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T. Montaruli,25 R. W. Moore,22 R. Morse,34 M. Moulai,13 P.
Muth,0 R. Nagai,14 U. Naumann,52 G. Neer,21 H. Niederhausen,24

S. C. Nowicki,21 D. R. Nygren,8 A. Obertacke Pollmann,52 M.
Oehler,28 A. Olivas,16 A. O’Murchadha,11 E. O’Sullivan,45 T.
Palczewski,7,8 H. Pandya,38 D. V. Pankova,50 N. Park,34 P.
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Tollefson,21 L. Tomankova,10 C. Tönnis,47 S. Toscano,11 D. Tosi,34

A. Trettin,53 M. Tselengidou,23 C. F. Tung,5 A. Turcati,24 R.
Turcotte,28 C. F. Turley,50 B. Ty,34 E. Unger,51 M. A. Unland
Elorrieta,37 M. Usner,53 J. Vandenbroucke,34 W. Van Driessche,26

D. van Eijk,34 N. van Eijndhoven,12 S. Vanheule,26 J. van Santen,53

M. Vraeghe,26 C. Walck,45 A. Wallace,1 M. Wallraff,0 N.
Wandkowsky,34 T. B. Watson,3 C. Weaver,22 A. Weindl,28 M. J.
Weiss,50 J. Weldert,35 C. Wendt,34 J. Werthebach,34 B. J.
Whelan,1 N. Whitehorn,31 K. Wiebe,35 C. H. Wiebusch,0 L. Wille,34

D. R. Williams,48 L. Wills,41 M. Wolf,24 J. Wood,34 T. R. Wood,22

K. Woschnagg,7 G. Wrede,23 D. L. Xu,34 X. W. Xu,6 Y. Xu,46 J. P.
Yanez,22 G. Yodh,27 S. Yoshida,14 T. Yuan34 and M. Zöcklein0
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Abstract. Efficient treatment of systematic uncertainties that depend on a large number of
nuisance parameters is a persistent difficulty in particle physics experiments. Where low-level
effects are not amenable to simple parameterization or re-weighting, analyses often rely on
discrete simulation sets to quantify the effects of nuisance parameters on key analysis ob-
servables. Such methods may become computationally untenable for analyses requiring high
statistics Monte Carlo with a large number of nuisance degrees of freedom, especially in cases
where these degrees of freedom parameterize the shape of a continuous distribution. In this
paper we present a method for treating systematic uncertainties in a computationally efficient
and comprehensive manner using a single simulation set with multiple and continuously var-
ied nuisance parameters. This method is demonstrated for the case of the depth-dependent
effective dust distribution within the IceCube Neutrino Telescope.

Keywords: Analysis and statistical methods; Simulation methods and programs; Systematic
effects
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1 Introduction

A pervasive challenge in experimental particle physics is the development of robust treatments
for systematic uncertainties. There is no single correct approach to treating systematic un-
certainties in any analysis, but it is nevertheless recognized that a credible parameterization
of ignorance about the experiment being undertaken is a critical ingredient in any measure-
ment. Furthermore, for analyses yielding unified confidence intervals or Bayesian intervals
in multi-dimensional spaces, neither an overly tight nor an overly loose parameterization of
ignorance can generally be considered to be conservative - either may enhance the likelihood
of a spurious signal or overly strong exclusion under certain circumstances, and so it is vital
to parameterize ignorance as accurately as possible. Given that no parameterization of un-
certainty is exact, and that un-modelled effects and simplifying assumptions will always be
present, treatment of systematic uncertainties is be a frequent source of difficulty in particle
physics and beyond.

The goal of this work is to present a method used at the IceCube South Pole Neutrino
Observatory [1, 2] to propagate a particularly complex form of systematic uncertainty from
calibration constraints to analyses of atmospheric neutrinos, including searches for sterile
neutrinos [3]. The uncertainty in question is that of the effective dust concentration as a
function of depth within the ice of the IceCube neutrino telescope. For the purpose of this
work, the term “dust” will be used to refer to all forms of optical impurity within the ice,
although mineral dust itself is only one major component.

The dust distribution within IceCube and the methods used to characterize it have
been described at length elsewhere [4] and ongoing campaigns continue to provide deeper
understanding of its optical properties [5–10]. In past generations of IceCube analyses, the
detailed properties of the bulk ice in the array could be shown to be a sub-dominant concern
(for example, in Ref [11]), with their effect on analysis distributions being comfortably less
than statistical uncertainty in most samples. The latest generation of atmospheric neutrino
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analyses at IceCube, on the other hand, consider samples containing more than 250,000 muon
neutrino candidates [12]. For these analyses, percent-scale precision on event distributions is
required. This mandates a detailed understanding of the effect of uncertainty on ice properties
such as dust distribution within analyses.

The reasons why the dust distribution in IceCube is a particularly challenging uncer-
tainty to parameterize include the following:

• The effect of the dust concentration vs depth on variables such as reconstructed muon
energy and zenith angle is highly non-trivial to estimate. The only known way to
establish this effect is through Monte Carlo simulation of an event within a given ice
model, and it is computationally unfeasible to generate Monte Carlo samples given
every reasonable ice model configuration.

