Efficient Principled Learning of Thin Junction Trees

Anton Chechetka Carlos Guestrin
Carnegie Mellon University

Abstract

We present the first truly polynomial algorithm for PAC-learning the structure of
bounded-treewidth junction trees — an attractive subclass of probabilistic graphical
models that permits both the compact representation of probability distributions
and efficient exact inference. For a constant treewidth, our algorithm has polyno-
mial time and sample complexity. If a junction tree with sufficiently strong intra-
clique dependencies exists, we provide strong theoretical guarantees in terms of
K L divergence of the result from the true distribution. We also present a lazy
extension of our approach that leads to very significant speed ups in practice, and
demonstrate the viability of our method empirically, on several real world datasets.
One of our key new theoretical insights is a method for bounding the conditional
mutual information of arbitrarily large sets of variables with only polynomially
many mutual information computations on fixed-size subsets of variables, if the
underlying distribution can be approximated by a bounded-treewidth junction tree.

1 Introduction

In many applications, e.g., medical diagnosis or datacenter performance monipsabagbilistic
inference plays an important role: to decide on a patient’s treatment, it is useful to know the prob-
ability of various illnesses given the known symptoms. Thus, it is important to be able to represent
probability distributions compactly and perform inference efficiently. Here, probabilistic graphical
models (PGMs) have been successful as compact representations for probability distributions.

In order to use a PGM, one needs to define its structure and parameter values. Usually, we only
have data (i.e., samples from a probability distribution), and learning the structure from data is thus
a crucial task. For most formulations, the structure learning problem is NP-complietg10].

Most structure learning algorithms only guarantee that their output is a local optimum. One of the
few notable exceptions is the work of Abbeel et al. [1], for learning structure of factor graphs, that
provides probably approximately correct (PAC) learnability guarantees.

While PGMs can represent probability distributions compactly, exact inference in compact models,
such as those of Abbeel et al., remains intractable [7]. An attractive solution is to use junction
trees (JTs) of limited treewidth — a subclass of PGMs that permits efficient exact inference. For
treewidthk = 1 (trees), the most likely (MLE) structure of a junction tree can be learned efficiently
using the Chow-Liu algorithm [6], but the representational power of trees is often insufficient. We
address the problem of learning JTs for fixed treewidth 1. Learning the most likely such JT is
NP-complete [10]. While there are algorithms with global guarantees for learning fixed-treewidth
JTs [10, 13], there has been no polynomial algorithm with PAC guarantees. The guarantee of [10]
is in terms of the difference in log-likelihood of the MLE JT and the model where all variables are
independent: the result is guaranteed to achieve at least a constant fraction of that difference. The
constant does not improve as the amount of data increases, so it does not imply PAC learnability.
The algorithm of [13] has PAC guarantees, but its complexity is exponential. In contrast, we provide
a truly polynomial algorithm with PAC guarantees. The contributions of this paper are as follows:

e A theoretical result (Lemma 4) that upper bounds the conditional mutual information of
arbitrarily large sets of random variables in polynomial time. In particular, we do not
assume that an efficiently computable mutual information oracle exists.

e The first polynomial algorithm for PAC-learning the structure of limited-treewidth junction
trees with strong intra-clique dependencies. We provide graceful degradation guarantees
for distributions that are only approximately representable by JTs with fixed treewidth.

| Xaeks 1 Yoty X6| Algorithm 1: Naive approach to structure learning

X;:Xg Input: V, oraclel (-, | -), treewidthk, thresholdy
1 L« 0;// Lis aset of “useful components”
|X1’X 2 XXX| 2 for S CVst|S| =kdo
X%, 3 for Q Cc V.g do
4 if I(Q,V-sq|S)<dthen
X XpXg 3 5 L L—LuU (S, Q)

6 return FindConsistentTree(LL)

Figure 1: A junction tree. Rectangles denote
cliques, separators are marked on the edges.

e A lazy heuristics that allows to make the algorithm practical.
e Empirical evidence of the viability of our approach on real-world datasets.

