Efficient Power Management based on Application Timing Semantics for
Wireless Sensor Networks

Octav Chipara, Chenyang Lu, and Gruia-Catalin Roman
Department of Computer Science and Engineering
Washington University in St. Louis
{ochipara, lu, roman }@cse.wustl.edu

Abstract

This paper proposes Efficient Sleep Scheduling based
on Application Timing (ESSAT), a novel power manage-
ment scheme that aggressively exploits the timing seman-
tics of wireless sensor network applications. We present
three ESSAT protocols each of which integrates (1) a light-
weight traffic shaper that actively shapes the workload
inside the network to achieve predictable timing proper-
ties over multiple hops, and (2) a local scheduling algo-
rithm that wakes up nodes just-in-time based on the tim-
ing properties of shaped workloads. Our ESSAT protocols
have several distinguishing features. First, they can save
significant energy with minimal delay penalties. Second,
they do not maintain TDMA schedules or communication
backbones; as such, they are highly efficient and suitable
for resource constrained sensor platforms. Moreover, the
protocols are robust in highly dynamic network environ-
ments, i.e., they can handle variable multi-hop communi-
cation delays and aggregate workloads involving multiple
queries, and can adapt to varying workload and network
topologies. Our simulations showed that DTS-SS, an ES-
SAT protocol, achieved an average node duty cycle 38-
87% lower than SPAN, and query latencies 36-98% lower
than PSM and SYNC.

1 Introduction

Energy is the most critical resource in wireless sensor
networks (WSNs) that must operate for years on limited
power supplies. Recent studies have shown that signifi-
cant energy savings can be achieved by dynamically man-
aging node duty cycles. However, the design of power
management protocols faces several key challenges. First,
the network must maintain sufficient quality of service de-
spite sleep schedules. In particular, many mission-critical
applications operate under stringent timing constraints.
For example, a surveillance application may require the
network to report all suspicious events within a few sec-

onds in order to ensure timely response to intrusions.
Power management protocols designed for such appli-
cations must coordinate the sleep schedules of different
nodes to minimize their impact on end-to-end communi-
cation delays. Second, hardware platforms in WSNs usu-
ally have limited bandwidth, memory, and processing ca-
pabilities. A practical power management protocol must
be simple and introduce minimal overhead. Third, the
workload in WSNs may change dramatically in response
to events in the physical environment. For instance, while
the workload in a fire monitoring system may be mod-
erate during normal conditions, it may increase sharply
after a wild fire is detected to support numerous fire fight-
ing activities. Therefore, a power management protocol
must dynamically adjust the duty cycles of nodes based
on the current system workload. Furthermore, a power
management protocol must be robust against node and
link failures, which can occur frequently in WSNs [17].
We present Efficient Sleep Scheduling based on Ap-
plication Timing (ESSAT), a novel power management
scheme that meets all the above challenges by aggressively
exploiting application timing semantics. In contrast to
general-purpose systems with random workloads, work-
loads in WSNs are often generated by applications with
known timing semantics. A primary function of many
WSN applications is to continuously gather data from the
environment at user-specified periods. Moreover, in many
distributed signal processing applications (e.g., target de-
tection), multiple sensor nodes sample and exchange data
at application-specific sampling frequencies for data fu-
sion. Intuitively, a power management protocol can lever-
age such application-level timing semantics in order to op-
timize sleep schedules. However, the design of such pro-
tocols is complicated by several issues. The random back-
off scheme in widely adopted CSMA/CA MAC protocols
can cause variable communication delays due to channel
contention. More importantly, the delay jitter can accu-
mulate over multiple hops. As a result, even when data
is generated periodically at sources, the workload often

becomes highly aperiodic over multi-hop communication.
In addition, the aggregate network workload of multiple
periodic data flows may be aperiodic due to their different
periods and starting times.

ESSAT deals with the above complexities with two effi-
cient mechanisms: (1) in-network traffic shapers that ac-
tively control packet transmission to preserve predictable
timing properties inside the network; and (2) a local sleep
scheduler called Safe Sleep that wakes up nodes just in
time to meet communication needs. ESSAT is optimized
for WSNs. It saves significant energy while introducing
minimal delay penalties. Our ESSAT protocols also ad-
dress a number of important practical issues in WSNs. In
contrast to many existing protocols (discussed in Section
2), our protocols do not maintain TDMA schedules or ac-
tive communication backbones; therefore, they are highly
efficient and suitable for resource constrained sensor plat-
forms. Moreover, our protocols are robust in highly dy-
namic wireless sensor networks, i.e., they can adapt to
varying workloads induced by multiple queries as well as
node failures.

The remainder of the paper is organized as follows. In
Section 2, we highlight the contributions of ESSAT by
contrasting it with related work. A workload model with
application timing semantics is formulated in Section 3.
Section 4 presents the design and analysis of Safe Sleep
and two traffic shaper algorithms. Experimental evidence
regarding the effectiveness of the proposed protocols is
discussed in Section 5. Concluding remarks appear in
Section 6.

2 Related Work

ESSAT is based on two high-level design principles:
(1) shaping the traffic inside a network to achieve pre-
dictable timing properties, and (2) exploiting application-
level timing semantics. In the following, we discuss exist-
ing power management schemes and the extent to which
they explore similar principles.

