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Abstract. When datasets are distributed on different sources, finding
out matched data while preserving the privacy of the datasets is a widely
required task. In this paper, we address two matching problems against
the private datasets on N (N ≥ 2) parties. The first one is the Privacy
Preserving Set Intersection (PPSI) problem, in which each party wants
to learn the intersection of the N private datasets. The second one is the
Privacy Preserving Set Matching (PPSM) problem, in which each party
wants to learn whether its elements can be matched in any private set
of the other parties. For the two problems we propose efficient protocols
based on a threshold cryptosystem which is additive homomorphic. In a
comparison with the related work in [18], the computation and communi-
cation costs of our PPSI protocol decrease by 81% and 17% respectively,
and the computation and communication costs of our PPSM protocol
decrease by 80% and 50% respectively. In practical utilities both of our
protocols save computation time and communication bandwidth.

Keywords: cryptographic protocol, privacy preservation, distributed
database, set intersection, set matching.

1 Introduction

For datasets distributed on different sources, data matching among these sets is
always required to gain useful information. Supermarkets need find out the same
card numbers which have consuming records in all of their databases, and then
provide better service for the card owners. This is a set intersection problem
among distributed datasets. The tenderees consider that duplicate submission
of tenders is a damage of their benefits, so they want to reject those tenderers
who have submitted duplicate tenders to any two of them. Such tenderers can
be found out by one tenderee by firstly set intersections between his tender set
and each set of the others, then a set union on all the intersections. This is a set
matching problem among distributed datasets.

Privacy may be a critical concern of the data owners, so they are reluctant to
directly publish their datasets. Specifically, one supermarket doesn’t want other

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 210–227, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Efficient Protocols for Privacy Preserving Matching 211

supermarkets to know the card numbers in its database except those in the in-
tersection. One tenderee A even doesn’t like another tenderee B to know that
it is him that has a matched tender with B. Therefore, there should be some
privacy preserving techniques for them to determine the results of set intersec-
tion and matching, without the datasets being directly published. In this paper,
we address the two related problems: privacy preserving set intersection, and
privacy preserving set matching. Basically, both of them are solved by efficiently
constructing and evaluating polynomials whose roots are elements of the set in-
tersection and matching.

Problem Formulation: Suppose there are N (N ≥ 2) parties, each party
Pi (i = 1, ..., N) has a set (or multiset) of inputs of size S: Ti = {T (i, j)|j =
1, ..., S}. We also assume that all Ti for i = 1, ..., N are subsets of a common
set T, and S � |T|, such that given two arbitrarily selected subsets Ti and Ti′ ,
The probability that an input a ∈ Ti equals any input a′ ∈ Ti′ is negligible (i.e.,
S
|T| → 0). In the following we define our two problems:

1) Privacy Preserving Set Intersection (PPSI): All parties want to learn the
intersection of their private sets, i.e., TI = T1 ∩ ... ∩ TN , without gleaning
any information other than those computed from a coalition of parties inputs
and outputs.

2) Privacy Preserving Set Matching (PPSM): Each party Pi wants to learn
whether each element of its can be matched in any set of the other parties,
i.e., whether each element T (i, j) ∈

⋃
i′=1,...,N,i′ �=i(Ti ∩Ti′), without gleaning

any information other than those computed from a coalition of parties inputs
and outputs.

Privacy Requirements: Firstly, in both problems, an honest party shouldn’t
be subject to the dictionary attack, in which an adversary may defraud the
honest party of inputs using the common set T. The dictionary attack can be
effectively resisted in assumption of S � |T| .

What’s more, without colluding with the other parties, an adversary-controlled
party Pi shouldn’t glean the following information:

1) For PPSI, Pi can’t know elements on Pi′ (i′ = 1, ..., N, i′ �= i) except TI.
2) For PPSM, if T (i, j) ∈

⋃
i′=1,...,N,i′ �=i(Ti ∩ Ti′), Pi can’t know the specific

matching times, i.e., how many parties T (i, j) has matches on, and the
matching originations, i.e., which party T (i, j) has a match on.

If Pi is in a coalition of c (1 ≤ c ≤ N −1) adversary-controlled parties, it may
get more information than above. We analyze these information in Section 6 of
this paper.

Our Contributions: Our main contributions in this paper include:

1) We propose an efficient PPSI protocol, which has lower computation and
communication costs than the PPSI protocols in [18] and [8].

2) To our knowledge there hasn’t been a direct solution for PPSM. Though
a PPSM solution can be derived from the techniques in [18], we propose a
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more efficient protocol in the computation and communication costs than
the derived one.

The remainder of the paper is organized as follows: Section 2 discusses some
related work. Section 3 lists the necessary preliminaries for our protocols. Sec-
tion 4 and Section 5 propose the PPSI protocol and PPSM protocol respectively.
In Section 6 we analyze the security of the two protocols. In Section 7 we com-
pare our two protocols with the related work considering the computation and
communication costs. Section 8 concludes the whole paper.

