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Abstract— Integrate intellectual properties (IP’s) designed for 
different protocols is always a troublesome task for system 
integrators. In this paper, we explore efficient methods to 
generate protocol converters automatically under the 
consideration of system performance. For the frequency/phase 
mismatch, we proposed a modified asynchronous FIFO together 
with our protocol converter. The generated results are verified in 
Synopsis Verification IP (VIP) environment. The performance 
and cost of the resulted converter are as efficient as the manual 
one, ARM Prime Cell. 
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I. INTRODUCTION 
As complexity of System-on-Chip keeps increasing, the loads of 

system integrations become much more cumbersome. In general, we 
don’t know which bus an IP would be plugged in when we began to 
design an IP. Thus we should design a wrapper when there is the 
mismatch between the protocol of bus and the protocol of the IP. The 
same problems occur when we want to integrate two systems that use 
different bus protocols. Hence we use a bridge to connect two buses 
and to solve the mismatch. Both wrappers and the bridges are used to 
solve the mismatch between protocols, so wrappers and bridges can 
be regarded as protocol converters. Protocol converters are 
indispensable for integrations of systems. If there is a generator to 
build the protocol converter quickly, the flow of the system 
integrations would be speeded up. 

Assume that the protocol specifications described as finite state 
machines (FSM’s) are available. It is very straightforward to get the 
FSM of the converter by extracting the product from two protocols. 
The product FSM construction was first published by [1]. Authors 
also suggested pruning the product FSM to synthesize the final 
converter, but their algorithm needs manual decisions. The protocol 
conversion problem was discussed in [2], the author considered the 
general problem of protocol conversion and examined many practical 
aspects. Green mentioned that there was no general solution so far, 
and suggested that the formal methods used in specification. In [3]-
[5], some approaches based on formal methods have been proposed. 
It should be noted that the internal signals would not be observed by 
the converter, when the protocol is modeled by a FSM. Protocol 
constraints have been proposed in [7]-[9] to solve this crucial 
problem. [7], [8] only consider data constrain to avoid data overflow 
or underflow. The more general expression for constraints is 
introduced by [9]. Constraints are treated as another input FSM of 
protocol converter. While previous researches need to generate an 
initial product without constraints effects in their synthesis flows. 

The input protocol format is vital to converter synthesis algorithm. 
There have been a number of studies that have investigated benefits 
of different input specification. The synchronous protocol automata 
has been presented in [6], in which it contains special primitives for 
modeling data, control, and multiple clocks and is capable of 
modeling bus with other features. In [7], regular expressions are used 
to describe the protocols, as the authors have argued that regular 
expressions are more user friendly than FSM. Finite state automata 
(FSA) used in [8] is similar to FSM except that FSA treats input 
signals and output signals as control signals. It is a non-deterministic 
FSA when there are different transitions with the same control 
signals from the same state in a FSA. In comparison to FSA, non-
deterministic situation occurs when there are different transitions 
with same input signals from the same state in FSM. The non-
deterministic FSM can not be implemented in logic systems, because 
logic can only have an output pattern with the corresponding input 
patterns and state. 

In this paper, we introduce a deterministic input FSM composed 
of protocol specification and useful constrains. With the 
deterministic input format, the major difference compare to previous 
studies is that we apply constraints during the product machine 
generation process rather than build an intermediate product and than 
purge non-deterministic states with constraints. In addition, an 
efficient handshaking FIFO interface is proposed as the solution for 
cross clock domain conversion. The resulted converter circuits are 
well verified in Synopsis VIP environment. 

The rest of this paper is organized as follows: Section II reviews 
the basic concept of converter synthesis algorithm and cross clock 
domain coverer. Section III presents the developed synthesis flow 
together with our FIFO structure solves frequency mismatch. Then, 
we show in Section IV the verification environment and comparisons 
with the ARM Prime Cell. Finally, Section 5 concludes this work. 

II. BACKGROUND 

A. Converter Synthesis Algorithm 
The algorithm proposed in [8] uses deterministic FSA (pseudo-

deterministic FSM) as input and belongs to the first type algorithm as 
we defined earlier. 

