individual parameters, the Rosenblatt
[1952] and Nataf [Der Kiureghian and Liu, 1986] transfor-
mations can be used for decorrelation [Eldred, 2011].
[69] The gPC technique is well suited for global sensitiv-

ity analysis (GSA) [e.g., Saltelli et al., 2006] because the
associated computational cost becomes practically equiva-
lent to the time it takes to estimate the expansion coeffi-
cients [e.g., Sudret, 2008]. To investigate the sensitivity of
~FP to each individual model parameter, we computed their
first (S) order Sobol’ [1993] sensitivity. The scalars Si; i ¼
1; . . . ; n numerically quantify the influence of the model
parameters on the output of ~FP. For additive (linear) mod-
els the sum of Si; i ¼ 1; . . . ; n is 1.
[70] Table 2 lists the average Si values for the simulated

head values at 86 different locations within the modeling
domain. These indices were obtained from two different

Figure 6. Comparison of the 103 coefficients of the
order-one polynomials derived from the sparse grids of
level 1 (x axis) and 2 (y axis), respectively, for the 86
model outputs.

Table 2. First-Order Sobol Sensitivity Index of the Surrogate

Model (~FP) Parameters
a

Parameter Classical GSA PCE-GSA

K 1 0.087 0.052
K10 3 � 10�4 1 � 10�4
K2 0.343 0.241
K4 0.3 � 10�4 1 � 10�4
K5 0.084 0.040
K6 2 � 10�4 1 � 10�4
K7 8 � 10�7 9 � 10�6
ANI3;h 0.052 0.024
MK3;v 0.246 0.1122
SK3;v 0 0
KL1; :::;KL92 9 � 10�5 – 0.017 2 � 10�4 – 0.049
X

92

i¼1
KLi

0.187 0.531

aListed values represent averages over the 86 model outputs. Classical
GSA represents the standard Sobol sensitivity analysis of the surrogate
model using a range of �3; 3½ � for the 92 KL modes. The Sudret [2008]
approach, which for the case study considered herein uses a KL mode
range of �1:2247; 1:2247½ �, is denoted by PCE-GSA.
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approaches. First, we applied the Sudret [2008] methodol-
ogy hereafter conveniently referred to as gPC-GSA. This
technique approximates the Sobol’ sensitivity estimates
from analytical postprocessing of the gPC coefficients.
Note that with a sparse grid level of one, at most two points
are placed in each grid dimension and the investigated
range for the parameters of the Hermite polynomials, that
is, the KL modes, is �1:2247; 1:2247½ �, respectively. This
rather narrow range conditions the values of the sensitivity
indices obtained by the gPC-PCA approach. But this inter-
val is much smaller than the expected range of the KL
modes that should be normally distributed with values that
differ at least between �3 and 3. To avoid underestimating
the sensitivity of ~FP to the KL modes, we performed a sec-
ond standard Sobol’ sensitivity analysis of ~FP but this time
using Jansen formulations [see, e.g., Saltelli et al., 2010],
with each KL mode varying between �3 and 3. This proce-
dure is hereafter referred to as classical GSA and incurs an
extra CPU-time cost of less than 20 minutes for a total of
1000� nþ 2ð Þ ¼ 104; 000 surrogate model runs.
[72] Among the homogeneous hydrogeological units,

that is, all but three (see Figure 3), the most sensitive surro-
gate model parameters are K1;K2 and K5, whereas K10 ;K4
and K6 appear much less influential. For gPC-GSA, the
sum of the sensitivity indices associated with unit 3 repre-
sents about 49% of the total variance of ~FP. On the contary,
the classical GSA analysis assignes about 67% of the total
variance of ~FP to the parameters associated with unit 3.
The sum of the KL mode sensitivity estimates equals 19%
for the former analysis and 53% for the latter. The sensitiv-
ity of the gPC model to each KL mode decreases exponen-
tially with mode number (Figure 7). Whereas the first 10–
20 KL modes strongly affect the simulated head values of
the surrogate model, the last 20–30 KL modes appear rather
noninfluential. This lack of influence does not pose prob-
lems with posterior parameter estimation due to the stand-
ard normal informative prior of equation (29). Indeed, the
less influential the KL mode, the closer its marginal poste-
rior distribution to the normal prior pdf. Lastly, note that
the parameter SK3;v has no influence at all on ~FP. These
surrogate sensitivity estimates will be compared later to the
output of the two-stage MCMC simulation of the original
model (see section 4.5). Note that a degree-one gPC
approximation does not consider the effect of parameter
interaction, likely underestimating the sensitivity of the
original model (F).

