
Efficient Preimage Computation Using A Novel Success-Driven ATPG
�

Shuo Sheng
Department of ECE, Rutgers University

Piscataway, NJ, 08854
shuo@ece.rutgers.edu

Michael Hsiao
Bradley department of ECE, Virginia Tech.

Blacksburg, VA, 24061
hsiao@vt.edu

Abstract

Preimage computation is a key step in formal verifica-
tion. Pure OBDD-based symbolic method is vulnerable to
the space-explosion problem. On the other hand, conven-
tional ATPG/SAT-based method can handle large designs but
can suffer from time explosion. Unlike methods that com-
bine ATPG/SAT and OBDD, we present a novel success-driven
learning algorithm which significantly accelerates a ATPG en-
gine for enumerating all solutions (preimages). The algorithm
effectively prunes redundant search space due to overlapped
solutions and constructs a free BDD on the fly so that it be-
comes the representation of the preimage set at the end. Ex-
perimental results have demonstrated the effectiveness of the
approach, in which we are able to compute preimages for large
sequential circuits, where OBDD-based method fail.

1 Introduction
Preimage and image computation is an important step in

many formal verification and ATPG applications. We focus on
preimage computation in this paper, in which the problem is
defined as finding all the states that can reach a set of present
states in one or more transitions.

Symbolic methods based on Ordered Binary Decision Dia-
grams (OBDDs) for preimage computation have been success-
ful for small and medium sized circuits. In these methods, both
the present states and the circuit transition function are repre-
sented by OBDDs. Through the existential quantification pro-
cedure, the set of preimages can be efficiently computed and
coherently represented as another OBDD. However, this ap-
proach works well only when BDD construction is possible for
both present state sets and circuit transition relations. For large
designs, OBDD representation for the entire transition relation
usually cannot be constructed. Even when it can be constructed
using methods such as partitioned BDDs [5, 6], the existential
quantification operation can still cause memory explosion.

On the other hand, an ATPG or SAT-solver engine can be
used to manipulate the circuit transition function instead of
BDDs. The advantage is that they can handle much larger cir-

�

Supported in part by NSF Grant CCR-0196470 and NJ Commission on
Science & Technology.

cuits without memory explosion; the disadvantage is that, due
to their branch-and-bound nature, many subproblem computa-
tions are repeated. In essence, ATPG/SAT trades off time with
space. In [7], a method of combining SAT-solver and OBDD
for image computation was proposed. The circuit transition
function is represented by a CNF formula. SAT-solver performs
a high-level decomposition of the search space and BDD is used
to compute all solutions below the intermediate points in SAT
decision tree, which is referred to as “BDDs at SAT leaves”. As
an extended work, a decision heuristic based on separator-set
induced partitioning for SAT-solver was proposed in [8], which
yielded simpler BDD subproblems. However, these two work
still fall into the framework of partitioned BDDs: SAT-solver is
used to compute disjunctive decomposition of the problem and
the decomposed problems are handled by OBDDs.

To our knowledge, there has not been much work on effi-
cient application of pure ATPG or SAT solver as the main en-
gine for preimage/image computation. The reason that prevents
it is: preimage/image computation requires the engine to enu-
merate all solutions; the decision procedure employed in SAT-
solver and ATPG are usually based on branch-and-bound al-
gorithms (e.g., Davis-Putnam, PODEM, etc.); these algorithms
are optimized to derive one solution at a time, as opposed to
BDD which captures all solutions simultaneously. To use SAT
or ATPG to enumerate multiple solutions, backtracks are en-
forced so that the algorithm can continue searching for the next
solution when one is found. If the preimage set is large, e.g.
it contains millions of solutions, then enumerating and storing
them one at a time is obviously impossible due to both time
and memory limitation. The ATPG/SAT engine, in this case,
will suffer from both time and space explosion problems. We
call this phenomenon as solution explosion. This is also the rea-
son why the authors of [7] avoid having the SAT-solver run to a
leaf node of the decision tree, but instead they let BDDs finish
off the decision tree starting at intermediate nodes.

In a recent work [9], a SAT-solver is employed to perform
quantifier elimination for symbolic model checking. The prob-
lem is similar to our problem of enumerating all solutions. The
author relied on CNF representation of circuit and modified
zCHAFF [4] such that whenever a solution is found, a “block-
ing clause” is constructed to prevent the SAT-solver from be-
ing trapped into the same solution again. This is equivalent to

1530-1591/03 $17.00 2003 IEEE

enforcing a implication and a backtrack to drive the SAT en-
gine for enumerating all solutions. However, it is unclear in the
paper if the aforementioned “solution explosion” problem has
been addressed. Therefore, we suspect that this method is ap-
plicable only to the case where nice CNF representations of the
problem and result exist.

