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Abstract
We present the first truly polynomial algorithm for PAC-learning the structure of
bounded-treewidth junction trees – an attractive subclass of probabilistic graphical
models that permits both the compact representation of probability distributions
and efficient exact inference. For a constant treewidth, our algorithm has polyno-
mial time and sample complexity. If a junction tree with sufficiently strong intra-
clique dependencies exists, we provide strong theoretical guarantees in terms of
KL divergence of the result from the true distribution. We also present a lazy
extension of our approach that leads to very significant speed ups in practice, and
demonstrate the viability of our method empirically, on several real world datasets.
One of our key new theoretical insights is a method for bounding the conditional
mutual information of arbitrarily large sets of variables with only polynomially
many mutual information computations on fixed-size subsets of variables, if the
underlying distribution can be approximated by a bounded-treewidth junction tree.

1 Introduction
In many applications, e.g., medical diagnosis or datacenter performance monitoring,probabilistic
inferenceplays an important role: to decide on a patient’s treatment, it is useful to know the prob-
ability of various illnesses given the known symptoms. Thus, it is important to be able to represent
probability distributions compactly and perform inference efficiently. Here, probabilistic graphical
models (PGMs) have been successful as compact representations for probability distributions.

In order to use a PGM, one needs to define its structure and parameter values. Usually, we only
have data (i.e., samples from a probability distribution), and learning the structure from data is thus
a crucial task. For most formulations, the structure learning problem is NP-complete,c.f., [10].
Most structure learning algorithms only guarantee that their output is a local optimum. One of the
few notable exceptions is the work of Abbeel et al. [1], for learning structure of factor graphs, that
provides probably approximately correct (PAC) learnability guarantees.

While PGMs can represent probability distributions compactly, exact inference in compact models,
such as those of Abbeel et al., remains intractable [7]. An attractive solution is to use junction
trees (JTs) of limited treewidth – a subclass of PGMs that permits efficient exact inference. For
treewidthk = 1 (trees), the most likely (MLE) structure of a junction tree can be learned efficiently
using the Chow-Liu algorithm [6], but the representational power of trees is often insufficient. We
address the problem of learning JTs for fixed treewidthk > 1. Learning the most likely such JT is
NP-complete [10]. While there are algorithms with global guarantees for learning fixed-treewidth
JTs [10, 13], there has been no polynomial algorithm with PAC guarantees. The guarantee of [10]
is in terms of the difference in log-likelihood of the MLE JT and the model where all variables are
independent: the result is guaranteed to achieve at least a constant fraction of that difference. The
constant does not improve as the amount of data increases, so it does not imply PAC learnability.
The algorithm of [13] has PAC guarantees, but its complexity is exponential. In contrast, we provide
a truly polynomial algorithm with PAC guarantees. The contributions of this paper are as follows:

• A theoretical result (Lemma 4) that upper bounds the conditional mutual information of
arbitrarily large sets of random variables in polynomial time. In particular, we do not
assume that an efficiently computable mutual information oracle exists.
• The first polynomial algorithm for PAC-learning the structure of limited-treewidth junction

trees with strong intra-clique dependencies. We provide graceful degradation guarantees
for distributions that are only approximately representable by JTs with fixed treewidth.
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Figure 1: A junction tree. Rectangles denote
cliques, separators are marked on the edges.

Algorithm 1: Näıve approach to structure learning

Input: V , oracleI (·, · | ·), treewidthk, thresholdδ
L← ∅ ; // L is a set of “useful components”1

for S ⊂ V s.t. |S| = k do2

for Q ⊂ V-S do3

if I (Q,V-SQ | S) ≤ δ then4

L← L ∪ (S,Q)5

return FindConsistentTree(L)6

• A lazy heuristics that allows to make the algorithm practical.
• Empirical evidence of the viability of our approach on real-world datasets.

2 Bounded treewidth graphical models
In general, even to represent a probability distributionP (V ) over discrete variables1 V we need
space exponential in the sizen of V . However, junction trees of limited treewidth allow compact
representationand tractable exact inference. We briefly review junction trees (for details see [7]).
Let C = {C1, . . . , Cm} be a collection of subsets ofV . Elements ofC are calledcliques. LetT be
a set of edges connecting pairs of cliques such that(T, C) is a tree.

Definition 1. Tree(T, C) is a junction tree iff it satisfies therunning intersection property (RIP):
∀Ci, Cj ∈ C and∀Ck on the (unique) simple path betweenCi andCj , x ∈ Ci ∩ Cj ⇒ x ∈ Ck.