2 Bounded treewidth graphical models

In general, even to represent a probability distributifi/) over discrete variablésl” we need
space exponential in the sizeof V. However, junction trees of limited treewidth allow compact
representatiornd tractable exact inference. We briefly review junction trees (for details see [7]).
LetC = {C4,...,C,,} be a collection of subsets &f. Elements ofC are calleccliques. LetT be

a set of edges connecting pairs of cliques such(that) is a tree.

Definition 1. Tree(T, C) is ajunction tree iff it satisfies theunning intersection property (RIP):
vC;, C; € CandVCy, on the (unique) simple path betwe€handC;, v € C; N C; = x € C.

A setS;; = C; N Cj is called theseparator corresponding to an eddge- j) from 7'. The size of

a largest clique in a junction tree minus one is calledtteewidth of that tree. For example, in a
junction tree in Fig. 1, variable, is contained in both clique 3 and 5, so it has to be contained in
cligue 2, because 2 is on the simple path between 3 and 5. The largest clique in Fig. 1 has size 3, so
the treewidth of that junction tree is 2.

A distribution P(V) is representable using junction trég C) if instantiating all variables in a sep-
aratorS;; renders the variables on different sidesSgfindependent. Denote the fact théts inde-

pendent ofB givenC by (A L B|C). LetC}; be cliques that can be reached fraémin the (T, C)
without using edgéi — j), and denote these reachable variabled’fjy= V; =Uc,eci. Ck \ Sij-

For example, in Fig. 1512 = {z1, 25}, V5 = {74, 26} , V5 = {1’2,[173,‘T7}.

Definition 2. P(V') factors according to junction tree (T, C) iff V(i — j) € T, (V;j 1 ij | Sl-]).

If a distribution P (V') factors according to some junction tree of treewikltive will say thatP (V")
is k-JT representable. In this case, projection Py c) of P on (T, C), defined as

Hciec P(Ci)
H(i—j)ET P(Sijy

is equal toP itself. For clarity, we will only considemaximal junction trees, where all separators
have size:. If P is k-JT representable, it also factors according to some maximal JT of treewidth

Py = 1)

In practice the notion of conditional independence is too strong. Instead, a natural relaxation is to
require sets of variables to have leenditional mutual information . DenoteH (A) the entropy

of A, thenI(AB|S) =H(A|S —H(A|BS) is nonnegative, and zero ifi L B |5). Intuitively,

I (A B|S) shows how much new information abodittan we extract fronB if we already knows.

Definition 3. (7', C) is ane-junction tree for P(V) iff V(i —j) e T : I (Ww Vj | Sij) <e

INotation note: throughout the paper, we use small letterg)(to denote variables, capital lettefig,)
to denote sets of variables, and double-barred fonbjdo denote sets of sets.

If there exists arz-junction tree(T, C) for P(V'), we will say thatP is k-JT e-representable. In
this case, the Kullback-Leibler divergence of projection (1Pan (7', C) from P is bounded [13]:

KL (PaP(T,(C)) < ne. (2)

This bound means that if we have afunction tree forP(V), then instead of” we can use its
tractable principled approximatioR 1 ¢ for inference. In this paper, we address the problem of
learning structure of such junction tree from data (samples fréth

3 Structure learning

In this paper, we address the following problem: given data, such as multiple temperature read-
ings from sensors in a sensor network, we treat each datapoint as an instantiation of the random
variablesV and seek to find a good approximation ®fV"). We will assume thaP (V) is k-JT
e-representable for someand aim to find &-junction tree forP with the same treewidth and

with £ as small as possible. Note that the maximal treewidthconsidered to be a constant and not

a part of problem input. The complexity of our approach is exponential in

o 1 (.- ") that can compute the mutual in NGOTM Z: LTCE find Condional indepen-
formation! (A, B | C') exactly for any disjoint dencies in Low-Treewidth distributions
subsetsd, B,C C V. This is a very strict re- Input: V, separatoiS, oraclel (-, - | -),
quirement, which we address in the next sec- threshold), max set sizg

tion. Using the oracld, a nave approach ! Qs < Uzev{z}; // Qs is a set of singletons
would be to evaluafel(Q,V.gs | S) forall 2 for AC Vigs.t.|A] <q do

possibleQ, S C V' st.|S| = kandrecord all 3 | fminxcal(X, A-x[S)>4 then

pairs (S, Q) with 1(Q, Vogs | S) < e into a L /1 find min with Queyranne’s alg.