2 Related Work

PPSI and PPSM are specific problems belonging to the general Secure Multiparty
Computation (SMC) problem. There have been general solutions for the SMC
problem ([12], [24]). In general SMC, the function to be computed is represented
by a circuit, and every gate of the circuit is privately evaluated. However, when
this general solution is used for a specific problem, the large size of the circuit
and high cost of evaluating all gates will result in a much less efficient protocol
than the non-private protocol for this problem. Therefore, many efficient private
protocols for the specific problems have been proposed based on the specific
properties of these problems.

PPSI and PPSM can be traced back to the specific problem of private equality
test (PET) in two-party case, where each party has a single element and wants
to test whether they are equal without publishing the elements. The problem
of PET was considered in [1], [4], [19] and [20]. PET solutions can’t be simply
used for the multi-party cases of PPSI and PPSM, otherwise too much sensitive
information will be leaked, e.g., any two parties will know the intersection of
their private sets.

A solution for the multi-party case of PPSI was firstly proposed in [8]. The
solution is based on evaluating polynomials representing elements in the sets.
In [18], another solution for PPSI was proposed, in which each polynomial rep-
resenting each set is multiplied by a random polynomial which has the same
degree with the former polynomial. In this paper, to get a solution with lower
costs than [8] and [18], we multiply each polynomial representing each set by a
random polynomial which has a low enough degree without compromising the
security of the solution. We also multiply the randomized polynomials by a non-
singular matrix to improve the correctness of our solution. We will compare our
solution for PPSI with [8] and [18] in details in Section 7.

Though there hasn’t been a direct solution for the PPSM problem, it can be
considered as computing a function

⋃
i′=1,...,N,i�=i′(Ti ∩Ti′) on Pi for i = 1, ..., N ,

and can be solved by the techniques of privacy preserving set intersection and set
union in [18]. Thus we can derive a solution from [18], and we name it “Solution
D1” in this paper. In [18] the way to securely construct Solution D1 wasn’t
provided. Solution D1 also requires high cost. We will compare our solution for
PPSM with Solution D1 in Section 7.
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Other related privacy preserving problems, such as set cardinality, set dis-
jointness, threshold set union, etc, can be found in [8], [18], [17] and [14]. They
are different problems from PPSI and PPSM, thus need different solutions.

3 Preliminaries

3.1 Adversary Model

Generally speaking there are two types of adversaries in SMC, depending on
whether they take active steps to disrupt the execution of the protocol, or merely
gather information. The latter adversary is referred to as semi-honest (or pas-
sive, honest-but-curious); the former one is referred to as malicious (or active).
A semi-honest party is assumed to follow the protocol exactly as what is pre-
scribed by the protocol, except that it keeps a record of all its intermediate
computations. A malicious party may arbitrarily deviate from the specified pro-
tocol, including refusing to participate in the protocol, substituting their local
inputs and aborting the protocol prematurely. For the security in the malicious
model, a general compiler is given in [11] to force each party to either effectively
behave in a semi-honest manner or be detected as cheating.

In this paper we assume the parties are semi-honest, and they may compose
any coalition of c (1 ≤ c ≤ N − 1) parties (Pi1 , ..., Pic). A multi-party protocol
is said to privately compute a function f, if whatever a coalition of semi-honest
parties can obtain after participating in the protocol could be essentially ob-
tained from the inputs and outputs of these very parties. By [10] and [11], a
formal definition of privacy with respect to semi-honest behavior is given in the
following:

Definition 1. Let f : ({0, 1}∗)m → ({0, 1}∗)m be an m-ary functionality, where
fi(x1, ..., xm) is the i-th element of f(x1, ..., xm). For I = {i1, ..., ic} ⊆ {1, ..., m},
fI(x1, ..., xm) = {fi1(x1, ..., xm), ..., fic(x1, ..., xm)}. Let Π be an m-party protocol
for computing f. The view of the i-th party (Pi) after participating in an execution
of Π on x = (x1, ..., xm), denoted V IEWΠ

i (x), is (xi, r, m1, ..., mt), where r are
the random bits generated by Pi, m1, ..., mt is a sequence of message received by Pi.
For I = {i1, ..., ic}, we let V IEWΠ

I (x) = (I, V IEWΠ
i1

(x), ..., V IEWΠ
ic

(x)).
We say that Π Privately Computes f if there exists a probabilistic polynomial-

time (PPT) algorithm, denoted S, such that for every I ⊆ {1, ..., m}, it holds that

S(I, (xi1 , ..., xic), fI(x))x∈({0,1}∗)m ≡c V IEWΠ
I (x)x∈({0,1}∗)m (1)

In the definition above, “≡c” denotes computationally indistinguishable, which
is also called indistinguishable in polynomial time. Given two ensembles X =
{Xw}w∈S′ and Y = {Yw}w∈S′ (S′ is a set of strings), they are indistinguishable
in polynomial time if for every PPT algorithm D, every positive polynomial
p(·), and all sufficiently long w ∈ S′, |Pr[D(Xw , w) = 1]|− |Pr[D(Yw, w) = 1]| <

1
p(|w|) .
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3.2 Homomorphic Encryption

Our protocols are based on an additive Homomorphic Encryption (HE) scheme.
Let ε be a probabilistic encryption scheme. Let M be the message space and
C the ciphertext space such that M is a group under operation ⊕ and C is a
group under operation �. ε is a (⊕, �)-HE scheme if for any instance ER(·) of
the encryption scheme, given c1 = Er1(m1) and c2 = Er2(m2), there exists an r
such that c1 � c2 = Er1(m1) � Er2(m2) = Er(m1 ⊕ m2). ε is additive when it’s
a (+, �) scheme, and multiplicative when it’s a (∗, �) scheme.

