
B
R

IC
S

R
S

-0
0

-5
D

a
m

g
å

rd
&

J
u

rik
:

E
ffi

cien
t

P
ro

to
co

ls
b

a
sed

o
n

P
ro

b
a

b
ilistic

E
n

cry
p

tio
n

BRICS
Basic Research in Computer Science

Efficient Protocols based on

Probabilistic Encryption using

Composite Degree Residue Classes

Ivan B. Damgård
Mads J. Jurik

BRICS Report Series RS-00-5

ISSN 0909-0878 March 2000

Copyright c© 2000, Ivan B. Damgård & Mads J. Jurik.

BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk

ftp://ftp.brics.dk

This document in subdirectory RS/00/5/

Efficient Protocols based on

Probabilistic Encryption using

Composite Degree Residue Classes

Ivan B. Damg̊ard and Mads J. Jurik

Aarhus University, BRICS
⋆

(preliminary version)

Abstract. We study various applications and variants of Paillier’s prob-
abilistic encryption scheme. First, we propose a threshold variant of the
scheme, and also zero-knowledge protocols for proving that a given ci-
phertext encodes a given plaintext, and for verifying multiplication of
encrypted values.

We then show how these building blocks can be used for applying the
scheme to efficient electronic voting. This reduces dramatically the work
needed to compute the final result of an election, compared to the previ-
ously best known schemes. We show how the basic scheme for a yes/no
vote can be easily adapted to casting a vote for up to t out of L can-
didates. The same basic building blocks can also be adapted to pro-
vide receipt-free elections, under appropriate physical assumptions. The
scheme for 1 out of L elections can be optimised such that for a certain
range of parameter values, a ballot has size only O(log L) bits.

Finally, we propose a variant of the encryption scheme, that allows re-
ducing the expansion factor of Paillier’s scheme from 2 to almost 1.

1 Introduction

In [7], Paillier proposes a new probabilistic encryption scheme based
on computations in the group Z∗

n2, where n is an RSA modulus. This
scheme has some very attractive properties, in that it is homomor-
phic, allows encryption of many bits in one operation with a constant
expansion factor, and allows efficient decryption. In this paper we
propose some tools for applications of this scheme and some variants
making it suitable for additional applications.

We propose a threshold variant of Pallier’s scheme, allowing a
number of servers to share knowledge of the secret key, such that

⋆ Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

any large enough subset of them can decrypt a ciphertext, while
smaller subsets have no useful information. It is straightforward to
apply known techniques for threshold RSA (such as [8]) to Pallier’s
scheme as it was originally described. However, doing this would lead
to an insecure scheme as we explain later. We present a modification
of Pallier’s decryption algorithm that solves this problem. In work
independent from, but earlier than ours, Fouque, Poupard and Stern
[4] propose the first threshold variant of Pallier’s scheme. Their basic
idea is very similar to ours, with only minor technical differences
making our decryption algorithm slightly simpler (as detailed later).

We also propose a zero-knowledge proof of knowledge allowing
a prover to show that a given ciphertext encodes a given plaintext.
From this we derive other tools, such as a protocol showing that a ci-
phertext encodes one out of a number of given plaintexts. Finally, we
propose a protocol that allows verification of multiplicative relations
among encrypted values without revealing extra information.

We look at applications of this to electronic voting schemes. A
large number of such schemes is known, but the most efficient one,
at least in terms of the work needed from voters, is by Cramer, Gen-
naro and Schoenmakers [3]. This protocol provides in fact a general
framework that allows usage of any probabilistic encryption scheme
for encryption of votes, if the encryption scheme has a set of ”nice”
properties, in particular it must be homomorphic. The basic idea of
this is straightforward: each voter broadcasts an encryption of his
vote (by sending it to a bulletin board) together with a proof that
the vote is valid. All the valid votes are then combined to produce
an encryption of the result, using the homomorphic property of the
encryption scheme. Finally, a set of trustees (who share the secret
key of the scheme in a threshold fashion) can decrypt and publish
the result.

Paillier pointed out already in [7] that since his encryption scheme
is homomorphic, it may be applicable to electronic voting. In order
to apply it in the framework of [3], however, some important building
blocks are missing: one needs an efficient proof of validity of a vote,
and also an efficient threshold variant of the scheme, so that the re-

2

sult can be decrypted without allowing a single entity the possibility
of learning how single voters voted1.

These building blocks are precisely what we provide here. Thus
we immediately get a voting protocol. In this protocol, the work
needed from the voters is of the same order as in the original version
of [3]. However, the work needed to produce the result is reduced
dramatically, as we now explain. With the El Gamal encryption used
in [3], the decryption process after a yes/no election produces gR mod
p, where p is prime, g is a generator and R is the desired result. Thus
one needs to solve a discrete log problem in order to find the result.
Since R is bounded by the number of voters M , this is feasible for
moderate size M ’s. But it requires Ω(

√
M) exponentiations, and may

certainly be something one wants to avoid for large scale elections.
The problem becomes worse, if we consider an election where we
choose between L candidates, L ≥ 2. The method given for this in

[3] is exponential in L in that it requires time Ω(
√

M
L−1

), and so is
prohibitively expensive for elections with large L.

