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Abstract

Widespread use of surveillance cameras in offices and

other business establishments, pose a significant threat to

the privacy of the employees and visitors. The challenge of

introducing privacy and security in such a practical surveil-

lance system has been stifled by the enormous computa-

tional and communication overhead required by the solu-

tions. In this paper, we propose an efficient framework to

carry out privacy preserving surveillance. We split each

frame into a set of random images. Each image by itself

does not convey any meaningful information about the orig-

inal frame, while collectively, they retain all the informa-

tion. Our solution is derived from a secret sharing scheme

based on the Chinese Remainder Theorem, suitably adapted

to image data. Our method enables distributed secure pro-

cessing and storage, while retaining the ability to recon-

struct the original data in case of a legal requirement. The

system installed in an office like environment can effectively

detect and track people, or solve similar surveillance tasks.

Our proposed paradigm is highly efficient compared to Se-

cure Multiparty Computation, making privacy preserving

surveillance, practical.

1. Introduction

Video surveillance is a critical tool for a variety of tasks

such as law enforcement, personal safety, traffic control, re-

source planning, and security of assets, to name a few. How-

ever, the proliferation in the use of cameras for surveillance

purposes has introduced severe concerns of privacy. Every-

one is constantly being watched on the roads, offices, su-

permarkets, parking lots, airports, or any other commercial

establishment. This raises concerns such as, watching you

in your private moments, locating you at a specific place

and time or with a person, spying on your everyday activ-

ities, or even implicitly controlling some of your actions.

Privacy preserving video surveillance addresses these con-

trasting requirements of confidentiality and utility.

Ideally, one would like surveillance to be carried out on

obfuscated videos, without revealing any personal informa-

tion. For instance, in Figure 1 a frame, F , of the surveil-
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Figure 1. Privacy in surveillance: Tracking in obfuscated videos.

lance video is transformed into a set of seemingly random

images, Ii, on which a tracking operation is successfully

carried out. In this paper, we propose an elegant distributed

framework to carryout provably private surveillance while

significantly reducing the overheads of introducing privacy.

A practical and an efficient solution fits into the busi-

ness model of ‘surveillance as a service’. A company can

monitor houses, streets, stores, etc and alert the clients of

suspicious incidents, without intruding into their privacy.

The client just installs a shatter-cam and sends the feeds for

surveillance. Our proposed solution works well with cur-

rent trends of computing/storing on remote server clouds.

Traditionally, confidentiality of the data is achieved

through encryption. However, by definition, encryption de-

stroys any structure present in the data, thus negating the

ability to perform any meaningful video processing task.

Realizing this, recent privacy preserving computer vision

algorithms build on cryptographic protocols such as secure

multiparty computation(SMC) [2, 12]. SMC uses interac-

tions between multiple parties to achieve a specific task,

while keeping everyone oblivious of others data.

Introducing privacy and security in visual data process-

ing was attempted with considerable success in different

domains. Blind vision [2, 3] allows someone to run their

classifier on another person’s data without revealing the al-

gorithm or gaining knowledge of the data. Shashank et

al. [12] exploited the clustered nature of image databases

to improve the efficiency of SMC for example based image

retrieval by processing multiple queries together.

Smart cameras [6] do surveillance in the camera itself

or try to mask sensitive information in the videos. The

former requires expensive programmable cameras and are

restricted to single camera algorithms. Changing the al-



gorithms is tedious and costly. The second approach ad-

dresses problem specific concerns in surveillance videos.

Dufaux et al. [7] proposed a selective scrambling based so-

lution to preserve privacy. Face swapping [5] and face de-

identification [10, 13] try to modify face images such that

they can be automatically detected, but cannot be correctly

recognized. Boult et al. [6] uses programmable cameras to

carry out detection and masking of the regions of interest.

All the above approaches rely on the success of detection of

interest regions and do not provide any guarantee of privacy.

Moreover, the original video is lost in all.