A setSij ≡ Ci ∩ Cj is called theseparator corresponding to an edge(i−j) from T . The size of
a largest clique in a junction tree minus one is called thetreewidth of that tree. For example, in a
junction tree in Fig. 1, variablex2 is contained in both clique 3 and 5, so it has to be contained in
clique 2, because 2 is on the simple path between 3 and 5. The largest clique in Fig. 1 has size 3, so
the treewidth of that junction tree is 2.

A distributionP (V ) is representable using junction tree(T, C) if instantiating all variables in a sep-
aratorSij renders the variables on different sides ofSij independent. Denote the fact thatA is inde-
pendent ofB givenC by (A⊥B |C). Let Ci

ij be cliques that can be reached fromCi in the(T, C)

without using edge(i−j), and denote these reachable variables byV i
ij ≡ V i

ji ≡
⋃

Ck∈Ci
ij

Ck \ Sij .

For example, in Fig. 1,S12 = {x1, x5}, V 1
12 = {x4, x6} , V 2

12 = {x2, x3, x7}.

Definition 2. P (V ) factors according to junction tree(T, C) iff ∀(i− j) ∈ T ,
(

V i
ij ⊥ V

j
ij | Sij

)

.

If a distributionP (V ) factors according to some junction tree of treewidthk, we will say thatP (V )
is k-JT representable. In this case, aprojection P(T,C) of P on (T, C), defined as

P(T,C) =

∏

Ci∈C P (Ci)
∏

(i−j)∈T P (Sij)
, (1)

is equal toP itself. For clarity, we will only considermaximal junction trees, where all separators
have sizek. If P is k-JT representable, it also factors according to some maximal JT of treewidthk.

In practice the notion of conditional independence is too strong. Instead, a natural relaxation is to
require sets of variables to have lowconditional mutual information I. DenoteH(A) the entropy
of A, thenI(A,B | S)≡H(A | S)−H(A |BS) is nonnegative, and zero iff(A⊥B | S). Intuitively,
I (A,B |S) shows how much new information aboutA can we extract fromB if we already knowS.

Definition 3. (T, C) is anε-junction tree for P (V ) iff ∀(i− j) ∈ T : I
(

V i
ij , V

j
ij | Sij

)

≤ ε.

1Notation note: throughout the paper, we use small letters (x, y) to denote variables, capital letters (V, C)
to denote sets of variables, and double-barred font (C, D) to denote sets of sets.
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If there exists anε-junction tree(T, C) for P (V ), we will say thatP is k-JT ε-representable. In
this case, the Kullback-Leibler divergence of projection (1) ofP on (T, C) from P is bounded [13]:

KL
(

P, P(T,C)

)

≤ nε. (2)

This bound means that if we have anε-junction tree forP (V ), then instead ofP we can use its
tractable principled approximationP(T,C) for inference. In this paper, we address the problem of
learning structure of such junction tree from data (samples fromP ).

3 Structure learning
In this paper, we address the following problem: given data, such as multiple temperature read-
ings from sensors in a sensor network, we treat each datapoint as an instantiation of the random
variablesV and seek to find a good approximation ofP (V ). We will assume thatP (V ) is k-JT
ε-representable for someε and aim to find âε-junction tree forP with the same treewidthk and
with ε̂ as small as possible. Note that the maximal treewidthk is considered to be a constant and not
a part of problem input. The complexity of our approach is exponential ink.

Algorithm 2: LTCI: find Conditional Indepen-
dencies in Low-Treewidth distributions

Input: V , separatorS, oracleI (·, · | ·),
thresholdδ, max set sizeq

QS ← ∪x∈V {x} ; // QS is a set of singletons1

for A ⊂ V-S s.t. |A| ≤ q do2

if minX⊂A I (X,A-X | S) > δ then3

// find min with Queyranne’s alg.
merge allQi ∈ QS , s.t.Qi ∩A 6= ∅4

return QS5

Let us initially assume that we have an ora-
cle I (·, · | ·) that can compute the mutual in-
formationI (A,B | C) exactly for any disjoint
subsetsA,B,C ⊂ V . This is a very strict re-
quirement, which we address in the next sec-
tion. Using the oracleI, a näıve approach
would be to evaluate2 I(Q,V-QS | S) for all
possibleQ,S ⊂ V s.t. |S| = k and record all
pairs(S,Q) with I(Q,V-QS | S) ≤ ε into a
list L. We will say that a junction tree(T, C)
is consistent witha list L iff for every separa-
tor Sij of (T, C) it holds that(Sij , V

i
ij) ∈ L.