list L. We will say that a junction tre¢l’,C) 4 merge allQ; € Qs, st.Q;NA#(

is consistent withalist L iff for every separa-

tor S;; of (T, C) it holds that(S;;, V;i) € L. 5 reumn Qs
After L is formed, any junction tree consistent withwould be are-junction tree forP(V'). Such

tree would be found by somEndConsistentTre@rocedure, implemented, e.g., using constraint
satisfaction. Alg. 1 summarizes this idea. Algorithms that follow this outline, including ours, form a
class ofconstraint-basedpproaches. These algorithms use mutual information tests to constrain the
set of possible structures and return one that is consistent with the constraints. Unfortunately, using
Alg. 1 directly is impractical because its complexity is exponential in the total number of variables
n. In the following sections we discuss inefficiencies of Alg. 1 and present efficient solutions.

3.1 Global independence assertions from local tests

One can see two problems with the inner loop of Alg. 1 (lines 3-5). First, for each separator we
need to call the oracle exponentially many times (2!, once for every) C V.g). This drawback

is addressed in the next section. Second, the mutual information ofdcleB | S), is called on
subsetsd and B of sizeO(n). Unfortunately, the best known way of computing mutual information
(and estimating from data) has time and sample complexity exponentigd|r-|B|+|S|. Previous

work has not addressed this problem. In particular, the approach of [13] has exponential complexity,
in general, because it needs to estinfafer subsets of siz&(n). Our first new result states that we

can limit ourselves to computing mutual information over small subsets of variables:

Lemma 4. Let P(V') be ak-JT e-representable distribution. L&t C V, A C V.. If VX C Vg
st.|X|<k+1,itholdsthatl (AN X, V.saNX | S) <4, thenI(A,V.ga | S) < n(e+9).

We can thus compute an upper bound/¢d, V-s 4 | S) usingO ((})) = O(n*) (i.e., polynomially

many) calls to the oraclg(-, - | -), and each call will involve at mo$$| + k + 1 variables. Lemma 4
also bounds the quality of approximation®8fby a projection on any junction tré&, C):

Corollary 5. If conditions of Lemma 4 hold fdp(V') with S = S;; and A = V/] for every separator
S;; of a junction treg(T', C), then(T', C) is an(e + 6)-junction tree forP (V).

3.2 Partitioning algorithm for weak conditional independencies
Now that we have an efficient upper bound fdr, - | -) oracle, let us turn to reducing the number of
oracle calls by Alg. 1 from exponential{2*~1) to polynomial. In [13], Narasimhan and Bilmes

Notation note: for any setd, B, C we will denoteA \ (B U C) asA-pc to lighten the notation.

Algorithm 3: Efficient approach to struc- Algorithm 4: FindConsistentTreeDPGreedy

ture learning Input: List L of componentss, Q)
Input: V, oraclel (-,- | -), treewidthk, 1 for (S, Q) € L in the order of increasing@| do
thresholds, L = () 2 greedily check if(.S, Q) is L-decomposable
1 for S CVsit|S| =kdo 3 L record the decomposition if it exists
2 | for QeLTCI(V,S,]ek+2)do 4 if 35 : (S, V.g) is L-decomposabléhen
3 [L=Lu(sQ) 5 L return corresponding junction tree

4 return FindConsistentTreeDPGreedy(IL)s else returnno tree found

present an approximate solution to this problem, assumaiggath efficient approximation of oracle
I(-,-]-)exists. A key observation that they relied on is that the funciigfA) = I (A, V.ga | S)
issubmodular: Fg(A)+Fs(B) > Fs(AUB)+Fs(ANB). Queyranne’s algorithm [14] allows the
minimization of a submodular functiafi usingO(n?) evaluations of+'. [13] combines Queyranne’s
algorithm with divide-and-conquer approach to partitiép into conditionally independent subsets
usingO(n?) evaluations ofl (-, | -). However, sincd (-, - | -) is computed for sets of siz@(n),
complexity of their approach is still exponentialiinin general.

