
Efficient Power Co-Estimation Techniques for System-on-Chip Design

Marcello Lajolo
Politecnico di Torino

lajolo@polito.it

Anand Raghunathan
NEC USA, C&C Research Labs, Princeton, NJ

anand@ccrl.nj.nec.com

Sujit Dey
UC San Diego, La Jolla, CA

dey@ece.ucsd.edu

Luciano Lavagno
Università di Udine
lavagno@uniud.it

Abstract

We present efficient power estimation techniques for HW/SW
System-On-Chip (SOC) designs. Our techniques are based on con-
current and synchronized execution of multiple power estimators
that analyze different parts of the SOC (we refer to this as co-
estimation), driven by a system-level simulation master. We mo-
tivate the need for power co-estimation, and demonstrate that per-
forming independent power estimation for the various system com-
ponents can lead to significant errors in the power estimates, espe-
cially for control-intensive and reactive embedded systems.

We observe that the computation time for performing power co-
estimation is dominated by: (i) the requirement to analyze/simulate
some parts of the system at lower levels of abstraction in order to
obtain accurate estimates of timing and switching activity informa-
tion, and (ii) the need to communicate between and synchronize
the various simulators. Thus, a naive implementation of power co-
estimation may be too inefficient to be used in an iterative design
exploration framework. To address this issue, we present several
acceleration (speedup) techniques for power co-estimation. The
acceleration techniques are energy caching, software power macro-
modeling, and statistical sampling. Our speedup techniques reduce
the workload of the power estimators for the individual SOC com-
ponents, as well as their communication/synchronization overhead.
Experimental results indicate that the use of the proposed accelera-
tion techniques results in significant (8X to 87X) speedups in SOC
power estimation time, with minimal impact on accuracy. We also
show the utility of our co-estimation tool to explore system-level
power tradeoffs for a TCP/IP Network Interface Card sub-system
and an automotive controller.

1 Introduction
The System-on-Chip paradigm has the potential to offer the de-
signer several benefits (including improvements in system cost,
size, performance, and power dissipation) if system-level tradeoffs
are well explored. Achieving the disparate goals of reduction in de-
sign turn-around-time while better exploring system-level tradeoffs
requires efficient and accurate analysis tools that guide the designer
in the initial stages of the system design process.

A large class of applications which stand to benefit significantly
from system-level integration are portable products in consumer
electronics and communications, which have a critical need for
minimizing power consumption to prolong battery life. Reduc-
ing chip packaging and cooling costs, which may be significant for
deep sub-micron SOCs, is another motivation to investigate low-
power system design methodologies. Power analysis and optimiza-
tion at the early stages of the design cycle, starting from the system-
level, has been shown to yield large power savings, and can lead to
fewer and faster design iterations for designs with aggressive power
consumption constraints [1, 2, 3].

1.1 Previous work
Previous work on low-power design techniques has mostly fo-
cussed on estimating and optimizing power consumption in the
individual system-on-chip components (application-specific hard-
ware, embedded software, memory hierarchy, buses, etc.) sepa-
rately. Various power estimation and minimization techniques for
hardware at the transistor, logic, architecture, and algorithm lev-
els have been developed in the recent years, and are summarized
in [1, 2, 3, 4, 5]. Power analysis techniques have been proposed for
embedded software based on instruction-level characterization [6]
and simulation of the underlying hardware [7]. Power estimation
and optimization techniques for other system-on-chip components,
including memory hierarchies and system buses, have been pro-
posed, and are surveyed in [2, 8].

Recently, researchers have started investigating system-level
tradeoffs and optimizations whose effects transcend the individual
component boundaries. Techniques for synthesis of multiproces-
sor system architectures and heterogeneous distributed HW/SW ar-
chitectures for real-time specifications were presented in [9, 10].
These approaches either assume that all tasks are pre-characterized
with respect to all possible implementations for delay and power
consumption, or assume a significantly simplified power dissipa-
tion model. In [11] and [12], separate execution of an instruction
set simulator (ISS) based software power estimator, and a gate-level
hardware power estimator were used to drive exploration of trade-
offs in an embedded processor with memory hierarchy, and to study
HW/SW partitioning tradeoffs. The traces for the ISS and hardware
power estimator were obtained from timing-independent system-
level behavioral simulation.

The power estimation techniques used to drive the above system-
level power optimization techniques may either require an un-
acceptable amount of pre-characterization work (e.g., measuring
power consumption of all tasks on all candidate processors), or,
as shown later in this paper, they may significantly compromise the
accuracy of the power estimates due to factors including the follow-
ing:

� The presence of shared system resources (e.g. processors run-
ning multiple tasks, shared memory hierarchies and buses).
The activity in such shared resources (and hence their power
consumption) is dependent on the manner in which the inter-
actions with the various system components are interleaved in
time.

� Performing separate power estimation for the different sys-
tem components using input traces obtained from (timing-
independent) behavioral simulation can lead to significant er-
rors in the power estimates. In many systems (especially
control-flow intensive, event-driven systems), the input traces
and hence internal execution traces of various components are
inter-dependent and timing-sensitive, requiring that power es-
timation be performed through simultaneous analysis of tim-
ing and power models of the various system components.

Recently, a cycle-accurate energy estimation framework for an
embedded processor based system was proposed in [13], which
demonstrated that high accuracies can be obtained through the inte-
gration of performance and energy models for various system com-
ponents.

1.2 Paper Overview and Contributions
The aim of our work is to provide a power co-estimation 1 frame-
work for HW/SW System-on-Chip designs that is accurate and effi-
cient enough to drive coarse-level (e.g. HW/SW partitioning, com-
ponent selection) as well as fine-grained (e.g., tuning the parameters
of a specific bus) system design tradeoffs. As shown later in the pa-
per, power co-estimation is necessary in order to obtain accurate
power estimates. This is especially important for control-intensive
and reactive embedded systems where the input data and execution
traces of the various components are often highly inter-dependent
and timing-sensitive.