• The dust concentration varies continuously as a function of depth. The uncertainty on
this continuous function must be constrained and propagated without introducing an
overwhelming number of nuisance parameters.

These two challenges are not unique to this source of uncertainty or to IceCube, and the
method presented here may be used to treat uncertainties on continuous functions in highly
multidimensional spaces in other contexts. The organization of this paper is such that we
treat these two challenges in order. The first challenge is addressed in Sec. 2, via construction
of the SnowStorm method, a Monte Carlo technique whereby constraints on many nuisance
variables can be mapped from calibration data to analysis space in a computationally efficient
manner. The second challenge is then addressed in Sec. 3, focusing on the specific example
of the effective dust distribution in IceCube. A Fourier parameterization is developed that
allows for propagation of the most important uncertainty contributions from calibration to
analysis space, and the SnowStorm approach is applied to generate a covariance matrix for
use in physics analysis.

2 The SnowStorm MC Method

2.1 Measurements and systematic uncertainties

A wide class of measurements in particle physics are made by comparing some observed
distribution of events φ(Eα) - for example, a measured neutrino spectrum as a function of
energy - against a predicted distribution Ψ~ρ(Eα), generally derived from calculations and
Monte Carlo simulations, informed by calibration data. The distribution to be measured is
a function of some variable Eα, where α may be either a simple index (for example, labelling
energy bin number), a compound index (for example, energy and zenith bin numbers), or
a continuous variable (in a non-binned analysis). The prediction depends on some “physics
parameters” to be measured ~ρ, and carries some uncertainty on associated with systematic
and statistical effects. In the regime where Gaussian propagation of errors is valid, the
uncertainty on Ψ~ρ(Eα) can be completely described as a covariance matrix in the analysis
space, Σ~ρ(Eα, Eβ). A measurement of ~ρ is made by comparing φ(Eα) with Ψ~ρ(Eα) given
Σ~ρ(Eα, Eβ) at each ~ρ. Exactly what the outcome of this measurement represents and how
the final result is constructed depends on whether a frequentist or Bayesian probability
construction is preferred, and we will not review this topic here. What is important is that
in either case, the proper estimation of Σ~ρ(Eα, Eβ) is central to calculation of the final result.
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Any effect that influences the analysis distribution and that depends on some parameters
that are imperfectly known will contribute to Σ~ρ(Eα, Eβ). The unknown parameters on which
this effect depends are typically called “nuisance parameters” and we represent them as a
vector ~η. Given some choice of ~η, the predicted event distribution can be calculated, and
we denote this as ψ~ρ,~η(Eα). Choosing coordinates such that the “central” prediction is one

corresponding to ~η = ~0, we impose the definition Ψ~ρ(Eα) ≡ ψ~ρ,~0(Eα).
Broadly speaking, there are two typical things an analyzer may want to know about the

effects of the nuisance parameters on the prediction:

1. What is the effect of varying ~η on the predicted distribution of events? In other words:
how does ψ~ρ,~η(Eα) depend on ~η?

2. Given some set of constraints on ~η from calibration data or other experiments, what
is the uncertainty on Ψ~ρ(Eα)? In other words, given available knowledge of ~η, what is
Σ~ρ(Eα, Eβ)?

For some nuisance parameters the dependence of ψ~ρ,~η(Eα) upon ηi is straightforward to
model, and techniques such as re-weighting can be used to answer the first question. However,
for other classes of systematic uncertainty, for example, effects that change detector response
in non-trivial ways, the effect on final analysis-level distributions is highly non-trivial to
estimate. A common approach for these classes of uncertainty involves production of many
distinct Monte Carlo sets with different choices of nuisance parameters. This approach,
sometimes described as a “multiple Universes” scheme, becomes quickly computationally
untenable as the dimensionality of ~η becomes large, especially for high-statistics samples
where the corresponding Monte Carlo samples must have high event counts. It can also lead
to neglecting of important correlations between different ηi variables.

For this reason and others, enumeration of a suitable suite of ~η parameters and answering
of the two questions posed above is often the most time-consuming aspect of a carefully
constructed particle physics analysis. The SnowStorm Monte Carlo method described in this
paper is a recipe for answering both questions (1) and (2), given an arbitrarily large number
of ~η parameters using a single Monte Carlo ensemble.

2.2 The SnowStorm Monte Carlo ensemble

A SnowStorm Monte Carlo ensemble1 consists of a single simulation set where every event (or
every group of a few events) is generated with a unique set of nuisance parameters ~η. Under
some loose assumptions, given a suitably prepared SnowStorm Monte Carlo sample, it is
possible to assess the effects of these variations on an analysis by appropriately manipulating
this ensemble. The structure of the SnowStorm ensemble in ~η space is compared schematically
to a “multiple Universes” based approach in Fig. 1, left.

