
2010 Asia Pacific Conference on Circuits and Systems (APCCAS 2010)
6 – 9 December 2010, Kuala Lumpur, Malaysia

Efficient Protocol Converter Generation for
System Integration

Der-Wei Yang#, Ming-Der Shieh#1, Wen-Hsuen Kuo*, and Jonas Wang*
Department of Electrical Engineering

National Cheng-Kung University, Tainan, 701 Taiwan
1shiehm@mail.ncku.edu.tw

*Himax Technologies, Inc.

Abstract— Integrate intellectual properties (IP’s) designed for
different protocols is always a troublesome task for system
integrators. In this paper, we explore efficient methods to
generate protocol converters automatically under the
consideration of system performance. For the frequency/phase
mismatch, we proposed a modified asynchronous FIFO together
with our protocol converter. The generated results are verified in
Synopsis Verification IP (VIP) environment. The performance
and cost of the resulted converter are as efficient as the manual
one, ARM Prime Cell.

Keywords— protocol converter, asynchronous handshaking

I. INTRODUCTION
As complexity of System-on-Chip keeps increasing, the loads of

system integrations become much more cumbersome. In general, we
don’t know which bus an IP would be plugged in when we began to
design an IP. Thus we should design a wrapper when there is the
mismatch between the protocol of bus and the protocol of the IP. The
same problems occur when we want to integrate two systems that use
different bus protocols. Hence we use a bridge to connect two buses
and to solve the mismatch. Both wrappers and the bridges are used to
solve the mismatch between protocols, so wrappers and bridges can
be regarded as protocol converters. Protocol converters are
indispensable for integrations of systems. If there is a generator to
build the protocol converter quickly, the flow of the system
integrations would be speeded up.

Assume that the protocol specifications described as finite state
machines (FSM’s) are available. It is very straightforward to get the
FSM of the converter by extracting the product from two protocols.
The product FSM construction was first published by [1]. Authors
also suggested pruning the product FSM to synthesize the final
converter, but their algorithm needs manual decisions. The protocol
conversion problem was discussed in [2], the author considered the
general problem of protocol conversion and examined many practical
aspects. Green mentioned that there was no general solution so far,
and suggested that the formal methods used in specification. In [3]-
[5], some approaches based on formal methods have been proposed.
It should be noted that the internal signals would not be observed by
the converter, when the protocol is modeled by a FSM. Protocol
constraints have been proposed in [7]-[9] to solve this crucial
problem. [7], [8] only consider data constrain to avoid data overflow
or underflow. The more general expression for constraints is
introduced by [9]. Constraints are treated as another input FSM of
protocol converter. While previous researches need to generate an
initial product without constraints effects in their synthesis flows.

The input protocol format is vital to converter synthesis algorithm.
There have been a number of studies that have investigated benefits
of different input specification. The synchronous protocol automata
has been presented in [6], in which it contains special primitives for
modeling data, control, and multiple clocks and is capable of
modeling bus with other features. In [7], regular expressions are used
to describe the protocols, as the authors have argued that regular
expressions are more user friendly than FSM. Finite state automata
(FSA) used in [8] is similar to FSM except that FSA treats input
signals and output signals as control signals. It is a non-deterministic
FSA when there are different transitions with the same control
signals from the same state in a FSA. In comparison to FSA, non-
deterministic situation occurs when there are different transitions
with same input signals from the same state in FSM. The non-
deterministic FSM can not be implemented in logic systems, because
logic can only have an output pattern with the corresponding input
patterns and state.

In this paper, we introduce a deterministic input FSM composed
of protocol specification and useful constrains. With the
deterministic input format, the major difference compare to previous
studies is that we apply constraints during the product machine
generation process rather than build an intermediate product and than
purge non-deterministic states with constraints. In addition, an
efficient handshaking FIFO interface is proposed as the solution for
cross clock domain conversion. The resulted converter circuits are
well verified in Synopsis VIP environment.