 

Fig. 1  Protocol Converter Abstract View 
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Figure 1 shows that a protocol can be defined as a product set 

composed of control output space O, control input space I, and a 
vector D. A vector D has an integer for each data port, and their 
values reflect the data port conditions such as consuming data 
(negative), producing data (positive) and neither (zero). The product 
Σ= I × O × D is called the protocol alphabet. Synchronous protocol 
can be defined as the subset of Σ* which is the finite strings over the 
Σ and specifies the initial segment. The finite strings of Σ can be 
constructed by a deterministic FSA. 

The source protocol P is represented formally by (1). The 
destination protocol P’ is represented in the same way, but its 
components are denoted by single primes. We assume that there is a 
single data port with the same width between P and P’, so the 
function d indicates that data port consumes data ( d = (-1) ) or 
produces   data( d = (+1) ). 

SIdTsrOISP  :,,,,,                           (1) 

)( OSSIT                                     (2) 

In (1), S is the set of states with the initial state r. I and O are the 
finite protocol input and output control spaces. T is the set of state 
transition. Toyxi ,,,  represents the transition from the current 

state x to next state y with the input i and output o. Function d 
reflects the data port conditions such as consuming data  (negative), 
producing data (positive) or neither (zero) and the value of d depends 
on I and S. 

Now we have the two protocols P and P’, and then the 
corresponding product  P’’ = P × P’ is defined in (3): 

dTrOISP ,,,,,  ; ',',',',','' dTrOISP    

'','',',',','' dTrrOOIISSPP                 (3) 

Where T’’ and d’’ is defined as: 
 '')',(),',(),',(),',( Toottssii                             (4) 

'" ddd   

In (4), the current state and destination state now are composite 
states of two protocols and so are control signals. Variables d and d’ 
represent the status of two connected data ports, so we can consider 
d’’ as the update of the FIFO between two data ports. When d = (+1) 
and d’ = (-1), it means that the source protocol produces a data and 
the destination protocol consumes a data, so the number of the data 
in FIFO doesn’t change (d’’ = 0). If d = (+1) and d’ = 0, we need 
FIFO to hold the data temporally until the data is consumed. The 
converter synthesis algorithm can be briefly described as following 
steps: 

Step 1: Make states whose transitions all violate the data path 
constraints dead. It’s also necessary to remove the transitions that 
violate the data path constraints in the states that are not dead. 

Step2: Make the transitions dead if the transitions lead to the dead 
state. Because we make some transitions dead, there would be new 
dead states. When a state doesn’t have any legal transition from itself, 
we should remove this state to prevent the occurrence of deadlock. 

Step 3: Repeat Step 2 until the dead state set does not change and 
get a pruned product P0” by removing the dead state set from the P’’. 

Step 4: Resolve the output non-determinitism in P0” according to 
data transaction condition. A deterministic Pd” generated after this 
step. 

Step 5: Translate the Pd” into FSM. 
The data path constraints are an important idea to guide the 

algorithm to get a corrected converter. We can see that this concept 
also appeared in [7] and [9], the constraints make the converter avoid 
overflow or underflow. 

B. Two Protocols Operating at Different Frequencies 
In [10], the authors proposed an approach to covert two protocols 

operating at different clock domains. The main idea is based on the 
relation of the frequencies between two protocols. Assume that the 
source protocol operates at the clock frequency fs and the destination 
protocol operates at the clock frequency fd. In the following, the 
situation will be classified into two cases according to the value of 
fd/fs. 

converter

Ad Bd

counter

Fast clock

A

Slow clock

B

Fast clock

Source protocol Destination protocol

 

Fig. 2  Protocol Converter between Protocols Operating at Different Clock 
Domains. 

In case I that fd/fs is an integer number, we can rewrite the 
equation as fd=n×fs. The protocol converter should operate at higher 
clock frequency, otherwise the protocol converter would loss 
information from the destination protocol. Before starting the 
synthesis, states and edges would be modified. A frequency matching 
counter which counts from 0 to (n-1)=(fd/fs)-1 is inserted to avoid 
faster one sampling the signals of slower one twice. 

In case II that fd/fs is not an integer number, one of the solutions 
is to find the LCM (least common multiplier) of both clock 
frequencies since a real number can be represented as a ratio of two 
integers. Then the protocol converter can be set to operate at the 
frequency of the LCM and synthesized as the steps of case I with 
two frequency matching counters. We should notice that a large 
LCM would cause area overhead in this method. 

