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Efficient prediction 
of temperature‑dependent elastic 
and mechanical properties of 2D 
materials
S. M. Kastuar1, C. E. Ekuma1* & Z. ‑L. Liu2,3

An efficient automated toolkit for predicting the mechanical properties of materials can accelerate 
new materials design and discovery; this process often involves screening large configurational space 
in high‑throughput calculations. Herein, we present the ElasTool toolkit for these applications. In 
particular, we use the ElasTool to study diversity of 2D materials and heterostructures including their 
temperature‑dependent mechanical properties, and developed a machine learning algorithm for 
exploring predicted properties.

The mechanical and elastic properties of materials are among the most fundamental properties that must be 
accurately determined and are essential in many disciplines not limited to condensed matter physics, materials 
science, and  geophysics1,2. In new materials design and integration into devices, mechanical properties, and 
elastic constants are frequently used to determine the stability of the  structures3,4. The fundamental challenge in 
creating such new materials includes (1) the ability to enumerate the compositional space that is often too large 
for an Edisonian approach, and (2) rapidly characterize the thermodynamic, electronic, and optical properties. 
To facilitate this process, there is a growing need to develop an automated computational toolkit for predicting 
essential properties such as the elastic and mechanical properties of bulk as well as 2D materials from first-
principles elastic tensor  calculations5,6. Moreover, the accurate knowledge of the full elastic tensor enables the 
determination of many other important elastic, mechanical, and thermodynamic properties of materials that 
are essential for screening, design, and discovery of new  materials7,8.

Recently, and specifically for 2D-based materials (Fig. 1), high-throughput elastic properties of several mate-
rials have been calculated and collected in some materials’ databases such as the Materials Project, the JARVIS-
DFT, and the Computational 2D Materials  Database5,7,9. The ElasTool  toolkit10,11 builds upon the essential benefits 
of these already developed methods. However, unlike the existing toolkit for computing the elastic and mechani-
cal properties of materials, the ElasTool toolkit can automate the process of computing zero-temperature as 
well as temperature-dependent elastic properties. It provides a complete elastic and mechanical toolkit for both 
automation and traditional prediction of zero-temperature, temperature-dependent, and the combined impact 
of dynamical pressure and temperature on crystal systems.