In this paper, our main contribution is on developing a
method to solve the “solution explosion” problem so that we
are able to apply a ATPG engine to compute preimages ef-
ficiently. In contrast to conflict(failure)-driven learning em-
ployed in GRASP [3] and CHAFF [4], we developed a success-
driven learning algorithm on top of a deterministic combina-
tional ATPG engine for enumerating all solutions. It employs
search state equivalence analysis (in contrast to conflict anal-
ysis) to capture and reuse the knowledge it learns from pre-
vious solutions so that many subproblems are skipped during
the search for multiple solutions. A free BDD that stores ev-
ery derived solution is gradually formed as the ATPG decision
process proceeds so that it becomes the representation of the
preimage set at the end. Notice that our approach calls for
neither OBDD construction of circuit transition function nor
existential quantification, and BDD is only used to represent
the present and the computed preimage state sets, the mem-
ory explosion problem is significantly reduced. Solution-based,
or satisfiability-directed learning has been proposed in [10], in
which the authors worked on a QBF-solver. However, the idea
employed there is mainly for pruning repeated searching for
universal quantified variables and the ultimate goal is to decide
the satisfiability of a QBF formula rather than to enumerate all
solutions.

The rest of the paper is organized as following: Section 2
explains the basic idea using an example; Section 3 introduces
the search state equivalence concept; Section 4 details the over-
all success-driven learning algorithm; Section 5 describes how
BDD is constructed during the ATPG process for representing
the preimage set; experimental results are reported in Section 6
and Section 7 concludes the paper.

2 Basic Idea
The prototype ATPG algorithm we use is PODEM [1]. A

naive way of using PODEM to compute preimages is to en-
force a backtrack whenever a solution is found so that the al-
gorithm could continue to search for the next solution until the
entire search space is implicitly enumerated. Various search-
space pruning techniques have been proposed [3, 4, 10–12]
for improving combinational ATPGs and SAT-solvers. How-
ever, all these methods target pruning conflict spaces; in other
words, they learn from mistakes, e.g. conflict-driven learning,
dependency-directed non-chronological backtracking, conflict
clauses, etc. In preimage computation scenario, this is far from
being sufficient because solution subspaces can overlap heav-
ily. Further, since these subspaces contain solutions, they do
not cause any conflicts with one another. Figure 1 shows that
multiple solutions exist and overlap in the search space, where
each circle represents a solution. A solution may not be fully
specified. For instance, two solution cubes exist to justify a

logic 0 for the output of an AND gate:
�
0X, X0 � . The size

of the circles in Figure 1 reflects the number of unspecified
primary inputs or flip-flops present in a given solution; larger
circles indicate more don’t-cares PIs/FFs in the solution.

Soln_A
Soln_B

Soln_C

Search Space

Soln_H

Soln_G
Soln_F

Soln_ESoln_D

Figure 1. Solution cubes in search space.

When the solution-overlap phenomenon is mapped to the de-
cision tree, it shows as the duplication of many solution struc-
tures. We illustrate this in Figure 2 for an ISCAS89 benchmark
circuit s5378. We show multiple solutions found by ATPG for
a target objective in s5378 in the figure. A circle with a label
denotes a decision node; the label is the gate ID in the circuit;
the left branch corresponds to the decision of 0 and the right
branch corresponds to 1; a triangle denotes a conflict subspace
(no solution exists); a rectangle marks the terminal node of a
solution. From this figure, we see that there are three solu-
tions under the left branch of decision node ����� , marked as
Soln#1, Soln#2 and Soln#3. They specify three paths in the
decision tree, which actually characterize three solution cubes.
In addition, all the three solutions have common variable as-
signments for those variables near the top of the decision tree.
The second and third solutions were found by simply enforcing
a backtrack and making ATPG continue after the first solution
has been found.

149

149

149

149

 6

 5

108

107

142

 6

142

 93

139

 9

 101

 93

139

 9

 101

Soln#1

Soln#2

Soln#3

Soln#4

Soln#5

Soln#6

B

A

Figure 2. Decision Tree in ATPG.