Our approach, called LTCI (Alg. 2), in contrast, has polynomial complexitygfer O(1). We

will show thatg = O(1) in our approach that uses LTCI as a subroutine. To gain intuition for LTCI,
suppose there existggunction tree forP (1), such thatS is a separator and subs@&andC are on
different sides of5' in the junction tree. By definition, this meaf$B,C' | S) < . When we look

at subsetd = B U C, the true partitioning is not known, but setting= ¢, we can test all possible
2141-1 ways to partitiond into two subsets (Jand A-x). If none of the possible partitionings have
I(X,A-x|S) < e, we can conclude that all variables share on the same side of separatoin
anye-junction tree that includeS as a separator. Notice also that

VX CA I(X,A-X|S)>6<:>)r(ncir}11(X,A-X|S)>6,

so we can use Queyranne’s algorithm to evaldate- | -) only O(|A|?) times instead op!4I—!
times for minimization by exhaustive search. LTCI initially assumes that every variafdens

its own partition@) = {x}. If a test shows that two variablesandy are on the same side of the
separator, it follows that their container partitioRs > x,Q2 > y cannot be separated I8 so

LTCl mergesR, and@: (line 3 of Alg. 2). This process is then repeated for larger sets of variables,
of size up tog, until we converge to a set of partitions that are “almost independent” given
Proposition 6. The time complexity of LTCI witl§| = & is O ((Z)nj,%r{]) =0 (nq“J,i‘:{{]) ,
whereJ;'! is the time complexity of computidg 4, B | C) for |A| + |B| + |C| = k + q.

It is important that the partitioning algorithm returns partitions that are similar to connected com-
ponents oﬂ/;'j of the true junction tree foP (V). Formally, let us define two desirable properties.
Suppos€T, C) is ans-junction tree forP (1), andQs,, is an output of the algorithm for separator
S;; and threshold. We will say that partitioning algorithm isorrect iff for 6 = ¢, VQ € Qg,;

either@ C Vl’J or@ C Vj] A correct algorithm will never mistakenly put two variables on the same

side of a separator. We will say that an algorithrvisreakiff vQ € Qs,, I (Q,V-gs,, | Sij) < o

For smalle, ana-weak algorithm puts variables on different sides of a separator only if correspond-
ing mutual information between those variables is not too large. Ideally, we want a correct and
o-weak algorithm; fory = e it would separate variables that are on different sideS of a true
junction tree, but not introduce any spurious independencies. LTCI, which we use instead of lines
3-5in Alg. 1, satisfies the first requirement and a relaxed version of the second:

Lemma 7. LTCI, forq > k + 1, is correct andn(ec + (k — 1)§)-weak.

3.3 Implementing FindConsistentTreasing dynamic programming

A concrete form ofFindConsistentTreprocedure is the last step needed to make Alg. 1 practical.
For FindConsistentTree, we adopt a dynamic programming approach from [2] that was also used in
[13] for the same purpose. We briefly review the intuition; see [2] for detalils.

Consider a junction tre€T’,C). Let S;; be a separator iiT’,C) and C}; be the set of cliques
reachable fronC; without using edgé: — j). DenoteTfj the set of edges frorf’ that connect

4

cliques fromC;;. If (T, C) is ane-junction tree forP(V'), then(Ci;, T};) is ane-junction tree for

P(V;; U Sq;). Moreover, the subtre€C};, T7;) consists of a cliqu€’; and several sub-subtrees that
are each connected t@;. For example, in Fig. 1 the subtree over cliques 1,2,4,5 can be decom-
posed into clique 2 and two sub-subtrees: one including cligligs and one with cliqgue 5. The
recursive structure suggests dynamic programming approach: given a comp®r@hsuch that
I1(Q,V.gs|S) < 4, check if smaller subtrees can be put together to cover the variab(€5@f.