We note that most of the current privacy preserving algo-

rithms are based on the generic framework of SMC [2, 12,

15] which requires heavy communication to achieve secure

computation. For instance, a single multiplication is car-

ried out via complex distributed protocol involving oblivi-

ous transfer (OT) [8], which is a highly communication in-

tensive subroutine in SMC. Factually, the round-trip time

in a LAN is of the order of a few milliseconds, whereas

several floating operations take no more than few nanosec-

onds. Clearly, these delays are too high, while dealing with

voluminous data like surveillance videos. Hence, solutions

based on SMC are impractical for our application.

In this work, we use the paradigm of secret sharing [11]

to achieve private and efficient computation of surveillance

algorithms. Secret sharing (SS) methods [4, 9, 11] try to

split any data into multiple shares such that no share by

itself has any useful information, but together, they retain

all the information of the original data. However, the stan-

dard SS methods, which were invented to address secure

storage of data, results in significant data expansion (each

share is at least the size of the data). Computing on the

shares [11] is inefficient as it would require some sort of

SMC. In this work, we exploit certain desirable properties

of visual data such as fixed range and insensitivity to data-

scale, to achieve distributed, efficient and secure compu-

tation of surveillance algorithms in the above framework.

Using this approach, one can do change detection on a typi-

cal surveillance video at 10 frames/second on generic hard-

ware. Our approach also addresses the concerns related to

video surveillance, presented in Table 1.

2. The Proposed Approach

The privacy of our surveillance system is based on split-

ting the information present in an image into multiple parts

or shares. Each share is sent to an independent server for

processing. The protocol in a nutshell is as follows:

1. The camera splits each captured frame, F , into k (> 2),

shares using a shatter function: φ(F ) = [I1, I2, . . . , Ik].
Each share is then sent to an independent computation

server for processing. Note that no share by itself reveals

any useful information about the original image.

a) Preserves Privacy: Ensure that the person doing

surveillance learns only the final output, and nothing else.

b) Computationally Efficient: The image representation

should allow efficient computations so as to realize surveil-

lance algorithms in the encrypted domain itself. Moreover,

the encoding process at the sensor should be light weight.

c) Efficient to Transmit: The encoding process should not

blow up the size of the video data.

d) Secure Storage: One should be able to store the surveil-

lance data in a secure fashion, so that breaking into a stor-

age server do not compromise the privacy of the data.

e) Addresses Legal Issues: For legal or investigative pur-

poses, someone with authorization should be able to re-

cover the plain video without the client’s help.

Table 1. Mandatory and desirable characteristics of a secure,

privacy-preserving surveillance system.

2. To carry out a basic operation f on the input image, each

computation server blindly carries out the equivalent ba-

sic operations, f ′ on its own share. This is equivalent to

the corresponding basic operation being carried out on

the original image: f ′(Ij) ≡ φ(f(F ))).

3. The results of operations on the shares are then inte-

grated by the observer using a merge function, to obtain

the final result: f(F ) = µ(f ′(I1), f
′(I2), . . . , f

′(Ik)).

Figure 2 shows a schematic diagram of the complete pro-

cess. The privacy of the overall system relies on the fact that

neither the independent shares, nor the results of computa-

tions on them, reveal any information about the original im-

age. The integration of results from the independent servers

reveal only the final result of the algorithm to the observer.

Figure 2. Secure computation of f(d) by a set of compute servers.

In order to analyze the security and privacy of the sys-

tem, we will formalize the notion of security as follows:

1. Information Revealed: We use the term information in

the strictest information theoretic sense. That is, an ob-

servable quantity I is said not to reveal any information

about another quantity F (in our case, the original im-

age), if: ∀aPr(F = a|I) is same as Pr(F = a).



2. Preservation of Privacy: A surveillance system is said to

preserve privacy, if it reveals nothing more than the final

output of the surveillance algorithm to any party in the

system, outside the camera.

3. Security Model: The servers are assumed to be hon-

est, but curious in nature. i.e., they will carry out the

expected computations faithfully, but may try to learn

about the original image from their view of the data.

They are independent in the sense that they will not col-

lude to extract any additional information.