2

However, when the ATPG continued backtracking to find
the fourth, fifth and the sixth solutions (the three lying under
the right branch of node � � � , Soln#4, Soln#5 and Soln#6), we
observed an interesting phenomenon: the same partial assign-
ment for decision nodes

������� � ���	�
��� ��� � � is repeated. This im-
plies that the search space immediately before the two

���
nodes

(marked as � & � in the figure) are “equivalent”. In other
words, earlier decision node assignments

���� � �
��� � � ��� ���
� � ��� � � � � ��� � � � � and

���� � ����� � � ��� ��� � � ��� � � � �
resulted the same circuit state. Therefore, if we could learn
from the first three solutions, we would be able to skip the
search and directly return solutions #4, #5, and #6. When we
advanced the search further, such phenomenon was observed
again. We found that the entire subtree under the left-most
decision node ��� � (within the big dotted circle) was repeated
again under the other three ��� � nodes on the right (denoted by
the three small dotted circles). Therefore, if we could learn
the structure in the area inside the largest dotted circle (con-
taining 6 solutions) and its corresponding “search space”, we
would be able to avoid digging into the complete decision tree
for the other three by backtracking earlier and return all re-
lated solutions. The savings for the “enforced backtracks” for
these solutions will be enormous when there are large number
of overlapped solutions (preimages) in the search space. Since
this learning is invoked by solutions, we call it success-driven
learning. The subsequent sections will explain our notion of
“search state equivalence” and how they are implemented into
a “success-driven learning algorithm” and how a free BDD is
constructed to represent all the solutions.

3 Search State Equivalence
In a high performance ATPG or SAT-solver, learning plays

a very important role: the knowledge learned is stored and used
for pruning search space in the future, e.g. in SOCRATES [2]
the knowledge is in the form of implications and in GRASP [3]
and CHAFF [4] it is in the form of conflict clauses. In our
approach, the knowledge is equivalent search state.

As shown in Figure 2, we discovered that different complete
solutions may share the same partial solution. We will explain
this phenomenon again by an example via the circuit fragment
shown in Figure 3. There are four PIs (decision nodes) in this
circuit: � ���������
� . The OR-gate � is the PO. Let us assume that
we wish to derive all solutions for the objective � � � . It is
observed that two different partial PI assignments,

� � � � ����� ���!� � � and
� � � � ���!� � ���!� � , will result in the same

internal circuit state
��"#� � ��$%� � ��&'� � . Then, to satisfy

the objective � � � , we need to set
�(� � in both cases, which

corresponds to the repeated partial solution at the bottom of the
decision tree. We characterize an equivalent search state by its
cut set with respect to the objective. In this example, the cut set
is simply

��")� � �*$+� � �
�,� � , which is a unique internal
circuit state.

The cut set
��"'� � �*$-� � �
�'� � consists of two parts:

internal specified gates
��".� � �*$/� � � and unspecified PI

gates
���0� � . They are obtained by the following proce-

dures: 1. beginning from the objective site � (currently unsat-

a

b

c

d

e

f

g

h

z

1

0

X

obj: z=1

X

0

0

X

X

0

X

X

1

Figure 3. Search State Equivalence.

isfied), backtrace to PIs along all the X-paths in its fanin cone;
2. record every specified input to all unspecified gate-output
encountered in this depth-first search (in our example, there is
only one X-path ��1 & 1 � ,

$2� � is the specified input of the
unspecified gate

&
and

"3� � is the one for unspecified gate � .);
3. record the unspecified PIs at the end of each X-Path (

�4�
in the example). After performing this depth-first-search all the
marked gates (specified gates and unspecified PIs) and their val-
ues (1,0,X) define a cut set of the circuit state (shown in dashed
line in Figure 3). Notice that this cut set is rather with respect
to the objective than to the entire circuit. Cut sets are stored
in a hash table which is managed as the knowledge database.
The algorithm uses this database to determine if an equivalent
search space is encountered, and if so, it skips this search space.

The idea of employing search state equivalence has been
proposed in [13]. However, there are fundamental differences:
(1) the state-equivalence in [13] is used to find a single solution
while ours targets finding all solutions for a single objective.
(2) five-value logic is used in [13] to find a single solution for
a stuck-at fault while we use three-value logic to find all solu-
tions; (3) the cut sets in [13] do not include PIs with X values
while cut sets in our approach do, because the PIs with don’t
care values make up the partial solutions at the bottom of the
decision tree and thus bound the remaining search space (they
need to be remembered to recover the complete solutions); (4)
finally, the novelty of our work also lies in that we combine
a BDD data structure with the success-driven learning ATPG
algorithm to efficiently represent the preimage set.