The HE scheme in our protocols is also required to support secure (N, N)-
threshold decryption. The corresponding secret key is shared by a group of N
parties, and the decryption can’t be performed by any single party, unless all
parties act together.

Thus, we can use Paillier’s cryptosystem ([21]) for its following properties:
1) it’s an additive homomorphic encryption scheme. Given two encryptions
E(m1) and E(m2), E(m1 + m2) = E(m1) · E(m2); 2) given an encryption
E(m) and a scalar a, E(a · m) = E(m)a; 3) (N, N)-threshold decryption can
be supported (by [6],[7]). In this paper, N is the RSA-modulus which is the
multiplication of two large prime numbers, and ZN is the plaintext space of
Paillier’s cryptosystem.

3.3 Calculations on Encrypted Polynomials

In our protocols, we need do some calculations on encrypted polynomials. For
a polynomial f(x) =

∑m
i=0 aix

i, we use E(f(x)) to denote the sequence of en-
crypted coefficients {E(ai)|i = 0, ..., m}. Given E(f(x)), where E(·) is an ad-
ditive HE scheme (e.g., Paillier), some computations can be made as follows
(which have also been used in [8] and [18]):

1) At a value v, we can evaluate E(f(x)): E(f(v)) = E(amvm + am−1v
m−1 +

... + a0) = E(am)vm

E(am−1)vm−1 · · · E(a0).
2) Given E(f(x)), we can compute E(c · f(x)) = {E(am)c, ..., E(a0)c}.

Table 1. Major Notations in This Paper

Notation Definition
N Total number of parties
Pi The i-th party
Ti The set or multiset on Pi

S Total number of elements on each party
T (i, j) The j-th element on Pi, j = 1, ..., S

c Total number of colluded parties, 1 ≤ c ≤ N − 1
I The index set of c colluded parties, {i1, ..., ic}
I ′ The index set of honest parties, {1, ..., N} \ I

fi The polynomial whose roots are elements in Ti. fi =
�S

j=1(x − T (i, j))
ZN The plaintext space of Paillier’s cryptosystem
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3) Given E(f(x)) and E(g(x)), g(x) =
∑m

j=0 bjx
j , we can compute E(f(x) +

g(x)) = {E(am)E(bm), ..., E(a0)E(b0)}.
4) Given f(x) and E(g(x)), we can compute E(f(x)∗g(x)). Suppose that g(x) =∑n

j=0 bjx
j , f(x) ∗ g(x) =

∑m+n
k=0 ckxk, then E(ck) = E(a0bk + a1bk−1 + ... +

akb0) = E(bk)a0 · · · E(b0)ak . ai or bj are treated as zero if i > m or j > n.

3.4 Notations

The major notations in this paper are listed in Table 1.

4 Protocol for Privacy Preserving Set Intersection

4.1 Main Idea

Our protocol for PPSI is based on evaluating randomized polynomials represent-
ing the intersection, which is a similar way with [8] and [18], but achieves lower
cost.

Each Pi can compute a polynomial fi to represent its set Ti: fi = (x−T (i, 1))·
· · (x − T (i, S)). Then it randomizes fi to be fi ∗

∑N
j=1 ri,j by the help of other

parties, in which ri,j is generated by Pj , ri,j = ai,jx + bi,j, ai,j and bi,j are
uniformly selected from the plaintext space of the threshold HE scheme (for
Paillier’s scheme, it’s ZN ).

The N parties get a polynomial vector F = (f1∗
∑N

j=1 r1,j , ..., fN ∗
∑N

j=1 rN,j)
and compute G = FR, in which R is an N ×N nonsingular matrix whose entries
Ruv (1 ≤ u, v ≤ N) are random numbers. The resulting G is another polynomial
vector (g1, ..., gN ) as following:

g1 = f1 ∗
N�

j=1

r1,jR11 + ... + fN ∗
N�

j=1

rN,jRN1

...

gN = f1 ∗
N�

j=1

r1,jR1N + ... + fN ∗
N�

j=1

rN,jRNN

(2)

Then, each Pi evaluates (g1, ..., gN) at the element T (i, j). If for k = 1, ..., N
gk(T (i, j)) = 0, then Pi determines T (i, j) ∈ TI. The correctness of this deter-
mination will be proved in Lemma 1.

In the computation of G, to protect the privacy of each fi, fi is encrypted by
Pi, and the encryption of fi ∗

∑N
j=1 ri,j is also computed. Then each party Pi

generates a random matrix Ri so that R =
∏N

i=1 Ri is nonsingular but no one
knows what R is without publishing all Ri. The encryptions of FR1, FR1R2, ...,
FR1 · · · RN are computed respectively on P1, P2, ..., PN . Finally, the N parties
get the encryption of G = FR. After decryption, each Pi knows G, but not fi′

for i′ �= i.
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4.2 The Protocol

Protocol 1: Protocol for Privacy Preserving Set Intersection
Inputs: There are N (N ≥ 2) semi-honest parties. Each party has a private

set of S elements, denoted Ti. Each party holds the public key and it’s own
share of the secret key for the threshold Paillier’s cryptosystem.