The rest of this paper is organized as follows: Section II reviews
the basic concept of converter synthesis algorithm and cross clock
domain coverer. Section III presents the developed synthesis flow
together with our FIFO structure solves frequency mismatch. Then,
we show in Section IV the verification environment and comparisons
with the ARM Prime Cell. Finally, Section 5 concludes this work.

II. BACKGROUND

A. Converter Synthesis Algorithm
The algorithm proposed in [8] uses deterministic FSA (pseudo-

deterministic FSM) as input and belongs to the first type algorithm as
we defined earlier.

Fig. 1 Protocol Converter Abstract View

2010 Asia Pacific Conference on Circuits and Systems (APCCAS 2010)
6 – 9 December 2010, Kuala Lumpur, Malaysia

Figure 1 shows that a protocol can be defined as a product set

composed of control output space O, control input space I, and a
vector D. A vector D has an integer for each data port, and their
values reflect the data port conditions such as consuming data
(negative), producing data (positive) and neither (zero). The product
Σ= I × O × D is called the protocol alphabet. Synchronous protocol
can be defined as the subset of Σ* which is the finite strings over the
Σ and specifies the initial segment. The finite strings of Σ can be
constructed by a deterministic FSA.

The source protocol P is represented formally by (1). The
destination protocol P’ is represented in the same way, but its
components are denoted by single primes. We assume that there is a
single data port with the same width between P and P’, so the
function d indicates that data port consumes data (d = (-1)) or
produces data(d = (+1)).

SIdTsrOISP :,,,,, (1)

)(OSSIT (2)

In (1), S is the set of states with the initial state r. I and O are the
finite protocol input and output control spaces. T is the set of state
transition. Toyxi ,,, represents the transition from the current

state x to next state y with the input i and output o. Function d
reflects the data port conditions such as consuming data (negative),
producing data (positive) or neither (zero) and the value of d depends
on I and S.

Now we have the two protocols P and P’, and then the
corresponding product P’’ = P × P’ is defined in (3):

dTrOISP ,,,,, ; ',',',',','' dTrOISP

'','',',',','' dTrrOOIISSPP (3)

Where T’’ and d’’ is defined as:
 '')',(),',(),',(),',(Toottssii (4)

'" ddd

In (4), the current state and destination state now are composite
states of two protocols and so are control signals. Variables d and d’
represent the status of two connected data ports, so we can consider
d’’ as the update of the FIFO between two data ports. When d = (+1)
and d’ = (-1), it means that the source protocol produces a data and
the destination protocol consumes a data, so the number of the data
in FIFO doesn’t change (d’’ = 0). If d = (+1) and d’ = 0, we need
FIFO to hold the data temporally until the data is consumed. The
converter synthesis algorithm can be briefly described as following
steps:

Step 1: Make states whose transitions all violate the data path
constraints dead. It’s also necessary to remove the transitions that
violate the data path constraints in the states that are not dead.

Step2: Make the transitions dead if the transitions lead to the dead
state. Because we make some transitions dead, there would be new
dead states. When a state doesn’t have any legal transition from itself,
we should remove this state to prevent the occurrence of deadlock.

Step 3: Repeat Step 2 until the dead state set does not change and
get a pruned product P0” by removing the dead state set from the P’’.

Step 4: Resolve the output non-determinitism in P0” according to
data transaction condition. A deterministic Pd” generated after this
step.

Step 5: Translate the Pd” into FSM.
The data path constraints are an important idea to guide the

algorithm to get a corrected converter. We can see that this concept
also appeared in [7] and [9], the constraints make the converter avoid
overflow or underflow.

B. Two Protocols Operating at Different Frequencies
In [10], the authors proposed an approach to covert two protocols

operating at different clock domains. The main idea is based on the
relation of the frequencies between two protocols. Assume that the
source protocol operates at the clock frequency fs and the destination
protocol operates at the clock frequency fd. In the following, the
situation will be classified into two cases according to the value of
fd/fs.

converter

Ad Bd

counter

Fast clock

A

Slow clock

B

Fast clock

Source protocol Destination protocol

Fig. 2 Protocol Converter between Protocols Operating at Different Clock
Domains.