4 Success-Driven Learning
The success-driven learning algorithm controls when to in-

voke the search state equivalence learning and when to reuse it.
It is built into a basic recursive PODEM algorithm that enu-
merates the entire search space, shown in Figure 4. Notice
that unlike conventional PODEM which returns either SUC-
CESS or FAIL, this function does not have a return value be-
cause we always enforce a backtrack when a solution is found
so that it can continue to search for the next solution. How-
ever, we do remember how many solutions are found under
each node in the decision tree. We keep a success-counter
(SC) pair for each decision node in the decision stack. This
pair, 57698�:<;>= and 576�?@:A;>= , counts the total number of solu-
tions found for the 0 and 1 branch of node ; in the deci-
sion tree. For example, in Figure 2, for the left most de-
cision node

���
(marked ’A’ in figure), 576�8�: ��� = � � and

576�?@: ��� = �B�
. The subroutine CED � ��F>G H�C ��� G�H�H �JI CLKMF>G�NO:P=

3

 if (next_decision_node == NULL) return;
 next_decision_node = get_obj();

// step 3. get a new decision node

function success_driven_podem() {

if (lookup_search_state_dateBase()== HIT) {
 update_solution_BDD();
 update_success_counter();

// step 2. reuse knowledge learned before

if (objective_satisfied) {
 update_solution_BDD();
 update_success_counter();
 return;

// step 1. found a solution

if (imply()== CONFLICT)
nBackTrack++;

else
success_driven_podem();

 next_decision_node = 0;
// step 4. try left branch of the decision node

if (imply()== CONFLICT)

 next_decision_node = 1;

nBackTrack++;
else

success_driven_podem();

// step 5. try right branch of the decision node

if (check_success_counter() > 0) {
// step 6. pop decision node out of decision stack

}
 update_search_state_datebase();

}

 return;
}

deduce_current_search_state();

}

Figure 4. Success-Driven Learning Alg.

at step 1 in Figure 4 is called every time a solution is found.
It increments all the success counters in the current decision
stack. Using the same example in Figure 2, when the solu-
tion at the 0 (left)-branch of the left-most decision node � ���
(below point ‘A’) is found, C�D � �EF>G H�C �J� G�H�H �JI CLKMF>G�NO:P= will in-
crement the following success counters: 576�8E: � ��� = � 576�?�: ��� = ,
57698E: ��� �@= � 57698�: ��� � = � 57698�: ��� � = , 57698�: � = � 57698 : = and all
such counters above decision node

till the top of the deci-

sion tree. Next, when the solution at the left branch of suc-
ceeding decision node

�
is found, C�D � �EF>G H�C �J� G�H�H �JI CLKMF>G�NO:P=

will perform the same update again, except that 576 ?�: � ��� =
rather than 57698E: � ��� = is updated, since it is on the right
branch of node 139. In addition, 576 8 : � = is initialized to 1.
Note that through this mechanism, all the success counters
are synchronized as they are dynamically maintained. When
a decision node is popped out of the decision stack, it in-
dicates that the subspace below it has been fully explored.
Therefore, the two success counters for this node should have
the final numbers of all solutions in the subspace below it.
If any of them is greater than 0 (indicating that there ex-
ist at least one solution), we then perform the search state
equivalence learning by computing the corresponding cut set
and delete the success counters in the subtree. This opera-
tion is performed by subroutine

��& G � � H�C ��� G�H�H �JI CLKMF>G�N :P= and
CED � ��F>G H�G���N ��& H�F>�EF>G � �EF>G � � H�G : = at step 6. Because we only
compute the equivalent search space when there is at least
one success (solution), this algorithm is called “success-driven
learning”. Note that since we only allocate success counters for

decision nodes that are active in the current decision stack and
since only PIs and FFs can be decisions in PODEM, the maxi-
mum number of success counters managed is ����� �	�EH�
�	��H�� .