In the scheme we propose below, this work can be removed com-
pletely. Our decryption process produces the desired result directly.
We also give ways to implement efficiently constraints on voting that
occur in real elections, such as allowing to vote for precisely t out of
the L candidates, or to vote for up to t of them. The complexity of
this scheme is linear in L. We propose a particularly efficient variant
of 1 out of L voting which is some cases will produce votes of length
O(log L) bits. This is optimal up to a constant factor, since with less
than log L bits one cannot distinguish between the L candidates.
Furthermore this scheme requires only 1 decryption operation, even
when L > 2.

In [6], Hirt and Sako propose a general method for building
receipt-free election schemes, i.e. protocols where vote-buying or -
coercing is not possible because voters cannot prove to others how
they voted. Their method can be applied to make a receipt-free ver-
sion of the scheme from [3]. It can also be applied to our scheme,
with the same efficiency gain as in the non-receipt free case.

1 In [4], voting was also pointed out as a potential application, but no suggestion was
made there for a proof of validity of a vote.

3

Finally, we propose a variant of the encryption scheme, that al-
lows reducing the expansion factor of Paillier’s scheme from 2 to
almost 1.

2 Paillier’s Probabilistic Encryption Scheme

For completeness, we recall here briefly Paillier’s scheme, please refer
to [7] for proofs of the claims we make here.

Paillier’s scheme starts from the observation that if n = pq, p, q
odd primes, then Z∗

n2 as a multiplicative group is a direct product
G × H , where G is cyclic of order n and H is isomorphic to Z∗

n.
Thus, the factor group Ḡ = Z∗

n2/H is also cyclic of order n. For
an arbitrary element a ∈ Z∗

n2, we let ā = aH denote the element
represented by a in the factor group Ḡ.

It turns out that the element 1 + n := (1 + n)H ∈ Ḡ is a gener-
ator, and moreover (1 + n)i = 1 + in mod n2. Hence the cosets of H
in Z∗

n2 are

H, (1 + n)H, (1 + 2n)H, ..., (1 + (n − 1)n)H.

This gives a natural numbering of these cosets.
Let λ be the least common multiple of p−1 and q−1, thus raising

to exponent λ in Z∗
n always gives 1. Then if for some element a is in

the i’th coset, or in other words ā = 1 + n
i
, then for some element

in h ∈ H it holds that a = (1 + n)ih mod n2, and so

aλ = ((1 + n)ih)λ = 1 + (iλ mod n) · n mod n2

If we define the function L() as L(b) = (b − 1)/n, we get that

L(aλ) = λi mod n

So knowledge of the factors of n, and hence of λ, allows to compute
discrete logarithms to the base 1 + n in Ḡ. Clearly, if we have another

generator ḡ of Ḡ, where ḡ = 1 + n
j

then for arbitrary a, we have for
some x ∈ Zn

a = ḡx = 1 + n
jx

and so discrete logarithms to base ḡ can be computed by computing
first the discrete log base 1 + n, and then multiplying by j−1 mod n.

4

Paillier’s public key system now uses n, g as public key, where g
is a random number modulo n2, chosen such that ḡ generates Ḡ. The
secret key is λ. To encrypt a number i ∈ Zn, one chooses a random
r ∈ Z∗

n2 , and sends

E(i, r) = girn mod n2

From the structure of the group we are in, it is clear that rn mod n2

is a random element in H , and so E(i, r) is a random element with
the property that E(i, r) has discrete log i to the base ḡ in Ḡ.

By what we said above, it is now clear that the receiver who
knows λ can compute i as

i = L(E(i, r)λ mod n2) · L(gλ mod n2)−1 mod n

This system relies for security on the difficulty of distinguishing
random elements in different cosets of H , it is semantically secure,
if it is hard to decide if two given elements are in the same coset.
This problem is at most as hard as factoring n, but we do not know
much else about it. We hope that our results will motivate further
study of it.

3 Some Building Blocks

3.1 A Threshold Variant of the Scheme

What we are after in this section is a way to distribute the secret
key to m servers, such that any subset of at least t of them can do
decryption efficiently, while less than t have no useful information.
Of course this must be done without degrading the security of the
system.

In [8], Shoup proposes an efficient threshold variant of RSA sig-
natures. The main part of this is a protocol that allows a set of
servers to collectively and efficiently raise an input number to a se-
cret exponent modulo an RSA modulus n. A little more precisely: on
input a number a, each server returns a share of the result, together
with a proof of correctness. Given sufficiently many correct shares,
these can be efficiently combined to compute ad mod n, where d is
the secret exponent.