III. PROPOSED CONVERTER SYNTHESIS FLOW 

A. Deterministic Input Format with Constraints 
In comparison with [8], the inputs of the proposed synthesis 

algorithm are deterministic FSM and there is no non-deterministic 
intermediate FSM. For this reason, we don’t need a non-deterministic 
solver in our synthesis algorithm. By adding constraint variable as 
the inputs of FSM, we can get additional information for FSM to 
make transitions deterministic. In this generator, we provide full and 
empty with different levels for users. When using user-defined 
variables, user should design the logic behavior in the RTL code 
generated by the protocol converter synthesizer. Example: Assume 
that the destination protocol is a master on the bus, and the master 
can decide to send request to the bus or keep idle. The two choices 
can’t be deterministic by the information from the bus to the master 
in the specific state. In fact, this decision should be dependent on the 
internal information about the status of the FIFO. The master should 
send a request to the bus when there are data which are ready to be 
transferred in the FIFO. By using the empty status of data FIFO, 
converters can decide if the master can send a request to the bus 
when the data FIFO is not empty. 

If a non-deterministic transition is not a necessary transition, we 
can just remove it. Example: Assume that the destination protocol is 
a master on the bus, and the master can decide to send serial simple 
transfers or a burst transfer. The two choices can’t be deterministic 
by the information from the bus to the master in the specific state. If 
the burst transfer is necessary, constraint variables should be applied. 



2010 Asia Pacific Conference on Circuits and Systems (APCCAS 2010) 
6 – 9 December 2010, Kuala Lumpur, Malaysia 

 
Otherwise, the burst transition can be removed to make FSM 
deterministic. 

B. Input Format Checker 
Title must be in 24 pt Regular font.  Author name must be in 11 pt 

Regular font.  Author affiliation must be in 10 pt Italic.  Email 
address must be in 9 pt Courier Regular font. 

 

Fig. 3  Flow of Protocol Converter Generation 

Figure 3 shows the flow of protocol converter generation without 
a non-deterministic solver which reduces the protocol synthesis time 
significantly. There are several build in protocol specifications such 
as APB, AHB, AXI and OCP in our library. Users can select one of 
the protocols, and our program will load the corresponding protocol 
specification and provide configurable options. These protocol 
specifications are all checked by the input-format checker to avoid 
non-deterministic transitions and contain optimized constraints in the 
FSM. It is also available for users to build the protocol which is not 
defined in our library, but the protocol specifications defined by 
users should also be checked by our input-format checker. 

In the synthesis flow, we will check the FIFO constraint and 
remove the edges that violate the FIFO constraint to avoid overflow 
or underflow. After building the FSM of converter by the program, 
check if there are states that don’t have any transitions from 
themselves and remove these states. The transitions that go to these 
states should also be deleted. The step that prunes the states and 
transitions would be repeated until no more state and transition can 
be purged. After pruning the FSM, the program will check if there is 
any strong-connected component (SCC) that doesn’t contain initial 
state. Because the SCCs without an initial state mean that these states 
will never be reached. 

C. Handshaking FIFO Design 
As two protocols operate at different frequencies, the previous 

described method can’t handle the phase drift due to the manufacture. 
Moreover the performance decreases significantly when the LCM of 
frequencies in two protocols is too large. In order to solve these 
problems efficiently, we use the handshaking FIFO to handle 
asynchronous signals. 

The FIFO architecture is shown in Figure 4. This architecture is a 
modified from [11]. We remove the asynchronous circuit that is used 

to determine the status of the FIFO, and use the handshake 
mechanism to get information cross two clock domains. And replace 
the tri-buffer by multiplexers, because it may cause the leakage 
current. This architecture is highly scalable and the width of the data 
item can be changed with very few design modifications. 