The functions φ() and µ() that form the basis of our pro-

tocol are adapted from the popular secret sharing scheme

using the Chinese Remainder Theorem (CRT) [1, 9].

2.1. The Modular Transformations: φ() and µ()

In our problem, we secure each pixel, d of an image,

F , independently using a pixel level shatter: φp(). The di-

rect CRT based transformation would compute each share

as d mod pi for different primes (pi). However, given the

correlation between the neighboring pixels in an image, the

modulo remainder reveals significant information about the

secret (image) (see Figure 3(b)). To overcome this, we

introduce the following modification to obtain the shatter

function φp():

di = φp(d, pi) = (d · s + η) mod pi, (1)

where d is a single pixel in the image, s is a constant,

positive scale factor, and η is a uniform random number:

U(0, rmax), rmax ≤ s. Note that the first part of φp(), ef-

fectively makes the LSBs of the resulting number, random.

For example, if s = 2k and rmax = s, then k random bits

are appended to the right of d. Intuitively, if pi < s, then

di would essentially be random, and would not reveal any

information about d (see Sec.2.4 for analysis).

Given, di = φp(d, pi) for different relatively-prime pis,

the secret d can be recovered by CRT by solving a system

of congruence. The solution is unique if all the intermediate

values (di, f
′(di)) are less than the product of the primes

(pis). Note that η, which was randomly chosen for each

pixel is not used for recovering the secret. The CRT hence

forms our recovery transformation µp(), at the pixel level.

To shatter an image, we apply the above transformation

to each pixel in the image independently, while keeping

the set of pis and s constant. However, we vary the ran-

dom number, η for every pixel and every image that we en-

code, and hence the result of modular division is essentially

random. Note that without scaling and randomization, the

modulo image will reveal considerable amount of informa-

tion about the original image (see Figure 3(b)). Choosing

an arbitrary range of randomization results in partially se-

cure shares (see Figure 3(c)). As explained in section 2.3,

(a) Original Image (b) Res: I%89

(c) Res: (I · 44 + η)%89 (d) Res: (I · 109 + η)%89

Figure 3. Data Obfuscation: Information retained in the residue

image for various scale factors and corresponding η distributions.

it is possible to choose a range for η that will generate se-

cret shares that are completely obfuscated (see Figure 3(d)).

In this example, the second-order entropy of image 3(d) is

equivalent to the entropy of a pure random noise image.

The standard CRT based secret sharing scheme by itself

is not ideal for our application as it leads to heavy commu-

nication overheads. Each pixel share is of size |pi| bits, the

total share size is therefore given by
∑i<l

i=1
|pi| > l.|po|,

where l is the number of servers/shares. Choosing an opti-

mal po becomes crucial since it determines both the range

of numbers we can correctly represent as well as the total

size of the shares. Our solution, based on a SS scheme de-

signed for visual data, reduces the data expansion by at least

a factor of l. Such reduction is prominent for huge data

such as live-video feeds, while ensuring acceptable levels

of security. In the process, we also utilize the homomorphic

properties of the modular domain to circumvent SMC, thus

gaining on efficiency.

2.2. Computing on the Shares

The operations of addition and multiplication are well

defined in modular arithmetic, hence making the trans-

formed data appropriate for computations. For example,

if f is defined as: f(x, y) = x + y, then one can com-

pute xi + yi at each compute server and recover x + y at

the observer using CRT. In other words, modular arithmetic

is homomorphic to both addition and multiplication, within

the modulo base. i.e.,

(a + b) mod p = ( (a mod p) + (b mod p) ) mod p

(a · b) mod p = ( (a mod p) · (b mod p) ) mod p

As mentioned before, given the value of the rhs of the

above equations for multiple values of p, one can exactly

recover (a + b) or (a · b) using CRT.
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Figure 4. Example: Affine intensity transform in modular domain.