An approach adopted by several power management
protocols is to maintain a connected communication back-
bone that is responsible for routing packets, while other
nodes sleep most of the time [3, 15, 13]. Although the
backbone provides good communication performance by
maintaining sufficient network connectivity, this solution
does not exploit the possibility of conserving energy on
the backbone nodes even when they are not needed for
communication. Keeping the backbone nodes continu-
ously active may become unacceptable in WSNs espe-
cially when the workload is light. Power management
schemes based on communication backbones do not ex-
ploit traffic shaping or workload characteristics.

The idea of using traffic shaping to facilitate sleep
scheduling has been explored in power management

schemes that operate at the MAC layer [9, 4, 16, 12, 11,
18]. Traffic shaping may be performed at different levels
of granularity. TDMA MAC protocols [9, 4] perform fine-
grained traffic shaping by allocating time slots to each
node. A node only communicates in its slots, and can
sleep in the others. However, maintaining fine-grained
TDMA schedules for a multi-hop sensor network is chal-
lenging. Centralized scheduling algorithms cannot scale
effectively in large networks while distributed scheduling
algorithms can introduce significant synchronization over-
head in order to maintain consistent schedules in multi-
hop networks [9]. A simpler scheme for traffic shaping is
based on coarse-grained sleep schedules [16, 1, 11, 18] in
which each node follows a fixed periodic schedule that in-
cludes an active window and a sleeping window. However,
none of the above traffic shaping schemes consider the
workload characteristics when constructing sleep sched-
ules. Consequently, they may introduce significant delay
penalties when their schedules interfere with the timing
semantics of the application workload.

Several power management schemes exploit workload
properties available at different layers to improve their
energy efficiency. For example, T-MAC [12] and PSM
[1] adapt a node’s duty cycle in response to the network
load observed at the MAC layer, while on-demand power
management [19] uses routing information. However, nei-
ther solution is cognizant of the timing semantics at the
application layer. As a result, they may introduce delay
penalties or waste energy due to the lack of precise timing
information of the workload.

TinyDB [7] allows a user to collect aggregated data
from a sensor network through a routing tree. It evenly
divides the period of a query into communication slots for
nodes at different levels in the routing tree, and nodes can
sleep in slots assigned to other levels. TinyDB does not
address sleep scheduling for multiple queries with differ-
ent timing properties. Moreover, the duty cycle of each
node is fixed and does not adapt to the workload.

In contrast to the aforementioned approaches, ESSAT
employs a novel power management approach based on
light-weight traffic shaping and the timing semantics of
WSN applications. The traffic shaping algorithms intro-
duce minimal delay penalties and communication over-
head. Furthermore, they can efficiently adapt to the dy-
namics in the network and aggregate workload of multi-
ple queries. This unique combination of features makes
ESSAT especially suitable for real-time applications on
resource-constrained WSNs.

3 Workload Model

In this paper we assume a general workload model in
which each source produces data reports periodically for
a query. This model fits many WSN applications that

gather data from the environment at user specified rates.
Such applications generally rely on existing WSN query
services. We analyze the ESSAT protocols on the basis
of the workloads produced by a generic query service.

A query is characterized by the following parameters: a
set of sources that respond to registered queries, an aggre-
gation function [7] for in-network aggregation; the period
P at which data reports are generated by the sources; and
the starting time of the query ¢.

A query service usually works as follows: a user is-
sues a query to a sensor network through a base station,
which disseminates the query to all the sources. To fa-
cilitate data aggregation, the query service constructs a
routing tree rooted at the base station as the query is dis-
seminated. During the execution of the query, each leaf
node generates a new data report every P seconds. The
first data report is generated by the leaf nodes at time ¢.
Each non-leaf node waits to receive the data reports from
its children, produces a new data report by aggregating
its data with the children’s data reports, and then sends
it to its parent.t

Although in our model the sources produce data re-
ports periodically for query we do not assume that the
network workload remains periodic. In fact, as discussed
in Section 5.3 the workload is aperiodic due to multi-
hop delay jitter and multiple queries with different timing
properties. Since this query model approximates several
representative query services [5, 7], ESSAT can be easily
integrated with existing query services to support various
WSN applications. ESSAT can also be extended to sup-
port other communication patterns such as peer-to-peer
communication or data dissemination.

4 Protocols Design

An ESSAT protocol has two components: a traffic
shaper and a sleep scheduling algorithm called Safe Sleep.
The traffic shaper controls the sending and receiving of
data reports to construct workloads with predictable tem-
poral properties. Based on the temporal properties of the
workload, Safe Sleep determines when a node should be
turned on or off.

The section starts by introducing Safe Sleep. We then
consider the behavior of the WSNs in the absence of traf-
fic shaping. Next, we introduce two traffic shapers that
improve the energy efficiency. Finally, we analyze the be-
havior of the ESSAT protocols in the presence of packet
drops and topology changes.

ESSAT is layered between the MAC protocol and the
query service. ESSAT does not require special scheduling

1To deal with node failures, a node may timeout and send its
data report to its parent before receiving the data reports from all
its children (see Section 4.1).

support at the MAC layer. For example, it can work with
802.11b and the CSMA/CA protocol of TinyOS [14].

4.1 Safe Sleep (SS)

Safe Sleep (SS) is a local sleep scheduling algorithm
that turns the radio on and off. From the point of view
of SS, a node may be in one of two states: free or busy.
A node is busy when it expects to receive or send a data
report. Otherwise, a node is free. SS determines a node’s
state based on the timing properties of its workload and
schedules periods of sleep and activity accordingly.