At step 2 of this algorithm, the function computes the cur-
rent search state and look it up in the knowledge database. If
it detects a �,; F , then it immediately returns and the entire sub-
space below is pruned, with solution BDD updated. At steps
4 and 5, the subroutine ;�� D����M:P= performs logic simulation and
implication when a new decision variable is assigned a spec-
ified value. If it detects a conflict, it increments the counter
K �4� � ��� N�� � � and skips the exploration of the subspace be-
low. At step 6, CED � �EF>G H�G��EN ��& H�F>�EF>G � �EF>G � �OH�GE:P= creates a new
entry in the hash table if a new search state cut set is found.
The subroutine CED � ��F>G H I �ACLF ; I K ���� : = at steps 1 and 2 con-
structs the BDD to record every partial solution found by the
function. This BDD grows from partial to complete when the
entire search space has been explored and the last decision node
in decision stack is popped out. It is explained next.

5 Integrating BDD into ATPG
To avoid solution explosion, a BDD representation of the

preimage set is desirable. In this section, we describe how we
integrate a BDD data structure into our ATPG.

5.1 Constructing BDD
The main idea comes from the observation that the decision

tree in Figure 2 resembles a free BDD, although this BDD may
not be canonical. Based on this, we construct the solution-BDD
using the success-driven learning procedure.

We define the BDD node data structure in Figure 5. There
are six members in the structure. The first is the decision node
label, which identifies the PI. The second is the address of the
left child. The third is the number of total solutions under the
left branch (value passed from the success counter 576 � during
success-driven learning). The next two fields are for the right
branch. The last member is the index to the hash table that
identifies the search state cut set.

typedef struct _BDD_NODE {

int decision_node_id;

int search_state_hash_table_index;

int num_solutions_in_right_branch;
int right_branch_successor;

int left_branch_successor;
int num_solutions_in_left_branch;

} BDD_NODE;

Figure 5. BDD Node Data Structure.

Based on our ATPG algorithm, our BDD is built in a bottom-
up fashion. Whenever a new solution is found, a BDD node
is created for the leaf decision node and its associated search
state. Its parent nodes are created when the ATPG backtracks
to higher levels in the decision tree and detects there are so-
lutions beneath by success counters. Figure 6 shows how the
solution BDD is constructed in chronological order for the so-
lutions found in the decision tree in Figure 2. The BDD grows

4

gradually from a single node (Figure 6(a)) to a complete graph
(Figure 6(f)), in which each path corresponds to a solution.
When a search state equivalence is detected and this knowl-
edge is reused, instead of creating a brand new BDD node, sub-
routine CED � ��F>G H I �ACLF ; I K ���� :P= will link the current decision
node to an existing BDD node, as shown by those dashed edges
in Figure 6. Through this reduction, significant space is saved
for storing the overlapping portion of solutions.

 101

 9

 101

139

 9

 101

 101
 9

139
 93

149

 6

 5

142

 6

107

108 93

139

 9

 101

108

107

 93

139

 9

 101

(a) (b) (c)

(f)(e)(d)

Figure 6. BDD constructed chronologically.

5.2 Variable Ordering

An interesting question would be what decides the variable
ordering for this free BDD. As a matter of fact, the variable
ordering is implicitly decided by the ATPG decision procedure
when it picks a new decision variable. It is dynamically gen-
erated by the subroutine

" G�F I@��� : = at step 3 in the functionH�C ��� G�H�H � N�;�� G�K D I�� G �%: = . The function
" G�F I@��� : = is a stan-

dard function in ATPG that uses controllability and observabil-
ity as heuristics to find next decision PIs through backtracing
along X-paths [1]. Notice that unlike SAT-solvers in which the
variable that directly satisfies the largest number of clauses is
chosen [3], ATPG’s decision variable selection is more guided
by the structural information of the circuit and the objective.
It has been shown in [14] that such testability-based heuristics
often yield a good variable ordering for constructing compact
shared ROBDDs.

6 Experimental Results

The success-driven learning algorithm together with a ba-
sic PODEM and two ATPG enhancements (improved backtrace
with conflict check [12], conflict analysis [11]) were imple-
mented in 5,000 lines of C code. We conducted ATPG experi-
ments on a Pentium 4 1.7 GHz machine with 512MB RAM and
Mandrake Linux OS 8.0. The experiments were designed to
evaluate the effectiveness of the proposed method and compare
its performance to a CUDD-based BDD package, BINGO [15].

The BINGO experiments were conducted on a SUN Ultra-1
200MHz machine with 512MB RAM.