To clarify the process, let us consider the processing of

the image patch shown in Figure 4. As each pixel is pro-

cessed independently, consider the pixel with value 68. Let

the scale factor s be 33 and the random number η, be 10, the

resulting d · s + η would be 2254. If the image is shattered

into three shares, with primes 19, 29, and 31, the corre-

sponding shattered shares would be: {12, 21, 22}.

If the algorithm applies the affine transformation f(d) =

2 ·d+5 to each pixel d, then each compute server will carry

out f ′(di) = (2 · di + 5 · s)%pi independently on its share,

and obtain {18, 4, 23}. The observer will integrate these

numbers using CRT to obtain 4673, which when divided by

the scale factor 33 gives 141 (2 · 68 + 5 = 141).

The above computations are valid only for integer values

of operands and results. As the pixel values of an image has

a limited and finite range, these conditions are easily satis-

fied. Moreover, any non-integer operation can be correctly

simulated by appropriately scaling the entire data/algorithm

before the shattering operation. One can exactly reconstruct

the ideal output by scaling down the results if all the in-

termediate values are correctly represented in the Residue

Number System, i.e., the product of the primes pi is greater

than any intermediate value in the entire computation.

2.3. Selection of Primes and Scaling Factor

Given the value of k, we select p1, . . . , pk such that their

product, P , is greater than any intermediate value in the

algorithm. One could choose the smallest k consecutive

primes satisfying the above property. The scaling factor,

s, should be higher than the largest prime, to obfuscate each

share (see Figure 3). The range of the intermediate values

is a function of the scale factor. So the process may have to

be iterated a couple of times during the design phase.

Let M denote the maximum intermediate value that is

to be represented in the surveillance algorithm, when run in

the plain domain. Assume that we require a scale factor of s
to achieve complete privacy. Let c be the constant such that

M.sc is the maximum intermediate value to be represented

after scaling. Note that c depends on the algorithm and is

usually small (≈ 2) in most vision algorithms. For example,

if the operations being performed are linear then c is 1, for

quadratic functions c would be 2 and so on. In other words,

the primes p1, . . . , pk are chosen such that:

s ≥ max
i

pi, and s <

(∏

i pi

M

)
1

c

(2)

Simplifying the above, we find that, if M < (maxi pi)
k−c

,

then the original image is hidden from the individual

servers. At the same time, we can guarantee that the re-

construction by CRT is unique. The above inequality is a

sufficient condition and our experiments show that it is usu-

ally not necessary. We now take a closer look at the amount

and nature of information that is revealed by the residue im-

age and the related privacy concerns.

2.4. Analysis of Privacy

As noted before, the privacy of the system is based on

splitting the information present in an image into multiple

shares. The parameters used for shattering i.e., the primes

pi and scale factor s are constant for each shattering oper-

ation and are in general assumed to be public. The only

possible information leakage of the secret is that retained

by each share. We now analytically show that with an opti-

mal parameter selection, the information retained by a share

is negligible. Consider a pixel with value d ∈ [0, 255],
which is scaled by s, followed by addition of a random

number, η. Note that, if η follows the uniform distribution,

U(0, rmax − 1), the distribution of ri = η%pi would be:

Pr(ri = x) =

{

(k + 1)/rmax, x < rmax%pi

k/rmax, otherwise,
(3)

where k is ⌊rmax/pi⌋. The above distribution will be uni-

form, leading to perfect security if rmax is a multiple of pi.

On the other hand, if rmax is not a multiple of pi, there is

a slight step of size 1/rmax (see Equation 3) in the result-

ing distribution at xk = rmax mod pi, where rmax known

only to the camera. That is, for a particular pixel value d,

the share di, is marginally more likely to be within a cer-

tain range of pixel values. Taking the most paranoid point

of view, we assume that in surveillance, a large number of

frames are likely to be identical, and one might learn this

distribution, over an extremely long period of time. This is

statistically impossible if we choose a sufficiently large k,

and we can choose a value of k to make the step arbitrarily

small. Even in this case what someone would learn is: ‘the

background is slightly more likely to be dark than bright’.