[73] It is worth noting that an anisotropic sparse grid
may be used if the parameters demonstrate a differing sen-
sitivity to the model output [see Nobile et al., 2008b, for
details]. The underlying idea is that one can significantly
reduce the number of evaluation nodes and hence CPU
time by reducing the number of sparse grid points for the
least sensitive parameters. Limited experimentation with
this technique for the case study considered herein did
however not show any noticeable improvements over the
isotropic mixed sparse grid. We posit that the number of
points in a sparse grid of level one is insufficient to account
effectively for anisotropy.
[74] After ~FP is built, the gPC-based posterior,

~p zjdð Þ / p zð Þ~L zjdð Þ, can be derived. Preliminary least
squares analysis suggests a value of �e ¼ 0:20 m in the
likelihood functions described in equations (17), (20), and
(24). Alternatively, one can sample �e along with the other
parameters. To draw samples from ~p zjdð Þ, we employ the
adaptive DREAM ZSð Þ algorithm with three different Mar-
kov chains. A maximum total of 50,000 surrogate model
evaluations is used to explore ~p zjdð Þ. This takes less than
five minutes on our processor. The Gelman and Rubin
[1992] convergence diagnostic, R̂, is satisfied after about
39,000 ~FP evaluations, with mean, minimum and maxi-
mum posterior RMSE values of 0.219, 0.200, and 0.265 m,
respectively.

4.4. Performance of Strategy A and B

[75] The first strategy ‘‘A’’ is hereafter referred to as
DR-A, where the abbreviation DR stands for DREAM ZSð Þ.
Similarly, DR-B refers to strategy B. For comparative pur-
poses we include a separate DREAM ZSð Þ trial for the origi-
nal hydrogeologic model that does not use any information
from the surrogate posterior, ~p zjdð Þ. A maximum total of
10,000 original model (function) evaluations (FE) is used
to test the three different posterior estimation methods.
[76] Table 3 lists summary statistics of the different

MCMC trials considered herein. These statistics include
the mean and average AR of the first (�̂) and second (�̂)
step of the two-stage MCMC simulation (AR ¼ �̂ � �̂),
and the convergence diagnostics of Raftery and Lewis
[1992] and Gelman and Rubin [1992], respectively. The
latter statistics, referred to as RLFE and R̂FE, summarize the
total number of FE needed to reach convergence of the
sampled chains. Note that these values do not include the
205 FE required for construction of the surrogate model.

Figure 7. Sobol’s sensitivity of the surrogate model (~FP)
to the i ¼ 1; :::; 92 KL modes derived from the classical
GSA approach. Each index Si represents an average of the
sensitivity of the 86 simulated head values.

Table 3. Comparison of the Different Sampling Acceleration

Strategies for a Maximum Total of 10,000 Forward Model Evalua-

tions (FE)a

RLFE

R̂FE
(FE) AR (%)

�̂
(%)

�̂
(%) IACT STDIACT

IACTFE
(FE)

DR 5622 N/Cb 17 N/Ac N/Ac 78 43 78
DR-A 6474 N/Cb 20 N/Ac N/Ac 76 22 76
DR-B 957 N/Cb 15 26 56 160 70 42

aThe variables N ;RL; R̂FE ;AR; �̂; �̂ , IACT and IACTFE have been
defined in the main text. Listed statistics represent averages from the three
interacting Markov chains, and STDIACT is the standard deviation of the
mean IACT. IACT, STDIACT , and IACTFE are estimated using the last 2500
samples generated by each method within the allowed computational time.
bNot satisfied within the allowed 10,000 FE.
cNot applicable.
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Finally, the IACT statistic reports how many steps are
required in each chain to produce an independent sample,
and the associated number of FE are indicated with
IACTFE, respectively.
[80] An adequate mixing of the chains is observed for all