5

As we explain below it is quite simple to transplant this method
to our case, thus allowing the servers to raise to a secret exponent
modulo n2. It now may seem easy to solve our problem: We first let
the servers help us compute E(i, r)λ mod n2 and gλ mod n2, then the
remaining part of the decryption is easy to do without knowledge of
λ.

However, the natural goal for a threshold version of an encryp-
tion scheme is, informally speaking, to be as secure as the original
scheme. Unfortunately the simple idea we just described is com-
pletely insecure under a chosen ciphertext attack. In such an attack,
E(i, r)λ mod n2 will become known to the adversary. Now, if he sub-
mits as ciphertext a number of form (1 + n)irn mod n2, then he will
learn λi mod n, he can divide out i to learn λ, and the system is
completely broken. Applying the same attack to Pallier’s original
system does not lead to a similar disaster: it is easy to see that at-
tacker would learn the discrete log of ḡ base (1 + n), but it is not
at all clear that this would enable him to find the secret key. If we
restrict to attacks where the adversary knows the plaintext for all
the ciphertexts he submits, then the attacker learns nothing new
when the original scheme is used, but learns the discrete log of ḡ
base (1 + n) in case of the naive threshold variant.

So clearly, this simple scheme is not as secure as the original one,
and we need to be more careful. The natural solution is to conduct
the entire decryption algorithm in a multiparty fashion, such that
the only piece of information that the servers release is the plain-
text. However, the decryption algorithm consists, first of computa-
tion modulo n2, then some integer arithmetic, and finally computa-
tion modulo n. Doing this in a distributed way seems to require the
full power of general multiparty computation, and would certainly
require heavy interaction between the servers, something we defi-
nitely want to avoid in a practical application. We therefore propose
a way to change the decryption algorithm such that one exponen-
tiation essentially produces the plaintext directly without releasing
extra information.

When the keys are generated, we first choose n, g as before. For
consistency with the following, let us assume that n = pq, where
p = q = 3 mod 4. This means that λ = 2m where m is odd. Then we

6

compute j such that ḡ = 1 + n
j

using our knowledge of λ. Finally,
we compute a number d such that d = 0 mod m and d = j−1 mod n.
This is easy by the Chinese Remainder theorem, since n and m are
relatively prime. Note also that since ḡ generates Ḡ, j must be prime
to n. We can now see that raising to exponent 2d essentially produces
the decryption directly. By choice of d and the fact that g can be
written as g = (1 + n)jh for some h ∈ H , we get:

E(i, r)2d = (1 + n)2jid(hirn)2d = (1 + n)2jidmodn

= (1 + n)2i = 1 + 2in mod n2

and so L(E(i, r)d mod n2)/2 = i mod n. The last computation of L()
is trivial and easy to reverse, so now the result of the exponentiation
does not reveal any extra information.

We now briefly explain how the method from [8] can be used in
our context: In [8] a method for distributed RSA signatures is given.
Compared to [8] we still have a secret exponent d, but there is no
public exponent e, so we will have to do something slightly different
at some places. We will assume that there are l decryption servers,
and a minimum of k of these are needed to make a correct decryption.

Key generation

Key generation starts out as in [8]: we find 2 primes p and q, that sat-
isfies p = 2p′+1 and q = 2q′+1, where p′ and q′ are primes and differ-
ent from p and q. We set n = pq and m = p′q′ and we make g = (1+
n)jbn mod n2 for a random b ∈ Z∗

n). In accordance with the basic idea
from before we pick d to satisfy d = 0 mod m and d = j−1 mod n.
Now we make the polynomial f(X) =

∑k−1
i=0 aiX

i mod nm, by pick-
ing ai (for 0 < i < k) as random values from {0, · · · , n ∗m− 1} and
a0 = d. The secret share of the i’th authority will be si = f(i) for
1 ≤ i ≤ l and the public key will be (g, n). For verification of the
actions of the decryption servers, we need the following fixed public
values: v, generating the cyclic group of squares in Z∗

n2 and for each
decryption server a verification key vi = v∆si mod n2, where ∆ = l!.

Encryption

To encrypt a message M , a random r ∈ Z∗
n is picked and the cipher

text is computed as c = gMrn mod n2.

7

Share Decryption

The i’th authority will compute ci = c2∆si, where c is the cipher-
text. Along with this will be a proof that logc4(c

2
i) = logv(vi), which

will convince us, that he has indeed raised to his secret exponent si
2

Share combining

If we have the required k (or more) number of shares with a correct
proof, we can combine them into the result by taking a subset S of
k shares and combine them to

c′ =
∏

i∈S

c
2λS

0,i

i mod n2 where λS
0,i = ∆

∏

i′∈S\i

−i

i − i′
∈ Z

The value of c′ will have the form c′ = c4∆2f(0) = c4∆2d. Noting that
4∆2d = 0 mod λ and 4∆2d = 4∆2j−1 mod n, we can conclude that
c′ = (1 + n)4∆2M mod n2, where M is the desired plaintext, so this
means we can compute M = L(c′)/4∆2 mod n.