The first set of experiments we conducted was computing
1-cycle preimages for some “properties” of ISCAS benchmark
circuits s5378. The properties we used are random conjectures
of 10 state variables. Therefore, each property actually specifies
a set of target states. We applied our success-driven learning
algorithm to compute all states which not only can reach the
target states in a single transition but also contain the property
themselves. This is a typical step for checking liveness (EG)
properties in model checking, where the property needs to be
included in every state in the path.

In Table 1 we show the results for s5378, which contains
3043 gates and 179 FFs. Three methods were compared: PO-
DEM without success-driven learning (denoted as NO SUCC),
PODEM with success-driven learning (denoted as SUCC) and
BINGO. For the first two ATPG experiments, a backtrack limit
of 100,000 is imposed. Under column of “# of soln”, we re-
port the number of solution cubes found by the ATPG engine.
If the ATPG can not exhaust all solutions within the 100,000
backtrack limit (e.g. for property 4, 6, 7, 8, 10 with the first
method) then this number reflects the maximum number of so-
lutions it can enumerate within that backtrack limit. In the mid-
dle five columns, since our success-driven learning algorithm
constructs a BDD, we also include the “bdd-size” (number of
BDD nodes) and the “mem” (peak memory) columns so as to
compare with BINGO results in the right-most three columns.

From the table we can see that success-driven learning sig-
nificantly reduced the execution time (about 2 to 3 orders of
magnitude speedup) for finding all solutions when compared
to ATPG without success-driven learning, while being mem-
ory efficient than BINGO. For example, for property #2, both
NO SUCC and SUCC found all 7,967 solutions; however,
NO SUCC consumed more than eighteen thousand backtracks
and 22.6 sec, while SUCC took only 200 backtracks and 0.42
sec in time and 10Mb in memory to finish the job. BINGO took
14.7 sec and 27Mb memory to do the job. The bdd size for
BINGO is 230 nodes while our general BDD only contained
139 nodes. For property #6, NO SUCC could not exhaust all
solutions; it only found 22,266 solutions within the 100,000
backtrack limit and took 60.49 sec; SUCC can enumerate all
67,379,200 solutions in 1.03 sec, using only 806 backtracks
and 739 nodes to represent these solutions. Note that we do not
need a seperate graph traversal to obtain those solution numbers
- we just need to add the two solution counters in the root node
in our BDD because they have been synchronized to reflect the
number of total solutions in the subtrees. Also, even though
ATPG trades off time for space, our ATPG’s performance (less
than 2 sec. on a 1.7 GHz Pentium machine) was on the same or-
der in execution time with BINGO (about 14 sec on a 200MHz
Sun UltraSparc). For all ten properties, our ATPG completed
the preimage computation using only 10MB for each property,
while BINGO required 27MB for each property.

We also performed a similar experiment for a property of
circuit s38417, which contains 1636 FFs and 23950 gates. The

5

NO SUCC SUCC BINGO
property # of soln. # of bktrack time(s) # of soln. # of bktrack bdd size time(s) mem bdd size time(s) mem

1 2,990 12,034 20.1 2,990 319 250 0.62 10M 229 14.7 27M
2 7,967 18,117 22.67 7,967 200 139 0.42 10M 230 14.2 27M
3 5 67 0.08 5 29 23 0.07 10M 219 14.7 27M
4 14,165 � 100,000 115.34 250,880 509 283 0.51 10M 1689 14.8 27M
5 1,024 8,218 4.83 1,024 77 76 0.1 10M 1075 14.7 27M
6 22,266 � 100,000 60.49 67,379,200 806 739 1.03 10M 3064 14.8 27M
7 14,630 � 100,000 44.18 31,928 611 606 1.1 10M 965 14.7 27M
8 16,331 � 100,000 61.54 8,630,272 3,555 3551 1.97 10M 2796 14.7 27M
9 4,008 19,826 30.7 4,008 517 395 0.98 10M 3893 14.8 27M
10 20,626 � 100,000 77.04 22,750 1,149 494 1.71 10M 506 14.7 27M

Table 1. Compute Preimages for s5378 (179 FFs, 3043 gates)

NO SUCC SUCC BINGO
property # of soln. # of bktrack time(s) # of soln. # of bktrack bdd size time(s) mem bdd size time(s) mem
1 24,938 � 100,000 517 129,171,456 440 438 0.77 187M abort abort � 512M

Table 2. Compute Preimages for s38417 (1636 FFs, 23950 gates)

results are shown in Table 2. For this circuit, BINGO failed to
construct the transition function due to the 512Mb memory lim-
itation while our proposed method successfully finishing enu-
merating all 129,171,456 solutions within 0.77 sec, using only
187Mb memory. In addition, we iterated the preimage com-
putation procedures for two cycles using the “BDD-bounding”
techniques proposed in [7] and proved that this property hold
as a EG property. “BDD-bounding” is a technique that uses the
preimage set BDD resulted from last iteration as a constraint
for ATPG/SAT-solver in the next iteration so that the preimage
computation can be extended to multiple cycles.