The various power estimators plugged in to our co-estimation
framework could possibly operate at different levels of abstraction
(e.g., RTL/gate-level power simulator for the application-specific
hardware parts, ISS-based power estimator for the embedded soft-
ware, and a behavioral model based power estimator of the SOC
integration architecture). This heterogeneity can be exploited to
employ more accurate models for the harder-to-model parts of the
system, and use more efficient models for the easier-to-model parts
(e.g., regular structures). It is important to note that the focus of
this work is on how to combine power estimation techniques for
individual SOC components in an accurate and efficient manner.
Thus, advances in power estimation techniques for hardware and
embedded software can be easily incorporated into our SOC power
co-estimation framework.

We demonstrate that the computation time in a power-co-
estimation framework is often dominated by: (i) the requirement to
analyze/simulate some hard-to-model parts of the system at lower
levels of abstraction in order to accurately estimate timing and
switching activity, and (ii) the need to communicate data and syn-
chronize between the various simulators (e.g. hardware simulator
and ISS [14]). A naive implementation of power co-estimation may
be too inefficient to be used in an iterative design exploration frame-
work. This creates an important need for techniques to improve the
computational efficiency of SOC power co-estimation.

One way to improve the efficiency/accuracy of our SOC power
estimation framework is to improve the efficiency/accuracy of the
individual component power estimators. However, our focus in this
work is in a complementary direction - on using top-level (system-
level) information to accurately and efficiently employ the individ-
ual component estimators. We believe our work to be the first in that
direction. We present acceleration (speedup) techniques - energy
caching, software power macro-modeling, and statistical sampling
- which help reduce the workload of each of the lower-level simu-
lators, as well as the communication/synchronization overhead.

The rest of the paper is organized as follows. Section 3 presents
the basic SOC power co-estimation framework. Section 4 presents
our acceleration techniques that significantly improve the efficiency
of co-estimation, with minimal impact on accuracy. Experimental
results demonstrating some applications of our SOC power estima-
tion framework, and evaluating the efficiency and accuracy of our
acceleration techniques, are presented in Section 5.

2 Motivation for co-estimation
This section motivates the need for power co-estimation by illus-
trating, using a simple example system, that separately performing
power estimation for the various system components can lead to
significant errors in the power estimates.

1Power co-estimation refers to system power estimation where the
various system components are analyzed simultaneously (e.g., using co-
simulation) in order to accurately model their interactions and power inter-
dependencies

 producer consumer
 energy (J) energy (J)

separate 6.97 e-5 2.58 e-9
co-est 6.97 e-5 6.75 e-9

(b)

(a)

...
loop
 do
 repeat NUM_PKTS times
 await(START);
 compute_chksum();
 emit(END_COMP);
 end repeat;
 ...
 watching RESET;
end loop
...

...
loop
 do
 PREV_TIME := 0;
 loop
 await(END_COMP and TIME);
 N_IT := TIME - PREV_TIME;
 repeat N_IT times

 emit(BYTE_DONE);
 end repeat;
 PREV_TIME := TIME;
 end loop;
 ...
 watching RESET;
end loop
...

Process: Producer
Implementation: SW (SPARClite)

Process: Timer
Implementation: HW

 do
 I:=0;
 loop
 wait for TIMER_TICK;
 emit(TIME);
 TIME := TIME + 1;
 end loop
 watching RESET;

RESET

END_COMP

TIME
RESET

RESET

START

BYTE_DONE

Process: Consumer
Implementation: HW

Figure 1: Illustrating the need for co-estimation: (a) An ex-
ample system, and (b) energy estimates obtained using sep-
arate HW/SW estimation and co-estimation

Consider the example system shown in Figure 1(a), that is de-
scribed as a set of concurrent processes with event-based communi-
cation. The process producer, upon being triggered by an event
from the environment, performs a computation and sends some
data to process consumer. Process timer, as its name indicates,
keeps track of the current time and sends it to process consumer.
Process consumer, upon receiving data from producer, uses
the difference between the times at which it received the current
and previous data sent by producer, and executes a computation
loop whose iteration count depends on the above mentioned time
difference. An important feature to note is that the time interval be-
tween two consecutive data packets sent by producer impacts the
computations performed by consumer. Such timing-functionality
inter-dependence can occur in control-intensive systems, including
telecommunication protocols and networking applications. For ex-
ample, when multiple packets are waiting for transmission, it is not
uncommon to use the time at which each packet arrived to decide
in what order packets will be processed for transmission.

We consider an implementation of the example system where
the producer process is implemented using embedded software
running on a SPARClite processor, and the consumer process is
synthesized into application-specific HW. To illustrate the need for
co-estimation, we performed power estimation using two different
approaches for the system shown in Figure 1(a).

� In the first experiment, we performed an initial behavioral
simulation of the system, during which we captured input
traces for the various system components. These traces were
then used to drive power estimation for the individual compo-
nents using a gate-level HW power estimator [15] and a SW
power estimator based on an instruction set power model [6].

� In the second experiment, we used our tool (described in Sec-
tion 3) to perform power co-estimation through concurrent
and synchronized execution of the same individual (HW and
SW) power estimators that were used in the first experiment.

The results of the two experiments are presented in Figure 1(b).
The figure presents the total energy consumed in the producer
and consumer processes in order to process a fixed pre-defined
amount of data. The energy estimates obtained using inde-
pendent execution of the HW and SW power estimators, and
co-estimation are shown in rows separate and co-est, re-
spectively. Note that the energy estimates obtained for process
consumer through separate estimation and co-estimation differ
significantly (the separate estimate leads to an under-estimation
of about 62%). Upon further analysis, we confirmed that this er-
ror could be attributed to be the inter-dependence of the input (and
hence internal execution) traces of the producer and consumer
processes, as described earlier. Thus, power co-estimation is nec-

2

essary in order to accurately explore system-level tradeoffs.