Timing properties of queries. The timing proper-
ties of a node’s query workload are shared by SS and the
traffic shapers. A node characterizes each query as fol-
lows. Since the nodes are organized in a tree topology, a
node expects a data report from each child in each query
period. Let r(g,k,c) be the expected reception time of
the k" data report for query ¢ from child c. The expected
send time of the k' data report for query ¢, s(q, k), is
the time when the data report is scheduled to be submit-
ted to the MAC layer for transmission. SS keeps track of
all queries routed through a node. For each query g, the
node stores the time it expects the next data report from
each child in q.7e.¢(c) and the time it expects to send
the next aggregated data report to its parent in q.spezt-
It is the responsibility of the traffic shaper to control the
times when the next data reports are to be received or
sent. This information is provided to SS in an incremental
manner by the traffic shaper as follows. Upon receiving
a data report for query ¢ from child ¢, the traffic shaping
protocol computes 7(g, ¢,k + 1) while upon completing
the sending of a data report the traffic shaper computes
s(q,k +1). The traffic shapers are presented in Section
4.2.

Algorithm. SS works as follows. A node checks its
state after it sends or receives a data report. Let twakeup
be the minimum of the expected reception and send times
of all queries. If t,qkeup is larger than the current time,
then the node remains free until ¢yqkeup. Otherwise the
node is busy since data reports are to be received or
sent. If a node is free, SS may turn off its radio. How-
ever, to avoid incurring any delay or energy penalties the
costs associated with transitioning between power states
must be considered. To characterize these costs we define
the break-even time tpg as the minimum time the node
needs to remain free such that there is no delay or energy
penalty in turning the radio off and back on [2]. When
the radio’s transition power is no higher than its active
power, the break-even time is the time it takes to transi-
tion from the active state to the off state (ton—orr) and
back (torr—on). A method for computing the break-
even time when the transition power is higher than the
active time is given in [2]. SS ensures that no energy or

updateNextReceive(q,c, r(¢, k + 1,¢))){
Update the next expected receive time
q-Tneat(c) with (g, k + 1, ¢);
checkState(); }
updateNextSend(q,s(q, k + 1)){
Update the next expected send time
q-Snext With s(q, k + 1);
checkState(); }
checkState() {
twakeup = MIN({t|t = q.Snext Vg, c}
U {tlt =¢rneat(c) Va})
tsleep - twakeup — now;
if (tsleep > tBE)
sleep and set time to wake up at
(tsicep — toFF—oON);}
Figure 1. Safe Sleep Algorithm

delay penalties are incurred through two steps: First, SS
puts the node to sleep only if the nodes is free and re-
mains free for longer than the break-even time. Second,
the node sleeps until ¢5cep —torF—on such that there is
enough time to wake up. We call this algorithm Safe Sleep
because it guarantees that no energy or delay penalties
are incurred by turning the node off.

So far we have considered the operation of the system
after the query setup is performed. The root starts a
query by flooding a query request to all sources. During
the setup slot, all nodes keep their radio on even if SS
does not expect any data reports to be sent or received.
For the duration of the setup slot both setup requests and
data reports may be transmitted. Outside the setup slot,
only data reports may be transmitted. The size of the
setup slot affects both the time it takes to setup a query
and the energy consumption at a node.

We note that SS has two notable features. First, it
can flexibly schedule sleep periods for multiple queries.
It does not need to maintain a TDMA schedule. Second,
the storage cost of each query is proportional to the degree
of the node in the routing tree. This localized property
allows SS to scale effectively in large networks.

Impact of incorrect predictions. When the predic-
tion of the workload is perfect, i.e., the expected reception
time 7(q, k, ¢) and the actual reception times coincide, SS
achieves the maximum sleep time. However, as discussed
earlier, it is difficult to predict the actual reception time
in WSNs due to delay jitter.

The accuracy of the expected reception time greatly
affects the ability of SS to conserve energy. When the ac-
tual reception time is earlier than the expected reception
time, a data report cannot be transmitted successfully
because the receiver may be asleep. To avoid transmis-
sion failures, the traffic shapers always set the expected
reception time of a child’s data report to be the same as
the child’s expected send time of the same data report.
Even if a data report is ready before its expected send

time, the sender buffers it until the expected send time
when the receiver wakes up.

Inaccuracies in the expected reception time lead to
shorter sleep intervals because SS keeps the radio turned
on from the time the data report is expected until the data
report arrives. This situation has two possible causes.
First, a child may not be able to send its data report to
the MAC layer at the expected send time because it has
not received the data reports from its own children due to
communication delays. Second, even after a child sends
the data report to its MAC layer, the data report suffers
from additional delays due to queuing, contention, and
transmission at the MAC layer.

4.2 Traffic shapers

In this subsection, we first analyze the performance of
SS without traffic shaping and then present two traffic
shapers that improve the energy efficiency with minimal
delay penalty.

4.2.1 No Traffic Shaping (NTS)

In the following we describe how SS can be used with-
out traffic shaping. In this case, SS only takes advantage
of the periodicity of the data reports from the leaves of
the routing tree. Since each node performs aggregation, a
non-leaf node usually waits to receive data reports from
its children before it transmits the aggregated data re-
port. In NTS, a node sends its aggregated data reports
to its parent immediately after it has received and aggre-
gated the data reports from its children.