In short, we see that the method of shattering is statisti-

cally impossible to break for images, and unlike encryption

based methods, even if it is broken, nothing useful can be

learned from the information that is revealed. The advan-

tage of our method is that such a high level of security can

be achieved, while allowing computations to be carried out

efficiently on the shattered videos.



2.5. Implementation Challenges

As described above, carrying out integer addition and

multiplication in the modulo domain is relatively straight

forward. We might feel that one can achieve any operation

that can be modeled as a combinatorial network of AND

and XOR gates, which makes it equal in power to a gen-

eral purpose computer. However, there are many practical

challenges to be overcome to implement the functionalities.

Modulo arithmetic is carried out using positive integers

only. Hence one has to map the range of numbers used in

an algorithm to an appropriate range of positive integers.

Signed numbers in the residue form are represented with an

implicit sign. If the range of numbers used is (0, M), we

used the numbers in the range (0, M/2) to represent positive

numbers, and for the remaining numbers it is negative. The

change in sign of |Z|M is performed by the operation of

additive inversion of Z, i.e. -Z = M - Z, which is equivalent

to (m1 − z1, m2 − z2, ...mk − zk).
The employed RNS, correctly represents integers in the

range (-M/2, M/2). Use of any number beyond this range

will result in errors in the recovered results using CRT,

which we refer to as overflow or underflow. Overflow and

underflow are safely avoided by working in a domain large

enough to correctly represent all intermediate values en-

countered. However, the net data size of the shattered video

streams is directly proportional to the domain-size that we

work with. An efficient domain can be chosen by precom-

puting the upper bound on the possible intermediate values,

and then appropriately deciding on the RNS.

Operations such as divisions and thresholding are diffi-

cult to achieve in RNS. Division of an integer A by B is

defined as A/B = (ai.bi
−1) mod mi in the RNS. This is

valid if B is co-prime with M and B divides A. For this

to always hold, one would have to take into account B, in

choosing the RNS. Though this looks practical (since the

original algorithm is known beforehand), it might not al-

ways be efficient since the shattered data size (# of bits)

is directly proportional to the chosen domain-size (consider

the case where division has to be performed for multiple

divisors. Validating the division for every divisor can some-

times result in choosing a larger, than required, domain size,

thus affecting the efficiency).

An alternate solution for division and thresholding can

be designed using an additional untrusted server. Every

independent computation server (ICS) sends over their re-

spective residues to the additional server, where the merge

function is applied and the division/comparison is per-

formed in plain domain. However, simply doing this would

end up revealing the intermediate results to the additional

server. To secure against such information leakage, ev-

ery ICS does a reversible randomization of their respective

residues before sending them over to the additional server.

The server does the division/comparison on the randomized

data(post merging) it received. The computed result is shat-

tered by it and sent back to the respective ICS where it is

de-randomized to retrieve the actual(expected) modulo re-

sult. Note that the randomization should be done in a way,

so as to avoid possible factorization and GCD based attacks.

3. Experimental Results and Discussions

We now provide a detailed account of the implementa-

tion and analysis of a common surveillance task, tracking

of moving objects, using the proposed framework. We de-

scribe the mapping of this problem to the framework and

show the steps involved in carrying out the computations.

We also describe in brief, the results of face detection in the

proposed framework. The process of tracking is carried out

in two steps, that of change detection by background sub-

traction, followed by tracking of points of change.

Background Image Subtraction: We first consider the

problem of background removal. Specifically, our problem

is: given a static background image (in shattered form), sub-

tract it from each captured image, such that at any point of

time, the original image or the background image is not re-

vealed to anyone. At the end of the protocol, all that is

learned by the observer is the final output (the difference

image). The complete process can be sub-divided into:

1: Deciding the RNS: Every pixel in the image has a

value in the range [0 − 255]. In background subtraction,

the range of numbers in the result is Y = [−255, 255], or

Y = [0, 511] (using an implicit sign). Shattering involves

scaling every pixel by s. Therefore in the RNS we need

to correctly represent the range R = [0, s.Y ]. The optimal

number of servers and the prime numbers defining the RNS

is chosen as described in section 2.3. In our example, we

have number of servers k = 3, the scale factor s = 33, and

the primes are 19, 29, and 31. These set of parameters form

our RNS, which is made public.