3 Co-simulation based SOC power es-
timation system

Our System-On-Chip power co-estimation framework is described
in Figure 2. While we have implemented them in the context of
the POLIS system design environment [16], we believe our tech-
niques are quite general in nature and can be easily adapted to other
HW/SW co-design flows as well. In POLIS, the system is described
at the behavioral level as a set of concurrent communicating pro-
cesses. The user is allowed to specify the mapping of each pro-
cess to hardware or embedded software, set Real-Time Operating
System (RTOS) parameters such as scheduling policy and priori-
ties, map the communication events between processes to shared
buses or dedicated channels, and specify the parameters for shared
buses. A refined description of the various system components
(HW netlist, SW for target compilation, RTOS, etc.) is automati-
cally generated for simulation with the PTOLEMY [17] simulation
platform.

The compilation process that needs to be performed prior to co-
estimation is illustrated in Figure 2(a). Starting with a system-
level specification and various implementation parameters and con-
straints, POLIS is used to generate C code for each process that
could potentially be mapped to SW and a hardware netlist for each
process that could potentially be mapped to HW. A compiler for the
target processor is used to compile these C descriptions (together
with an RTOS that is automatically generated by POLIS), into ob-
ject or executable code for the target processor. In addition to the
HW and SW descriptions, a behavioral discrete-event [17] model of
the entire system is generated, including the software processes, the
hardware processes, the RTOS, and a model of the SOC integration
architecture (bus). The discrete-event model is used to synchronize
the execution of the hardware and software simulators/power esti-
mators The shaded parts of Figure 2(a) are then passed on to the
run-time flow for power co-estimation.

The run-time flow for power co-estimation in our tool is shown in
Figure 2(b). An enhanced Instruction Set Simulator 2 for the target
embedded processor is used to simulate the SW parts of the system,
while a hardware power simulator is used to estimate power con-
sumption in the HW parts of the system. The HW power simulator
could be either a register-transfer level [2, 18] or a gate-level [2, 4]
simulator that reports power consumed on demand at cycle-level ac-
curacy. Cache simulation is not performed with the ISS simulator
(it just assumes 100% cache hits); instead, it is performed by a fast
cache simulator attached directly to the PTOLEMY simulator [19].
The PTOLEMY simulator simulates the discrete-event model of the
entire system, synchronizes and transfers the necessary data to/from
the HW simulator and ISS, and provides source-level graphical in-
terface and debugging capabilities. Thus, the PTOLEMY simulator
has a global view of the entire system under simulation, as opposed
to the HW and SW simulators which view only their respective
parts [20]. Having a single simulation master not only makes it eas-
ier to provide synchronization between the various simulators, but
also facilitates some of the speedup techniques that are described in
the next section.

The co-estimation is performed as follows. Initially, the sim-
ulation master (PTOLEMY) invokes the HW and SW power es-
timators, instructs them to load the appropriate netlists and target
executables, and inserts breakpoints at appropriate locations to en-
able synchronization with them [20]. The unit of synchronization
is a CFSM transition 3, but it can also be specified as a clock cy-
cle in general. As mentioned previously, PTOLEMY simulates
the discrete-event behavioral model of the entire system. When-
ever a process executes in the discrete-event model (in response
events at its inputs), PTOLEMY sends a sequence instructions to

2The ISS is enhanced to report power/energy consumption in addition to
clock cycle statistics.

3A CFSM transition is an atomic operation that can be performed by
each process in response to events at its inputs [16].

the appropriate simulator, which results in the lower-level simula-
tor simulating the CFSM transition and returning performance and
energy statistics for the instructions/vectors simulated. PTOLEMY
collects the cycles and energy statistics for each invocation of the
lower-level simulators, performs the necessary book-keeping, and
can display energy and power waveforms for the various parts of
the system.
Hardware Power Estimation
The hardware power estimator must accept from the simulation
master a sequence of input vectors (that correspond to the synchro-
nization period), simulate the netlist for the appropriate component,
and return a cycle-by-cycle report of the energy dissipated during
the process. A popular approach to hardware power estimation,
that fits in well with the above requirements is through simulation
of the hardware netlist. The hardware netlist may be represented at
the RT-level or the gate-level, depending on the accuracy/efficiency
requirements. It is also possible to use HW power estimation tech-
niques that use aggregate signal statistics (e.g. probabilistic or sta-
tistical power estimation techniques [1, 2, 18, 3, 4]) in our frame-
work, when the user does not desire cycle-by-cycle power informa-
tion for the HW parts.
Software Power Estimation
Power estimation for embedded software can be performed using
a hardware power estimator simulating an architectural/RTL HW
model of the target processor [7], or using an instruction set simu-
lator (ISS) that has been enhanced with an instruction-level power
model [6]. The former approach, although accurate, may be time-
consuming. Besides, a detailed HW model for the embedded pro-
cessor is often not available to the system designer. The latter ap-
proach (instruction-level power models) relates power consump-
tion in the processor to each instruction or sequence of instruc-
tions it can execute. Additional refinements are made to the power
consumption estimate using statistics such as cache hits/misses,
pipeline stalls, etc. An Instruction Set Simulator for the target pro-
cessor may be enhanced using such a model.