Output: Each party Pi knows TI = T1 ∩ ... ∩ TN .
1) Computing E(F ): For i = 1, ..., N ,

1.1) Pi computes fi = (x − T (i, 1)) · · · (x − T (i, S)), encrypts the coefficients
to get E(fi), and sends E(fi) to all the other N − 1 parties.

1.2) on each Pj (j �= i), ri,j is generated as ai,jx + bi,j , in which ai,j and bi,j

are uniformly selected from ZN . Pj computes E(fi∗ri,j) by computation
4) in Section 3.3, and sends it to Pi.

1.3) Pi also generates ri,i and computes E(fi ∗ri,i). Then Pi computes E(fi ∗∑N
j=1 ri,j) by computation 3) in Section 3.3, and sends it to P1.
In the end, P1 gets E(F ) in which F =(f1∗

∑N
j=1 r1,j , ..., fN∗

∑N
j=1 rN,j).

2) Computing E(G) : For i = 1, ..., N ,
2.1) Pi generates a nonsingular N × N matrix Ri which is uniformly distrib-

uted over ZN ( by the method in [22]).
2.2) Pi computes E(FR1 ···Ri) according to computation 2) and 3) in Section

3.3, and sends it to Pi+1 if i + 1 ≤ N .
In the end, PN gets E(G) = E(F

∏N
i=1 Ri) and sends it to all the

other parties.
3) Decryption and Evaluation :

3.1) The parties cooperatively decrypt E(G) and gets G = F (
∏N

i=1 Ri). Let
R =

∏N
i=1 Ri, and Ru,v (1 ≤ u, v ≤ N) is the (u, v)-th entry of R, G is a

polynomial vector (g1, ..., gN ) as described in the equation 2) of Section
4.1.

3.2) Every Pi evaluates T (i, j) in G for j = 1, ..., S by computation 1) in
Section 3.3. If G(T (i, j)) = ( g1(T (i, j)), ..., gN(T (i, j)) ) = (0, ..., 0), the
T (i, j) ∈ TI; otherwise, T (i, j) /∈ TI.

We prove the correctness of Protocol 1 in the following lemma:

Lemma 1. Protocol 1 is a correct protocol for the PPSI problem.

Proof: Protocol 1 determines whether T (i, j) ∈ TI by G(T (i, j)). If T (i, j) ∈ TI,
T (i, j) is a root of all fi for i = 1, ..., N , then F (T (i, j)) = (f1(T (i, j))

∑N
j=1 r1,j ,

..., fN (T (i, j))
∑N

j=1 rN,j) = (0, ..., 0), G(T (i, j)) = F (T (i, j))R = (0, ..., 0). That
is, if the evaluation G(T (i, j)) �= (0, ..., 0), T (i, j) /∈ TI.

Then we prove that if G(T (i, j)) = (0, ..., 0), overwhelmingly T (i, j) ∈ TI.
G = FR1 · · · RN = F (

∏N
i=1 Ri) = FR. Because Ri for i = 1, ..., N are generated

to be nonsingular, R =
∏N

i=1 Ri is also nonsingular. If G(T (i, j)) = (0, ..., 0), a
linear system F (T (i, j))R = (0, ..., 0) can be made, and it has only one solution:
F (T (i, j)) = (0, ..., 0), i.e.,fl(T (i, j)) ∗

∑N
j=1 rl,j(T (i, j)) = 0 for l = 1, ..., N .
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The coefficients of rl,j are uniformly selected from ZN . Suppose
∑N

j=1 rl,j =
alx + bl, al and bl are also uniformly distributed over ZN . The probability that
any T (i, j) ∈ ZN is a root of alx + bl is 1/N . If ∃T (i, j), ∀l ∈ {1, ..., N},
fl(T (i, j)) ∗

∑N
j=1 rl,j(T (i, j)) = 0 , because fl(T (i, j)) must be 0 when l = i, so

the probability that ∀l (l �= i) fl(T (i, j)) = 0 is p = (1 − 1/N )N−1. N is the
number of parties and practically N � N . When N is large enough, p → 1,
then overwhelmingly T (i, j) is a root of all fl and T (i, j) ∈ TI. �

5 Protocol for Privacy Preserving Set Matching

5.1 Main Idea

The problem of PPSM can be considered as computing a function⋃
i′=1,...,N,i′ �=i(Ti ∩ Ti′) on Pi for i = 1, ..., N . On each Pi the polynomial fi

is computed whose roots are elements in Ti. Then we can use a polynomial
(fi ∗

∑N
k=1 ri′k + fi′ ∗

∑N
k=1 r′i′k) to represent elements in Ti ∩ Ti′ , in which

ri′k =
∑α

j=0 ajx
j , r′i′k =

∑α
j=0 a′

jx
j . The degrees of ri′k and r′i′k are both α and

α = � S
N−1�. The coefficients aj and a′

j for j = 0, ..., α are uniformly selected
from the plaintext space of the threshold HE scheme (for Paillier’s scheme, it’s
ZN ).