approaches, with a net AR ranging between 15% and 20%.
While all trials satisfy the more tolerant RL statistic, none
of the approaches formally converge (R̂j < 1:2; j ¼ 1; 	; n),
within the allowed computational budget of 10,000 hydro-
geologic model evaluations. About 12,000 additional FE
are needed for DR-B to converge to a limiting distribution,
whereas DR and DR-A do not converge even after 20,000
FE (not shown herein). This difference in convergence
speed is mainly due to the efficiency of two-stage MCMC
simulation with DR-B creating about 1=�̂ 
 3:8 samples
for each FE. On the contrary, DR and DR-A draw only one
sample per FE. Whereas it remains difficult to exactly pin-
point when convergence of a MCMC sampler to the poste-
rior distribution has been achieved, the listed statistics
enable a qualitative comparison of the efficiency of each
different strategy used herein. Trace plots of individual
parameters and sampled RMSE values can help to visually

assess when convergence of the MCMC sampler has taken
place [e.g., Geyer, 2010].
[81] Figure 8 presents trace plots of the sampled RMSE

values for each of the three methods used herein. Strategy
A appears to be of little added value compared to tradi-
tional MCMC simulation. The RMSE trajectory of DR-A is
very similar to that of the (standard) DR run, with only
marginal improvements in the sampled RMSE values. On
the contrary, DR-B converges rapidly to RMSE values of
about 0.20 after about 2500 FE. The posterior density of
these RMSE values is more than four orders higher than
their counterparts sampled with DR and DR-A (Table 4).
[82] Regarding statistical efficiency, we observe an

important 105% increase in IACT between DR-B and DR
(Table 3). Hence, the ratio 	

	� in equation (27) is on the
order of 78

160

 0:5. This mainly results from the fact that

�̂ 
 56% in DR-B. If computational effort is of main im-
portance, however, then DR-B is most efficient requiring
the least amount of CPU time to produce an independent
sample from p zjdð Þ, with an IACTFE of 42.
[83] A single evaluation of ~p zjdð Þ; ~p� zjdð Þ or ~p�z z

0jdð Þ
takes less than 0.01 s, and hence the speed-up in sampling

Figure 8. Evolution of sampled RMSE (m) values for each of the MCMC simulation schemes consid-
ered herein: (a) DREAM ZSð Þ (DR), (b) strategy A with DREAM ZSð Þ (DR-A), and (c) two-stage MCMC
simulation (strategy B) with DREAM ZSð Þ (DR-B). Each chain is coded with a different color. (d) Evolu-
tion of the minimum RMSE value of the three different chains derived with DR (cyan), DR-A (yellow),
and DR-B (magenta).
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efficiency for strategy DR-B is about 2 according to equa-
tion (27). Though not spectacular, this constitutes an im-
portant reduction in CPU time. The effective speed-up of
DR-B is actually much higher. Indeed, approximately
13,000 (11,000) FE are required with DR (DR-A) to con-
verge to a limiting distribution of RMSE values that gather
around 0.20 (not shown herein). Strategy DR-B however,
converges much more rapidly to RMSE values of 0.20. The
trace plots illustrate that about 2500 FE are required with
DR-B to sample from a limiting distribution. The effective

computational speed up of DR-B is therefore about four to
five times. We hence conclude that strategy DR-B is most
efficient and effective in sampling from p zjdð Þ.

4.5. Analysis of the Posterior Parameter Uncertainty

[84] Given the superior performance of DR-B, we now
turn our attention to the analysis of the posterior parameter
pdf. Figure 9 depicts univariate and bivariate marginal dis-
tributions of a set of nine parameters (from n ¼ 102)
derived by sampling p zjdð Þ using two-stage MCMC simu-
lation with DR-B.
[85] All parameters appear reasonably well identified,

with the exception of parameters K10 ;K4, and K7 that
exhibit a much larger posterior uncertainty with probability
mass accumulated across the entire prior ranges. This is
consistent with the previous sensitivity analysis of ~FP (see
section 4.3), for which these three parameters were found
to be weakly influential. The relatively narrow marginal
posterior distributions of K1;K2;K5, and MK3;v reiterate
their importance in ~FP. It is interesting to observe that
parameters K6 and SK3;v are well resolved, though they are
either weakly influential or noninfluential with respect to
~FP. This demonstrates that their actual importance is