For the purpose of our work, we currently use the software power
estimation framework described in [11] for an embedded SPARC
target processor. However, it could be replaced with any ISS or
HW model of the processor that supports symbolic break-pointing
and debugging, and reports energy consumption and clock cycle
statistics at each breakpoint.
Estimating Power Consumed in the SOC bus/integration archi-
tecture
While the SOC integration architecture can itself contribute sig-
nificantly to the total system power consumption, equally im-
portant is how it affects the power consumption in the other
system components. The SOC integration architecture consists
of the bus itself (interconnect and bus drivers/repeaters), and
the bus arbiter. The power consumed in the bus intercon-
nect and drivers is computed using the simple formula Pbus =
1

2
:V 2

dd:f:
P

bus lines
Ceff (linei):A(linei). The user is required

to specify the expected/budgeted dimensions of the bus from a
system-level floorplan or budget, from which the effective capaci-
tanceCeff (linei) is calculated by accounting for the wiring as well
buffers/repeaters. The switching activity A(linei), however, needs
to be computed during co-simulation. We use parameterizable, be-
havioral models of the SOC integration architecture [21] to gener-
ate a trace of all bus transactions. This bus trace is used to compute
the switching activity at each line of the bus. The behavioral bus
architecture models allow the user to dynamically change values
for various parameters (such as bus access priorities, data/address
widths, whether DMA is supported, the maximum allowed DMA
block size, etc.), and to re-run power co-estimation without requir-
ing a re-compilation of the system description.

4 Power Co-estimation speedup tech-
niques

While the power co-estimation procedure described in the previous
section is fairly accurate for supporting system-level optimizations,
it can be quite slow especially when invoked in an iterative man-

3

Target
compiler

object files
for target
uP/uC

synthesis

fast
HW

SYSTEM
SPEC

POLIS

SW partition
 (C)

 HW
netlists

- Pre-designed
HW,SW
IP blocks

- uP/uC cores

- Delay, Energy
 characteristics

- Bus models

LIBRARIES

Parameters/
Constraints

 SW synthesis

 Behavioral
 Discrete-Event
 Models
 (PL/C)

RTOS

Bus
energy

SW
energy

HW
energy

VISUAL DISPLAY
POLIS / PTOLEMY

gate-level

RTL /

power

estimator

state,
input values,
breakpoints,
commands

cycles,
power

HW/SW
partition

power

input
vectors,

state,
commands

sampling, caching

ISS

object files
for target
uP/uC

 HW
netlists

- Pre-designed
HW,SW
IP blocks

- uP/uC cores

- Delay, Energy
 characteristics

- Bus models

LIBRARIES

 Behavioral
 Discrete-Event
 Models
 (PL + C)

Parameters/
constraints

Cache
simulator

memory
references

hit/miss stats,
power

(a) (b)

Figure 2: Power estimation framework for HW/SW systems (a) Compilation flow, and (b) Simulation flow

ner for design exploration. This section describes novel techniques
that can be employed to improve the efficiency of the power co-
estimation process, while attempting to keep the loss in accuracy as
low as possible.

4.1 Macromodeling
The idea of macro-modeling is derived from RT-level hardware
power estimation [2, 18, 5]. In this section, we illustrate how we
have applied the idea of macro-modeling to embedded software.
However, the approach in the case of hardware is quite similar.

Software macro-modeling refers to the pre-characterization of a
comprehensive set of high-level macro-operations in terms of var-
ious metrics such as code size, performance, and power. For ex-
ample, a macro-operation could be an arithmetic operation with
assignment to a variable, an emission of an event, etc.. Charac-
terization is performed by compiling each macro-operation down
to a sequence of assembly-level instructions for the target pro-
cessor, and computing its power dissipation and delay using an
instruction-level simulator. The data resulting from the characteri-
zation process is stored in a macromodel library. Prior to HW/SW
co-simulation, the software parts of the system are mapped in terms
of the pre-characterized macro-operations. The delay and energy
costs from the library are automatically annotated into the behav-
ioral discrete-event models for each software process. During co-
simulation, when a macro-operation is executed, the pre-computed
numbers for energy and delay are used, without invoking the ISS.
Since this approach raises the level of abstraction at which the em-
bedded software is modeled, it can be quite efficient. However, the
efficiency does come at a cost in terms of accuracy. Architectural
effects such as pipeline, cache and target-specific compiler opti-
mization effects, are difficult to model at this level. However, as
shown in Section 5, the relative accuracy of this approach can still
be reasonable, making it useful when exploring coarse tradeoffs in
HW/SW co-design.

Figure 3 shows the characterization flow used for software
macro-modeling in our co-estimation tool on the left, and a part
of the resulting parameter file on the right. Macro-operations in
POLIS are characterized through a library of benchmark programs
written in C that consist of about 20 functions. Synthesized pro-
grams can also contain pre-defined arithmetic, relational and logi-
cal functions (the POLIS software library currently includes about

TEMPLATE PROGRAM

OBJECT FILE

COMPILER

ISS

PARAMETER FILE

.unit_time cycle

.unit_size byte

.unit_energy nJ
.....
.time AVV 5
.time TIVART 11
.time TIVARF 9
.time AEMIT 12
.....
.size AVV 7
.size TIVAR 8
.size AEMIT 8
.....
.energy AVV 110
.energy TIVAR 210
.energy AEMIT 680

Figure 3: The software macromodeling flow in POLIS and a
portion of a parameter file

30 such functions, e.g., ADD(x1,x2), NOT(x1), EQ(x1,x2),
etc). Each of these functions is pre-characterized in term of delay,
code size, and energy dissipation and inserted into the parameter
file. For example, the parameter file shown in Figure 3 contains
information for three macro-instructions: assignment of a variable
to another variable (AVV), event emission (AEMIT), and tests on a
variable value (TIVART, TIVARF, TIVAR).