Formally, we require the following property:
Definition 8. (S, Q) € L isLL-decomposabléff 3D = U;{(5;,Q:)},z € Q s.t.
1. Vi(S;, Q;) isL-decomposablend U™, Q; = Q \ {z};
2. S; C SuU{z}, i.e., each subcomponent can be connected directly to the dlijug;
3. Qi N Q; = 0, ensuring the running intersection property within the subtree dverq).
The set{(S1,Q1),-..,(Sm, @m)} is called adecompositionof (.5, Q).

Unfortunately, checking whether a decomposition exists is equivalent to an NP-comxdeteset
coverproblem because of the requireméntn Q; = 0 in part 3 of Def. 8. Unfortunately, this chal-
lenging issue was not addressed by [13], where the same algorithm was used. To keep complexity
polynomial, we use a simple greedy approach: for every @;, starting with an empty candidate
decompositiorD, add(S;, Q;) € L to D if the last two properties of Def. 8 hold fdS;, Q;). If
eventually Def. 8 holds, return the decompositibrotherwise return that no decomposition exists.

We call the resulting proceduféndConsistentTreeDPGreedy.

Proposition 9. For separator sizé;, time complexity of FindConsistentTreeDPGreed§ {s"*2)

Combining Alg. 2 and-indConsistentTreeDPGreedy, we arrive at Alg. 3. Overall complexity of
Alg. 3 is dominated by Alg. 2 and is equal @(n? 33/).

In general FindConsistentTreeDRith greedy decomposition checks may miss a junction tree that
is consistent with the list of componerits but there is a class of distributions for which Alg. 3 is
guaranteed to find a junction tree. Intuitively, we require that for eygry, V;;) from acs-junction

tree(T, C), Alg. 2 adds all the components from decompositiori$)f, V) to L and nothing else.

This requirement is guaranteed for distributions where variables inside every clique of the junction
tree are sufficiently strongly interdependent (have a certain level of mutual information):

Lemma 10. If 3 ane-JT (7, C) for P(V) s.t. no two edges df have the same separator, and

for every separatofS, cliqueC' € C, minxcc. I (X,C-xs | S) > (k + 3)e (we will call (T, C)

(k 4 3)e-strongly connected), then Alg. 3, called with= ¢, will output anke-JT for P(V).

4 Sample complexity

So far we have assumed that a mutual information ork¢le | -) exists for the distributior? (V)

and can be efficiently queried. In real life, however, one only has data (i.e., sample®{icim
to work with. However, we can get a probabilistic estimatd 0fl, B | C'), that has accuracyA

with probability 1 — ~, using number of samples and computation time polynom@ gnd log %:

Theorem 11. (Hoffgen, [9]). The entropy of a probability distribution ovek + 2 discrete vari-
ables with domain siz& can be estimated with accuracy with probability at least1 — ~) using

Fk R A7) EO(RZC;4 log? (szz) log (Rf”)) samples fronP and the same amount of time.

If we employ this oracle in our algorithms, the performance guarantee becomes probabilistic:
Theorem 12. If there exists gk + 3)(¢ + 2A)-strongly connected-junction tree forP(V), then
Alg. 3, called withy = ¢+ A and! (-, -,-) based on Thm. 11, usiig = F(k, R, A, —i+) samples
andO(n?k+30) time, will find akn(s+2A)-junction tree forP (V) with probability at leas{1—~).

Finally, if P(V') is k-JT representable (i.es,= 0), and the corresponding junction tree is strongly
connected, then we can let bathand~y go to zero and use Alg. 3 to find, with probability arbitrarily
close to one, a junction tree that approximatearbitrarily well in time polynomial ini andlog %

i.e., the class of strongly connectiedunction trees is probably approximately correctly learnble

3A classP of distributions is PAC learnable if for any € P, § > 0,~ > 0 a learning algorithm will output
P': KL(P,P') < § with probability 1 — ~ in time polynomial in§ andlog .

5

Corollary 13. If there exists am-strongly connected junction tree fd?(V') with o« > 0, then
for B < an, Alg. 3 will learn a g-junction tree for P with probability at leastl — ~ using

77/4 n n 7L2k+7 n n 1 1
@) (F log” % log ;) samples fromP (V') andO (5o log? % log ;) computation time.