 

Fig. 4  Handshaking FIFO Architecture 
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Fig. 5  Implementation of put and get interface cell 

The put interface contains a Full detector and 
put_interface_cells and the get interface contains an Empty 
detector and get_interface_cells. The communication between two 
interfaces should be synchronized by the Sync module. Each 
interface module only operates at one clock domain and can be 
synthesized separately. When preq_i is active, the data will be putted 
into FIFO and the number of counters in the Full detector will be 
added a number that can reflect the proportion of the data widths in 
two protocols. If the get interface sends the message of getting data 
from FIFO through the handshaking mechanism, the number of 
counters in the Full detector will be subtracted a corresponding 
number. However there are latencies caused by the synchronization 
and handshaking when sending messages from the get interface to 
the put interface. The number of counters in the Full detector can’t 
represent the exact status of FIFO, but the most important point is 
that the converter avoids overflow by waiting the message from the 
get interface. Empty detector uses the same idea to provide a 
conservative status, and converter can avoid underflow by checking 
the conservative status of FIFO. 

Figure 5 shows the implementation of the put_interface_cell and 
the get_interface_cell, each cell of two interfaces contains a token 
and data registers. When the cell gets a token, it means that data will 
be stored in this data register or fetched from this data register. We 
can see that a data register doesn’t pass through the synchronizer, 
because synchronization of the data bus can be handled by using the 
handshaking latency. When the get interface got the information that 
data was ready for fetching, the latency at least two put clock periods 
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and two get clock periods has been passed. In general, all the bits of 
the data bus were already stable for fetching. We can also increase 
the number of synchronization stages in handshake module to get 
more confidence for stable data. 

IV. VERIFICATIONS AND EXPERIMENT RESULTS 
We verify the converter results by Synopsys DesignWare VIP. In 

the VIP environment, the Vera Modeling Technology (VMT) models 
are provided for establishing of the whole system simulation 
environment including the virtual master, virtual arbiter and so on. 
We can use the commands in the test bench to control the behavior of 
all models according to [12]. 

In this experiment, we want to plug the SRAM with an AXI slave 
interface to the AHB bus. In other words, we want to use an AHB 
slave as the source protocol and an AXI slave as the destination 
protocol to synthesis the protocol converter. After we define all 
necessary information for our tool, we can start to synthesize the 
protocol converter between AHB slave and AXI slave. By adding our 
converter and the AXI agent, the verification work can be started. 

 

Fig. 6  Converter Verification Environment 

TABLE I 
SYNTHESIS RESULT COMPARE TO ARM PRIME CELL 

Our converter PrimeCell [13] 
32-bit 32-bit 

Pipeline Single active transaction 
1 Latency overhead 1 Latency overhead 

Fixed-length AHB bursts are converted into AXI bursts. 
Undefined-length bursts are converted into single transfers. 
AXI slave accepts data/response with zero wait states. 
Unused signals are tied low. 
 Converter controller 

0.56k gates 
 Area of 32-bit D flip-

flop : 0.26k gates 
 Total area 1.86k gates 
 200 MHz 

 Approximately 1.2k  gates
 200 MHz 

 
Figure 6 shows the environment for the verification of generated 

converter from our EDA tool. We use an AHB master model to 
initiate transactions to the converter which wraps the AXI slave. By 
using the AXI monitor and the AHB monitor, we can make sure both 
protocol interfaces of the converter can work correctly. We sent all 
transactions which are available in the AHB master to the converter 
to check if our converter can give right response to AHB and to 
translate the AHB transactions into AXI transactions. Then we use 

the VIP to check the AHB interface and AXI interface if behaviors of 
all signals are compliant to the specification. The transaction mode 
coverage information is also checked. 

We compare our converter synthesis results with the AHB-to-AXI 
wrapper which is supplied by ARM PrimeCell [13] in Table 1. 
Adopting protocol constraints has contributed to the pipeline 
transaction supporting. The area of the generated converter is more 
than the wrapper supplied by ARM PrimeCell. The reason is that the 
generated converter here has additional storage interfaces to 
communicate with the controller, so the overhead of the area would 
be near constant as the FIFO length increasing. In order to compare 
with PrimeCell, the technology used here was TSMC 0.13um process, 
slow operating condition. 

V. CONCLUSIONS 
We have presented an efficient protocol synthesis flow based on 

the deterministic input FSM with constraints. The proposed method 
reduces the converter synthesis time. Furthermore, by employing a 
variety of constraints in the input FSM the generated protocol 
converter can achieve low area and high performance. The 
experimental result shows that the generated protocol converter is 
almost as efficient as the manual one. Moreover a reliable 
handshaking FIFO interface are proposed to dear with IP’s operating 
at different clock domains. 
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