Table 4. Summary of the Root Mean Square Error (RMSE), and

Unnormalized Posterior Density Values, p zjdð Þ, of the Last 50%
Sample Outputs Generated with Each Method for a Maximum

Total of 10,000 Forward Model Evaluations (FE)

RMSE (m)
p zjdð Þ (base 10

logarithmic scale [-])

Mean Minimum Maximum Mean Minimum Maximum

DR 0.228 0.206 0.343 �55.98 �108.40 �43.71
DR-A 0.223 0.202 0.248 �54.72 �70.44 �44.32
DR-B 0.208 0.180 0.232 �45.81 �54.67 �38.83

Figure 9. Univariate and bivariate marginal posterior distributions derived with DR-B for a set of nine
parameters (out of 102). Kernel density smoothing is used prior to plotting using the last 50% of the
sampled parameter values in each chain.
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largely underestimated by ~FP. Also notice that the mode of
SK3;v is in close proximity of its upper bound derived from
prior information. Indeed, the field variance is better
derived from the posterior field realizations. We follow this
approach in the remainder of this paper and summarize the
corresponding findings below.
[86] Now that we have samples of p zjdð Þ, we derive esti-

mates of the posterior uncertainty of the hydraulic conduc-
tivity field. Figure 10 presents the posterior mean and
coefficient variation of the kv conductivity field, whereas
Figure 11 depicts six possible posterior realizations of kv
derived by randomly drawing samples from p zjdð Þ. The
highest conductivity values are being found at the North-
West boundary of the considered spatial domain. Along the
South-West-North-East axis much lower hydraulic conduc-
tivities are being found. The mean posterior conductivity
values depicted in Figure 10 agree well with the results of
Rogiers et al. [2012a], obtained with a deterministic inver-
sion method and extended data set. The posterior variance
of the log conductivity field is approximately Gaussian and
centered around 0.40 (not shown). This finding is in good
agreement with the value of 0.32 derived from data analy-
sis by Rogiers et al. [2010, 2012a].
[87] To illustrate the effect of MCMC simulation, Figure

12 presents six different realizations of the hydraulic con-
ductivity field by sampling from the prior parameter

Figure 10. Posterior (a) mean and (b) coefficient of varia-
tion, CV (%) of the posterior distribution of the vertical
component (kv) of the three-dimensional aquitard conduc-
tivity tensor field.

Figure 11. Six posterior realizations of the vertical component (kv) of the three-dimensional aquitard
conductivity tensor field, with RMSE values of (a) 0.180 m, (b) 0.198 m, (c) 0.213 m, (d) 0.212 m, (e)
0.194 m, and (f) 0.214 m.
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distribution. These realizations not only differ substantially
from each other (large uncertainty) but also deviate signifi-
cantly from their posterior counterparts with RMSE values
that are about three to five times higher than their MCMC-
derived maximum aposteriori density values (Figures 11
and 12).

4.6. A Posteriori Check of the Residual Properties

[88] We now check if the posterior residual distribution
follows our prior assumptions made in the selection of the
likelihood function. Figure 13 presents a normal probability
plot and cumulative distribution function of the posterior
mean residuals. Figure 13a shows that the residuals follow

Figure 12. Six possible realizations of the vertical component (kv) of the three-dimensional aquitard
conductivity tensor field, randomly drawn from the prior parameter distribution. The corresponding
RMSE values are (a) 0.562 m, (b) 0.637 m, (c) 0.784 m, (d) 0.592 m, (e) 0.518 m, and (f) 0.824 m.

Figure 13. (a) Normal probability and (b) cumulative distribution function plots of the residuals. The
blue crosses (Figure 13a) and blue solid line (Figure 13b) signify the empirical estimates, and the red
line indicates the assumed Gaussian distribution �N 0; 0:2ð Þ.
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a Gaussian distribution with �e¼ 0.20 in the interval
between �0.1 and 0.5. This region contains about 81% of
the residuals. Outside this range the posterior mean residual
distribution deviates from normality. Yet, this deviation is
acceptable, with minor differences between the assumed
and MCMC derived cumulative residual distribution func-
tion (Figure 13b). We posit that data transformations [e.g.,
Box and Cox, 1964], or a more flexible likelihood function
that is especially designed to handle nontraditional residual
distributions [e.g., Schoups and Vrugt, 2010; Erdal et al.,
2012] will further improve the modeling results. This is
beyond the scope of the current paper, and should be
explored in future studies.