5 Lazy evaluation of mutual information

Alg. 3 requires the value of threshofdas an input. To get tighter quality guarantees, we need to
choose the smallestfor which Alg. 3 finds a junction treéA priori, this value is not known, so we
need a procedure to choose the optitalA natural way to seledi is binary search. For discrete
random variables with domain siZ& for any P(V'), S, « it holds that7 (x, V.5, | S) <logR, so for

any ¢ > logR Alg. 3 is guaranteed to find a junction tree (with all cligues connected to the same
separator). Thus, we can restrict binary search to rangé0, log R].

In binary search, for every value 6f Alg. 2 checks the result of Queyranne’s algorithm minimizing
minyca I (X, A-x | S)forevery|S| = k, |A| < k+2, which amounts t®)(n?**+2) complexity per
value ofé. Itis possible, however, to find the optimialvhile only checkingniny 4 I (X, A-x | S)

for every S and A once over the course of the search process. Intuitively, think of the set of
partitionsQg in Alg. 2 as a set of connected components of a graph with variables as vertices,
and a hyper-edge connecting all variables frdnwheneveminy-4 I (X, A-x | S) > §. Asé
increases, some of the hyper-edges disappear, and the number of connected components (or in-
dependent sets) may increase. More specifically, a gfaphs maintained for each separator

S. For all S, A add a hyper-edge connecting all variablesdirannotated withstrengthg(A) =
minxca I (X, A-x | S) to Qs. Until FindConsistentTree(UsQg) returns a tree, increageto
beming A:nyperedges(4)cqs Strengthg(A) (i.e., strength of the weakest remaining hyper-edge), and
removehyperedge¢(A) from Qg. Fig. 2(a) shows an example evolution@f, for k = 1.

To further save computation time, we exploit two observations: First,isfa subset of a connected
component) € Qg, addinghyperedgeg(A) to Qg will not changeQs. Thus, we do not test any
hyper-edged which is contained in a connected component. Howevef,iasreases, a component

may become disconnected, because such an edge was not added. Therefore, we may have more
components than we should (inducing incorrect independencies). This issue is addressed by our
second insight: If we find a junction tree for a particular value ofve only need to recheck the
components used in this tree. These insights lead to a sitapigrocedure: IfFindConsistentTree

returns a tre€T’, C), we check the hyper-edges that intersect the components used t¢ffotin

If none of these edges are added, then we can r¢fir@) for this value ofs. Otherwise, some of

Qs have changed; we can iterate this procedure until we find a solution.

6 Evaluation

To evaluate our approach, we have applied it to two real-world (sensor network temperature [8] and
San Francisco Bay area traffic [11]) and one artificial (samples from ALARM Bayesian network [4])
datasets. Our implementation, called LPACJT, uses lazy evaluatiohé of| -) from section 5.

As baselines for comparison, we used a simple hill-climbing heutfjsticombination of LPACJT

with hill-climbing, where intermediate results returnedfigdConsistentTrewere used as starting
points for hill-climbing, Chow-Liu algorithm, and algorithms of [10] (denoted Karger-Srebro) and
[17] (denoted OBS). All experiments were run on a Pentium D 3.4 GHz, with runtimes capped to
10 hours. The necessary entropies were cached in advance.

ALARM. This discrete-valued data was sampled from a known Bayesian network with treewidth 4.
We learned models with treewidth 3 because of computational concerns. Fig. 2(b) shows the per-
point log-likelihood of learned models on test data depending on the amount of training data. We see
that on small training datasets both LPACJT finds better models than a basic hill-climbing approach,
but worse than the OBS of [17] and Chow-Liu. The implementation of OBS was the only one to
use regularization, so this outcome can be expected. We can also conclude that on this dataset our
approach overfits than hill-climbing. For large enough training sets, LPACJT results achieve the
likelihood of the true model, despite being limited to models with smaller treewidth. Chow-Liu
performs much worse, since it is limited to models with treewidth 1. Fig. 2(c) shows an example of

a structure found by LPACJT for ALARM data. LPACJT only missed 3 edges of the true model.