As mentioned earlier, even though data reports are
produced periodically on each leaf node, the time when a
node actually receives a data report is unpredictable due
to accumulated jitter in multi-hop wireless communica-
tion. NTS estimates the reception times of data reports
as follows. The reception time of the k** data report of
query g must be no earlier than the beginning of a query
period ¢+ k= P, where ¢ and P are the start time and the
period of the query, respectively. 2 Every node shares the
same expected send and reception times of the k** data
report: s(k) = r(k) = ¢ + k x P. For a single query, a
node turns on its radio at r(k) and keeps listening un-
til it receives all data reports from its children, performs
the aggregation, and relays the aggregated data report to
its parent. After the node sends the data report, it can
turn off its radio until 7(k + 1) when a new data report is
produced. By design, SS also handles concurrent queries.

The protocol that employs SS without traffic shaping
is denoted by NTS-SS. An advantage of NTS-SS is that

2Previously the notation r(q, k, c¢) was used to refer to the recep-
tion time of the k** data report of query ¢ from child ¢. When no
ambiguity exists we will drop the variables ¢ and ¢ for brevity.

it does not introduce any delay penalties. However, NT'S-
SS wastes energy by pessimistically turning on all nodes
when a data report is generated on the leaf nodes.

Analysis. We analyze the performance of NTS-SS in
terms of energy efficiency and query latency. For clarity
we only consider the case when a single query is regis-
tered. To evaluate the energy efficiency of our protocols
we quantify the time a node is active. A node may be
active because it expects data reports from its children
or because it is sending data reports. The active time
for sending a data report is not directly affected by the
traffic shaper, making this case uninteresting for power
analysis. Thus, we focus on analyzing the time a node
remains awake to receive data reports from its children
Trecv~

The energy conserved by a node using NTS-SS varies
as a function of its rank in the tree. We define the rank
d of a node to be the maximum hop count to any of its
descendants in the routing tree. By definition a leaf node
has a rank of zero.

For a leaf node, T}.., is zero since it does not receive
data reports. The time a node with rank d > 0 remains
active is the sum of three components: the maximum
time it takes for each child to receive the data report
Treev(d — 1); the maximum time it takes its children to
compute their data reports by applying the aggregate
function Tiomp; and the maximum time it takes to re-
ceive all data reports from its children T,,jjec:. Therefore,
Trecv (d) = Trecv(d - 1) +Tcollect + Tcomp~ Let Tagg be the
upper bound on the time it takes for a node to receive all
the data reports from all its children and generate a data
report: Togg = Teotiect + Teomp. Accordingly, Thec, (d) is:

0, if d = 0;
Trec’u(d) B { (d — 1) * Tagg + Tcollecta if d 7é 0. (1)

Note that large variations in the energy conserved at dif-
ferent nodes limits the lifetime of the network. The nodes
close to the root that have higher ranks will run out of
energy faster than the others. Therefore, this NTS-SS ex-
hibits good energy efficiency only when the routing tree
is small.

We observe that the energy efficiency of NTS-SS may
be improved by increasing the control over when the data
reports are generated. This improves the accuracy of ex-
pected reception times at intermediary nodes, thus reduc-
ing the idle listening time. To this end, we introduce two
traffic shapers.

4.2.2 Static Traffic Shaper (STS)

STS enforces the periodicity of data reports by pacing
their multi-hop transmission over a period equal to an
assigned deadline D. In our implementation, we allocate
the same amount of time [to each rank in the tree . We let

30

T T T 0.7
Duty Cycle —=—
Query latency ---e---.- 4 0.6

ar 4 05

- 04
20

Delay (s)

e 4 o3

Duty cycle(%)

9 02

e 4 01

10 ! ! ! ! ! ! ! 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Deadline (s)

Figure 2. Tmpact of query deadline on duty cycle and

query latency of STS-SS.
the local deadline [be: [= % where M is the maximum
rank of the tree.

For each query, the expected reception time of a node
of rank dis r(k) = ¢+ k*xP+1x(d—1) and its expected
send time is s(k) = ¢ + k x P + [x d. If a data report is
generated before its expected send time s(k) it is buffered
until that time. If the data report is late, then the node
sends it immediately. This mechanism reduces the differ-
ence between the expected and actual send and reception
times and hence improves the energy efficiency of STS.

Analysis. Let STS-SS denote the ESSAT protocol
that integrates STS and SS. We consider the case when
a single query runs in the system. The critical parameter
that must be tuned in STS is the local deadline [. The
choice of [represents a tradeoff between the energy effi-
ciency and query latency. We now analyze the impact of
l on STS’s query latency and the energy efficiency. Query
latency is the maximum time it takes to send a data re-
port from any source to the root. For STS, the query
latency is:

Ly =M xmaz(l,Tygq) (2)

When | < T,44 a node with rank d expects to receive
the data reports from its children at * (d — 1) and turns
on its radio at that time. However, since | < T4, the
children cannot send the data reports on time. The data
reports reach a node with rank d at T, 4 * (d—1)—Teoticct-
Thus, Trecv = Tagg * (d — 1) — Tcollect — [% (d — 1) =
(Tagg — 1) * (d—1) 4+ Teotgect- When 1 > T4, the time the
node remains awake to receive the data reports is Teopjeet
since the children are ready to transmit their data reports
in time. Therefore,

Trecv(ly d) = (3)
0, if d=0;
(Tagg — 1) * (d = 1) + Teotteet, if 1 < Thgq Ad #0;
Teoliect if [> Tagg ANd # 0.

Note that in the special case when [= 0, STS behaves
like NTS.