An assumption underlying the SnowStorm method is that the effects of systematic un-
certainties on analysis variables are sufficiently small that they can be treated perturbatively.
Such an assumption also underlies, explicitly or implicitly, the majority of methods for sys-
tematic uncertainty estimation and error analysis in common use. We also assume that the
statistical uncertainty on Monte Carlo event counts is very small compared to that on the
data. Under such conditions, summation over a Monte Carlo ensemble with different values

1The name SnowStorm reflects the idea that each event in the sample is distinct, like each snowflake in a

snowstorm
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Figure 1. Left: Cartoon illustrating the difference between many discrete shifts in nuisance param-
eters (red squares) – each requiring an entire Monte Carlo set – compared with a single SnowStorm
Monte Carlo (small blue dots). Right: the method of extracting independent gradients and building
up a covariance matrix is accurate in the limit that the analysis space is locally flat as the nuisance
parameters are varied. This corresponds to linear perturbativity.

of ~η distributed according to a distribution function P (~η) can be replaced by an integration:

∑

all ~η

→
∫

dNηP (~η). (2.1)

The distribution function P (~η) is specified when generating the Monte Carlo ensemble. We
enforce on P (~η) two properties: it is normalized and it is symmetric in every variable ηi such
that:

P (ηi, ~ηj 6=i) = P (−ηi, ~ηj 6=i) ∀i, (2.2)
∫

dNη P (~η) = 1. (2.3)

Much of what follows conceptually relies only on these assumptions. For simplicity, however,
we make an explicit choice of P (~η) choosing a product of Gaussian functions of equal width
σ:

P (~η) =
∏

i

1

σ
√
2π
e−η2

i
/2σ2

. (2.4)

The equal-width requirement corresponds to a choice of coordinates for ~η, rather than a
constraint on the size of any physical effects to be modelled.

If the effects of the nuisance parameters ~η are perturbative, this implies that the distri-
bution function at any ~η can be written as a Taylor expansion around the central distribution:

ψ~ρ,~η = Ψ~ρ + ~η.~∇η

[

ψ~ρ,~η

]

~η=~0
+O(η2), (2.5)
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with the largest effects present in the first term. Neglecting the O(η2) terms implies making
a locally Euclidian approximation to the nuisance space as illustrated in Fig 1, right. This is
appropriate for a wide class of effects, and always true for sufficiently small perturbations in
~η. This assumption should not be taken for granted, however. Its validity can be tested given
availability of both a central Monte Carlo set Ψ~ρ and a SnowStorm ensemble, by considering
the integrated prediction of the SnowStorm sample:

ψSnowStorm
~ρ =

∫

d~ηP (~η)ψ~ρ,~η =

∫

d~ηP (~η)
[

Ψ~ρ + ~η.~∇η

[

ψ~ρ,~η

]

~η=~0
+O(η2)

]

. (2.6)

The integral over the distribution function in the first term normalizes to 1 since
∫

d~ηP (~η) =
1. The second term is an odd function of ~η integrated between even limits and as such gives
no contribution; The final term encodes all the residual higher order effects. Thus:

ψSnowStorm
~ρ = Ψ~ρ +

∫

d~ηP (η)O(η2). (2.7)

The prediction of the SnowStorm ensemble and the central model are identical up to O(η2)
effects. If comparison shows they are equivalent within the available statistical uncertainty,
it is appropriate to neglect the non-linear terms in ~η to this same precision. Assuming this
test passes and the linear and perturbative approximation is a good one, Eq. 2.5 reduces to:

ψ~ρ,~η = Ψ~ρ + ~η. ~G~ρ, ~G~ρ ≡ ~∇η

[

ψ~ρ,~η

]

~η=~0
. (2.8)

The prediction of any model in η space can be obtained given Ψ~ρ and a list of N “nuissance

gradient” coefficients ~G~ρ.
For analyses where the effects of the physics parameters are relatively small in the

region of interest, it is possible to make a further approximation that ~G~ρ = ~G~0, since the
relevant dependencies on ~ρ would be second order perturbative effects in Eq. 2.8. This reduces
computational load to calculating only one universal set of N gradients, rather than one set
for each value of the physics parameters ~ρ. This assumption is not a necessary condition for
use of the SnowStorm method, however, and its suitability should be assessed on a per-case
basis.

2.3 Nuisance gradient extraction from the SnowStorm ensemble

Under the assumption of linearity and perturbativity (testable by comparing the SnowStorm
ensemble to a central model), a method of extracting the N nuisance gradients Gi would
provide an answer to Question (1) of Sec 2.1: that is, the effect of making small changes in
each of the nuisance parameters on the distribution of the analysis observable. There are
two approaches to extracting nuisance gradients, which will now be described. In the limit of
infinite statistical precision and perfect linearity, these two methods should provide identical
results. In subsequent analysis will use only the first approach, which offers better statistical
precision on ~G for our case of interest.

First, consider making a cut of the SnowStorm ensemble along one direction ηi = 0. The
sample is then divided into two sub-samples, ψi+

~ρ and ψi−
~ρ , which each encode predictions:

ψi+
~ρ =

∫ ∞

0

dηi

∫ ∞

−∞

dN−1ηP (~η)
[

Ψ~ρ + ~η.~∇η

[

ψ~ρ,~η

]

~η=~0

]

, (2.9)

ψi−
~ρ =

∫ 0

−∞

dηi

∫ ∞

−∞

dN−1ηP (~η)
[

Ψ~ρ + ~η.~∇η

[

ψ~ρ,~η

]

~η=~0

]

. (2.10)

– 5 –



Figure 2. Cartoon illustrating procedure for extracting gradients. The distribution is split along
a given nuisance parameter direction into positively perturbed and negatively perturbed sets. The
gradients are then proportional to the difference of the two sets.