We can also use the multiplication of these polynomials to represent the ele-
ments in the union of all Ti ∩Ti′ for i′ = 1, ..., N, i′ �= i. The resulting polynomial
is Fi as following:

Fi =
�

i′=1,...,N,i′ �=i

(fi ∗
N�

k=1

ri′k + fi′ ∗
N�

k=1

r′
i′k) (3)

The coefficients of Fi should be encrypted in the computations. We can use the
evaluation of Fi at T (i, j) to determine whether T (i, j) ∈

⋃
i′=1,...,N,i′ �=i(Ti∩Ti′).

The correctness of the determination will be proved in Lemma 2. For PPSM
defined in Section 1, E(Fi) can’t be decrypted before evaluations, otherwise
Pi will know T (i, j) can be matched by b parties if Pi finds there is a factor
(x−T (i, j))b in Fi, and this will breach the Privacy Requirement 2) in Section 1.

5.2 The Protocol

In the following Protocol 2, each party Pi computes its E(Fi) in N − 1 rounds.
For example, P1 firstly computes E(F12) = E(f1 ∗

∑N
k=1 r2k + f2 ∗

∑N
k=1 r′2k) in

Step 2) of Protocol 2, by summing E(f1 ∗
∑N

k=1 r2k) and E(f2 ∗
∑N

k=1 r′2k). Then
P1 repeats Step 2), computes E(F13) = E(F12(f1 ∗

∑N
k=1 r3k + f3 ∗

∑N
k=1 r′3k)),

by summing E(F12f1 ∗
∑N

k=1 r3k) and E(F12f3 ∗
∑N

k=1 r′3k). After N − 1 rounds
of Step 2), P1 gets E(F1) = E(F1N ) = E((f1 ∗

∑N
k=1 r2k + f2 ∗

∑N
k=1 r′2k) · · ·

(f1 ∗
∑N

k=1 rNk + fN ∗
∑N

k=1 r′Nk)). Finally, P1 evaluates each E(F1(T (1, j))),
and decrypts it to see whether it’s 0.
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Protocol 2: Protocol for Privacy Preserving Set Matching
Inputs: There are N (N ≥ 2) semi-honest parties. Each party has a private

set of S elements, denoted Ti. Every party holds the public key and it’s own
share of the secret key for the threshold Paillier’s cryptosystem.

Output: Each party Pi knows whether its tuples belong to
⋃

i′=1,...,N,i′ �=i(Ti ∩
Ti′).

Steps:

1) Each party Pi computes its fi = (x − T (i, 1)) · · · (x − T (i, S)).
2) P1 initializes E(F11) = E(1), and repeats the following for j = 2, ..., N .

2.1) P1 computes E(F1(j−1) ∗ f1) and sends it to all the other parties.
Each party Pk (k �= 1) randomly chooses rjk as described in Section
5.1, computes E(F1(j−1) ∗ f1 ∗ rjk) by computation 4) in Section 3.3,
and sends it back to P1. P1 also randomly chooses rj1 and computes
E(F1(j−1) ∗ f1 ∗

∑N
k=1 rjk) by computation 3) in Section 3.3.

2.2) P1 sends E(F1(j−1)) to Pj , Pj computes E(F1(j−1) ∗ fj), sends it to
all the other parties. Each of these parties Pk including Pj randomly
chooses r′jk, computes E(F1(j−1) ∗ fj ∗ r′jk) and sends it to P1. P1

computes E(F1(j−1) ∗ fj ∗
∑N

k=1 r′jk).
2.3) P1 computes E(F1j) = E(F1(j−1)(f1 ∗

∑N
k=1 rjk + fj ∗

∑N
k=1 r′jk)) by

summing E(F1(j−1) ∗ f1 ∗
∑N

k=1 rjk) and E(F1(j−1) ∗ fj ∗
∑N

k=1 r′jk).

At the end of j = N , P1 gets E(F1) = E(F1N ) = E(
∏N

j=2(f1∗
∑N

k=1 rjk+
fj ∗

∑N
k=1 r′jk)).

3) Each Pi other than P1 repeats Step 2) and gets E(Fi) = E(
∏

i′=1...N,i′ �=i

(fi ∗
∑N

k=1 ri′k + fi′ ∗
∑N

k=1 r′i′k)).
4) Each Pi evaluates E(Fi) at T (i, j) for j = 1, ..., S, using computation 1)

in Section 3.3.
5) Each party decrypts E(Fi(T (i, j))) in the collaboration of the other N−1

parties for j = 1, ..., S. If the evaluation Fi(T (i, j)) = 0, T (i, j) has a
duplicate on the other parties; otherwise, T (i, j) hasn’t any duplicate on
the other parties.

Lemma 2. Protocol 2 is a correct protocol for the PPSM problem.