5. Summary and Conclusions

[89] This study presents two strategies to speed up Bayes-
ian inference of a highly parameterized and CPU-demanding
groundwater flow model. Both methods build on the stochas-
tic collocation approach of Marzouk and Xiu [2009] and use
the generalized polynomial chaos (gPC) theory to construct a
CPU-efficient approximation of the original porous flow sim-
ulator. This surrogate model serves to efficiently approximate
the posterior parameter distribution of the original model
using MCMC simulation with DREAM ZSð Þ. This distribution
accurately represents the actual posterior parameter distribu-
tion if the polynomial approximation used in the surrogate
model accurately summarizes the behavior of the original
CPU-demanding model. In practice, however, perfect emula-
tion of a groundwater flow simulator is difficult, and in this
paper we therefore introduced two alternative computational
strategies to estimate as closely and consistently as possible
the posterior parameter distribution. To maximize computa-
tional efficiency both approaches were implemented using
KL transformation of 26,112 dimensions of the original
26,120 dimensional parameter space, leading to a total of 102
unknown parameters. The first strategy (DR-A) used the pos-
terior samples derived from a linear gPC-based surrogate
model to precondition MCMC simulation of the original flow
model. The second strategy (DR-B) combined the first strat-
egy with state-of-the-art two-stage MCMC simulation [Cui et
al., 2011] in which the error introduced by the use of a
reduced-order model is adaptively modeled.
[90] Our results demonstrate the advantages of the pro-

posed two-stage MCMC inversion strategy to estimate the
posterior parameter distribution of a CPU-intensive ground-
water flow model. A speed up in computational efficiency
on the order of two to five times was observed. Future work
will investigate the applicability of the proposed framework
to MCMC simulation of transient modeling problems
involving nonlinear variably saturated flow conditions. In
this situation, a linear gPC emulation might not be optimal.
This would require a nonlinear gPC emulator, significantly
enhancing the computational demands, in particular for pa-
rameter-rich CPU-demanding hydrogeologic models. To be
practically useful this might necessitate a gPC approxima-
tion that considers only the most sensitive parameters
(dimensions) of the original CPU intensive models.

Appendix A
[91] We derive equation (26) of the paper. This deriva-

tion follows Cui et al. [2011].

[92] If we denote the proposal distribution with q z; z0ð Þ,
the Metropolis acceptance probability in the first step,
� z; z0ð Þ becomes:

� z; z0ð Þ ¼ min 1; ~p
�
z z

0jdð Þ
~p�z zjdð Þ

q z0; zð Þ
q z; z0ð Þ

� �

: (A1)

[93] For symmetric proposal distributions such as used in
DREAM ZSð Þ; q z; z

0ð Þ ¼ q z0; zð Þ and equation (A1) reduces
to equation (21).
[94] The acceptance probability ratio in the second step,

� z; z0ð Þ is given by

� z; z0ð Þ ¼ min 1; p z
0jdð Þ

p zjdð Þ
q� z0; zð Þ
q� z; z0ð Þ

� �

; (A2)

with modified jump probability

q� z; z0ð Þ ¼ q z; z0ð Þ� z; z0ð Þ; (A3)

q� z0; zð Þ ¼ q z0; zð Þ� z0; zð Þ: (A4)

[95] If we insert equations (A3) and (A4) into equation
(A2) we derive

� z; z0ð Þ ¼ min 1; p z
0jdð Þ

p zjdð Þ
q z0; zð Þ
q z; z0ð Þ

� z0; zð Þ
� z; z0ð Þ

� �

; (A5)

which for a symmetric proposal distribution becomes
equivalent to equation (26) of our paper

� z; z0ð Þ ¼ min 1;
p z0jdð Þ �min 1; ~p

�
z0 zjdð Þ

~p�
z0 z

0 jdð Þ

h i

p zjdð Þ �min 1; ~p
�
z z

0jdð Þ
~p�z zjdð Þ

h i

8

<

:

9

=

;

; (A6)

[96] This concludes the derivation.
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