Compared to the scheme proposed in [4], there are only minor
differences: in [4], an extra random value related to the public ele-
ment g is part of the public key and is used in the Share combining
algorithm. This is avoided in our scheme by the way we choose d,
and thus we get a slightly shorter public key and a slightly simpler
decryption algorithm.

The system as described requires a trusted party to set up the
keys. This may be acceptable as this is a once and for all operation,
and the trusted party can delete all secret information as soon as the
keys have been distributed. However, using multiparty computation
techniques it is also possible to do the key generation without a
trusted party. In the full version of this paper, we will include a
proof in the random oracle model that this threshold version is as
secure as Paillier’s original scheme.

3.2 Some Auxiliary Protocols

Suppose a prover P presents a sceptical verifier V with a ciphertext
c and claims that it encodes plaintext i. A trivial way to convince

2 A noninteractive proof for this using the Fiat-Shamir heuristic is easy to derive from
the corresponding one in [8], see also [4].

8

V would be to reveal also the random choice r, then V can verify
himself that c = E(i, r). However, for use in the following, we need
a solution where no extra useful information is revealed.

It is easy to see that that this is equivalent to convincing V
that cg−i mod n2 is an n’th power. So we now propose a protocol
for this which is a simple generalisation of the one from [5]. We
note that this and the following protocols are not zero-knowledge
as they stand, only honest verifier zero-knowledge. However, first
zero-knowledge protocols for the same problems can be constructed
from them using standard methods and secondly, in our applications,
we will always be using them in a non-interactive variant based on
the Fiat-Shamir heuristic, which means that we cannot obtain zero-
knowledge, we can, however, obtain security in the random oracle
model. As for soundness, we prove that the protocols satisfy so called
special soundness (see [1]), which in particular implies that they
satisfy standard knowledge soundness.

Protocol for n’th powers

Input: n, u
Private Input for P : v, such that u = vn mod n2

1. P chooses r at random mod n2 and sends a = rn mod n2 to V
2. V chooses e, a random k bit number, and sends e to P .
3. P sends z = rve mod n2 to V , and V checks that zn = aue mod

n2, and accepts if and only if this is the case.

It is now simple to show

Lemma 1. The above protocol is complete, honest verifier zero-know-
ledge, and satisfies that from any pair of accepting conversations (be-
tween V and any prover) of form (a, e, z), (a, e′, z′) with e 6= e′, one
can efficiently compute an n’th root of u, provided 2t is smaller than
the smallest prime factor of n.

Proof. Completeness is obvious from inspection of the protocol. For
honest verifier simulation, the simulator chooses a random z ∈ Z∗

n2,
a random e, sets a = znu−e mod n2 and outputs (a, e, z). This is
easily seen to be a perfect simulation.

For the last claim, observe that since the conversations are ac-
cepting, we have zn = aue mod n2 and z′n = aue′ mod n2, so we

9

get
(z/z′)n = ue−e′ mod n2

Since e− e′ is prime to n by the assumption on 2t, choose α, β such
that αn + β(e − e′) = 1. Then let v = uα(z/z′)β mod n2. We then
get

vn = uαn(z/z′)nβ = uαnuβ(e−e′) = u mod n2

so that v is indeed the desired n’th root of u

In our application of this protocol, the modulus n will be chosen
by a trusted party, or by a multiparty computation such that n has
two prime factors of roughly the same size. Hence, if k is the bit
length of n, we can set t = k/2 and be assured that a cheating
prover can make the verifier accept with probability ≤ 2−t.

The lemma immediately implies, using the techniques from [1],
that we can build an efficient proof that an encryption contains one
of two given values, without revealing which one it is: given the
encryption C and the two candidate plaintexts i1, i2, prover and
verifier compute u1 = C/gi1 mod n2, u2 = C/gi2 mod n2, and the
prover shows that either u1 or u2 is an n’th power. This can be
done using the following protocol, where we assume without loss
of generality that the prover knows an n’th root u1, and where M
denotes the honest-verifier simulator for the n-power protocol above:

Protocol 1-out-of-2 n’th power

Input: n, u1, u2

Private Input for P : v1, such that u1 = vn
1 mod n2

1. P chooses r1 at random mod n2. He invokes M on input n, u2 to
get a conversation a2, e2, z2. He sends a1 = rn mod n2, a2 to V

2. V chooses s, a random t bit number, and sends s to P .
3. P computes e1 = s − e2 mod 2k and z1 = r1v

e1

1 mod n2. He then
sends e1, z1, e2, z2 to V .