After L is formed, any junction tree consistent withL would be anε-junction tree forP (V ). Such
tree would be found by someFindConsistentTreeprocedure, implemented, e.g., using constraint
satisfaction. Alg. 1 summarizes this idea. Algorithms that follow this outline, including ours, form a
class ofconstraint-basedapproaches. These algorithms use mutual information tests to constrain the
set of possible structures and return one that is consistent with the constraints. Unfortunately, using
Alg. 1 directly is impractical because its complexity is exponential in the total number of variables
n. In the following sections we discuss inefficiencies of Alg. 1 and present efficient solutions.

3.1 Global independence assertions from local tests
One can see two problems with the inner loop of Alg. 1 (lines 3-5). First, for each separator we
need to call the oracle exponentially many times (2n−k−1, once for everyQ ⊂ V-S). This drawback
is addressed in the next section. Second, the mutual information oracle,I (A,B | S), is called on
subsetsA andB of sizeO(n). Unfortunately, the best known way of computing mutual information
(and estimatingI from data) has time and sample complexity exponential in|A|+|B|+|S|. Previous
work has not addressed this problem. In particular, the approach of [13] has exponential complexity,
in general, because it needs to estimateI for subsets of sizeO(n). Our first new result states that we
can limit ourselves to computing mutual information over small subsets of variables:

Lemma 4. Let P (V ) be ak-JT ε-representable distribution. LetS ⊂ V , A ⊂ V-S . If ∀X ⊆ V-S
s.t. |X| ≤ k + 1, it holds thatI(A ∩X,V-SA ∩X | S) ≤ δ, thenI(A, V-SA | S) ≤ n(ε + δ).

We can thus compute an upper bound onI(A, V-SA | S) usingO
((

n
k

))

≡ O(nk) (i.e., polynomially
many) calls to the oracleI (·, · | ·), and each call will involve at most|S|+k+1 variables. Lemma 4
also bounds the quality of approximation ofP by a projection on any junction tree(T, C):

Corollary 5. If conditions of Lemma 4 hold forP (V ) withS = Sij andA = V i
ij for every separator

Sij of a junction tree(T, C), then(T, C) is an(ε + δ)-junction tree forP (V ).

3.2 Partitioning algorithm for weak conditional independencies
Now that we have an efficient upper bound forI (·, · | ·) oracle, let us turn to reducing the number of
oracle calls by Alg. 1 from exponential (2n−k−1) to polynomial. In [13], Narasimhan and Bilmes

2Notation note: for any setsA, B, C we will denoteA \ (B ∪ C) asA-BC to lighten the notation.
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Algorithm 3: Efficient approach to struc-
ture learning

Input: V , oracleI (·, · | ·), treewidthk,
thresholdε, L = ∅

for S ⊂ V s.t. |S| = k do1

for Q ∈ LTCI(V ,S,I,ε,k + 2) do2

L← L ∪ (S,Q)3

return FindConsistentTreeDPGreedy(L)4

Algorithm 4: FindConsistentTreeDPGreedy

Input: List L of components(S,Q)
for (S,Q) ∈ L in the order of increasing|Q| do1

greedily check if(S,Q) is L-decomposable2

record the decomposition if it exists3

if ∃S : (S, V-S) is L-decomposablethen4

return corresponding junction tree5

else returnno tree found6

present an approximate solution to this problem, assuming that an efficient approximation of oracle
I (·, · | ·) exists. A key observation that they relied on is that the functionFS(A) ≡ I (A, V-SA | S)
is submodular: FS(A)+FS(B) ≥ FS(A∪B)+FS(A∩B). Queyranne’s algorithm [14] allows the
minimization of a submodular functionF usingO(n3) evaluations ofF . [13] combines Queyranne’s
algorithm with divide-and-conquer approach to partitionV-S into conditionally independent subsets
usingO(n3) evaluations ofI (·, · | ·). However, sinceI (·, · | ·) is computed for sets of sizeO(n),
complexity of their approach is still exponential inn, in general.