In case I that fd/fs is an integer number, we can rewrite the
equation as fd=n×fs. The protocol converter should operate at higher
clock frequency, otherwise the protocol converter would loss
information from the destination protocol. Before starting the
synthesis, states and edges would be modified. A frequency matching
counter which counts from 0 to (n-1)=(fd/fs)-1 is inserted to avoid
faster one sampling the signals of slower one twice.

In case II that fd/fs is not an integer number, one of the solutions
is to find the LCM (least common multiplier) of both clock
frequencies since a real number can be represented as a ratio of two
integers. Then the protocol converter can be set to operate at the
frequency of the LCM and synthesized as the steps of case I with
two frequency matching counters. We should notice that a large
LCM would cause area overhead in this method.

III. PROPOSED CONVERTER SYNTHESIS FLOW

A. Deterministic Input Format with Constraints
In comparison with [8], the inputs of the proposed synthesis

algorithm are deterministic FSM and there is no non-deterministic
intermediate FSM. For this reason, we don’t need a non-deterministic
solver in our synthesis algorithm. By adding constraint variable as
the inputs of FSM, we can get additional information for FSM to
make transitions deterministic. In this generator, we provide full and
empty with different levels for users. When using user-defined
variables, user should design the logic behavior in the RTL code
generated by the protocol converter synthesizer. Example: Assume
that the destination protocol is a master on the bus, and the master
can decide to send request to the bus or keep idle. The two choices
can’t be deterministic by the information from the bus to the master
in the specific state. In fact, this decision should be dependent on the
internal information about the status of the FIFO. The master should
send a request to the bus when there are data which are ready to be
transferred in the FIFO. By using the empty status of data FIFO,
converters can decide if the master can send a request to the bus
when the data FIFO is not empty.

If a non-deterministic transition is not a necessary transition, we
can just remove it. Example: Assume that the destination protocol is
a master on the bus, and the master can decide to send serial simple
transfers or a burst transfer. The two choices can’t be deterministic
by the information from the bus to the master in the specific state. If
the burst transfer is necessary, constraint variables should be applied.

2010 Asia Pacific Conference on Circuits and Systems (APCCAS 2010)
6 – 9 December 2010, Kuala Lumpur, Malaysia

Otherwise, the burst transition can be removed to make FSM
deterministic.

B. Input Format Checker
Title must be in 24 pt Regular font. Author name must be in 11 pt

Regular font. Author affiliation must be in 10 pt Italic. Email
address must be in 9 pt Courier Regular font.

Fig. 3 Flow of Protocol Converter Generation

Figure 3 shows the flow of protocol converter generation without
a non-deterministic solver which reduces the protocol synthesis time
significantly. There are several build in protocol specifications such
as APB, AHB, AXI and OCP in our library. Users can select one of
the protocols, and our program will load the corresponding protocol
specification and provide configurable options. These protocol
specifications are all checked by the input-format checker to avoid
non-deterministic transitions and contain optimized constraints in the
FSM. It is also available for users to build the protocol which is not
defined in our library, but the protocol specifications defined by
users should also be checked by our input-format checker.

In the synthesis flow, we will check the FIFO constraint and
remove the edges that violate the FIFO constraint to avoid overflow
or underflow. After building the FSM of converter by the program,
check if there are states that don’t have any transitions from
themselves and remove these states. The transitions that go to these
states should also be deleted. The step that prunes the states and
transitions would be repeated until no more state and transition can
be purged. After pruning the FSM, the program will check if there is
any strong-connected component (SCC) that doesn’t contain initial
state. Because the SCCs without an initial state mean that these states
will never be reached.