7 Conclusion and Future Work
We presented a novel success-driven ATPG algorithm to ef-

ficiently compute preimages. ATPG and BDD are combined in
such a way that the circuit function is manipulated by ATPG en-
gine while the results are encapsulated by a BDD data structure
(therefore ATPG is invisible to the outside). The procedures
can be iterated to multiple cycles using BDD-bounding. Exper-
imental results showed that the proposed method can achieve
2 to 3 orders of magnitude speed-up over convential ATPG in
preimage computation and at the same time it consumes much
less memory than pure BDD-based methods. We believe this
method has the potential for solving large-scale hardware veri-
fication problems. To extend this work, an efficient way other
than BDD-bounding for iterating this preimage computation
procedure to multiple cycles is needed. We will investigate
on this direction and the target is a new unbounded model-
checking tool based on ATPG.
Acknowledgment We want to thank Koichiro Takayama at Ad-
vanced CAD research, Fujitsu Labs. of American, Sunnyvale,
CA, for providing the BDD experimental results.

References

[1] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Sys-
tems Testing and Testable Design, IEEE Press, 1990.

[2] M. H. Schulz, E. Trischler and T. M. Sarfert, “SOCRATES: A
Highly Efficient Automatic Test Pattern Generation System”, IEEE
Trans. CAD, vol.7, no.1, pp. 126-137, 1988.

[3] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A Search Al-
gorithm for Propositional Satisfiability”, IEEE Trans. Computers,
vol. 48, no. 5, pp. 506-521, May, 1999.

[4] L. Zhang, C. F. Madigan, M. H. Moskewicz and S. Malik, “Effi-
cient Conflict Driven Learning in a Boolean Satisfiability Solver”,
Proc. ICCAD, 2001, pp. 279-285.

[5] J. M. Burch, E. M. Clarke, D. E. Long, “Representing Circuits
More Efficiently in Symbolic Model Checking”, Proc. DAC, 1991,
pp. 403-407.

[6] N. Narayan, J. Jain, M. Fujita, A. Sangiovanni-Vincentelli, “Par-
titioned ROBDDs: A Compact, Canonical and Efficiently Manipu-
lable Representation for Boolean Functions”, Proc. ICCAD, 1996,
pp. 547-554.

[7] A. Gupta, Z. Yang, P. Ashar and A. Gupta, “SAT-based Image
Computation with Application in Reachability Analysis”, Proc.
FMCAD, 2000.

[8] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik, “Partition-
Based Decision Heuristics for Image Computation using SAT and
BDDs”, Proc. ICCAD, 2001, pp. 286-292.

[9] K. L. McMillan, “Applying SAT methods in Unbounded Symbolic
Model Checking”, Proc. CAV, 2002.

[10] L. Zhang and S. Malik, ”Towards Symmetric Treatment of Con-
flicts And Satisfaction in Quantified Boolean Satisfiability Solver”,
Proc. 8th Intl. Conf. on Principles and Practice of Constraint Pro-
gramming (CP2002), 2002.

[11] J. P. Marques and K. A. Sakallah, “Dynamic Search-Space Prun-
ing Techniques in Path Sensitization”, Proc. DAC, 1994.

[12] I. Hamzaoglu and J. H. Patel, “New Techniques for Deterministic
Test Pattern Generation”, Proc. VTS, 1998, pp. 446-452.

[13] J. Giraldi and M. L. Bushnell, “EST: The New Frontier in
ATPG”, Proc. DAC, 1990, pp. 667-672.

[14] P. Chung, I. N. Hajj and J. H. Patel, “Efficient Variable Ordering
Heuistics for Shared ROBDD”, Proc. ISCAS, 1993, pp. 1690-1693.

[15] H. Iwashita and T. Nakata, “Forward Model Checking Tech-
niques Oriented to Buggy Designs”, Proc. ICCAD, pp.400-404,
Nov. 1997.

6