Our approach, called LTCI (Alg. 2), in contrast, has polynomial complexity forq = O(1). We
will show thatq = O(1) in our approach that uses LTCI as a subroutine. To gain intuition for LTCI,
suppose there exists aε-junction tree forP (V ), such thatS is a separator and subsetsB andC are on
different sides ofS in the junction tree. By definition, this meansI (B,C | S) ≤ ε. When we look
at subsetA ≡ B ∪ C, the true partitioning is not known, but settingδ = ε, we can test all possible
2|A|−1 ways to partitionA into two subsets (XandA-X ). If none of the possible partitionings have
I (X,A-X | S) ≤ ε, we can conclude that all variables inA are on the same side of separatorS in
anyε-junction tree that includesS as a separator. Notice also that

∀X ⊂ A I (X,A-X | S) > δ ⇔ min
X⊂A

I (X,A-X | S) > δ,

so we can use Queyranne’s algorithm to evaluateI (·, · | ·) only O(|A|3) times instead of2|A|−1

times for minimization by exhaustive search. LTCI initially assumes that every variablex forms
its own partitionQ = {x}. If a test shows that two variablesx andy are on the same side of the
separator, it follows that their container partitionsQ1 ∋ x,Q2 ∋ y cannot be separated byS, so
LTCI mergesQ1 andQ2 (line 3 of Alg. 2). This process is then repeated for larger sets of variables,
of size up toq, until we converge to a set of partitions that are “almost independent” givenS.

Proposition 6. The time complexity of LTCI with|S| = k is O
(

(

n
q

)

nJMI
k+q

)

≡ O
(

nq+1JMI
k+q

)

,

whereJMI
k+q is the time complexity of computingI (A,B | C) for |A|+ |B|+ |C| = k + q.

It is important that the partitioning algorithm returns partitions that are similar to connected com-
ponents ofV i

ij of the true junction tree forP (V ). Formally, let us define two desirable properties.
Suppose(T, C) is anε-junction tree forP (V ), andQSij

is an output of the algorithm for separator
Sij and thresholdδ. We will say that partitioning algorithm iscorrect iff for δ = ε, ∀Q ∈ QSij

eitherQ ⊆ V i
ij or Q ⊆ V

j
ij . A correct algorithm will never mistakenly put two variables on the same

side of a separator. We will say that an algorithm isα-weak iff ∀Q ∈ QSij
I

(

Q,V-QSij
| Sij

)

≤ α.
For smallα, anα-weak algorithm puts variables on different sides of a separator only if correspond-
ing mutual information between those variables is not too large. Ideally, we want a correct and
δ-weak algorithm; forδ = ε it would separate variables that are on different sides ofS in a true
junction tree, but not introduce any spurious independencies. LTCI, which we use instead of lines
3-5 in Alg. 1, satisfies the first requirement and a relaxed version of the second:

Lemma 7. LTCI, for q ≥ k + 1, is correct andn(ε + (k − 1)δ)-weak.

3.3 ImplementingFindConsistentTreeusing dynamic programming
A concrete form ofFindConsistentTreeprocedure is the last step needed to make Alg. 1 practical.
For FindConsistentTree, we adopt a dynamic programming approach from [2] that was also used in
[13] for the same purpose. We briefly review the intuition; see [2] for details.

Consider a junction tree(T, C). Let Sij be a separator in(T, C) and Ci
ij be the set of cliques

reachable fromCi without using edge(i − j). DenoteT i
ij the set of edges fromT that connect
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cliques fromCi
ij . If (T, C) is anε-junction tree forP (V ), then(Ci

ij , T
i
ij) is anε-junction tree for

P (V i
ij ∪ Sij). Moreover, the subtree(Ci

ij , T
i
ij) consists of a cliqueCi and several sub-subtrees that

are each connected toCi. For example, in Fig. 1 the subtree over cliques 1,2,4,5 can be decom-
posed into clique 2 and two sub-subtrees: one including cliques{1,4}and one with clique 5. The
recursive structure suggests dynamic programming approach: given a component(S,Q) such that
I (Q,V-QS | S) < δ, check if smaller subtrees can be put together to cover the variables of(S,Q).
Formally, we require the following property:
Definition 8. (S,Q) ∈ L is L-decomposableiff ∃D = ∪i{(Si, Qi)}, x ∈ Q s.t.

1. ∀i(Si, Qi) is L-decomposableand∪m
i=1Qi = Q \ {x};

2. Si ⊂ S ∪ {x}, i.e., each subcomponent can be connected directly to the clique(S, x);
3. Qi ∩Qj = ∅, ensuring the running intersection property within the subtree overS ∪Q.