The N − 1 integrals along directions other than i give no contribution from the linear term,
by symmetry. However, symmetry of the integral along the i direction is broken by the cut,
and a finite contribution can be calculated by evaluating the integral over ηiP (η) in this half
space, yielding:

ψi±
~ρ =

1

2
Ψ~ρ ±

σ√
2π
G~ρ,i. (2.11)

The gradient function G~ρ,i is then straightforwardly extracted by subtraction:

G~ρ,i =
1

σ

√

π

2

(

ψi+
~ρ − ψi−

~ρ

)

. (2.12)

Cutting the SnowStorm ensemble in each direction one by one, the N dimensional vector
~G~ρ ≡ ~∇η

[

ψ~ρ,~η

]

~η=~0
can be extracted completely from one Monte Carlo ensemble.

There is a second approach to extract ~G, involving weighting rather than cutting. In
this case, consider constructing a prediction where each event in the SnowStorm ensemble
is weighted by a factor of ηi, for one chosen direction in ~η space. This prediction takes the
form:

ψ̃i
~ρ =

∫ ∞

−∞

dNη ηiP (~η)
[

Ψ~ρ + ~η.~∇η

[

ψ~ρ,~η

]

~η=~0

]

. (2.13)

Now, the left term integrates to zero by symmetry, as do all the terms in the dot product
except the one for the i component, which leaves a residual contribution due to its even
integrand:

ψ̃i
~ρ =

σ2

2
G~ρ,i. (2.14)
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Which is trivially inverted to obtain a second, different expression for the elements of ~G.
We thus see that either by weighting or cutting the sample, the full nuisance gradient vector
~G can be extracted, and from this, the prediction of any nearby model in ~η space can be
obtained via Eq. 2.8.

Our experience has shown that somewhat better statistical precision on ~G is obtained
using the cutting method, since the weighting method exaggerates the contribution of events
in the tails of the P distribution, leading to larger fluctuations. A schematic illustration of
the cutting method applied on a two-dimensional ~η space is shown in Fig. 2.

2.4 Propagation of calibration constraints and nuisance priors to analysis space

Implicitly, all distribution functions φ,Ψ, ψ and the gradients ~G are functions of the analysis
variable Eα, though we had suppressed this dependence for notational convenience. Here we
restore it, as:

Gi(Eα) ≡ Gi;α, ψ~ρ,~η(Eα) ≡ ψ~ρ,~η;α, etc... (2.15)

In general, the nuisance parameters ~η will not be totally unknown, but subject to some
constraints either from calibration data or from previous measurements. These constrains
can be represented in the form of a covariance matrix Ξ, which would be diagonal if all
ηi were independent, but generally will not be if the ~η values are constrained by common
calibration data. A basic theorem (proof reviewed in Appendix) can be invoked to map
Ξ, the covariance matrix on the nuisance parameters ~η, to Σ, the covariance matrix in the
binned analysis space:

Σα,β = Gi;αΞijGj;β , (2.16)

where ~G is the gradient vector (representing the effects of small shifts in the nuisance param-
eters on analysis-space distributions) derived in the previous section. Thus, given constraints
on ~η which may or may not involve correlations, and the gradient vector ~G, the analysis
covariance Σα,β can be extracted, providing an answer to Question 2 of Sec 2.1. Exactly
how the matrix Ξ can be derived will vary by experiment and by effect. It is common to use
analysis side-bands or calibration data for this purpose, to constrain the nuisance parameters
in the sample. An illustrative example where an independent calibration data set is used to
construct Ξ will be presented in the following section.

3 The SnowStorm method applied to the IceCube dust distribution

The optical properties of the ice at the South Pole influence the propagation and detection of
photons within the IceCube detector. It has long been established that the ice has properties
that are depth dependent and correlate with the climate history on Earth over the period of
its accumulation, of approximately 100,000 years [13, 14]. The primary optical effects that
influence photon propagation are absorption and scattering, and these are observed to exhibit
a strong depth dependent correlation with one-another, suggesting a common origin. This
origin is generally understood to be small concentrations of dust throughout the array. Since
the dust concentration is very low, the dust distribution is best probed via its effects on light
propagation, using both dedicated dust-logger devices [14] and in-situ calibration using LED
flashers within the IceCube array [4]. Based on this calibration data, a layered ice optical
model has been constructed, with absorption and scattering coefficients assigned for each 10m
layer, their values continuing to be refined as understanding of the ice properties improves
through evolving calibration techniques and the incorporation of increasingly comprehensive
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Figure 3. An illustrative (but relatively large) perturbation of the ice parameters demonstrating
depth dependant features. This example uses a relative shift of +50% in amplitudes 2 and 5 and
-50% in amplitude 3.

catalogues of optical effects. The structure and tuning of the ice model is described at length
elsewhere, and a detailed exposition of its construction is outside the scope of this work.
The absorption and scattering coefficients from a recent generation of IceCube ice model
are shown in Fig 3, as well as an example of a perturbed model illustrating the continuous
freedom in these parameters which must be explored to properly account for its uncertainty.