2: Defining the Algorithm: Next step is to map the orig-

inal algorithm into modulo domain. In our case it is pixel-

wise subtraction of a fixed background image (B) from the

captured image frame (F ), both in the shattered form. As

the only operation that needs to be performed is subtraction

between two scaled quantities, the equivalent operation in

the modulo domain would be the subtraction of the corre-

sponding shattered pixel values as described in section 2.2.

3: Capture Image and Shatter: The image captured

by the camera (Figure 5(a)) is shattered using the modu-

lar transformation described in section 2.1. In our example,

the parameters used in the shatter function are the ones as

obtained above. Input frame F is scaled by s = 33 and

its lower order bits randomized to obtain an image I ′. The

image I ′ is then shattered using the primes pis and the shat-

tered shares are sent to the corresponding servers.

4: Apply the algorithm on shattered components: The

shattered components received by the servers are now in-



dependently processed at each of the servers. As defined

in step 2, the background image B′ is subtracted from the

each of the input frames. At the server i, the arithmetic

operations are done modulo prime pi. For example if the

difference of two pixels is computed as D = 100, and the

corresponding prime for the server is pi = 29, then the dif-

ference is stored as 100%29 = 13.

5: Merge the outputs at the observer: The computed

results are sent over to the observer who uses the merge

function (see section 2.1) to obtain the final output. In our

example, the observer obtains the 3 shattered images. Now

the observer uses the Chinese remainder theorem(CRT) to

reconstruct every pixel of the output image from the corre-

sponding pixel values of the shattered images it receives.

For example if the components of a particular pixel af-

ter subtraction are {12, 0, 11} corresponding to the primes

{19, 29, 31}, CRT would reconstruct−1508 from these val-

ues. The result is then scaled down by the initial scale factor

33 to obtain the final result as −45.

Change Detection: The detection of change involves

subtraction of a frame from a background frame, which is

carried out as explained before. We also update the back-

ground image by replacing pixels in the background where

change is detected with the corresponding ones from the

foreground. This is done directly in the RNS. The differ-

ence values are integrated by a thresholding server, using

CRT, which then compares the result against the pre-defined

threshold to detect motion.

However, sending the shattered differences to a threshold

server reveals the difference image. To avoid this, we apply

a reversible pixel shuffle that would remove any structure

in the image, before sending it to the threshold server as

explained in section 2.5.

The additional (untrusted) server thresholds the received

image to get a shuffled binary image. This is sent back to

(a) Input Frame (b) Shattered Frame (c) Shattered BG

(d) Shuffled Difference (e) Change Detection (f) Output+Original

Figure 5. Change Detection: (b,c) are the shattered shares seen by

one of the compute servers, (d) is the obfuscated difference image

obtained after a pixel shuffle, (e) is the output as available with the

observer, and (f) comparison with original image.

each of the ICS, where it is de-shuffled to obtained the final

binary image. As the result is now in plain domain, one can

also apply any post-processing operations such as erosion,

merging, etc. to remove any noise. Moreover, the back-

ground learning can work in the transformed domain as the

pixels with no change are known to the compute servers in

each frame. We also note that the accuracy of the algorithm

is not affected by the obfuscation process, as indicated by

the comparison with plain domain result. Figure 5 shows a

sample frame that is being processed in the framework.

Table 2 shows the exact time (in seconds) spent by the in-

dividual compute servers as well as the thresholding server

(usually the observer). We note that even with a non-

optimized implementation on a desktop class machine, one

can achieve a computation speed of upto 14 (QVGA) frames

per second at each server. The total data to be transmitted in

the process (in Kilobytes) and the corresponding communi-

cation time, assuming a 100Mbps connection between the

two servers, are also given. We note that most operations

are carried out in sub-second times.

Image # of Comp. Time Commn.