4. V checks that s = e1 + e2 mod 2k, zn
1 = a1u

e1

1 mod n2 and zn
2 =

a2u
e2

2 mod n2, and accepts if and only if this is the case.

The proof techniques from [1] and Lemma 1 immediately imply

Lemma 2. Protocol 1-out-of-2 n’th power is complete, honest veri-
fier zero-knowledge, and satisfies that from any pair of accepting con-
versations (between V and any prover) of form (a1, a2, s, e1, z1, e2, z2),

10

(a1, a2, s
′, e′1, z

′
1, e

′
2, z

′
2) with s 6= s′, one can efficiently compute an

n’th root of u1, an n’th root of u2, provided 2t is less than the small-
est prime factor of n.

Our final building block allows a prover to convince a verifier that
three encryptions contain values a, b and c such that ab = c mod n.
For this, we propose a protocol inspired by a similar construction
found in [2].

Protocol Multiplication-mod-n
Input: n, g, ea, eb, ec

Private Input for P : a, b, c, ra, rb, rc such that ab = c mod n and
ea = E(a, ra), eb = E(b, rb), ec = E(c, rc)

1. P chooses a random value d ∈ Zn and sends to V encryptions
ed = E(d, rd), edb = E(db, rdb).

2. V chooses e, a random t-bit number, and sends it to P .
3. P opens the encryption ee

aed = E(ea + d, re
ard mod n2) by send-

ing f = ea + d mod n and z1 = re
ard mod n2. Finally, P opens

the encryption ef
b (edbe

e
c)

−1 = E(0, rf
b (rdbr

e
c)

−1 mod n2) by sending

z2 = rf
b (rdbr

e
c)

−1 mod n2.
4. V verifies that the openings of encryptions in the previous step

were correct, and accepts if and only if this was the case.

Lemma 3. Protocol Multiplication-mod-n is complete, honest veri-
fier zero-knowledge, and satisfies that from any pair of accepting con-
versations (between V and any prover) of form (ed, edb, e, f, z1, z2),
(ed, edb, e

′, f ′, z′1, z
′
2) with e 6= e′, one can efficiently compute the

plaintext a, b, c corresponding to ea, eb, ec such that ab = c mod n,
provided 2t is smaller than the smallest prime factor in n.

Proof. Completeness is clear by inspection of the protocol. For hon-
est verifier zero-knowledge, observe that the equations checked by
V are ee

aed = E(f, z1) mod n2 and ef
b (edbe

e
c)

−1 = E(0, z2) mod n2.
¿From this it is clear that we can generate a conversation by choos-
ing first f, z1, z2, e at random, and then computing ed, edb that will
satisfy the equations. This only requires inversion modulo n2, and
generates the right distribution because the values f, z1, z2, e are
also independent and random in the real conversation. For the last

11

claim, note first that since encryptions uniquely determine plain-
texts, there are fixed values a, b, c, d contained in ea, eb, ec, ed, and
a value x contained in edb. The fact that the conversations given
are accepting implies that f = ea + d mod n, f ′ = e′a + d mod n,
fb − x − ec = 0 = f ′b − x − e′c mod n. Putting this together, we
obtain (f − f ′)b = (e − e)′c mod n or (e − e′)ab = (e − e′)c mod n.
Now, since (e − e′) is invertible modulo n by assumption on 2t, we
can conclude that c = ab mod n (and also compute a, b and c).

The protocols from this section can be made non-interactive using
the standard Fiat-Shamir heuristic of computing the challenge from
the first message using a hash function. This can be proved secure
in the random oracle model.

4 Efficient Electronic Voting

In [3], a general model for elections was used, which we briefly recall
here: we have a set of voters V1, ..., VM , a bulletin board B, and a
set of tallying authorities A1, ..., Av. The bulletin board is assumed
to function as follows: every player can write to B, and a message
cannot be deleted once it is written. All players can access all mes-
sages written, and can identify which player each message comes
from. This ca n all be implemented in a secure way using an already
existing public key infrastructure and server replication to prevent
denial of service attacks. We assume that the purpose of the vote is
to elect a winner among L candidates, and that each voter is allowed
to vote for t < L candidates.

In the following, h will denote a fixed hash function used to make
non-interactive proofs according to the Fiat-Shamir heuristic. Alos,
we will assume throughout that an instance of threshold version of
Paillier’s scheme with public key n, g has been set up, with the Ai’s
acting as decryption servers. We will assume that n > M , which will
always be true for realistic values of these parameters.

The notation ProofP (S), where S is some logical statement will
denote a bit string created by player P as follows: P selects the
appropriate protocol from the previous section that can be used to
interactively prove S. He computes the first message a in this pro-
tocol, computes h(a, ID(P)) where ID(P) is his user identity in

12

the system and, taking the result of this as the challenge from the
verifier, computes the answer z. Then ProofP (S) = (a, z). The in-
clusion of ID(P) in the input to h is done in order to prevent vote
duplication.