IceCube analyses typically rely on comparison of data to Monte Carlo, with this Monte
Carlo ideally generated using the most up-to-date generation of ice model available. As
an illustration of the SnowStorm method we present its application to a specific form of
ice uncertainty- that induced by imprecise knowledge depth-dependent distribution of dust
inducing scattering and absorption within the IceCube array. We do not treat here the
uncertainty on the form or composition of dust (i.e. the possibility that some areas of dust
could create more absorption and less scattering, for example), uncertainty on the source and
form of optical anisotropy [9], uncertainty on the properties of refrozen ice in the vicinity
of the Digital Optical Modules, or other possible sources of un-modeled uncertainty. The
resulting uncertainty estimate should thus not be considered as a comprehensive uncertainty
budget for all IceCube optical effects, or as a strong statement about glaciology. Rather, we
seek to construct a method for propagating a known, significant form of optical uncertainty
for high-statistics atmospheric neutrino analyses in IceCube, that has been hitherto very
difficult to assess.

3.1 Model parameter reduction via Fourier analysis

Due to the large number of parameters in the ice model combined with the substantial com-
putational load required to accurately simulate light propagation within the ice, traditionally
the most efficient means of assessing the effects of ice uncertainties on high-energy and high-
statistics analyses has been to create discrete simulation sets where the absolute scales of
bulk ice properties (e.g. scattering and absorption) are shifted by the same fraction across
the entire detector. This method is fundamentally restricted in its ability to accurately assess
depth-dependent contributions to systematic uncertainty.
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Figure 4. The spectrum to be Fourier decomposed from central model for the re-parametrization.
Note the flatness of M− indicating a strong correlation between scattering an absorption over all
depths.

One possibility would be to vary individual layers one by one, and consider the scale
of these variations as entries in the ~η vector. However, it is clear that varying only a single
layer can have at most a very modest effect on the distribution of analysis variables such as
reconstructed energy when integrated over the full sample of detected events. The ice model
variants of most interest, which may strongly impact analysis outcomes, are those where
correlated shifts in the ice model are made over certain larger regions of the detector. These
could be accounted for with a layer-by-layer variation protocol, given a suitably derived
correlated covariance matrix for ~η. This would require many thousands of independent
parameter constrains to be derived from flasher data, two for each layer and their covariances,
and very strong local anti-correlations would be expected.

To avoid generating constraints within the aforementioned large layer-by-layer nuisance
covariance matrix, a significantly more efficient method has been developed. Rather than
describing the ice model layer-by-layer, it can equivalently be described in Fourier space,
with entries in ~η being the amplitudes and phases of Fourier modes. A fully covariant
constraint on ~η derived in Fourier space would yield an equivalent uncertainty envelope to
one derived in depth space. However, the benefit of Fourier space is that it offers a natural
ordering principle to select the most important uncertainty contributions. Low frequency
Fourier modes have large amplitudes, and their variation reflects macroscopic changes over
large regions of the IceCube detector. These are expected to contribute the dominant parts
of analysis-space uncertainties. The high frequency modes, on the other hand, have smaller
amplitudes and their variation is expected to have a minimal effect in analysis space, since the
effect of the fast-varying ice properties effectively cancels when integrating over the detector
and accounting for resolution effects. It will be demonstrated that this intuitive picture is
valid in Sec. 3.2.

A notable feature of absorption and scattering coefficients shown in Fig. 3 is that they
are highly correlated with each other as a function of depth. These two distributions can
thus be represented in terms of a completely correlated part, which contains most of the
information about their shapes (physically, the effective dust concentration vs. depth), and
a completely anti-correlated part, which encodes the far sub-leading effects that determine
their differences (physically, changes in dust composition or shape throughout the array).
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Figure 5. Top: The parameters from the Fourier decomposition of the central model. The blue region
highlights the leading modes considered in this work. Note the rate of convergence of the amplitudes
goes as 1/n, consistent with a well-behaved series. Bottom: the depth dependant structure of each
term in the Fourier expansion (with mode zero omitted).

To this end, we take the discrete Fourier decomposition of the sum (M+) and difference
(M−) of the logarithms of the scattering and absorption coefficients at their central-model
values. These can be considered to represent the totally correlated and totally anti-correlated
parts of the absorption and scattering profiles, respectively. The depth profiles of M+ and
M− are shown in Fig. 4.

M+(x) ≡ 1

2
log10

(

Abs× Sca
)

=
A0

2
+
∑

n

An sin
(2nπx

L
+ φn

)

, (3.1)

M−(x) ≡ 1

2
log10

(

Abs÷ Sca
)

=
B0

2
+
∑

n

Bn sin
(2nπx

L
+ γn

)

. (3.2)

From these variables, we may recover the physical parameters via the transformation:

Abs = 10M
++M−

Sca = 10M
+−M−

, (3.3)

with all of Abs, Sca, M+ and M− being functions of depth, x. The zeroth Fourier mode
of M− encodes the absolute relative scale of absorption vs. scattering, which is substantial,
whereas the higher modes encode their depth-dependent shape differences, and are very
small. This can be seen in the flatness of M− in Fig. 4, which reflects very little variation in
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the ratio of absorption to scattering across the detector within the best-fit ice model. The
variations in M+ that increase or reduce absorption or scattering in unison as a function of
depth are focus of this work.