C. Handshaking FIFO Design
As two protocols operate at different frequencies, the previous

described method can’t handle the phase drift due to the manufacture.
Moreover the performance decreases significantly when the LCM of
frequencies in two protocols is too large. In order to solve these
problems efficiently, we use the handshaking FIFO to handle
asynchronous signals.

The FIFO architecture is shown in Figure 4. This architecture is a
modified from [11]. We remove the asynchronous circuit that is used

to determine the status of the FIFO, and use the handshake
mechanism to get information cross two clock domains. And replace
the tri-buffer by multiplexers, because it may cause the leakage
current. This architecture is highly scalable and the width of the data
item can be changed with very few design modifications.

Fig. 4 Handshaking FIFO Architecture

pdata_i
preq_i

pen_i

pclk

ptok_o

Data reg

pvalid_o gdata_i

gclk

gen_i

gtok_o

gset_n_o

Handshake

Handshake

prst_n_o

Handshake

Handshake

put_interface_cell

get_interface_cell

Fig. 5 Implementation of put and get interface cell

The put interface contains a Full detector and
put_interface_cells and the get interface contains an Empty
detector and get_interface_cells. The communication between two
interfaces should be synchronized by the Sync module. Each
interface module only operates at one clock domain and can be
synthesized separately. When preq_i is active, the data will be putted
into FIFO and the number of counters in the Full detector will be
added a number that can reflect the proportion of the data widths in
two protocols. If the get interface sends the message of getting data
from FIFO through the handshaking mechanism, the number of
counters in the Full detector will be subtracted a corresponding
number. However there are latencies caused by the synchronization
and handshaking when sending messages from the get interface to
the put interface. The number of counters in the Full detector can’t
represent the exact status of FIFO, but the most important point is
that the converter avoids overflow by waiting the message from the
get interface. Empty detector uses the same idea to provide a
conservative status, and converter can avoid underflow by checking
the conservative status of FIFO.

Figure 5 shows the implementation of the put_interface_cell and
the get_interface_cell, each cell of two interfaces contains a token
and data registers. When the cell gets a token, it means that data will
be stored in this data register or fetched from this data register. We
can see that a data register doesn’t pass through the synchronizer,
because synchronization of the data bus can be handled by using the
handshaking latency. When the get interface got the information that
data was ready for fetching, the latency at least two put clock periods

2010 Asia Pacific Conference on Circuits and Systems (APCCAS 2010)
6 – 9 December 2010, Kuala Lumpur, Malaysia

and two get clock periods has been passed. In general, all the bits of
the data bus were already stable for fetching. We can also increase
the number of synchronization stages in handshake module to get
more confidence for stable data.

IV. VERIFICATIONS AND EXPERIMENT RESULTS
We verify the converter results by Synopsys DesignWare VIP. In

the VIP environment, the Vera Modeling Technology (VMT) models
are provided for establishing of the whole system simulation
environment including the virtual master, virtual arbiter and so on.
We can use the commands in the test bench to control the behavior of
all models according to [12].

In this experiment, we want to plug the SRAM with an AXI slave
interface to the AHB bus. In other words, we want to use an AHB
slave as the source protocol and an AXI slave as the destination
protocol to synthesis the protocol converter. After we define all
necessary information for our tool, we can start to synthesize the
protocol converter between AHB slave and AXI slave. By adding our
converter and the AXI agent, the verification work can be started.

Fig. 6 Converter Verification Environment

TABLE I
SYNTHESIS RESULT COMPARE TO ARM PRIME CELL

Our converter PrimeCell [13]
32-bit 32-bit

Pipeline Single active transaction
1 Latency overhead 1 Latency overhead

Fixed-length AHB bursts are converted into AXI bursts.
Undefined-length bursts are converted into single transfers.
AXI slave accepts data/response with zero wait states.
Unused signals are tied low.
 Converter controller

0.56k gates
 Area of 32-bit D flip-

flop : 0.26k gates
 Total area 1.86k gates
 200 MHz

 Approximately 1.2k gates
 200 MHz

Figure 6 shows the environment for the verification of generated

converter from our EDA tool. We use an AHB master model to
initiate transactions to the converter which wraps the AXI slave. By
using the AXI monitor and the AHB monitor, we can make sure both
protocol interfaces of the converter can work correctly. We sent all
transactions which are available in the AHB master to the converter
to check if our converter can give right response to AHB and to
translate the AHB transactions into AXI transactions. Then we use

the VIP to check the AHB interface and AXI interface if behaviors of
all signals are compliant to the specification. The transaction mode
coverage information is also checked.