A protocol for the case L = 2 is now simple to describe. This
is equivalent to a yes/no vote and so each vote can thought of as a
number equal to 0 for no and 1 for yes:

1. Each voter Vi decides on his vote vi, he calculates Ei = E(vi, ri),
where ri is randomly chosen. He also creates
ProofVi

(Ei or Ei/g is an n’th power modulo n2)
based on the 1-out-of-2 n’th power protocol. He writes the en-
crypted vote and proof to B.

2. Each Aj does the following: first set E = 1. Then for all i:
check the proof written by Vi on B and if is it valid, then E :=
E · Ei mod n2. Finally, Aj executes his part of the threshold de-
cryption protocol, using E as the input ciphertext, and writes his
result to B.

3. ¿From the messages written by the Aj ’s, anyone can now recon-
struct the plaintext corresponding to E (possibly after discarding
invalid messages). Assuming for simplicity that all votes are valid,
it is evident that E =

∏

i E(vi, ri) = E(
∑

i vi mod n,
∏

i ri mod
n2). So the decryption result is

∑

i vi mod n which is
∑

i vi since
n > M .

Security of this protocol (in the random oracle model) follows
easily from security of the sub-protocols used, and semantic security
of Paillier’s encryption scheme. Proofs will be included in the final
version of this paper.

There are several ways to generalise this to L > 2. Probably
the simplest way is to hold L parallel yes/no votes as above. A voter
votes 1 for the candidates he wants, and 0 for the others. This means
that Vi will send L votes of form (j = 1, .., L)

Eij =E(vij , rij),

P roofVi
(Eij or Eij/g is an n’th power modulo n2)

To prove that he voted for exactly t candidates, he also writes to
B the number

∏

j rij mod n2. This allows the talliers to verify that

13

∏

j E(vij , rij) is an encryption of t. This check is sufficient, since
all individual votes are proved to be 0 or 1. It is immediate that
decryption of the L results will immediately give the number of votes
each candidate received.

We note that his easily generalises to cases where voters are al-
lowed to vote for up to t candidates: one simply introduces t ”dummy
candidates” in addition to the actual L. We then execute the proto-
col as before, but with t + L candidates. Each voter places the votes
he does not want to use on dummy candidates.

The size of a vote in this protocol is seen to be O(Lk), where
k is the bit length of n, by simple inspection of the protocol. The
protocol requires L decryption operations. As a numeric example,
suppose we have k = 1000, M = 64000, L = 64. Then a vote in the
above system has size about 80 Kbyte.

If the parameters are such that L log2 M < k and t = 1, then
we can do significantly better. These conditions will be satisfied in
many realistic situations, such as for instance in the numeric example
above. Note that for security reasons, one would want k ≥ 1000 in
any case, so the variant we propose here can indeed handle realistic
values of M, L without having to increase k.

The basic idea is the following: a vote for candidate j, where
0 ≤ j < L is defined to be an encryption of the number M j . Each
voter will create such an encryption and prove its correctness as
detailed below. When all these encryptions are multiplied we get an
encryption of a number of form a =

∑L

j=0 ajM
j mod n, where aj is

the number of votes cast for candidate j. Since L log2 M < k, this
relation also holds over the integers, so decrypting and writing a in
M-ary notation will directly produce all the aj ’s.

It remains to describe how to produce encryption hiding a num-
ber of form M j , for some 0 ≥ j < L, and prove it was correctly
formed. Let b0, ..., bl be the bits in the binary representation of j, i.e.
j = b02

0 + b12
1 + ... + bl2

l. Then clearly we have M j = (M20

)b0 ·
... · (M2l

)bl . Each factor in this product is either 1 or a power of
M . This is used in the following algorithm for producing the desired
proof (where P denotes the prover):

1. P computes encryptions e0, ..., el of (M20

)b0 , ..., (M2l

)bl . For each
i = 0...l he also computes ProofP (ei/g or ei/g

M i

is an n’th power).

14

2. Let Fi = (M20

)b0 · ... · (M2i

)bi , for i = 0...l. P computes an
encryption fi of Fi, for i = 1..l. We set f0 = e0. Now, for i = 1...l,
P computes

ProofP (Plaintexts corr. to fi−1, ei, fi satisfy

Fi−1 · (M2i

)bi = Fi mod n),

based on the multiplication-mod-n protocol. The encryption fl is
the desired encryption, it can be verified from the ei, fi and all
the proofs computed.

It is straightforward to see that a vote in this system will have
length O(k log L) bits (still assuming, of course, that k log2 M ≤ k).

With parameter values as in the numeric example before, a vote
will have size about 15 Kbyte, a factor of more than 5 better than
the previous system. Moreover, we need only 1 decryption operation
as opposed to L before.