Figure 2 shows the impact of the query deadline on
the average duty cycle and query latency obtained in an
ns-2 simulation when three queries are running. The
complete experimental setup is described in Section 5.

The duty cycle of a node is defined as the percentage
of time a node remains active during a query. A dis-
continuity point is observed in both average duty cycle
and query latency at D = 0.12s when the local deadline
I approaches T,4y. When D < 0.12s, the query latency
remains almost constant, while the average node duty cy-
cle decreases monotonically as D increases. On the other
hand, when D > 0.12s, the query latency increases pro-
portionally with the deadline without reducing the aver-
age duty cycle. This result validates the above analysis.

STS-SS has maximum energy efficiency and good
query latency when its local query deadline [approaches
T4g49- However, due to the dynamic nature of WSNs it is
difficult to estimate 7,4, accurately. Hence, it is difficult
to tune the parameter [of STS. To address this limitation
we develop the Dynamic Traffic Shaper.

4.2.3 Dynamic Traffic Shaper (DTS)

In contrast to STS which assigns fixed expected reception
and send times, DTS dynamically adapts the expected
send and reception times in response to variations in the
multi-hop delays of received data reports.

Similarly to NTS, DTS initially sets the expected send
and reception times to equal the start time of the query:
s(0) = r(0) = ¢. Every time a node sends a new data
report, DTS sets the expected send time of its next data
report to s(k) = s(k — 1) + P. Depending on whether
or not the k' data report is sent at the expected send
time, DTS behaves differently. If a node receives the data
reports from all of its children in time such that its k"
data report is ready before s(k), it sends it at s(k) and
computes the next expected send time as s(k+1) = s(k)+
P. After receiving the data report, the parent sets its
next expected reception time to r(k+1) = r(k) + P. No
explicit synchronization between a node and its parent
is necessary in this case. However, when the k** data
report is ready at a time ¢t > s(k), DTS sends the data
report immediately and sets the next expected send time
s(k+1) =t+ P. This case is called a phase shift. When
a phase shift occurs, the node piggybacks s(k + 1) in the
packet containing the data report. After receiving the
data report, the parent sets its next expected reception
time to s(k + 1).

We note that, the expected reception and send times
are computed similarly to the Release Guard protocol[10]
developed for multiprocessor real-time systems. How-
ever, Release Guard and DTS are designed for different
purposes and systems. Release Guard is used to com-
pute task release times to allow end-to-end schedulabil-
ity analysis for real-time systems. In contrast, DTS is
used as a traffic shaper for efficient sleep scheduling in
WSNs. Unlike Release Guard that deals with chains of
tasks, DTS handles data aggregation on multi-hop rout-

ing trees. Moreover, to improve energy efficiency, DTS
re-synchronizes a child and its parent through an ex-
plicit packet exchange when data reports are dropped
(discussed in Section 4.3) while Release Guard does not
support this mechanism because it is not concerned with
sleeping nodes.

Analysis. As described above, if a node does not re-
ceive a child’s data report by the expected reception time,
it wastes energy listening until the report arrives. To pre-
vent future energy wastage, the node performs a phase
shift to postpone its expected send time of the next data
report from that child. Essentially, DTS adapts to the
network workload by adjusting the expected send and re-
ception times of data reports based on the longest multi-
hop delay of received data reports.

The adaptive feature of DTS is accomplished at the
cost of additional synchronization overhead. However,
since DTS advertises the expected send time of the next
data report only when a phase shift occurs its commu-
nication overhead is small. To verify this conjecture, we
run DTS in the presence of three queries with different
rates under the experimental setup described in Section
5. On average the overhead due to piggybacked phase
updates is less than one bit per data report for all tested
query rates. (The detailed results are not shown due to
space limitations). The low overhead indicates that DTS
is suitable for bandwidth-constrained WSNs.

Through protocol analysis we observed a tradeoff be-
tween energy conservation and query latency. Transmit-
ting the data reports immediately, as in the case of NTS,
does not incur any delay penalties, but this comes at the
cost of poor energy efficiency. In contrast, STS and DTS
conserve additional energy through traffic shaping at the
cost of slightly increased delay. In STS, the parameter [
controls the tradeoff between energy efficiency and query
latency. Since tuning [is difficult, DTS has the practical
advantage of being self-tuning.

4.3 Protocol Maintenance

A key feature of the ESSAT protocols is their robust-
ness in face of network dynamics. We are interested in
analyzing the behavior of the ESSAT protocols under two
failure modes: when packets are transiently lost and when
the topology changes due to persistent link and node fail-
ures.

Transient packet loss. In the case of transient
packet loss, NTS-SS and STS-SS require no corrective
action because the expected reception and send times are
independent of the node’s parent or child. In contrast,
in DTS-SS, when a data report that contains a phase up-
date is dropped the nodes become unsynchronized. When
a packet loss is detected (e.g., based on the sequence num-
bers of received data reports), a node resynchronizes its

schedule as follows. If the data report received after the
transient packet drop(s) contains a phase update, this
phase is used as the new phase for DTS-SS. Otherwise,
the receiver requests a phase update from the sender. If
the transmission of a data report is acknowledged, the
receiver may piggyback the request for a phase update in
the acknowledgement packet. Otherwise, a new packet
is sent to request a phase update. The sender then pig-
gybacks the expected send time in the next data report.
Because a phase shift only delays the expected send time
of future data reports, the receiver can tolerate the loss of
multiple consecutive phase updates. However, this leads
to transient energy waste because the node remains awake
until the sleep schedules are resynchronized.