The set{(S1, Q1), . . . , (Sm, Qm)} is called adecompositionof (S,Q).

Unfortunately, checking whether a decomposition exists is equivalent to an NP-completeexact set
coverproblem because of the requirementQi ∩Qj = ∅ in part 3 of Def. 8. Unfortunately, this chal-
lenging issue was not addressed by [13], where the same algorithm was used. To keep complexity
polynomial, we use a simple greedy approach: for everyx ∈ Qi, starting with an empty candidate
decompositionD, add(Si, Qi) ∈ L to D if the last two properties of Def. 8 hold for(Si, Qi). If
eventually Def. 8 holds, return the decompositionD, otherwise return that no decomposition exists.
We call the resulting procedureFindConsistentTreeDPGreedy.
Proposition 9. For separator sizek, time complexity of FindConsistentTreeDPGreedy isO(nk+2)

Combining Alg. 2 andFindConsistentTreeDPGreedy, we arrive at Alg. 3. Overall complexity of
Alg. 3 is dominated by Alg. 2 and is equal toO(n2k+3JMI

2k+2).

In general,FindConsistentTreeDPwith greedy decomposition checks may miss a junction tree that
is consistent with the list of componentsL, but there is a class of distributions for which Alg. 3 is
guaranteed to find a junction tree. Intuitively, we require that for every(Sij , V

i
ij) from aε-junction

tree(T, C), Alg. 2 adds all the components from decomposition of(Sij , V
i
ij) to L and nothing else.

This requirement is guaranteed for distributions where variables inside every clique of the junction
tree are sufficiently strongly interdependent (have a certain level of mutual information):
Lemma 10. If ∃ an ε-JT (T, C) for P (V ) s.t. no two edges ofT have the same separator, and
for every separatorS, cliqueC ∈ C, minX⊂C-S

I (X,C-XS | S) > (k + 3)ε (we will call (T, C)
(k + 3)ε-strongly connected), then Alg. 3, called withδ = ε, will output ankε-JT forP (V ).

4 Sample complexity
So far we have assumed that a mutual information oracleI (·, · | ·) exists for the distributionP (V )
and can be efficiently queried. In real life, however, one only has data (i.e., samples fromP (V ))
to work with. However, we can get a probabilistic estimate ofI (A,B | C), that has accuracy±∆
with probability1− γ, using number of samples and computation time polynomial in1

∆ and log 1
γ

:

Theorem 11. (Höffgen, [9]). The entropy of a probability distribution over2k + 2 discrete vari-
ables with domain sizeR can be estimated with accuracy∆ with probability at least(1− γ) using

F (k,R,∆, γ)≡O
(

R4k+4

∆2 log2
(

R2k+2

∆2

)

log
(

R2k+2

γ

))

samples fromP and the same amount of time.

If we employ this oracle in our algorithms, the performance guarantee becomes probabilistic:
Theorem 12. If there exists a(k + 3)(ε + 2∆)-strongly connectedε-junction tree forP (V ), then
Alg. 3, called withδ = ε+∆ andÎ (·, ·, ·) based on Thm. 11, usingU ≡ F (k,R,∆, γ

n2k+2 ) samples
andO(n2k+3U) time, will find akn(ε+2∆)-junction tree forP (V ) with probability at least(1−γ).

Finally, if P (V ) is k-JT representable (i.e.,ε = 0), and the corresponding junction tree is strongly
connected, then we can let both∆ andγ go to zero and use Alg. 3 to find, with probability arbitrarily
close to one, a junction tree that approximatesP arbitrarily well in time polynomial in1

∆ and log 1
γ

,

i.e., the class of strongly connectedk-junction trees is probably approximately correctly learnable3.
3A classP of distributions is PAC learnable if for anyP ∈ P, δ > 0, γ > 0 a learning algorithm will output

P ′ : KL(P, P ′) < δ with probability1 − γ in time polynomial in1
δ

and log 1
γ

.
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Corollary 13. If there exists anα-strongly connected junction tree forP (V ) with α > 0, then
for β < αn, Alg. 3 will learn a β-junction tree forP with probability at least1 − γ using

O
(

n4

β2 log2 n
β

log n
γ

)

samples fromP (V ) andO
(

n2k+7

β2 log2 n
β

log n
γ

)

computation time.