5 Reducing the Expansion Factor

Paillier’s original system expands a plaintext to a ciphertext that
is twice as long. We now show how this expansion factor can be
made smaller. The basic idea is simple: to make keys, choose an
RSA modulus n as usual, but do the computations modulo ns+1, for
some s > 1.

It is easy to see that the group Z∗
ns+1 is isomorphic to the direct

product of a cyclic group of order ns and a group H of order φ(n).
Again we will consider the factor group coming from factoring out H ,
which this time has order ns. Carrying over ideas from the previous
sections, we have the following lemma:

Lemma 4. For any s < p, q, the element n + 1 has order ns in
Z∗

ns+1.

Proof. Consider the integer (1 +n)i =
∑i

j=0

(

i

j

)

nj . This number is 1

modulo ns+1 for some i if and only if
∑i

j=1

(

i

j

)

nj−1 is 0 modulo ns.
Clearly, this is the case if i = ns, so it follows that the order of 1 +n
is a divisor in ns, i.e., it is a number of form pαqβ, where α, β ≤ s.
Set a = pαqβ, and consider a term

(

a

j

)

nj−1 in the sum
∑a

j=1

(

a

j

)

nj−1.

15

We claim that each such term is divisible by a: this is trivial if j > s,
and for j ≤ s, it follows because j! can then not have p or q as prime
factors, and so a must divide

(

a

j

)

. Now assume for contradiction that

a = pαqβ < ns. Without loss of generality, we can assume that this
means α < s. We know that ns divides

∑a

j=1

(

a

j

)

nj−1. Dividing both

numbers by a, we see that p must divide the number
∑a

j=1

(

a

j

)

nj−1/a.
However, the first term in this sum after division by a is 1, and all
the rest are divisible by p, so the number is in fact 1 modulo p, and
we have a contradiction.

As previously, this means that we can number the residue classes
of H in a natural way, and that for an element a in the i’th residue
class, we have that a = (1 + n)ih for an element h ∈ H , and so

aλ = (1 + n)iλmodns

mod ns+1

Just as before, this means that if we can compute i from (1 +
n)i mod ns+1 efficiently, then knowledge of λ will enable us to com-
pute discrete logs efficiently in the factor group, and we can devise
a decryption algorithm along the lines of the system using n2 as
modulus. Clearly, we have

L((1 + n)i mod ns+1) = (i +

(

i

2

)

n + ... +

(

i

s

)

ns−1) mod ns

We now describe an algorithm for computing i from this number.

The general idea of the algorithm is to extract the value part
by part, so that we first extract i1 = i mod n, then i2 = i mod n2

and so forth. To see how this can be done let’s look at the j’th step
where we know ij−1. This means that ij = ij−1 + k ∗ nj−1 for some
0 ≤ k < n. If we use this in

L((1 + n)i mod nj+1) = (ij +

(

ij
2

)

n + ... +

(

ij
j

)

nj−1) mod nj

We can notice that each term
(

ij
t+1

)

nt for j > t > 0 satisfies that
(

ij
t+1

)

nt =
(

ij−1

t+1

)

nt mod nj . This is because the contributions from

k ∗nj−1 vanish modulo nj after multiplication by n. This means that

16

we get:

L((1 + n)i mod nj+1) = (ij−1 + k ∗ nj−1 +

(

ij−1

2

)

n + ... +

(

ij−1

j

)

nj−1) mod nj

Then we just rewrite that to get what we wanted

ij = ij−1 + k ∗ nj−1

= ij−1 + L((1 + n)i mod nj+1) − (ij−1 +

(

ij−1

2

)

n

+ ... +

(

ij−1

j

)

nj−1) mod nj

= L((1 + n)i mod nj+1) − (

(

ij−1

2

)

n + ... +

(

ij−1

j

)

nj−1) mod nj

This equation leads to the following algorithm:

i := 0;
for j:= 1 to s do

begin

t1 := L(a mod nj+1);
t2 := i;
for k:= 2 to j do

begin

i := i − 1;
t2 := t2 ∗ i mod nj ;

t1 := t1 − t2∗nk−1

k!
mod nj ;

end

i := t1;
end

As in Paillier’s original system, we will use as public key in our
system pairs n, g, where n is an RSA modulus and g is a random
element of order ns in the factor group Z∗

ns+1/H. The secret key is λ.
An encryption of i ∈ Zns is of form Es(i, r) = girn mod ns+1, where

17

r is randomly chosen in Z∗
ns+1. By the algorithm above, knowledge of

the secret λ enables us to compute discrete logarithms in the factor
group, and a decryption algorithm follows easily.

If n is a k-bit number, then this system encrypts a ks bit message
to a k(s + 1) bit ciphertext, and so the expansion factor can be
brought arbitrarily close to 1, by choosing s larger.

It is worth noting that all the auxiliary protocols we developed
earlier extend trivially to the case of computations modulo ns+1,
in particular the scheme is homomorphic w.r.t. addition of messages
modulo ns. Consequently our voting schemes can all be implemented
based on this variant, which in particular gives the possibility in
the most efficient scheme to accomodate a larger number of voters
without increasing the size of the modulus.