Topology changes. In the case of a persistent node
or link failures the query service or routing protocol is
responsible for reconfiguring the routing tree. When a
node fails both the parent and the children of the failed
node need to recover from the failure.

A node discovers that it is the parent of a failed node
if one of its children repeatedly fails to deliver its data
report. In this case, all ESSAT protocols take two ac-
tions. First, the parent removes its dependency on the
failed node, such that it no longer waits for data reports
from a failed child. Second, the stale expected send and
reception times of the failed node used by SS are removed.

A node discovers that it is the child of a failed node
if it repeatedly fails to transmit its data report to its
parent. The first step in the recovery process is for the
query service or routing protocol to identify a new parent.
The new parent adds a dependency on the node such
that it generates aggregated data report after the child
contributed its data report. The second step is to update
(if necessary) the expected send and reception times of
the node. NTS-SS does not require an update since all
nodes share the expected send and reception times. In
contrast, for STS-SS, s(k) and r(k) depend on the rank
of the node. As such, when the parent is changed the rank
of the node may also change. When the rank changes, the
considered node and its descendants must recompute s(k)
and r(k) according to their new rank in the tree. This
may incur additional overhead. In the case of DTS-SS,
when a node changes its parent, the expected send time
and expected reception times are synchronized through
one phase update when the node sends its first data report
to the new parent. An advantage of DTS-SS is that it
does not require any special mechanism for dealing with
topology changes.

Selecting timeout values. In the case when packets
are lost, either due to transient or permanent failures, a
node may receive the data reports from a subset of its
children. To avoid waiting indefinitely for the children’s
data reports, a parent times out and sends the aggregated

data reports based on the ones it has received. For NTS-
SS the timeout interval is set based on the node’s rank:
tro(d) = (d+ 1) * £. For STS-SS the timeout is set
relative to the expected send time s(k) 41 —tro, where [
is the local deadline and t7o is a constant. For DTS-SS,
since the time it takes a node to collect data from its chil-
dren usually depends on the one-hop delay, the timeout is
set to max.(s(k,c)) + tro, where tro is a tunable para-
meter. The above timeout values are selected to balance
the query latency and the effectiveness of in-network ag-
gregation. A detailed discussion is omitted due to space
limitations.

We observe that the traffic shaper affects the robust-
ness of the protocols with respect to network dynamics.
Since NTS-SS computes the expected reception and send
times based on the properties of the query, (¢, P), which
are independent of both the behavior of the neighbors
and the tree topology, it is the most robust, i.e., it does
not require any state update (except for the time out
value discussed above) to deal with packet loss or topol-
ogy changes. Since STS-SS computes the expected re-
ception and send times based on a property of the tree
topology, namely the rank of a node, it is not affected by
transient loss of packets. However, in the case of a change
in tree topology, reception and send times may need to be
updated according to the new ranks. A benefit of DTS-
SS is that it does not require any special mechanism for
handling topology changes and requires only a new phase
update to resynchronize the sleep schedules when data
reports are transiently dropped.

5 Experiments

Through ns-2 simulations we evaluate the ESSAT pro-
tocols along three dimensions: energy efficiency, query
performance, and the impact of the radio’s break-even-
time on energy efficiency.

In our simulations 80 nodes are randomly distributed
in an area of 500 x 500 m?. The communication range is
set to 125m. TEEE 802.11b is used as the MAC protocol.
The network bandwidth is 1Mbps. Each data report is
encapsulated in a single packet of 52 bytes.

We simulate three types of queries with different rates.
The ratio of the rates of the three query classes Q1 : @ :
Q3 is 6 : 3 : 2. Q1’s rate is referred to as the base rate.
When the base rate is varied, the rates of Q2 and Q@3
also change proportionally. We vary the workload in two
ways. First, there is a single query per class and the base
rate is varied from 1Hz to 5Hz. Second, the base rate
is fixed at 0.2Hz while the number of queries per class
is increased. Each query starts at a random time chosen
between 0 — 10s. All experiments last for 200s.

The root of the routing tree is the node closest to the
center of the area. The root initiates the construction of

Duty cycle(%)

1 1.5 2 25 3 3.5 4 4.5 5
Base rate(Hz)

Figure 3. Average duty cycle for three queries classes
when varying base rate.

the routing tree by flooding a setup request. Each node
may receive setup requests from multiple nodes and se-
lects the node with the lowest level as its parent. The
routing tree is setup before the start of the experiments
and spans all nodes located within 300m from the root.
Each node in the routing tree performs in-network aggre-
gation. We assume that each aggregated data report fits
in a single data packet. STS-SS’s deadline is equal to its
period.

For performance comparison we run several baselines:
SYNC, SPAN and PSM. The SYNC protocol uses a fixed
duty cycle, an approach adopted by synchronous wake
up protocols [16]. All nodes share a synchronized pe-
riodic schedule. Each period includes fixed active and
sleep windows. We configure SYNC to run at a duty cy-
cle of 20% and a period of 0.2s. We chose a duty cycle of
20% to approximate the duty cycles of the ESSAT pro-
tocols in the case of medium workload. The period is set
to be 0.2 seconds to coincide with the highest data rate
(5H~z) of our experiments. We also chose PSM with the
extensions proposed in [3] because it adapts to observed
traffic through traffic advertisements. The beacon period,
the ATIM window, and Advertisement window are set to
0.2s, 0.025s and 0.1s respectively. SPAN [3] is a power
management protocol that uses a communication back-
bone. To reduce query latencies, the routing trees are
modified such that all leaf nodes are sleeping nodes while
non-leaf nodes are active nodes selected by SPAN. In the
original SPAN protocol non-active nodes run PSM. In our
experiments, the leaf nodes run N'T'S instead of PSM since
it has better energy performance and lower query latency
than PSM.