4.2 Energy and delay caching
In our experiments with HW/SW power co-estimation, we observed
that a few “paths of computation” in the hardware and software
components were executed a large number of times, while a large
number of paths were executed relatively few times. This conforms
to the empirical observation made for application programs that a
small fraction (e.g. 10%) of the code accounts for a large part (e.g.
90%) of the total execution time [22]. In general it is possible that
each execution of a segment of code results in a distinct delay and
energy consumption. However, in practice, we also observed that
the number of distinct energy and delay values for a single code seg-
ment is typically much smaller than the number of times it is sim-
ulated, leading to several simulations of a code segment computing

4

similar energy/delay numbers. We propose a technique, called en-
ergy caching, that exploits the above observation to significantly
enhance the efficiency of power co-estimation. The basic idea is
applicable to HW simulation as well as SW (ISS) simulation, but is
explained in the context of software below.

The idea of energy caching is illustrated in Figure 4. Con-
sider the small example code fragment shown as a control-flow
graph in Figure 4(a). We focus on two specific paths, 1; 3; 6; 8,
and 1; 4; 7; 8 since they are executed a large number of times dur-
ing co-simulation. The energy dissipated during each execution of
these two paths during a long system co-simulation is presented
in the form of energy histograms in Figure 4(b). Note that, the
histogram for path 1; 4; 7; 8 is highly clustered around the mean,
indicating a low variance in energy dissipation. The histogram for
path 1; 3; 6; 8, on the other hand, is quite spread out, which implies
that the energy dissipation in this path varies to a greater extent.
The intuition behind energy caching is that for low-variance paths
(such as 1; 4; 7; 8 in the above example), it may be acceptable to
approximate the energy dissipation of the path by the mean of the
histogram, while for other paths such as 1; 3; 6; 8 it is better to use
the lower-level simulator (ISS) each time the path is executed.

Energy caching is implemented in our co-simulation tool as de-
scribed in Figure 4(c). We dynamically create a lookup table, or
cache, containing energy and delay characteristics for the most fre-
quently executed segments of code. The pseudo-code for construct-
ing and using the energy cache is shown in Figure 4(c), along with
a snapshot of the energy cache for the example of Figure 4(a). The
energy cache is constructed using the results reported from the ISS
for the first few times the code path or segment is executed. Seg-
ments could be specified at any level of granularity, including ba-
sic blocks, or threads of computation involving sequences of basic
blocks. For each path, we store only the mean and variance of the
data computed using the calls to the ISS. The cached value of en-
ergy is used only if the path has been simulated by the ISS a certain
minimum number of times, and has displayed a variance below a
certain threshold.

Two user-specified parameters are provided to determine the ag-
gressiveness of the caching technique, and can hence be used ex-
plore the tradeoff between accuracy and efficiency. A parameter
thresh variance is used to specify a variance threshold - caching
will be used only for paths whose variances fall below this thresh-
old. A second parameter, thresh iss calls, is used to ensure that
the ISS is called a certain minimum number of times for a segment
before cached data is used for it. Once the above conditions are
satisfied for a segment/path, the lookup table is used to estimate its
delay and energy for all future simulations (this can eliminate the
need to run the ISS for a large number of path executions, leading
to a significant speedup in power co-estimation time).

4.3 Statistical Sampling / Sequence Com-
paction

The techniques of statistical sampling and sequence compaction
have been extensively used in the context of hardware power es-
timation [1, 2, 18, 3, 4, 5]. A related idea was proposed in the
context of software power estimation [23], where the aim was to
synthesize a small program to match certain characteristics derived
from the profile of a larger benchmark program, such as average
block length, cache miss rate, branch prediction miss rate, etc.

As mentioned in Section 1, our objective in this work is not to
improve upon or develop new techniques for hardware or software
power estimation, but to assemble existing power estimation tech-
niques for individual SOC components into a tool for SOC power
co-estimation. Similarly, some of the speedup techniques such as
statistical sampling have been studied by previous researchers in the
context of power estimation for individual SOC components. We
illustrate how to apply sampling in the context of an SOC power
estimation framework.

In the context of SOC power estimation work, the problem
of sequence compaction is as follows: Given a long sequence I
of input vectors (instructions) generated from the master simula-
tor during co-simulation, construct another sequence I0 such that

length(I 0
) � length(I), and the average power consumption of

I 0 is as close as possible to that of I . We construct I0 by com-
posing small sub-sequences of I , such that the power consumption
reported by the HW simulator (ISS) for the compacted sequence I0

is as close as possible to the power consumption for the original
sequence I . Sequence compaction may be either static or dynamic.
In static sequence compaction, the I0 is composed only when the
complete original sequence I is available. In dynamic compaction,
I is only available incrementally, and I0 is generated without wait-
ing to see all of I . Clearly, static compaction is more powerful than
dynamic compaction since we are allowed to observe and manip-
ulate the entire original sequence I . However, when the length of
I is very large, dynamic compaction may be preferable. We use
the following parameterizable K-memory dynamic compaction pro-
cedure in our co-estimation tool to compact the vector/instruction
sequence fed to the lower-level simulator each time it is called:

� Store the input vectors (instructions) that are received from
the simulation master (PTOLEMY), until the number of vec-
tors stored becomes K.

� Then deterministically select a subset of the instructions from
among those K instructions, to be dispatched to the HW
power simulator (ISS).

The subset of input vectors (instructions) is chosen in the second
step above so that it “represents” the sequence of K vectors (in-
structions) as well as possible. For HW, the criterion used is to pre-
serve single-cycle (signal value probabilities, spatial correlations)
and two-cycle (signal transition probabilities, lag-one temporal and
spatio-temporal correlations) statistics of the primary inputs. For
SW, the criterion is also to preserve the single-instruction and two-
instruction statistics as much as possible.