The zero-temperature elastic and mechanical properties of several 2D-based materials, including their het-
erostructures and the less studied trichalcogenides, have been computed (see Table S3 in the Supplementary 
Material)12. The predicted elastic and mechanical properties are in excellent agreement with existing data in 
 literature5,8,13–16. For example, our predicted Y 2D ∼135.86 N/m is in good agreement with recent experiments, 
which span from 129 to 185 N/m15,17–19 and previous first-principles calculations that reported values 122–146 
N/m20. Our calculations show that most of the 1T-TMDs, e.g., 1T-MoSe2 exhibit an auxetic behavior, mani-
fested by the negative Poisson ratio. This behavior has been observed in previous  studies21. It was attributed to 
the metastability of the 1T-TMDs mediated by the strong coupling between the chalcogen dominated p-states 
and the intermetallic t2g-bonding states within the basic triangular pyramid building block structure. Indeed, as 
shown in Table S4 (see Supplementary Material (SM)12), the application of temperature of ∼300 K stabilizes the 
auxetic states. Temperature-induced structural distortions in the 1T structure (see right panel of Fig. 2) leads to 
a pressure of ∼ 2.41 N/m (note the optimized vacuum size is 21.50 Å), which stabilized the structure. We also 
computed the elastic and mechanical properties of the less studied family of the transition metal trichalcogenides 
(ABX3 ) with space C3i (No. 147), where A = V, Cr, Mn, Fe, Co, Ni, and Cu; B = Si and Ge; and X = S, Se, and 
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Figure 1.  Crystal structure of diversity of 2D-based materials and their heterostructures. (a) Top and side 
view of the hexagonal structure of graphene. (b) Top and side view of the trigonal prismatic crystal structure of 
2H transition metal dichalcogenides (TMDs) such as MoS2 . (c) Top and side view of the octahedral 1T-TMDs 
structures such as WS2 and post-transition metal chalcogenides such as SnS2 . (d) Simple orthorhombic (Pmna, 
space group 53) structure of phosphorene. (e) Orthorhombic (Pmn21 , space group 7) structure of group IV 
monochalcogenides, e.g., GeSe. (f) Top and side view of the silicene-like structures. (g) Tetragonal crystal 
structure of group IV–VI monochalcogenides such as PbTe, (h) crystal structure of the IV–VI materials, e.g., 
ZnS, (i) 8-Pmmn orthorhombic crystal structure (highlighted area depicts the unit cell) of borophene. Blue 
(inner position atoms) and red (atoms along the ridges) depict the nonequivalent boron atoms. (j) Trigonal 
crystal structure of transition metal trichalcogenides ABX3 , where A = V, Cr, Mn, Fe, Co, Ni, and Cu; B = Si and 
Ge; and X = S, Se, and Te. (k–m) are the crystal structures of 2H, 1T, and 2H-1T heterostructures designed with 
MoS2 and WS2 , respectively.
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Te. They form sandwich layers of X-(A,B)-X stacks. Each of the B atoms possesses three neighboring X atoms 
forming a tetrahedron, and two of the B-centered tetrahedrons forming a dumbbell-like B dimer in [AX6]4− 
bipyramid leading to a monolayer unit cell composed of two A 2+ and one [AX6]4− ions. The structure is such 
that in-plane interactions are dominated by strong covalent bonds while interlayers are mediated by weak van 
der Waals interactions. The trichalcogenides, especially those with the 3d end members, seem more stable with 
a spin-polarized solution. We note that even though CrSiS3 shows instability, spin-polarized solution stabilizes 
the mechanical properties with K ∼ 196.43 N/m, G ∼ 106.32 N/m, Y 2D ∼ 275.99 N/m.

Hardness is a fundamental property of a material that plays an essential role in the full description of the 
mechanical properties of materials. To gain a fundamental understanding of the macroscopic mechanical prop-
erties of materials under deformation, the ideal strength, which is the minimum stress needed to plastically 
deform a material vis-à-vis the upper bound to the critical stress for dislocation and crack nucleation in a 
material can in principle be calculated. However, for high-throughput calculations in materials screening and 
new materials design, such calculations can be highly challenging due to the large configurational space. We 
can estimate the ideal strength based on the modification of empirical relations between elastic moduli and the 
Vickers hardness H v proposed for bulk  crystals22,23. Specific for 2D materials, we have the following empirical 
relations: H1a

v = 0.151G , H1b
v = 0.0608Y2D , H1c

v = 0.0963K , H2
v = 0.1769G − 2.899 , H3

v = (1− 2ν)K/(6+ 6ν) , 
H4
v = 2(G3/K2)0.585 − 3 . To determine the best empirical model, we compute the hardness of the various 2D 

materials and heterostructures. Our test shows that all the models perform well for the superhard and moderately 
hard materials such as graphene, hexagonal BN, and borophene. For example, the Hv for graphene using the mod-
els is ∼ 21 ± 2 N/m and Hv ∼ 16± 1 for hexagonal BN, which is in good agreement with experiments if we use 
a thickness of approximately 3.35 Å24,25. However, aside from the superhard and moderately hard materials, our 
calculations show that models H1a−1c

v  are robust enough to predict the hardness of the diversity of 2D materials 
and heterostructures. Specifically for the trichalcogenides, models H1a−1b

v  are the most appropriate. In all cases, 
models H2−4

v  are highly unreliable with very large uncertainties and should be avoided for 2D-based materials.
Our database currently has over 6000 computed temperature-dependent elastic and mechanical properties of 