3.2 Determination of nuisance covariance from IceCube calibration data

As is common in experimental particle physics, IceCube uses calibration data to constrain
systematic uncertainties that may impact physics analyses. Given a set of nuisance param-
eters ~η, the constraints from calibration data can, under a suitable and testable assumption
of Gaussianity, be expressed as a covariance matrix Ξ relative to the best fit point. The nui-
sance parameters of interest here the amplitudes and phases of the lowest-frequency modes
of M+. The covariance matrix in this space encodes the allowed variations in the nuisance
parameters, as well as their correlations.

While ice model calibrations can in principle be performed in many ways, a particularly
powerful suite of calibration samples for IceCube are data taken using the LED flashers
installed on each Digital Optical Module. The arrival time distribution and intensity of
detected light detected by pairs of flashing and receiving Digital Optical Modules gives a
geometry-dependent constraint on absorption and scattering. These data can be used to
derive Ξ for the M+ modes of relevance to physics analysis samples.

The covariance matrix construction to describe constraints on the nuisance parameters
(for example, properties of the ice) rests on the assumption of a multivariate Gaussian like-
lihood profile L in the vicinity of the best fit point. This is to be expected based on the
central limit theorem, in most cases. The covariance matrix then encodes the shape of the
likelihood surface around its minimum:

Lη0,Ξ(~η) =
1

√

(2π)ddet(Ξ)
exp

{

−1

2
(~η − ~η0)

TΞ−1(~η − ~η0)

}

. (3.4)

We measure Ξ by probing L. The approach we take here is to pick specific directions
in which to profile L around the best fit point, in particular in the directions along single
nuisance parameter variations, and in fully correlated variations of pairs of nuisance param-
eters, and find points where the likelihood L has shifted by an amount corresponding to a
1σ variation in each direction. From these points we extract M ≡ Ξ−1, which can then be
inverted to yield the nuisance covariance matrix Ξ. The details of the likelihood construction
used to compare ice models to calibration data in IceCube is discussed elsewhere [4]. In the
vicinity of the minimum it has been validated that this profile is Gaussian to a very good ap-
proximation, in all scanned single-parameter and covariant directions. The one-sigma points
are defined as vectors ~σ that may point in any direction, as:

~σTM~σ = Mabσaσb = 1. (3.5)

We define two classes of one-sigma vectors ~σ. First, for the unit vector directions, ~σiunit for
each i. Each vector ~σi with superscript i points in direction î, that is:

~σiunit = σiunitî [no sumon i], (3.6)

or if we include the vector index b explicitly, σiunit,b = σiunitδib We also define the one-sigma

points in the correlated directions. These are labelled by two indices ~σijcorr , and the vector
~σij with subscripts i and j points in a direction (̂i+ ĵ)/

√
2, that is:

~σijcorr = σijcorr

(

î+ ĵ√
2

)

[no sumon ij]. (3.7)
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Figure 6. Top: Diagonal Fourier parameter constraints derived using flasher calibration data in
amplitudes and phases. Bottom: Hessian matrix in nuisance space including correlated parameter
widths for a mode 0-4 from flasher calibration data. The dashed lines separate amplitude and phase
parameters.
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Despite being labelled by two superscripts, each ~σijcorr is still a vector with a single vector
index, which we can again write as b, as σijcorr,b = σijcorr (δib + δjb) /

√
2. The unit direction

one-sigma points allow extraction of the diagonal elements of M, via Eq. 3.6:

Mabσ
i
unit,aσ

i
unit,b = Mabδiaδib

(

σiunit
)2

= 1 → Mii =
1

σ2i,unit
[no sumon i]. (3.8)

The correlated directions similarly give the following constraints on M:

1 =
∑

ab

Mabσ
ij
corr,aσ

ij
corr,b [no sumon ij], (3.9)

=
1

2

(

σijcorr
)2

(Mii +Mjj +Mij +Mji) . (3.10)

Since M can be defined without loss of generality as a symmetric matrix, and we have
already obtained equations for the diagonal terms, we can invert this expression to find the
off-diagonal elements Mij :

Mij =
1

(

σijcorr
)2

− 1

2

(

1

σ2i,unit
+

1

σ2j,unit

)

. (3.11)

Thus with the unit and correlated one-sigma points we can specify the entire matrix Mij that
defines the multivariate Gaussian, via Ξ = M−1. The diagonal 1σ widths for the leading
Fourier amplitudes and phases from IceCube flasher data and the full Hessian matrix M
normalized to these values are shown in Fig. 6.

The relevance of the correlation terms is well illustrated by considering the envelope of
allowed perturbed models in depth space. Fig. 7 shows the envelope of allowed correlated vari-
ations within the measured covariace matrix, both including off-diagonal correlation terms
(top), and treating each mode as independent (bottom). Red lines mark the edges of fre-
quentist envelopes containing 68%, 95% and 99% of sampled models at each depth. The
emergence of regions of high uncertainty outside of the detector volume, and in the strongly
absorbing “dust layer” that is known to reside at around -100m in IceCube coordinates,
are only manifest when nuisance parameter correlations are properly accounted for. This
demonstrates a case where the often overlooked correlations between nuisance parameters
constrained by common calibration data are crucial for properly encoding physical features
of the underlying detector model.