5 Applications and Experimental Re-
sults

We have implemented the various techniques described in this pa-
per in a SOC power co-estimation tool, and augmented it with the
acceleration techniques described in Section 4. We performed sev-
eral experiments to evaluate accuracy and efficiency of our SOC
power estimation framework when the various speedup techniques
described in this paper are employed. We also demonstrate the util-
ity of our power co-estimation framework in driving system-level
power tradeoffs, using a TCP/IP subsystem from a wireless Net-
work Interface Card [21].

The rest of this section is organized as follows. Section 5.1
describes our implementation and experimental setup, and gives
a brief introduction to the two example systems that are used in
our experiments. Section 5.2 presents results on the accuracy and
efficiency of various speedup techniques employed in our power
estimation tool. Section 5.3 describes the use of our power co-
estimation tool to explore the effects of customizing the communi-
cation architecture for the TCP/IP subsystem.

5.1 Experimental Methodology
The basic power estimation framework was constructed by adapting
the following tools: (i) The POLIS/PTOLEMY system simulation
environment [16] as the simulation master, (ii) a modified power
simulator from the SIS [15] logic synthesis environment for hard-
ware power estimation, (iii) an instruction-set simulator, SPARC-
SIM, for the SPARClite embedded processor that has been en-
hanced with the measurement-based instruction-level power model
from [6], and (iv) a behavioral power model of the bus architecture
described in [21].

The instruction set simulator accurately models timing behav-
ior taking into account register interlocks, pipeline flushes in
case of branches, delayed branches, register windowing etc. The
instruction-level energy model from [6] was based on actual mea-
surements, and has been shown to be accurate to within 5% com-
pared to actual current measurements. For hardware power esti-
mation, we have modified the SIS power estimation tool [4] to re-
port power consumption cycle-by-cycle for a given input vector se-

5

0

50

100

150

200

250

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

E

E

n

n

e

e

r

r

g

g

y

y

O
O

cc
cc

u
u

r
r

e
e

n
n

c
c

e
e

s
s

0

20

40

60

80

100

120

0
2
0

4
0

6
0

8
0

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

Energy histogram for

path 1,4,7,8

Energy histogram for

path 1,3,6,8

1

2 3 4

7

8

5 6

(a) (b) (c)

path_id

1,3,6,8

average energy variance

1,4,7,8

........

} else {

}

if (energy(task_id,path_id) is in the energy table) &&

(variance<thresh_variance) && (num_iss_calls>=thresh_iss_calls)) {

call the ISS to find the energy;

update average energy and variance;

num_iss_calls++;

use cached energy;

 49.45118.1 nJ

 18.04235.2 nJ

Figure 4: Illustration of energy and delay caching (a) an example code fragment, (b) energy histograms, and (c) pseudo-code
for the application of caching

quence. It is possible to run power estimation interactively during
co-simulation instead of waiting for the end of the co-simulation
session, and also run hardware power analysis in batch-mode on a
long traces. We have implemented software power macro-modeling
for the embedded SPARC processor in our power co-estimation
framework. This required delay and energy characterization of sev-
eral template programs using the SPARCsim ISS, as explained in
Section 4. Finally, we have enhanced the co-estimation tool to in-
corporate the caching and sampling based speedup techniques.

We next describe briefly the example system used in our experi-
ments.

ASIC
1

ASIC
2

BEHAVIOR

ARCHITECTURE

CREATE_PACK
PACKET

IP_CHECK
QUEUE

NETWORK

MEMORY

SHARED

CHECKSUM

ARBITER

����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������

SPARC

ARBITER
MEMORY

SHARED

SHARED BUS

Figure 5: Specification and Implementation Architecture for
the TCP/IP system

TCP/IP Network Interface Card Subsystem
The system behavior and one possible implementation architecture
for the TCP/IP sub-system is shown in Figure 5. This sub-system
consists of the parts of the TCP/IP protocol that perform checksum
computation. For incoming packets, the module create pack
receives a packet from the lower layer (in this case, the IP layer),
and stores it in the shared memory. When it finishes, it sends the
information about the starting address of the packet in memory, the
number of bytes and the checksum header to a queue (packet
queue). From this queue, the module ip check retrieves a new
packet, overwrites parts of the checksum header (which should not
be used in the checksum computation) with 0s, and signals to the

checksum process that a new packet can be checked for checksum
consistency. The checksum process performs the core part of the
checksum computation, accessing the packet in memory through
the arbiter and accumulating the checksum for the packet body.
When it is done, it sends the computed 16-bit checksum back to
the ip check process, which then compares the computed check-
sum with the incoming transmitted checksum, and flags an error if
they do not match. The flow for outgoing packets is similar, but
in the reverse direction, and there is no need for comparison of the
final checksum.

5.2 Results on Accuracy vs. Efficiency for the
Acceleration Techniques

As mentioned in earlier sections, it is important that SOC power es-
timation techniques be efficient in order to be used iteratively in an
interactive/automatic system-level design space exploration frame-
work. In this section, we present results to illustrate the efficacy of
our speedup techniques in reducing co-estimation time while sacri-
ficing as little accuracy as possible.

Table 1: Speedup and accuracy of the caching approach
DMA Orig. Caching Speedup
size Energy CPU CPU

(mJ) time (s) time (s)
2 0.54 8051.52 428.92 18.8
4 0.44 4023.36 248.13 16.2
8 0.39 2080.77 156.91 13.3

16 0.36 1398.77 117.90 11.9
32 0.35 852.25 90.88 9.4
64 0.34 680.78 78.88 8.6

Table 1 reports energy and CPU time results for the SOC power
co-estimation framework without any acceleration technique (ma-
jor column Orig.), and with the use of caching to speedup SOC
power co-estimation (major column Caching). Sub-columns En-
ergy and CPU time present the total system energy consumption
and simulation time on a Sun Ultra Enterprise 450 workstation with
256MB of memory. The speedup (CPU time for Orig: case