Proof: Protocol 2 determines whether T (i, j) ∈
⋃

i′=1,...,N,i′ �=i(Ti ∩ Ti′) by the
evaluation Fi(T (i, j)). If there is a party Pi′ who has a duplicate of T (i, j), i.e.,
T (i, j) ∈

⋃
i′=1,...,N,i′ �=i(Ti ∩Ti′), then both fi′(T (i, j)) and fi(T (i, j)) are 0, and

fi(T (i, j)) ∗
∑N

k=1 ri′k + fi′(T (i, j)) ∗
∑N

k=1 r′i′k = 0, then Fi(T (i, j)) = 0. That
is, if Fi(T (i, j)) �= 0, T (i, j) /∈

⋃
i′=1,...,N,i′ �=i(Ti ∩ Ti′).

If Fi(T (i, j)) = 0, T (i, j) is a root of at least one factor (fi ∗
∑N

k=1 ri′k + fi′ ∗
∑N

k=1 r′i′k) in Fi. In this factor, fi(T (i, j)) = 0,
∑N

k=1 r′i′k is a polynomial of degree
� S

N−1� uniformly distributed over ZN [x]. Any T (i, j) ∈ ZN is a root of
∑N

k=1 r′i′k

with probability 1/N (by [13]). When N is large enough, overwhelmingly T (i, j)
is a root of fi′ , and the corresponding Pi′ has a duplicate of T (i, j). �
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6 Security Analysis

6.1 Security Analysis on Protocol 1

The Inferred Information by the Definition of PPSI. Suppose there are
c colluded parties PI , I = {i1, ..., ic}. It’s unavoidable for PI to combine their
inputs and outputs to infer information. However, by the definition of PPSI in
Section 1, they should know no more information than TI in each Ti′ , ∀i′ ∈ I ′,
I ′ = {1, ..., N} \ I. That is,

6.1.1) On Pi ∈ PI , if T (i, j) ∈ TI, they know each Ti′ has T (i, j).
6.1.2) On Pi ∈ PI , if T (i, j) /∈ TI, they don’t know whether T (i, j) ∈ Ti′ for

∀i′ ∈ I ′.

The Inferred Information after Participating in Protocol 1. In Protocol
1, each Pi gets G = (g1, ..., gN ), so PI may infer the roots of fi′ for ∀i′ ∈ I ′ by
analyzing the coefficients in G. By the following lemma, we prove that G resists
such kind of analysis.

Lemma 3. In Protocol 1, any Pi in the coalition of c (1 ≤ c ≤ N − 1) semi-
honest parties (PI) can know no more elements than TI in any Ti′ for ∀i′ ∈ I ′.

Proof: Due to the security of the threshold HE cryptosystem, PI can’t know
any information on the plaintexts of the encryptions unless they are decrypted.
We use Pi to denote any party in PI . Pi gets only the decryption of E(G). If
G(T (i, j)) = (0, ..., 0), by Lemma 1, Pi knows T (i, j) is a root for all fl (l =
1, ..., N) and each Ti′ has T (i, j). This accords with the case 6.1.1).

1) We firstly prove that, if G(T (i, j)) �= (0, ..., 0), Pi doesn’t know whether
T (i, j) ∈ Ti′ for ∀i′ ∈ I ′, that is, whether T (i, j) is a root of any fi′ .
From the view of Pi, G = F (

∏
i∈I Ri ·

∏
i′∈I′ Ri′),

∏
i∈I Ri is generated by

PI , and
∏

i′∈I′ Ri′ is generated by PI′ . Pi doesn’t know
∏

i′∈I′ Ri′ , thus if
G(T (i, j)) �= (0, ..., 0), Pi can’t compute F (T (i, j)). Then Pi can’t know any
fi′(T (i, j)) and whether T (i, j) ∈ Ti′ for ∀i′ ∈ I ′. This accords with the case
6.1.2).

2) Pi may also analyze the coefficients of a single gl (l = 1, ..., N). In Pi’s view,
gl = fTI(FI +FI′), in which fTI is the polynomial whose roots are TI, FI =
∑

i∈I(fi/fTI ∗
∑N

j=1 ri,jRil), and FI′ =
∑

i′∈I′(fi′/fTI ∗
∑N

j=1 ri′,jRi′l). We
should also prove that Pi can’t know FI′ , otherwise he will know

⋂
i′∈I′ Ti′

by factoring FI′ .
From the view of Pi, in FI , ∀i ∈ I,

∑N
j=1 ri,jRil can be supposed as

bi,1x + bi,0, in which bi,1 and bi,0 are random numbers. Given fi/fTI =
∑S−|TI|

k=0 ai,kxk, suppose fi/fTI ∗
∑N

j=1 ri,jRil =
∑S−|TI|+1

k=0 ci,kxk, then ci,k =

ai,kbi,0 + ai,k−1bi,1. Suppose FI =
∑S−|TI|+1

k=0 ekxk, then ek =
∑

i∈I ci,k.
Suppose FI′ =

∑S−|TI|+1
k=0 e′kxk, then the k-th coefficient of FI + FI′ : e

′′

k =
ek + e′k =

∑
i∈I(ai,kbi,0 + ai,k−1bi,1) + e′k.
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Pi knows all e
′′

k from gl/fTI , and all ai,k from fi/fTI , but doesn’t know
all bi,1, bi,0, and e′k. Thus from e

′′

k =
∑

i∈I(ai,kbi,0 + ai,k−1bi,1) + e′k, Pi gets
a set of S − |TI| + 2 linear equations with 2c + S − |TI| + 2 unknowns. For
1 ≤ c ≤ N−1, Pi can’t compute the solutions for these unknowns. Therefore,
Pi can’t know e′k for k = 0, ..., S − |TI| + 1, and can’t know any root of FI′ .
In each gl (l = 1, ..., N), Pi can’t know FI′ , which makes Pi fail to know any
fi′/fTI in FI′ .