5 Lazy evaluation of mutual information
Alg. 3 requires the value of thresholdδ as an input. To get tighter quality guarantees, we need to
choose the smallestδ for which Alg. 3 finds a junction tree.A priori, this value is not known, so we
need a procedure to choose the optimalδ. A natural way to selectδ is binary search. For discrete
random variables with domain sizeR, for anyP (V ), S, x it holds thatI (x, V-Sx |S)≤ logR, so for
any δ > logR Alg. 3 is guaranteed to find a junction tree (with all cliques connected to the same
separator). Thus, we can restrict binary search to rangeδ ∈ [0, log R].

In binary search, for every value ofδ, Alg. 2 checks the result of Queyranne’s algorithm minimizing
minX⊂A I (X,A-X | S) for every|S| = k, |A| ≤ k+2, which amounts toO(n2k+2) complexity per
value ofδ. It is possible, however, to find the optimalδ while only checkingminX⊂A I (X,A-X | S)
for every S and A once over the course of the search process. Intuitively, think of the set of
partitionsQS in Alg. 2 as a set of connected components of a graph with variables as vertices,
and a hyper-edge connecting all variables fromA wheneverminX⊂A I (X,A-X | S) > δ. As δ
increases, some of the hyper-edges disappear, and the number of connected components (or in-
dependent sets) may increase. More specifically, a graphQS is maintained for each separator
S. For all S,A add a hyper-edge connecting all variables inA annotated withstrengthS(A) ≡
minX⊂A I (X,A-X | S) to QS . Until FindConsistentTree(∪SQS) returns a tree, increaseδ to
beminS,A:hyperedgeS(A)∈QS

strengthS(A) (i.e., strength of the weakest remaining hyper-edge), and
removehyperedgeS(A) from QS . Fig. 2(a) shows an example evolution ofQx4

for k = 1.

To further save computation time, we exploit two observations: First, ifA is a subset of a connected
componentQ ∈ QS , addinghyperedgeS(A) to QS will not changeQS . Thus, we do not test any
hyper-edgeA which is contained in a connected component. However, asδ increases, a component
may become disconnected, because such an edge was not added. Therefore, we may have more
components than we should (inducing incorrect independencies). This issue is addressed by our
second insight: If we find a junction tree for a particular value ofδ, we only need to recheck the
components used in this tree. These insights lead to a simple,lazyprocedure: IfFindConsistentTree
returns a tree(T, C), we check the hyper-edges that intersect the components used to form(T, C).
If none of these edges are added, then we can return(T, C) for this value ofδ. Otherwise, some of
QS have changed; we can iterate this procedure until we find a solution.

6 Evaluation
To evaluate our approach, we have applied it to two real-world (sensor network temperature [8] and
San Francisco Bay area traffic [11]) and one artificial (samples from ALARM Bayesian network [4])
datasets. Our implementation, called LPACJT, uses lazy evaluations ofI (·, · | ·) from section 5.
As baselines for comparison, we used a simple hill-climbing heuristic4, a combination of LPACJT
with hill-climbing, where intermediate results returned byFindConsistentTreewere used as starting
points for hill-climbing, Chow-Liu algorithm, and algorithms of [10] (denoted Karger-Srebro) and
[17] (denoted OBS). All experiments were run on a Pentium D 3.4 GHz, with runtimes capped to
10 hours. The necessary entropies were cached in advance.

ALARM. This discrete-valued data was sampled from a known Bayesian network with treewidth 4.
We learned models with treewidth 3 because of computational concerns. Fig. 2(b) shows the per-
point log-likelihood of learned models on test data depending on the amount of training data. We see
that on small training datasets both LPACJT finds better models than a basic hill-climbing approach,
but worse than the OBS of [17] and Chow-Liu. The implementation of OBS was the only one to
use regularization, so this outcome can be expected. We can also conclude that on this dataset our
approach overfits than hill-climbing. For large enough training sets, LPACJT results achieve the
likelihood of the true model, despite being limited to models with smaller treewidth. Chow-Liu
performs much worse, since it is limited to models with treewidth 1. Fig. 2(c) shows an example of
a structure found by LPACJT for ALARM data. LPACJT only missed 3 edges of the true model.