CPU time for Caching case
) is pre-

sented in the last column. The rows represent different implemen-
tations of the TCP/IP subsystem with different values of the bus

6

DMA size.
It bears mentioning that in the case of this example, the caching

acceleration technique did not result in any loss of accuracy with
respect to the base case without any acceleration technique. That
is the reason why no separate Energy sub-column is reported for
the Caching case. Upon investigation, we found that the energy
numbers were the same because the instruction-level power model
used for the SPARClite embedded processor [6] does not model the
dependence of the power consumed by an instruction sequence on
the actual data values used in each instruction (such variations were
empirically shown to be very small for this processor [6]). In addi-
tion, since the memory references are issued to the cache simulator
directly by PTOLEMY from the simulation of the Discrete Event
model of each CFSM, not invoking the ISS for a CFSM path (and
using cached delay/power numbers instead) will not result in any
change in the sequence of references issued to the cache simulator.
However, in general, for processors where the ISS models the de-
pendency of power on the data used in each instruction (e.g. for
DSPs), there will be some non-zero error introduced due to caching
the energy/delay numbers from the ISS. However, as mentioned in
Section 4.2, the parameters used in the caching procedure can be
used to minimize such errors.

Table 2 reports energy and simulation CPU time results for
the SOC power estimation framework without any acceleration
technique (major column Orig.), and with the use of energy
macro-modeling to speedup SOC power estimation (major column
Caching). Sub-columns Energy and CPU time present the total
system energy consumption and simulation time on a Sun Ultra
Enterprise 450 workstation with 256MB of memory. The speedup
(CPU time for Orig: case

CPU time for Macromodeling case
) is presented in the sixth column,

while the absolute % error in the energy estimate of the macro-
modeling approach with respect to the base case (Orig.) is pre-
sented in the last column. As before, the rows represent different
implementations of the TCP/IP subsystem with different values of
the bus DMA size.

Table 2: Speedup and accuracy of the macro-modeling ap-
proach

DMA Orig. Macromodeling Speedup Error
size Energy CPU Energy CPU %

(mJ) time (s) (mJ) time (s)

2 0.54 8051.52 0.72 92.44 87.1 32.9
4 0.44 4023.36 0.56 63.46 63.4 27.4
8 0.39 2080.77 0.48 48.73 42.7 23.7

16 0.36 1398.49 0.44 41.08 34.0 21.6
32 0.35 852.25 0.42 37.71 22.6 20.4
64 0.34 680.78 0.41 36.02 18.9 19.6

The tables indicate that:
� The acceleration technique based on caching results in simu-

lation speedups of between 8.6X and 18.8X (average of 13X
compared to the base case without any acceleration technique.

� The macro-modeling based acceleration technique results in
speedups of between 18.9X and 87.1X (average of 44.8X)
with respect to the base case, with an average error around
24.3% in the estimated system energy dissipation. The results
with macro-modeling are conservative (over-estimate power
consumption), especially for the software parts of the system.
That is because they apply an additive model to compute the
energy consumed by the execution of a sequence of CFSM
paths, and hence do not take into account the effects such as
the partial overlap their execution due to pipelining. The level
of pessimism introduced, in general, depends on the proces-
sor architecture, and the granularity/size of the CFSM paths.
However, as shown below, our experiments indicate that the
results of the macro-modeling approach do have high relative

accuracy (“tracking fidelity”), since they result in the same
ranking of the different candidate sizes with respect to power
consumption.

400000

450000

500000

550000

600000

650000

700000

750000

300000 350000 400000 450000 500000 550000

S
ys

te
m

 e
n

er
g

y
-

m
ac

ro
m

o
d

el
in

g
 (

n
J)

System energy - Original (nJ)

DMA size = 2

4

8

16
32

64

Figure 6: Relative accuracy of energy macro-modeling in
predicting variation of system energy with varying DMA
size

The relative accuracy of an estimation technique refers to how
accurately it compares/ranks different variants of a design. In order
to study the relative accuracy of SOC power estimation with en-
ergy macro-modeling, we considered the various implementations
of the TCP/IP subsystem implementation corresponding to varying
bus DMA size. Figure 6 shows a plot of the energy estimate for
each system configuration as estimated by our SOC power estima-
tion framework when macro-modeling was employed for speedup
vs. the energy estimate obtained using the vanilla SOC power es-
timation framework with no speedup technique. The plot indicates
that SOC power estimation with macro-modeling preserve the rank-
ing of the different system configurations with respect to power. An
additional desirable trend that can be observed is that a linear rela-
tionship exists between the energy reported by SOC power estima-
tion with macro-modeling and SOC power estimation without any
acceleration technique. We have obtained similar results in vari-
ous other experiments (e.g. by attempting to rank several different
HW/SW partitions).

5.3 Exploring SOC communication architec-
ture tradeoffs

In order to demonstrate the utility of our power co-estimation tool
in an iterative design exploration framework, we performed the fol-
lowing experiment. We ran an exhaustive search of all possible
meaningful assignments of priority and DMA sizes for the TCP/IP
example, invoking the power analysis technique for each configu-
ration. Overall, there 6 priority assignments and 7 possible DMA
sizes, leading to a total of 48 points in the design space. Figure 7
shows the variation of energy consumed in the TCP/IP system for
processing 3 network packets. The main parameter values that have
been used during power estimation are: Voltage supply (Vdd) = 3.3
V, Bus Line capacitance per bit (Cbit) = 10 nF, Address bus width
= 8 bits, Data bus width = 8 bits. The minimum energy point was
found to be when the DMA size is set to 128, and the priorities are
assigned so that Create Pack, IP Check, and Checksum are
in descending order of priority. The entire design space exploration
took about 180 minutes on a Sun Ultra Enterprise 450 workstation
with 256MB RAM.