We compare our converter synthesis results with the AHB-to-AXI
wrapper which is supplied by ARM PrimeCell [13] in Table 1.
Adopting protocol constraints has contributed to the pipeline
transaction supporting. The area of the generated converter is more
than the wrapper supplied by ARM PrimeCell. The reason is that the
generated converter here has additional storage interfaces to
communicate with the controller, so the overhead of the area would
be near constant as the FIFO length increasing. In order to compare
with PrimeCell, the technology used here was TSMC 0.13um process,
slow operating condition.

V. CONCLUSIONS
We have presented an efficient protocol synthesis flow based on

the deterministic input FSM with constraints. The proposed method
reduces the converter synthesis time. Furthermore, by employing a
variety of constraints in the input FSM the generated protocol
converter can achieve low area and high performance. The
experimental result shows that the generated protocol converter is
almost as efficient as the manual one. Moreover a reliable
handshaking FIFO interface are proposed to dear with IP’s operating
at different clock domains.

REFERENCES

[1] J. Akella and K. McMillan, “Synthesizing Converter between Finite
State Protocols,” in Proc. Int. Conf. Comput. Design, pp.410-413, Oct.
1991.

[2] P. E. Green, Jr., “Protocol conversion,” IEEE Trans. Commun., vol.
COM-34, pp.257-168, Mar. 1986.

[3] K. L. Calvert and S. S. Lam, “Formal Method for Protocol
Conversion,” IEEE Trans. Commun., vol. 8, pp.127-168, Jan. 1990.

[4] S. S. Lam, “Protocol conversion,” IEEE Trans. Software Eng., vol. 14,
pp. 353-362, Mar. 1988.

[5] K. Okumura, “A formal protocol conversion method,” in Proc. ACM
Conf. on Communications architectures and protocols, pp.30-37, Aug.
1986.

[6] V. D’silva, S. Ramesh, and A. Sowmya, “Synchronous Protocol
Automata: a framework for modeling and verification of SoC
communication architecture,” in Proc. Design, Autom. Test Eur,
pp.390-395, Feb. 2004.

[7] R. Passerone, J. A. Rowson, and A. Sangiovanni-Vincentelli,
“Automatic Synthesis of Interfaces between Incompatible Protocols,”
in Proc. Eur. Conf. Design Automat., pp.8-13, Jun. 1998.

[8] V. Androutsopoulos, D.M. Brookes, and T.J.W. Clarke, “Protocol
Converter synthesis,” IET Comp. Digit. Tech., vol.1, pp.217-229, Nov.
2004.

[9] Y.W. Yao, W.S. Chen, and M.T. Liu, “A Modular Approach to
Constructing Protocol Converters*,” in Proc Int. Conf. Computer
Communications, pp.572-579, Jun. 1990.

[10] B. Park, H. Choi, and C. M. Kyung, “Synthesis and Optimization of
Interface Hardware between IP’s Operating at Different Clock
Frequencies,” in Proc. Int. Conf. Comput. Design, pp.519-524, Sept.
2000.

[11] T. Chelcea and S.M. Nowak, "Robust interfaces for mixed-timing
systems," IEEE Trans. VLSI Syst., vol. 12, no. 8, pp. 857-873, Aug.
2004.

[12] Synopsys, DesignWare AHB Verification IP Databook. 2006.
[13] ARM, PrimeCell Infrastructure AMBA2 AHB to AMBA3 AXI Bridges,

Rev. r0p1. Feb. 2006.