In sum, in Protocol 1, Pi ∈ PI can know no more roots than TI in any Ti′ for
∀i′ ∈ I ′. �

Theorem 1. Protocol 1 is a privacy preserving protocol for the PPSI problem.

The proof of this theorem is postponed to the Appendix.

6.2 Security Analysis on Protocol 2

The Inferred Information by the Definition of PPSM. If there is any
coalition of c semi-honest parties PI (I = {i1, ..., ic}), by the definition of PPSM,
it’s unavoidable for Pi (∈ PI) to infer the following information by combining
inputs and outputs of its coalition parties:

6.2.1) if the determination is T (i, j) has a duplicate on the other parties, and Pi

knows T (i, j) also has a duplicate on PI , then it can’t know whether there
is any duplicate of T (i, j) on the remaining parties PI′ (I ′ = {1, ..., N}\I).

6.2.2) if the determination is T (i, j) has a duplicate on the other parties, and
Pi knows T (i, j) hasn’t any duplicate on PI , then it knows that T (i, j)
must have a duplicate on PI′ ; We denote these T (i, j) on PI′ as set T .
It’s easy to see that 0 ≤ |T | ≤ (N − c)S.

6.2.3) if the determination is T (i, j) hasn’t any duplicate on the other parties,
then Pi knows that T (i, j) hasn’t any duplicate on PI′ , that is, PI′ can’t
have T (i, j). We denote these T (i, j) as T ′.

Therefore, by the definition Pi (∈ PI) knows T and T ′ as above. We assume
this kind of information is harmless.

The Inferred Information after Participating in Protocol 2. In Step 3)
of Protocol 1, Pi (∈ PI) can’t directly know the coefficients of Fi because they
are encrypted. However, Pi knows S pairs of ( T (i, j), Fi(T (i, j)) ), and those
fi′ , ri′k and r′i′k generated by its collation parties. Thus, Pi can do an attack by
analyzing the coefficients of Fi. In the following lemma, we prove that Protocol
2 is robust against this attack.

Lemma 4. In Protocol 2, any Pi in the coalition of c (1 ≤ c ≤ N − 1) semi-
honest parties (PI) can get only the following information:

1) the same two sets as T and T ′ in the case 6.2.2) and 6.2.3).
2) guessing elements on PI′ other than T and T ′, after randomly choosing at

least 1 numbers.
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Proof: In this proof Pi is any party in PI . Due to the security of the threshold HE
cryptosystem, Pi can’t know any information on the plaintexts of the encryptions
they receive.

Pi gets S pairs ( T (i, j), Fi(T (i, j)) ) by evaluating Fi at T (i, j). Because
fi(T (i, j)) = 0, then Fi(T (i, j)) becomes F ′

i (T (i, j)) for which F ′
i =

∏
i′=1...N,i′ �=i(fi′ ∗

∑N
k=1 r′i′k). If Pi can know all coefficients of F ′

i , it can know
all roots of F ′

i by polynomial factoring, but all coefficients are encrypted. For
Pi, there are (N − 1)S unknown coefficients in

∏
i′=1...N,i′ �=i fi′ excluding the

leading coefficient (= 1). Because
∏

i′=1...N,i′ �=i(
∑N

k=1 r′i′k) =
∑β

j=0 Rjx
j , β =

(N −1)� S
N−1�, in this part there are at least S +1 unknown coefficients. Totally

there are at least (N − 1)S + S + 1 unknown coefficients in F ′
i . It’s easy to see

that Pi can’t find a unique F ′
i that fits S pairs ( T (i, j), F ′

i (T (i, j)) ).
However, Pi knows fit for it ∈ I, and r′i′k generated by PI . Then in Pi’s view,

F ′
i = fIfI′

∏
i′=1...N,i′ �=i(

∑
k∈I r′i′k +

∑
k∈I′ r′i′k), in which fI =

∏
it∈I,it �=i fit ,

fI′ =
∏

i′
t∈I′ fi′

t
,
∑

k∈I r′i′k is generated by PI ,
∑

k∈I′ r′i′k is generated by PI′ .

1) if F ′
i (T (i, j)) = 0, and fI(T (i, j)) = 0, then Pi can’t know any root of fI′ .

This accords with the case 6.2.1).
2) if F ′

i (T (i, j)) = 0, and fI(T (i, j)) �= 0, then Pi knows fI′(T (i, j)) = 0. All
these T (i, j) are the same as T in the case 6.2.2).

3) if F ′
i (T (i, j)) �= 0, Pi knows fI′(T (i, j)) �= 0, i.e., T (i, j) isn’t one root of fI′ .