Note that the SOC integration architecture significantly affects
the power consumption in the entire system. Changing the DMA
size affects the HW power and SW power even though the HW and
SW parts are unchanged. Such effects are not obvious to evaluate
without a power co-estimation tool such as ours. Another useful
application of our environment is that it can highlight peak periods
in power consumption, and correlate functional information with
power information. For example in our case we observed during
the experiment with the TCP/IP example that the peaks in power
consumption are associated with the points in time when the mod-
ules handshake with the arbiter.

7

Energy vs. Priority and DMA size for TCP/IP subsystem

0
1

2
3

4
5 24 816

32
64

128

3
4
5
6
7
8
9

10
11
12

Priority
DMA Size

E
n

er
g

y
(u

J)

Figure 7: Efficient exploration of the communication archi-
tecture design space for the TCP/IP system using our co-
estimation tool

6 Conclusions and Future Work
We have presented a power co-estimation framework for System-
on-Chip (SOC) designs, based on a concurrent and synchronized
execution of power estimators for the different components of the
SOC. We have demonstrated the necessity of co-estimation in order
to capture the timing and power inter-dependencies at the system
level. In order to facilitate efficient SOC power estimation, we pro-
posed acceleration techniques based on energy and delay caching
and macro-modeling, and statistical sampling. Our experiments
demonstrate the utility of our SOC power estimation techniques in a
system-level design framework, and the accuracy/efficiency trade-
offs offered by the acceleration techniques.

References
[1] A. R. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS

Design. Kluwer Academic Publishers, Norwell, MA, 1995.

[2] J. Rabaey and M. Pedram (Editors), Low Power Design Methodolo-
gies. Kluwer Academic Publishers, Norwell, MA, 1996.

[3] L. Benini and G. De Micheli, Dynamic Power Management: Design
Techniques and CAD Tools. Kluwer Academic Publishers, Norwell,
MA, 1997.

[4] J. Monteiro and S. Devadas, Computer-Aided Design Techniques for
Low Power Sequential Logic Circuits. Kluwer Academic Publishers,
Norwell, MA, 1996.

[5] E. Macii, M. Pedram, and F. Somenzi, “High-level power model-
ing, estimation, and optimization,” in Proc. Design Automation Conf.,
pp. 504–511, June 1997.

[6] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded soft-
ware: A first step towards software power minimization,” IEEE Trans.
VLSI Systems, vol. 2, pp. 437–445, Dec. 1994.

[7] T. Sato, Y. Ootaguro, M. Nagamatsu, and H. Tago, “Evaluation of
architecture-level power estimation for CMOS RISC processors,” in
Proc. Symp. Low Power Electronics, pp. 44–45, Oct. 1995.

[8] L. Benini and G. De Micheli, “System-level power optimization: tech-
niques and tools,” in Proc. Int. Symp. Low Power Electronics & De-
sign, Aug. 1999.

[9] D. Kirkovski and M. Potkonjak, “System-level synthesis of low-power
hard real-time systems,” in Proc. Design Automation Conf., pp. 697–
702, June 1997.

[10] B. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-
software co-synthesis of embedded systems,” in Proc. Design Au-
tomation Conf., pp. 703–708, June 1997.

[11] Y. Li and J. Henkel, “A framework for estimating and minimizing
energy dissipation of embedded HW/SW systems,” in Proc. Design
Automation Conf., pp. 188–193, June 1998.

[12] J. Henkel, “A low power hardware/software partitioning approach for
core-based embedded systems,” in Proc. Design Automation Conf.,
pp. 122–127, June 1999.

[13] T. Simunic, L. Benini, and G. De Micheli, “Cycle-accurate simula-
tion of energy consumption in embedded systems,” in Proc. Design
Automation Conf., pp. 867–872, June 1999.

[14] J. Rowson, “Hardware/software co-simulation,” in Proc. Design Au-
tomation Conf., pp. 439–440, June 1994.

[15] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and
A. Sangiovanni-Vincentelli, “Sequential Circuit Design Using Syn-
thesis and Optimization,” in IEEE International Conference on Com-
puter Design, pp. 328–333, October 1992.

[16] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jureska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki,
and B. Tabbara, Hardware-software Co-Design of Embedded Systems:
The POLIS Approach. Kluwer Academic Publishers, Norwell, MA.,
1997.

[17] J. Buck, S. Ha, E. Lee, and D. Masserchmitt, “Ptolemy: A framework
for simulating and prototyping heterogeneous systems,” International
Journal on Computer Simulation Special Issue on Simulation Software
Management, Jan. 1994.

[18] A. Raghunathan, N. K. Jha, and S. Dey, High-level Power Analysis
and Optimization. Kluwer Academic Publishers, Norwell, MA, 1998.

[19] M. Lajolo, L. Lavagno, and A. Sangiovanni-Vincentelli, “Fast instruc-
tion cache simulation strategies in a hardware/software co-design en-
vironment,” in Proc. Asia and South Pacific Design Automation Conf.,
Jan. 1999.

[20] J. Liu, M. Lajolo, and A. Sangiovanni-Vincentelli, “Software timing
analysis using hw/sw cosimulation and instruction set simulator,” in
Proc. Int. Workshop on Hardware/Software Codesign, Mar. 1998.

[21] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, and A. Sangiovanni-
Vincentelli, “Modeling shared memory access effects during perfor-
mance analysis of hw/sw systems,” in Proc. Int. Workshop on Hard-
ware/Software Codesign, Mar. 1998.

[22] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers - Principles, Tech-
niques and Tool. Addison-Wesley, 1986.

[23] C. T. Hsieh, M. Pedram, G. Mehta, and F. Rastgar, “Profile-driven pro-
gram synthesis for evaluation of system power dissipation,” in Proc.
Design Automation Conf., pp. 576–581, June 1997.

8