The envelope described above was generated with a zero-to-four mode model (9 nuisance
parameters), which limits the sharpness of features in the depth envelope. The choice of
a fourth-mode cut-off is motivated in Sec. 3.3 in the context of the IceCube atmospheric
neutrino sample, where modes above the fourth are shown to have a rapidly diminishing
effect on the analysis distributions within flasher-constrained uncertainty. Because the size
of the envelope in Fig. 7 depends on the high frequency cutoff, caution should be exercised
against over-interpreting as an absolute statement of dust uncertainty vs depth. In principle,
very high frequency modes are neither constrained by flasher calibration nor relevant for
the atmospheric neutrino sample, and so any envelope so constructed relies on some notion
of smoothness or regularization. Our goal here is not to construct a measurement of dust
concentration vs. depth, but rather to map the physically important constraints on low
frequency modes from calibration data to analysis space, and it is the effect of these modes
only that is encoded in Fig. 7.
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Figure 7. Fractional excursions arising from multiple sampling of 5,000 models. The largest excur-
sion are allowed in regions where the properties of the ice are poorly constrained, such as outside the
detector and in the dust layer. Note that this structure is embodied in the correlations between nui-
sance parameters, rather than their individual spreads - this can be seen by comparing the correlated
sampling approach (top) using full covariance matrix with an uncorrelated sampling (bottom).

3.3 Extraction of Fourier nuisance gradients

A SnowStorm ensemble was generated with variations in the first 12 Fourier modes, and
processed through photon propagation, detector simulation, Level 1 and Level 2 processing
and event selection for atmospheric neutrinos. This processing and selection chain derives
from the one described in [15] with several improvements, and is used for the forthcoming
IceCube high energy sterile neutrino analysis. That analysis, which represents the multi-year
extension of previous work [3], selects events between 500 GeV and 10 TeV and compares the
energy and zenith distribution of up-going muons against predictions made under different
exotic oscillation scenarios. Hypothetical eV-scale sterile neutrinos, which have been invoked
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Figure 8. Fractional energy gradients split along amplitudes 0 to 8 (red), and phases 1 to 8 (blue).
Note the decreasing impact of increasing mode number, verifying the assumption of negligible impact
of higher modes.

to explain previous short-baseline neutrino oscillation anomalies [16, 17], would induce a
characteristic disappearance of muon neutrinos due to matter-resonant oscillations. Such
a disappearance effect would be observable as a distortion in the reconstructed spectrum,
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given sufficiently large sterile neutrino mixing. Accuracy of this analysis relies on a proper
description of the effects of systematic uncertainties at the few-percent level over the full
spectrum.

Using the cutting based procedure described in Sec. 2, the vector of gradients ~G~ρ ≡
~∇η

[

ψ~ρ,~η

]

~η=~0
were extracted. Since existing constraints limit the sterile neutrino parameter

space to that where only relatively small perturbations to the atmospheric neutrino spectrum
are viable, a single ~G evaluated at ρ = ~0 is appropriate.

The first nine gradients for Fourier amplitude and phase parameters as a function of
reconstructed energy are shown in Fig. 8. The scale of effect of perturbing each mode within
its 1σ diagonal uncertainty quickly diminishes with increasing mode number. Modes beyond
approximately mode 4 become irrelevant in terms of their contributions to analysis uncer-
tainty. This motivates restriction of the nuisance covariance and derived analysis covariance
to four-mode model. Physically, this represents the principle that the effects of rapid changes
in absorption and scattering strength averaging to zero are generally integrated out in the
final energy distribution.

The gradients were also examined in zenith space, and found to be negligible there. The
dominant effect of the dust distribution uncertainty is thus demonstrated to be primarily
exhibited as distortions to the energy spectrum, and not the zenith distribution of events.
The final covariance matrix is thus constructed in energy space only.

Although the trends are clear, the gradients retain some scatter from statistical precision
of the SnowStorm ensemble set. In order to produce smooth gradients and avoid artifacts
due to Monte Carlo discretization effects, we fit smoothed curves to the extracted fractional
gradients. Empirically, a fourth order polynomial provides an adequate fit in all cases. The
best fit curves are shown in Fig. 8 as solid lines. These smoothed gradients are propagated
into the analysis covariance matrix.

3.4 Determination of analysis covariance

The gradients ~G and the nuisance covariance matrix from calibration data Ξ can finally
be combined into an analysis space covariance matrix Σ, via Eq. 2.16. The smallness of
the effect in zenith space allows to concentrate the statistical precision of the sample on
achieving the most accurate possible estimate of the energy shape covariance. The final
analysis covariance matrix is shown in Fig. 9. This matrix represents the depth-dependent
dust uncertainty within the atmospheric neutrino sample between 500 GeV and 10 TeV. It
incorporates the effects of the physically important modes of a depth-dependent continuous
function representing effective dust distribution in the array, properly including effects of
correlations between parameters, to yield a fully covariant estimate of uncertainty on the
final sample. Most notably, despite depending on a large number of free parameters, this
was achieved using a single Monte Carlo ensemble, via the SnowStorm method.

3.5 Tests of validity

Several assumptions are made in the construction of the SnowStorm-derived covariance ma-
trix. Several of these assumptions can be explicitly tested. Here we present two examples.