The system is semantically secure, if the following assumption
holds

Conjecture 1. Let A be any probabilistic polynomial time algorithm,
and assume A gets n, g as input (n has k bits, n, g chosen as described
above), it outputs i0, i1 ∈ Zns, it gets Es(ib, r), where b is randomly
chosen, and finally outputs a bit c. Let p(A, k) be the probability
that c = b. Then | 1/2 − p(A, k) | is negligible in k.

By reducing everything modulo n2, it is easily seen that this con-
jecture implies Paillier’s original intractability assumption. It is not
clear if the reverse implication is true, in particular, if i0, i1 are dif-
ferent modulo ns but the same modulo n2, then encryptions modulo
ns+1 of i0, i1 might be easy to distinguish even if Paillier’s original
system is secure. We recommend that these systems are used with
caution, until this family of intractability assumptions has been stud-
ied more carefully.

References

1. Cramer, Damgåard and Schoenmakers: Proofs of partial knowlegde, Proc. of Crypto
94, Springer Verlag LNCS series nr. 839.

2. R.Cramer, S.Dziembowski, I. Damg̊ard, M.Hirt and T.Rabin: Efficient Multi-

party Computations Secure against an Adaptive Adversary, Proc. of EuroCrypt
99, Springer Verlag LNCS series 1592, pp. 311-326.

3. R.Cramer, R.Gennaro, B.Schoenmakers: A Secure and Optimally Efficient Multi-

Authority Election Scheme, Proceedings of EuroCrypt 97, Springer Verlag LNCS
series, pp. 103-118.

18

4. P. Fouque, G. Poupard, J. Stern: Sharing Decryption in the Context of Voting or

Lotteries, Proceedings of Financial Crypto 2000.
5. L. Guillou and J.-J. Quisquater: A Practical Zero-Knowledge Protocol fitted to

Security Microprocessor Minimizing both Transmission and Memory, Proc. of Eu-
roCrypt 88, Springer Verlag LNCS series.

6. M.Hirt and K.Sako: Efficient Receipt-Free Voting based on Homomorphic Encryp-

tion, to appear in Proc. of EuroCrypt 2000.
7. P.Pallier: Public-Key Cryptosystems based on Composite Degree Residue Classes,

Proceedings of EuroCrypt 99, Springer Verlag LNCS series, pp. 223-238.
8. V.Shoup: Practical Threshold Signatures, to appear in Proceedings of EuroCrypt

2000.

19

Recent BRICS Report Series Publications

RS-00-5 Ivan B. Damgård and Mads J. Jurik. Efficient Protocols based

on Probabilistic Encryption using Composite Degree Residue

Classes. March 2000. 19 pp.

RS-00-4 Rasmus Pagh. A New Trade-off for Deterministic Dictionaries.
February 2000.

RS-00-3 Fredrik Larsson, Paul Pettersson, and Wang Yi. On Memory-

Block Traversal Problems in Model Checking Timed Systems.
January 2000. 15 pp. To appear in Tools and Algorithms for The

Construction and Analysis of Systems: 6th International Confer-

ence, TACAS ’00 Proceedings, LNCS, 2000.

RS-00-2 Igor Walukiewicz. Local Logics for Traces. January 2000.
30 pp.

RS-00-1 Rune B. Lyngsø and Christian N. S. Pedersen. Pseudoknots in

RNA Secondary Structures. January 2000. 15 pp. To appear
in Fourth Annual International Conference on Computational

Molecular Biology, RECOMB ’00 Proceedings, 2000.

RS-99-57 Peter D. Mosses. A Modular SOS for ML Concurrency Primi-

tives. December 1999. 22 pp.

RS-99-56 Peter D. Mosses. A Modular SOS for Action Notation. Decem-
ber 1999. 39 pp. Full version of paper appearing in Mosses
and Watt, editors, Second International Workshop on Action

Semantics, AS ’99 Proceedings, BRICS Notes Series NS-99-3,
1999, pages 131–142.

RS-99-55 Peter D. Mosses. Logical Specification of Operational Se-

mantics. December 1999. 18 pp. Invited paper. Appears in
Flum, Rodrı́guez-Artalejo and Mario, editors, European Asso-

ciation for Computer Science Logic: 13th International Work-

shop, CSL ’99 Proceedings, LNCS 1683, 1999, pages 32–49.

RS-99-54 Peter D. Mosses. Foundations of Modular SOS. December 1999.
17 pp. Full version of paper appearing in Kutyłowski, Pachol-
ski and Wierzbicki, editors, Mathematical Foundations of Com-

puter Science: 24th International Symposium, MFCS ’99 Pro-
ceedings, LNCS 1672, 1999, pages 70–80.