“Hill-climbing had 2 kinds of moves available: replace variablevith variabley in a connected sub-
junction tree, or relpace a leaf cliqdg with another cliquéC; \ S;;) U S». connected to a separat6y,..

X

XS 3,
o o ALARM
QV \V - \7 15 ~True-model
X o2 % X0z 5 OBS~—~7 AR
= = 8 —20p #&*" Chow-Liu
9=0 / il “"~Karger-Srebro
s = s — PACJT
% | — 525/ ~#—LPACJT+Local
3 f#=—Local
1 10
0=02 0=04 Training set size

(a) ExampleQs evolution

(b) ALARM - loglikelihood

(c) ALARM - structure

Temperature TEMPERAT.UIRE sa_mple run, TRAFFIC OBS
—40 2K training points
4 Chow-Liu

5 Chow-Liu 9 5 30 I
S50 J gt ° S| e
S [A i o 8 e
£ [5 2 £ 740 “——Local
g 60 g -47) 2 LPACJT+Local
o708 Karger-Srebro T o Karger—Srebro
- [LPACJT+Local g [FLPACHT] = -60] LPACJIT

TS 10° 10* % 2 10° 10°

Time, seconds Training set size

Training set size x 10

(d) TEMPERATURE loglikelihood (e) TEMPERATURE sample run (f) TRAFFIC loglikelihood

Figure 2: An example of evolution d@s for section 5 (2(a)), one structure learned by LPACJT(2(c)), experi-
mental results (2(b),2(d),2(f)), and an example evolution of the test set likelihood of the best found model (2(e)).

In 2(c), nodes denote variables, edges connect variables that belong to the same clique, green edges belong to
both true and learned models, blue edges belong only to the learned model, red - only to the true one.

TEMPERATURE. This data is from a 2-month deployment of 54 sensor nodes (15K data-
points) [8]. Each variable was discretized into 4 bins and we learned models of treewidth 2. Since
the locations of the sensor have astlike shape with two loops, the problem of learning a thin
junction tree for this data is hard. In Fig. 2(d) one can see that LPACJT performs almost as good
as hill-climbing-based approaches, and, on large training sets, much better than Karger-Srebro al-
gorithm. Again, as expected, LPACJT outperforms Chow-Liu algorithm by a significant margin if
there is enough data available, but overfits on the smallest training sets. Fig 2(e) shows the evolution
of the test set likelihood of the best (highest training set likelihood) structure identified by LPACJT
over time. The first structure was identified within 5 minutes, and the final result within 1 hour.

TRAFFIC. This dataset contains traffic flow information measured every 5 minutes in 8K loca-
tions in California for 1 month [11]. We selected 32 locations in San Francisco Bay area for the
experiments, discretized traffic flow values into 4 bins and learned models of treewidth 3. All non-
regularized algorithms, including LPACJT, give results of essentially the same quality.

7 Relation to prior work and conclusions

For a brief overview of the prior work, we refer the reader to Fig. 3. Most closely related to LPACJT
are learning factor graphs of [1] and learning limited-treewidth Markov nets of [13, 10]. Unlike our
approach, [1] does not guarantee low treewidth of the result, instead settling for compactness. [13,
10] guarantee low treewidth. However, [10] only guarantees that the difference of the log-likelihood
of the result from the fully independent model is within a constant factor from the difference of the
most likely JT:L L H (optimal) — LLH (indep) < 8*k'?(LLH (learned — LLH (indep)). [13] has
exponential complexity. Our approach has polynomial complexity and quality guarantees that hold
for strongly connected-JT e-representable distributions, while those of [13] only holdet 0.