2D crystals and their heterostructures. With such a highly accurate and vast dataset, we can develop a machine-
learning algorithm to gain a deeper understanding of the relationship between the lattice parameters and the 
associated mechanical and elastic properties. Machine learning (ML) offers a burgeoning approach in diverse 
fields and could assist to unravel hidden structure-property relations. (see all the details and other accompany-
ing figures in the Supplementary Material). Aside from data integrity, the accuracy of any ML-based model 
depends on the set of features used in the training model. The choice of the target and features is nontrivial. We 
contemplated a number of potential targets and features. We initially used Young’s modulus, but since it is directly 
correlated with the elastic tensors, we had to drop it. The energy bandgap is often a good choice, but obtaining a 
highly accurate bandgap, for developing a robust ML algorithm beyond the training dataset is highly challenging. 
Accurate bandgap, especially for 2D-based structures where many-body effects due to quantum confinement 
dominate will require approaches such as the Green’s function and screened Coulomb method or at most the 
hybrid functional. In the end, we settled for the lattice constant a as the target. This choice is due to the important 
role it plays in determining the elastic and mechanical properties of materials. For the features, we have used 
the Temp (i.e., temperature), SG (i.e., space group), C11 , C12 , and c (i.e., vacuum size). As explained in detail in 
the  SM12, we have restricted our choice of the 2D-based materials and heterostructures to isotropic lattices, i.e., 
crystal structures where the lattice constants a and b are equal. Unlike several other calculations for 2D-based 
materials where the vacuum size is a randomly fixed parameter, we have instead self-consistently determined 
it for each material. This is important since c in 2D-based materials plays a significant role not only to avoid 
artifacts of periodic boundary conditions, but has been shown to impact its properties. A rigorous exploration of 
the various regression models showed that the boosting models—XGBoost and LightGBM had the overall best 
performance. A boosting ML model is basically a generic algorithm (rather than a specific model); it seeks to 
improve the prediction power of the ML algorithm by systematically training a set of weak models (learners) with 
each compensating the weakness of its predecessor, thereby reducing bias and variance in predictions (Fig. 2). 
In this regard, the results presented herein are based on the XGBoost, which shows slightly better performance 
than the LightGBM (see accuracy and error metrics summarized in Table S2).

We also determined the contribution of each of the features to the ML model. Initial exploratory data analysis 
showed that the above features are the most significant. Temperature is found to contribute ∼ 20% and 6% for 

Model 1 Model 2 Model 3 Model N

Ensemble Classifier (with all its predecessors)

⋯⋯

Weight 1 Weight 2 Weight 3 Weight N

Figure 2.  Schematic of ML boosting model. Model 1, 2, ..., N consisting of parallel learners and weighted 
dataset—one is weak (just as in standard algorithm), however, when they band together they are strong and 
together, they learn from the past.
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2D-based materials and 2D-based heterostructures, respectively in determining the lattice constant. Vacuum 
size is found to play a significant role as well, especially for the 2D-based heterostructures, where ∼ 58% of the 
model feature importance are due to c (Fig. S4). This necessitated our choice of self-consistently calculating the 
vacuum size for each material. A more detailed exploratory study to unravel how the feature importance evolves 
in both 2D materials and 2D-based heterostructures will be a study of future research.

The developed ML algorithm showed consistent accuracy scores and error metrics (Fig. S3) both in the 
training, test, and out-of-sample datasets. Details are presented in the  SM12 and a step-by-step guide of the 
implementation is provided in the accompanying manuscript code. Here, we want to focus on the performance 
of the developed ML model when used in out-of-sample (unseen) data, i.e., predictions on a dataset that is not 
part of both the training and testing samples. As presented in Fig. 3 and Fig. S5, the accuracy of the developed 
model is close to 90% for both the 2D-based materials and 2D-based heterostructures. The lowest percentage 
error is 0.26% and the highest percentage error is ∼ 7%. This is significant in two folds. The performance of the 
developed ML algorithm when used in out-of-sample data is basically the same as the accuracy score and error 
metrics from the cross-validation analysis. Secondly, we believe that the performance is within and in most cases, 
better than the standard acceptable error for 2D-based lattice constants. It is well-known that the lattice constant 
of 2D-based materials can span up to 27% depending on the type of functional used and other input parameters. 
For example, the lattice constant of MoS2 can span from 3.16 Å to as high as 3.30 Å. From the analysis of the 
feature importance in the ML model (Fig. S4), the vacuum size plays an essential role, especially for the 2D-based 
heterostructures in determining the lattice constant.