First, the principle that the gradients ~G~ρ ≡ ~∇η

[

ψ~ρ,~η

]

~η=~0
encapsulate the effects of small

variations in the parameters η relies on approximate linearity, or equivalently, that the effects
of the higher order terms in Eq. 2.5 are negligible. Were this not the case, a distribution
of the variable of interest made using the full SnowStorm ensemble would not be equivalent
to a similar distribution constructed using an unperturbed Monte Carlo set (see Eq. 2.7).
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Figure 9. Analysis covariance matrix for application in atmospheric neutrino binned analysis space.

An explicit test of linearity is thus provided by comparing these two distributions, with any
non-equivalence indicating the scale of neglected higher-order effects. A direct comparison
of these two distributions for this analysis is shown in Fig. 10, left, demonstrating agreement
at the sub-percent level, at all energies.

Second, the principle that the constraints on nuisance parameters can be described
by a covariance matrix Ξ requires that the likelihood profile from calibration data is ad-
equately described by a multivariate Gaussian near the best fit. For this study we found
the likelihood from calibration data to be well described by Gaussian profiles in all single-
and two-parameter directions, within statistical precision. Fig. 10, right shows the delta-
log-likelihood distribution between several model perturbations and the best-fit point for
variations of the amplitude of mode 4, as an example case. This is overlaid on a Gaussian
profile, demonstrating a high degree of consistency. All other inspected profiles showed a
similar level of consistency with the multivariate Gaussian assumption.

4 Conclusions

We have presented the SnowStorm method, an approach for efficiently propagating mul-
tivariate systematic uncertainties from calibration constraints to analysis space. Using a
perturbative treatment of nuisance parameters, construction of a single Monte Carlo ensem-
ble with randomly distributed nuisance variables allows for construction of predictions given
generic nuisance vectors. The nuisance gradients extracted can then be combined with con-
straints in the nuisance space derived from calibration data. The power of this approach lies
in the fact that only a single Monte Carlo ensemble is required for treatment of uncertainties
describable by an in principle arbitrarily large number of nuisance parameters.
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Figure 10. Two tests of validity of the SnowStorm method. Left: comparison of integrated Snow-
Storm ensemble to default Monte Carlo. Lack of substantial difference illustrates that higher order
terms can be neglected. Right: Example delta-log-likelihood (DLLH) profile from calibration data in
one of the amplitude directions (mode 4). All such likelihood profiles are found to be Gaussian within
statistical precision.

As an example case, an application of the SnowStorm method to IceCube atmospheric
neutrino analyses was described. There, a class of bulk ice optical uncertainties related
to depth-dependent effective dust concentration within the IceCube array was propagated
from LED calibration data to the analysis space of the energy distributions of atmospheric
neutrinos. This application is especially illustrative of the power of this method, since it
involves a large number of nuisance parameters that have physically important correlations
in their calibration constraints, mapped to analysis covariance via a single Monte Carlo
ensemble. This method is being used by forthcoming high statistics IceCube analyses, and
may find wider utility for treating complicated systematic uncertainties, both within IceCube
and beyond.
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Appendix: General error propagation and extraction of analysis covariance

We begin with the most general form of error propagation in a function vector ~f(~x) and
proceed via Taylor expansion so that for a small shift in the input parameters ~x → ~x + δ~x
we have:

δfi = fi(x) +
∂fi
∂xj

δxj = Jijδxj , (4.1)

where J is the Jacobian matrix:

Jij =
dfi
dxj

. (4.2)

For the propagation of uncertainties, we seek the covariance Σf of f with respect to its
components. We define this as:

Σf =
〈[

~f − E[~f ]
] [

~f − E[~f ]
]〉

. (4.3)

Expanding, we find:

Σf =
〈

fifj − f̄ifj − fif̄j + f̄if̄j
〉

= 〈fifj〉 −
〈

f̄ifj
〉

−
〈

fif̄j
〉

+
〈

f̄if̄j
〉

, (4.4)

with all three of the last terms reducing to the same expression:

〈

f̄ifj
〉

=
〈

fif̄j
〉

=
〈

f̄if̄j
〉

= f̄if̄j , (4.5)

and so:
Σf = 〈fifj〉 − f̄if̄j . (4.6)

If the variability in f around its mean is due to small perturbations in x we can write
f = f̄ + J.δx for randomly fluctuating δx and so:

Σf =
〈(

f̄i + Jikδxk
) (

f̄j + Jjlδxl
)〉

− f̄if̄j , (4.7)

Σf = f̄if̄j + f̄iJik 〈δxk〉+ f̄jJjl 〈δxl〉 − f̄if̄j + JikJjl 〈δxkδxl〉 . (4.8)

Since the δxi all fluctuate around 0, we know:

〈δxi〉 = 0 ∀ i. (4.9)
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We can also identify the last ensemble average as the covariance in x:

〈δxkδxl〉 ≡ [Σx]kl , (4.10)

leading us to the central identity, as required:

Σf = JΣxJ
T . (4.11)

In our case of interest we associate f → ψ~ρ,~η and x→ ~η. Then Σf is the covariance matrix in
analysis space, Σf → Σ, and Σx is the covariance matrix in nuisance space, Σx → Ξ. Then
Jα,i = ∂ψ~ρ,~η(Eα)/∂ηi = G~ρ,i;α, proving the theorem

Σα,β = Gi;αΞijGj;β . (4.12)
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