We have presented the first truly polynomial algorithm for learning junction trees with limited
treewidth. Based on a new upper bound for conditional mutual information that can be computed us-
ing polynomial time and number of samples, our algorithm is guaranteed to find a junction tree that
is close inK L divergence to the true distribution, fstrongly connected-JT e-representable distri-
butions. As a special case of these guarantees, we show PAC-learnability of strongly cohxlcted
representable distributions. We believe that the new theoretical insights herein provide significant
step in the understanding of structure learning in graphical models, and are useful for the analysis of
other approaches to the problem. In addition to the theory, we have also demonstrated experimen-
tally that these theoretical ideas are viable, and can, in the future, be used in the development of fast
and effective structure learning heuristics.

approach modelclass guarantees true distribution samples time referenc

score tractable local any any poly [3, 5]
score tree global any any O(n?) [6]
score tree mixture local any any Oo(n?)t [12]
score compact local any any poly [17]
score all global any any exp [15]
score tractable const-factor any any poly [10]
constraint compact PAT positive poly poly [1]
constraint all global any 00 poly(tests) [16]
constraint tractable PAC strorgdT exp expt [13]
constraint tractable PAC strongk-JT poly poly this paper

Figure 3: Prior work. The majority of the literature can be subdivided into score-based [3, 5, 6, 12, 15, 10] and
constraint-based [13, 16, 1] approaches. The former try to maximize some target function, usually regularized
likelihood, while the latter perform conditional independence tests and restrict the set of candidate structures
to those consistent with the results of the teJtmctablemeans that the result is guaranteed to be of limited
treewidth,compact with limited connectivity of the graphGuaranteesolumn shows whether the result is a

local or global optimum, whether there are PAC guarantees, or whether the difference of the log-likelihood of
the result from the fully independent model is withic@nst-factorfrom the difference of the most likely JT.

True distributionshows for what class of distributions the guarantees hplsliperscript means per-iteration

complexity, poly -O(no(’“>), exp' - exponential in general, but poly for special cases. PAGd PAG mean
PAC with (different) graceful degradation guarantees.

8 Acknowledgments

This work is supported in part by NSF grant 11S-0644225 and by the ONR under MURI
NO000140710747. C. Guestrin was also supported in part by an Alfred P. Sloan Fellowship. We
thank Nathan Srebro for helpful discussions, and Josep Roure, Ajit Singh, CMU AUTON lab, Mark
Teyssier, Daphne Koller, Percy Liang and Nathan Srebro for sharing their source code.

References
[1] P. Abbeel, D. Koller, and A. Y. Ng. Learning factor graphs in polynomial time and sample complexity.
JMLR, 7, 2006.

[2] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-8&&M
Journal on Algebraic and Discrete Methqd2):277-284, 1987.

[3] F. R.Bach and M. I. Jordan. Thin junction trees.NiPS, 2002.

[4] 1. Beinlich, J. Suermondt, M. Chavez, and G. Cooper. The ALARM monitoring system: A case study
with two probablistic inference techniques for belief networksEtmo. Conf. on Al in Medicine, 1988.

[5] A.Choi, H. Chan, and A. Darwiche. On Bayesian network approximation by edge deletidAl |2005.

[6] C. Chow and C. Liu. Approximating discrete probability distributions with dependence triédsE
Transactions on Information Theory, 14(3):462-467, 1968.

[7]1 R. G. Cowell, P. A. Dawid, S. L. Lauritzen, and D. J. Spiegelhaltnobabilistic Networks and Expert
Systems (Information Science and Statisti&pringer, May 2003.

[8] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-driven data acquisition in
sensor networks. INLDB, 2004.

[9] K. U. Hoffgen. Learning and robust learning of product distributionsC@LT, 1993.
[10] D. Karger and N. Srebro. Learning Markov networks: Maximum bounded tree-width graphs. SODA-01.
[11] A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical models. UAI-05.
[12] M. Meila and M. I. Jordan. Learning with mixtures of treéMLR, 1:1-48, 2001.
[13] M. Narasimhan and J. Bilmes. PAC-learning bounded tree-width graphical modé&ll,12004.
[14] M. Queyranne. Minimizing symmetric submodular functioMath. Programming, 82(1):3-12, 1998.

[15] A. Singh and A. Moore. Finding optimal Bayesian networks by dynamic programming. Technical Report
CMU-CALD-05-106, Carnegie Mellon University, Center for Automated Learning and Discovery, 2005.

[16] P. Spirtes, C. Glymour, and R. Schein€ausation, Prediction, and Search. MIT Press, 2001.

[17] M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for learning Bayesian
networks. InUAI, 2005.