Summary
To summarize, we present an efficient computational toolkit based on density functional theory and ab-initio 
molecular dynamics to automate the calculation of the elastic and mechanical properties of several 2D materi-
als and their heterostructures at both zero- and finite-temperature. A machine learning algorithm is developed 
for exploring the relation between the predicted properties. We believe that the highly efficient and automation 
enabled by the ElasTool toolkit will be important in both computational materials screening and traditional pre-
diction of the mechanical and related properties of materials at experimentally relevant conditions such as tem-
perature, pressure, or the combination of both that is not currently a routine in many electronic structure codes.

Method
Theoretical background. The stress–strain and the strain-energy method are the two essential approaches 
to compute the elastic properties of  materials26,27. While the stress–strain approach is computationally more 
expensive, it is, however, simpler to implement and does not require the complicated pressure corrections 
needed for the strain-energy method when computing high-pressure elastic constants of  materials28. Under a 
small and homogeneous deformation D = I + ξ , where I  is a 3× 3 unit matrix. Within the elastic limit, the 
generalized stress–strain Hooke’s law is σij = Cijklξkl , where Cijkl is a fourth-rank elastic tensor and σij ( ξkl ) is a 
second-rank stress (strain) tensor. In Voigt notation, the stress–strain relation is

For 2D materials, only the in-plane elastic matrix is  essential14,29

(1)σi =
6

∑

j=1

Cijξj
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Figure 3.  The relation between the computed lattice constants from our first-principles calculations and the 
predicted lattice constants from our machine learning model for the out-of-sample (unseen) data for (a) 2D 
materials and (b) 2D-based heterostructures. In both 2D and the heterostructures, computed accuracy (R2 ) 
score is basically the same.
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where C66 = (Cii − Cij)/2 , i = 1, 2 . After deformation, the crystal lattice vector can be obtained as A′ = A.D , 
where A is the undeformed crystal lattice vector. The elastic constants can readily be obtained by a polynomial fit 
of Eq. (2). Having obtained the elastic constants, we can compute other related properties. The in-plane arrange-
ment of 2D-material designates the atomic arrangement in an x–y plane of chirality angle θ that span between 
0 ◦ and 30◦ , where θ = 0◦ and 30◦ are for the zigzag and armchair chirality, respectively. For any arbitrary angle, 
the in-plane (2D) Young’s modulus Y 2D and the Poisson’s ratio ν  are30

where γ = [(C11C22 − C122)/C66 − 2C12]c2s2 , c = cos θ , and s = sin θ . Assuming θ = 0 , then

Having obtained the Young’s modulus and the Poisson ratio, we can compute the in-plane stiffness (layer modu-
lus) K, i.e., the 2D equivalent of the bulk modulus and the shear modulus G  as31

The bulk modulus measures the resistance of a bulk material to compression while the layer modulus repre-
sents the resistance of a 2D material to stretching. Stiffness is a measure of the resistance of a material to elastic 
deformation. We can use it to measure the sound velocity in crystals [62,63] as

where Vl and Vt are the longitudinal and shear sound velocity, respectively, and ρ2D is the 2D mass density. We 
note that other forms of the sound velocities exist in literature, e.g., Vt =

√
C12/ρ2D

32. Having obtained the sound 
velocities, it is straightforward to compute the Debye temperature �D from the average sound velocities Va  as33

where � is the reduced Planck constant, N is the number of atoms in the unit cell, κB is the Boltzmann constant, 
S is the area of the unit cell, and Va for a typical 2D system is