Resol. Servers Serv. Merge Data Time

PITS’00 3 0.367 1.294 324 0.025

768x576 5 0.362 1.433 270 0.017

7 0.377 1.316 162 0.013

CAVIAR 3 0.110 0.292 81 0.006

384x288 5 0.122 0.310 67.5 0.005

7 0.137 0.338 40.5 0.003

Towers 3 0.071 0.189 56.25 0.004

320x240 5 0.074 0.201 46.87 0.004

7 0.073 0.217 28.12 0.002

Table 2. Avg. computation and communication times for change

detection.

Optical Flow and Tracking: The above algorithm is

extended to compute the optical flow. We use the change

detection results as guidelines, and compare a patch around

each motion pixel against its neighbors. The comparison is

done using correlation, which is similar to the affine trans-

formation operation described in example in Figure 4. The

optical flow estimates thus derived, along with the motion

segmentation results from the previous section can be used

to build a complete system that detects and tracks peo-

ple/objects. Figure 6 shows the results of optical flow being

computed from pairs of images. The shattered images avail-

able with the computation servers are omitted here due to

space constraints, and they look very similar to those in the

previous experiment. Once again, the help of an additional

server is used in finding the maximal correlation windows

after a shuffle, and the complete task is carried out without

revealing any additional information about the image. One

such result of tracking is shown in Figure 1.



(a) Original Frame (b) Tracking (c) Tracking in Plain

Figure 6. Computation of Optical Flow: (a) Frame from input se-

quence, (b) optical flow computed, and (d) results superimposed

on original frame. Note that the shattered images are omitted here.

Face Detection: For the next experiment we implement

a more complex classifier, the popular face detection algo-

rithm by Viola and Jones(VJ) [14] that uses a cascade of

classifiers. Each classifier needs a set of Haar-like features.

Note that all the features can be computed by addition or

subtraction of pixel values within a rectangular neighbor-

hood, which can be implemented directly in the RNS.

Note that the classifiers are trained on plain images and

applied on the shattered ones. In a nutshell, VJ adopts

a rejection cascade, where every image-window is passed

through the cascade to detect faces. An integral image rep-

resentation(which is summation of pixels) is computed for

the input image. For every stage of the cascade, the rectan-

gular features are computed from the integral image (this

involves addition and subtraction operations). The com-

puted feature values are securely merged and compared

against the cascade threshold to decide upon the accep-

tance/rejection of the window.

Considering that the only operations involved in VJ are

addition, subtraction and thresholding, it is fairly straight

forward to define the equivalent functions for modular do-

main. Each computation server computes the integral repre-

sentation of its own secret share (this is equivalent to ‘shat-

ter’ of the integral image computed in plain domain). The

cascade (which is trained in plain domain) is then applied

independently at each server. Every window of the image is

then passed through the cascade, for which the feature value

is computed for every weak classifier. In our setup, every

server can independently compute its share of the feature

value (computed from the integral representation on its se-

cret share). Thresholding is done (as described before) with

the help of a pixel shuffle and an additional server. The

location of the windows that pass through the complete cas-

cade are made known to the observer as final output. Figure

7 shows the result of face detection on an input image as

obtained by the observer as well as the plain domain re-

sult for comparison. Once again we note that the outputs

are identical. One can also notice that the plain image as

well as the feature values computed are hidden from all par-

ties involved, thus securing against any possible informa-

tion leakage, and in the process only knowledge gained by

the observer is the final output.

Table 3 shows the amount of communication between

(a) (b) (c)

Figure 7. Face detection (a): Captured input image, (b): Result

as received by observer, and (c) Detection result, if run on the

plain image. The detected faces are shown in white boxes and the

current window being processed is shown in gray.

the compute servers and the observer with varying number

of servers and image sizes (in kilobytes). The data can be

communicated over high speed connections to the observer

for thresholding.

Image Parallelization

Resolution 3 5 7 10 12

200x 200 463.0 289.4 231.5 173.6 173.6

320x240 994.8 621.7 497.4 373.0 373.0

400x320 1777.1 1110.7 888.5 666.4 666.4

512x512 3908.4 2442.7 1954.2 1465.6 1465.6

Table 3. Data transferred between thresholder and servers (in KB).