Unless mentioned otherwise, each data point is the av-
erage over five runs. The start time of each query and
the node locations are varied in each run.

5.1 Energy Efficiency

We use average node duty cycle as a metric to evalu-
ate the energy efficiency of the considered protocols. Fig-
ure 3 shows the impact of increasing the base rate of the

Duty cycle(%)

1 2 3 4 5 6 7 8 9 10
Number of queries per class

Figure 4. Average duty cycle for three query classes
when varying number of queries per class.

100 T T T T T T T

80

60

Duty Cycle(%)

0 0.5 1 1.5 2 25 3 3.5 4
Tree Depth (6=Root, 0=Leaf)

Figure 5. Distribution of duty cycles at different ranks.

queries on the average duty cycle of all nodes. For this
graph, the 90% confidence intervals of all protocols are
within £2.3%. SYNC is not shown in Figures 3 and 4 be-
cause every node is configured to a fixed duty cycle of 20%
for all experimental settings. SPAN has the highest duty
cycle in the network due to the high energy cost of main-
taining a communication backbone. Since PSM does not
maintain a communication backbone, it conserves more
energy than SPAN. However, PSM transmits only over-
head packets during the advertisement window incurring
significant energy penalty. As a result, all ESSAT proto-
cols have lower duty cycles than PSM. NTS-SS performs
the worst among the ESSAT protocols. STS-SS has the
best energy efficiency among the proposed protocols be-
cause its local deadline is longer than T,,, (see Equation
3). DTS-SS has a slightly higher duty cycle than STS-
SS but remains consistently lower than NTS-SS. As the
rate increases both STS-SS and DTS-SS increase their
duty cycle to preserve the query performance (as shown
in Section 5.2). These results are consistent with our
analysis.

Figure 4 shows the average duty cycle when the base
rate is 0.2H z and the number of queries per class is in-
creased. For this graph, the 90% confidence intervals of all
protocols are within +1.2%. All ESSAT protocols again
outperform the baselines. We note that DTS performs

Query latency(s)

1 1.5 2 25 3 35 4 45 5
Base rate(Hz)

Figure 6. Query latency for three query classes when
varying base rate.

Query latency(s)

Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10
Number of queries per class

Figure 7. Query latency for three query classes when
varying the number of queries per class.

better in this experiment. Both Figures 3 and 4 show
that DTS can effectively adapt to the workload without
tuning.

As described in Section 4.1, a limitation of NTS-SS is
that it consumes energy unevenly. To validate our analy-
sis Figure 5 plots the average duty cycles of the nodes with
the same rank. The plot shows the experimental results
from a typical run when each class has one query and the
base rate is 5Hz. As the node rank increases, there is a
linear increase in the duty cycle. This is consistent with
our analysis in Section 4.2.1. In contrast, the duty cycle
of STS-SS and DTS-SS are independent of the rank of the
node, making them more scalable. This result shows that
STS-SS and DTS-SS distribute the energy consumption
more evenly and can scale better to large routing trees
than N'TS-SS.

5.2 Query Performance

Figure 6 shows the average query latency as the base
rate is increased. The 90% confidence intervals of ES-
SAT protocols and SPAN are within 40.16s while for
SMAC and PSM the 90% confidence intervals are within
40.75s. NTS-SS and SPAN have the lowest query laten-
cies. Since NTS-SS propagates the data reports greedily

70000

60000
50000

= 40000

>

o

© 30000
20000

10000 |

0 1 1 1 1 1 1
25 50 75 100 125 150 175 200

Sleep length(ms)

Figure 8. Histogram of sleep intervals. Each point in
the graph represents the number of sleep intervals whose
length falls in the range [z — 25, x]ms.

and wakes nodes up in time, it does not introduce any
delay penalties. SPAN achieves small query latency by
maintaining an active communication backbone. How-
ever, as shown in Section 5.1, the query latency of SPAN
comes at a high energy cost. All ESSAT protocols have
significantly lower query latencies than SYNC and PSM.
(Note the logarithmic scale of the figures). In SYNC and
PSM the query latency is affected by the temporal rela-
tionship between the communication workload and their
periodic sleep schedule. It is common for a data report
to be buffered for considerable amount time resulting in
higher query latencies. This problem is also reflected by
the higher confidence of SMAC and PSM compared to
that of the other considered protocols. As the local dead-
line of STS-SS is configured to equal the period of the
query, its query latency decreases as the rate increases.
In contrast, DTS-SS’s query latency increases with rates.
Despite this increase, the query latencies of DTS-SS are
36-98% lower than PSM and SYNC.

Figure 7 shows the query latency when the base rate
is kept constant at 0.2H z and the number of queries per
class is increased. The confidence intervals are similar
to the previously discussed experiment. In contrast with
the previous setup, the latency of the STS-SS is constant
since the rate does not change. DTS-SS exhibits lower
query latency than STS-SS.