Code structure. The ElasTool toolkit is based on Python and can be downloaded from  GitHub10. It exploits 
the versatility of several Python-based libraries such as NumPy for numerical calculations, ASE for structure 
manipulations, Pandas for efficient statistics of stress tensor calculations, and Spglib for automatic determination 
of the crystal structure symmetry. These libraries are easily installed via pip or conda. Currently, the ElasTool is 
interfaced with the VASP electronic structure code; interfacing with other electronic structure codes is straight-
forward. The main input file named “elastool.in” is needed to run the code. The crystal information is provided 
in the standard crystal information format or the POSCAR format, which is the standard form for VASP code. 
Other key input parameters are self explanatory and require no technical knowledge. Since the ElasTool code is 
currently interfaced with VASP, various key files namely INCARs for structural optimization and stress tensor 
calculations, KPOINTS-static for zero-temperature calculations, KPOINTS-dynamic for temperature-depend-
ent calculations using ab initio molecular dynamics are provided. While the code usage is easy and straightfor-
ward, we have also provided several example calculations in the example folder. Other details of the ElasTool 
toolkit are provided in the Supplementary  Material12 and in the documentation provided on the code website at 
https:// github. com/ zhong liliu/ elast ool.

Computational details. The ElasTool toolkit obtains the second-order elastic constants of any material 
using highly optimized, high-efficient strain-matrix sets. It currently uses the VASP  code34 as the stress–strain 
calculator. Extension to other electronic structure codes is straightforward. All the calculations were done within 
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the first-principles density functional  theory35,36 using the Perdew-Burke-Ernzerhof (PBE)37 exchange-correla-
tion functional. The k-point sampling was done on a 15× 15× 1 Ŵ-center grid. The total energy (charge) is con-
verged to within 10−7 (10−3 ) eV, with the residual stresses and forces less than 0.01 N/m and 10−3 eV/Å using a 
Fermi distribution function with a smearing parameter of 0.10 eV to integrate the states at the Fermi level. In all 
the cases, a kinetic energy cutoff of 550 eV was used. All calculations included van der Waals interaction correc-
tions to avoid spurious interactions between the periodically repeated images of the slab. We used a vacuum of at 
least 15 Å along the out-of-plane direction to further eliminate the artifacts of the periodic boundary condition. 
The temperature-dependent elastic and mechanical properties were obtained using the thermal stress–strain 
data from ab  initio molecular dynamics (AIMD)38 as implemented in  VASP34. These calculations employed 
5× 5× 1 Ŵ-center grid to sample the Brillouin zone. AIMD provides a reliable description of the time-evolution 
of systems and often reveals non-intuitive temperature-dependent system configurations. The structures were 
initially optimized with the PBE exchange-correlation functional and then equilibrated under an isothermal iso-
baric (NPT) ensemble using the Langevin thermostat to maintain the temperature. The structures were further 
simulated under a canonical (NVT) ensemble using the Nose-Hoover thermostat to maintain the temperature. 
All calculations used cutoff energy of 550 eV, a time step of 2 fs, and 1000 molecular dynamics (MD) steps with 
the last 500 MD steps used to average the thermal stresses. A representative MD profile of the temperature of the 
total energy for 2H- and 1T-MoS2 are shown in Fig. 4.

Data availability
All data produced and analyzed in the this study are included in this published article. Additionally, we have 
computed the elastic and mechanical properties of over ten thousand 2D materials and their heterostructures. 
We will continue to update the database and the corresponding machine learning algorithm in the GitHub 
repository https:// github. com/ gmp007/ 2D_ Elast ic- Prope rties. Additional correspondence and request can be 
made by email to the authors.

Code availability
The ElasTool is available free of charge on  GitHub10. Developmental version can also be requested directly by 
emailing the authors.

Received: 13 September 2021; Accepted: 8 February 2022
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