Overheads of Parallelization: To estimate the effects

of encoding in terms of computation and communication

overheads as well as accuracy, we study three different as-

pects. In the first experiment, we compute the average num-

ber of bits in an encoded frame and the total image size. An

interesting observation from Table 4 is that as the number

of compute servers (or primes) increases, the average bits in

the resultant image first decreases, and then increases. The

increase in the later part is due to the need of using larger

primes, which drives up the size of the resulting image. One

can always choose an optimal number of servers, as already

explained in section 2.3.

Avg Data Size

# primes Scale Avg bits Size/Frame Total Size

3 17 6 56.25 168.75

4 31 5 46.87 187.48

5 19 4 37.50 187.50

10 13 3 28.13 281.30

20 11 5 46.87 937.40

50 31 6 56.25 2812.5

Table 4. Avg. data size (without compression) vs. parallelization.

Figure 8 shows the time required for each shattering and

merging operation for a frame. We note that the time re-

quired for merging is considerably higher due to the use of

large-number arithmetic when dealing with scaled numbers.

Even then, the system is able to do these operations in well

under a second.
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(b) Merging Time

Figure 8. Time required to shatter/merge a frame with increasing

number of servers.

Comparison with SMC: Clearly, any secure solution

needs more processing over an insecure one (eg. http vs

https). For an application, if overheads are within accept-

able limits, a provably secure method is always preferred.

Our method compares with crypto solutions (SMC based)

in terms of privacy, which are extremely inefficient. Our

main achievement is an approach that achieves informa-

tion theoretic privacy, while being extremely efficient over

SMC. Our cameras can be inexpensive as the in-camera op-

erations are simple and fixed. For example, VJ based FD

on a QVGA frame requires evaluation of 92636 windows

(Wo = 24, Ho = 24, S = 1.25). As per [2], each window

takes a few seconds for a non-face and several minutes for

a face. Even at 2 secs per window, this translates to 185272

secs (51 Hrs) per frame, which we reduce to 2-3 secs per

frame. The processing time can further be improved by pro-

cessing several windows simultaneously.

Data Transformation and Accuracy: Image encoding

was achieved by taking the residue images of a noisy ver-

sion of the scaled input image. To study the quality of the

restored image, we conducted an experiment to encode a set

of varied images over a range of parameters and computed

the PSNR scores of the recomputed image and is shown in

Table 5. We see that all the images have PSNR in the fifties.

Note that for image compression purposes, a PSNR value of

above 35 is considered very good, and our transformation is

practically loss-less.

Image Scaling Factor

Resolution 11 31 80 120

320 × 240 51.552 51.309 51.138 51.134

512 × 512 51.598 51.345 51.176 51.161

640 × 480 51.568 51.301 51.141 51.138

800 × 600 51.567 51.307 51.142 51.134

Table 5. Peak Signal-to-Noise Ratio(PSNR), for k = 5.

As the images are represented faithfully by the transfor-

mation, and the algorithms are exactly mapped from the

plain domain, the performance of the algorithms in the pro-

posed framework would be the same as that of their plain

domain equivalents. Furthermore, we note that the noise η,

that we add to a scaled pixel is conditioned to be always less

than the scale factor s. This is equivalent to adding a noise

of less than 1 unit to the original image. This noise is of-

ten far less than that present naturally in surveillance videos

and does not affect the results of the algorithms.

4. Conclusions

We have presented an efficient, practical and highly se-

cure framework for implementing visual surveillance on un-

trusted remote computers. To achieve this we demonstrate

that the properties of visual data can be exploited to break

the bottleneck of computational and communication over-

heads. The issues in practical implementation of certain al-

gorithms including change detection, optical flow, and face

detection are addressed. This work opens up a new avenue

for practical and provably secure implementations of vision

algorithms, that are based on distribution of data over mul-

tiple computers.
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