5.3 Impact of Break-Even-Time of Radio.

As discussed in Section 4.1, fine grained power manage-
ment needs to consider the costs of transitioning between
power states. To quantify the impact of the break-even-
time Tg on energy efficiency of ESSAT protocols, Figure
8 plots the histogram of the sleep intervals when T = 0.
In light of Figure 8 we make two observations. First,
based on the distribution, it is clear that the workload
witnessed by nodes is aperiodic. Second, the impact of
break-even-times must be taken into account. Otherwise
a node suffers high penalties in query latency. For exam-
ple, the percent of sleep intervals shorter than a break-

100
T T T T T TIB _0ms T
Tge=2.5ms
'IBBE=10ms -
80 - Tge=40ms s
S
T 60 ~ -
o
>
&) .
2 40 e -
a .
LY - -}
20 | I .
e
O 1 1 1 1 1 1 1
1 15 2 25 3 3.5 4 4.5 5
Base rate

Figure 9. Impact of distribution of sleep interval on
STS-SS. Three queries are run at a base rate of 5Hz.

even-time of 2.5ms (typical wake up delay for MICA2’s
radio and WLAN) for NTS-SS, STS-SS and DTS-SS are
0.40%, 0.85%, and 6.33% respectively. This implies, that
for DTS-SS, 6.33% of the times the node is turned off ad-
ditional delay penalties would have occurred if the break-
even-times had not been taken into consideration. A key
advantage of SS is that it avoids such delay penalties as
discussed in 4.1. Since DTS-SS is the most sensitive to
break-even-times we plot duty cycles of DTS-SS when
different T values are used as parameters for SS. We
carefully chose the values of Tgg. The 2.5ms and 10ms
are the average and worst case break-even-times reported
for MICA2’s radio [8]. The Tpp of 40ms is reported in
ZebraNet [6]. For Tpg values smaller than 10ms which
are common to MICA2 motes, the duty cycle is increased
by at most 10%. However, for Tgg = 40ms, an increase
of as high as 30% is observed. This results confirm the im-
portance of reducing the wake up time of radios in WSNs
8]

6 Conclusions

This paper presents ESSAT, a novel power manage-
ment scheme that aggressively exploits the timing seman-
tics of WSN applications. An ESSAT protocol is com-
prised of the Safe Sleep (SS) scheduler and traffic shaper
(STS or DTS). A key feature of our ESSAT protocols is
that they can conserve significant energy while introduc-
ing minimum delay penalties. For example, our simula-
tions showed that DTS-SS achieved a average node duty
cycles that are 38-87% lower than SPAN, and query laten-
cies that are 36-98% lower than PSM and SYNC. More-
over, they can adapt to varying workload and network
topologies at minimum overhead. As a result, ESSAT
is especially suitable for WSNs that operate under both
power and timing constraints in dynamic environments.
In the future, we plan to integrate our protocols with ex-
isting query services on a testbed of MICA2 motes.

10

7 Acknowledgement

This work is funded in part by the NSF under an ITR
grant CCR-~ 0325529 and the ONR under MURI research
contract N00014-02-1- 0715.

References

[1] Wireless LAN medium access control (MAC) and physi-
cal layer (PHY) specifications. IEEE Standard 802.11.
[2] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of
design techniques for system-level dynamic power man-
agement. [EEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 8(3), 2000.
B. Chen, K. Jamieson, H. Balakrishnan, and R. Mor-
ris. Span: An energy-efficient coordination algorithm for
topology maintenance in ad hoc wireless networks. In
MobiCom, 2001.
B. Hohlt, L. Doherty, and E. Brewer. Flexible power
scheduling for sensor networks. In IPSN 200/.
C. Intanagonwiwat, R. Govindan, and D. Estrin. Di-
rected diffusion: a scalable and robust communication
paradigm for sensor networks. In MobiCom, 2000.
T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi. Imple-
menting software on resource-constrained mobile sensors:
experiences with impala and zebranet. In MobiSys, 2004.
S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
Tag: a tiny aggregation service for ad-hoc sensor net-
works. In OSDI, 2002.
J. Polastre, R. Szewczyk, C. Sharp, and D. Culler. The
mote revolution: Low power wireless sensor network de-
vices. In Hot Chips 16, 2004.
V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-
Aceves. Energy-efficient collision-free medium access con-
trol for wireless sensor networks. In SenSys, 2003.
J. Sun. Fized-Priority End-To-End Scheduling in Dis-
tributed Real-Time Systems. PhD thesis, UIUC, 1997.
Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh. Power-saving
protocols for ieee 802.11-based multi-hop ad hoc net-
works. In INFOCOM, 2002.
T. van Dam and K. Langendoen. An adaptive energy-
efficient mac protocol for wireless sensor networks.
SenSys 2003, 2003.
X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. D.
Gill. Integrated coverage and connectivity configuration
in wireless sensor networks. In Sensys, 2003.
A. Woo and D. E. Culler. A transmission control scheme
for media access in sensor networks. In MobiCom, 2001.
Y. Xu, J. Heidemann, and D. Estrin. Geography-
informed energy conservation for ad hoc routing. In Mo-
biCom, 2001.
W. Ye, J. Heidemann, and D. Estrin. An energy-efficient
mac protocol for wireless sensor networks. In INFOCOM.
J. Zhao and R. Govindan. Understanding packet deliv-
ery performance in dense wireless sensor networks. In
SenSys, 2003.
R. Zheng, J. C. Hou, and L. Sha. Asynchronous wakeup
for ad hoc networks. In MobiHoc, 2003.
R. Zheng and R. Kravets. On-demand power manage-
ment for ad hoc networks. In INFOCOM, 2003.

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

In