4Hill-climbing had 2 kinds of moves available: replace variablex with variabley in a connected sub-
junction tree, or relpace a leaf cliqueCi with another clique(Ci \ Sij) ∪ Smr connected to a separatorSmr.
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Figure 2: An example of evolution ofQS for section 5 (2(a)), one structure learned by LPACJT(2(c)), experi-
mental results (2(b),2(d),2(f)), and an example evolution of the test set likelihood of the best found model (2(e)).
In 2(c), nodes denote variables, edges connect variables that belong to the same clique, green edges belong to
both true and learned models, blue edges belong only to the learned model, red - only to the true one.

TEMPERATURE. This data is from a 2-month deployment of 54 sensor nodes (15K data-
points) [8]. Each variable was discretized into 4 bins and we learned models of treewidth 2. Since
the locations of the sensor have an∞-like shape with two loops, the problem of learning a thin
junction tree for this data is hard. In Fig. 2(d) one can see that LPACJT performs almost as good
as hill-climbing-based approaches, and, on large training sets, much better than Karger-Srebro al-
gorithm. Again, as expected, LPACJT outperforms Chow-Liu algorithm by a significant margin if
there is enough data available, but overfits on the smallest training sets. Fig 2(e) shows the evolution
of the test set likelihood of the best (highest training set likelihood) structure identified by LPACJT
over time. The first structure was identified within 5 minutes, and the final result within 1 hour.

TRAFFIC. This dataset contains traffic flow information measured every 5 minutes in 8K loca-
tions in California for 1 month [11]. We selected 32 locations in San Francisco Bay area for the
experiments, discretized traffic flow values into 4 bins and learned models of treewidth 3. All non-
regularized algorithms, including LPACJT, give results of essentially the same quality.

7 Relation to prior work and conclusions
For a brief overview of the prior work, we refer the reader to Fig. 3. Most closely related to LPACJT
are learning factor graphs of [1] and learning limited-treewidth Markov nets of [13, 10]. Unlike our
approach, [1] does not guarantee low treewidth of the result, instead settling for compactness. [13,
10] guarantee low treewidth. However, [10] only guarantees that the difference of the log-likelihood
of the result from the fully independent model is within a constant factor from the difference of the
most likely JT:LLH(optimal)−LLH(indep.) ≤ 8kk!2(LLH(learned)−LLH(indep.)). [13] has
exponential complexity. Our approach has polynomial complexity and quality guarantees that hold
for strongly connectedk-JTε-representable distributions, while those of [13] only hold forε = 0.

We have presented the first truly polynomial algorithm for learning junction trees with limited
treewidth. Based on a new upper bound for conditional mutual information that can be computed us-
ing polynomial time and number of samples, our algorithm is guaranteed to find a junction tree that
is close inKL divergence to the true distribution, forstrongly connectedk-JTε-representable distri-
butions. As a special case of these guarantees, we show PAC-learnability of strongly connectedk-JT
representable distributions. We believe that the new theoretical insights herein provide significant
step in the understanding of structure learning in graphical models, and are useful for the analysis of
other approaches to the problem. In addition to the theory, we have also demonstrated experimen-
tally that these theoretical ideas are viable, and can, in the future, be used in the development of fast
and effective structure learning heuristics.
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approach model class guarantees true distribution samples time reference
score tractable local any any poly† [3, 5]
score tree global any any O(n2) [6]
score tree mixture local any any O(n2)† [12]
score compact local any any poly† [17]
score all global any any exp [15]
score tractable const-factor any any poly [10]

constraint compact PAC◦ positive poly poly [1]
constraint all global any ∞ poly(tests) [16]
constraint tractable PAC strongk-JT exp‡ exp‡ [13]
constraint tractable PAC§ strongk-JT poly poly this paper

Figure 3: Prior work. The majority of the literature can be subdivided into score-based [3, 5, 6, 12, 15, 10] and
constraint-based [13, 16, 1] approaches. The former try to maximize some target function, usually regularized
likelihood, while the latter perform conditional independence tests and restrict the set of candidate structures
to those consistent with the results of the tests.Tractablemeans that the result is guaranteed to be of limited
treewidth,compact- with limited connectivity of the graph.Guaranteescolumn shows whether the result is a
local or global optimum, whether there are PAC guarantees, or whether the difference of the log-likelihood of
the result from the fully independent model is within aconst-factorfrom the difference of the most likely JT.
True distributionshows for what class of distributions the guarantees hold.† superscript means per-iteration
complexity, poly -O(nO(k)), exp‡ - exponential in general, but poly for special cases. PAC◦ and PAC§ mean
PAC with (different) graceful degradation guarantees.
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