All these T (i, j) are the same as T ′ in the case 6.2.3).

Suppose in 2), all PI know C1 roots of fI′ , then 0 ≤ C1 ≤ (N − c)S. Suppose
in 3), Pi knows C2 pairs ( T (i, j), F ′

i (T (i, j)) ) for F ′
i , then 0 ≤ C2 ≤ S. Because

Pi knows fI(T (i, j)), Pi can know C1 + C2 evaluations of F ′′
i : F ′′

i = F ′
i /fI =

fI′
∏

i′=1...N,i′ �=i(
∑

k∈I r′i′k+
∑

k∈I′ r′i′k). For Pi, there are (N−c)S unknown coef-
ficients in fI′ excluding the leading coefficient (= 1). In

∏
i′=1...N,i′ �=i(

∑
k∈I r′i′k +

∑
k∈I′ r′i′k) =

∑β
j=0 R′

jx
j , β = (N − 1)� S

N−1�, there are at least S + 1 unknown
coefficients. Therefore Pi still needs to arbitrarily guess t = (N − c)S + S + 1 −
(C1 + C2) coefficients in F ′′

i . It’s easy to see that t ≥ 1. That is, Pi should guess
at least 1 random number before inferring other roots in fI′ than T and T ′. �

Theorem 2. Protocol 2 is a privacy preserving protocol for the PPSM problem.

The proof of this theorem is postponed to the Appendix.

7 Comparisons with Related Work

7.1 Comparisons for Protocol 1

Complexity of Protocol 1

1) Computation Cost : Each Paillier’s encryption and decryption requires a cost
of 2lgN modular multiplications (mod N 2). Each exponentiation has the
same cost with the encryption. We compare our protocol with other related
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work regarding their computation cost on encryptions and multiplications
of ciphertexts, and consider modular multiplication (mod N 2) as a basic
computation.

Thus, for each party in Protocol 1, the total encryptions are (S + 2)(N −
1)2 −2, and the total multiplications of ciphertexts are (S+2)(N2 +2N −3).
Then the total computation cost for each party is 2((S+2)(N−1)2−2)lgN +
(S + 2)(N2 + 2N − 3) modular multiplications.

2) Communication Cost : The length of each encryption is 2lgN . Then in Proto-
col 1, the total communication cost among all parties is 2N(N−1)(4S+5)lgN
bits.

Speeding up techniques can be employed in Protocol 1. If all parties ensure
that there is a coalition of c (1 ≤ c ≤ N − 1) semi-honest parties, in Step 1) of
Protocol 1 each E(fi) can be randomized as E(fi∗

∑c+1
j=1 ri,j) by sending E(fi) to

c parties. In Step 2) E(G) can be computed as E(F
∏c+1

i=1 Ri). What’s more, in
Step 1) the iterations i = 1, ..., N can be made in parallel. Then the computation
cost is 2(c(S + 2)(N − 1) − 2)lgN + c(S + 2)(N + 3) modular multiplications.
The communication cost is 2cN(4S + 5)lgN bits.

Kissner’s Protocol. In Kissner’s protocol for PPSI ([18]), a single polynomial
F =

∑N
l=1 fl ∗

∑N
k=1 rl,k is constructed and evaluated on each T (i, j). fl is a poly-

nomial representing elements on Pl, rl,k is a polynomial uniformly selected by Pk

and has the same degree with fl. In this protocol, it’s easy to see that T (i, j) ∈ TI
is a sufficient condition for the evaluation F (T (i, j)) = 0, but F (T (i, j)) = 0 is not
even a sufficient condition for ∀l ∈ {1, ..., N} fl(T (i, j))∗

∑N
k=1 rl,k(T (i, j)) = 0. In

Lemma 1 we have proved that if ∀l ∈ {1, ..., N} fl(T (i, j))∗
∑N

k=1 rl,k(T (i, j)) = 0,
the probability that T (i, j) ∈ TI is (1 − 1/N )N−1. Therefore, in Kissner’s proto-
col, if F (T (i, j)) = 0, the probability that T (i, j) ∈ TI is less than the probability
achieved by our Protocol 1.

The major cost of this protocol is on computing the encrypted F . It’s also
based on Paillier’s cryptosystem. The computation cost for each party and com-
munication cost among all parties are shown in Table 2.

Freedman’s Protocol. Freedman’s protocol for PPSI ([8]) is quite different
from ours and [18]’s. In their protocol, each party Pi (i = 1, ..., N − 1) sends
the encrypted polynomial fi representing its elements to PN . PN evaluates its
elements T (N, j) for j = 1, ..., S on all these polynomials, randomizes the evalua-
tions and sends them to all the other parties. These parties decrypt and combine
the evaluations to determine whether T (i, j) ∈ TI. In this protocol each party
also generates a random matrix, but the matrices are used in a different way
from our Protocol 1 for they aren’t full rank and not for multiplications. The
XOR of each row of the matrices is required to be zero, and they are used to
randomize the decryptions on each party.

The major cost of this protocol is on the evaluations of encrypted polynomials
at all elements of PN . The protocol is also based on Paillier’s cryptosystem. The
average computation cost for each party and communication cost among all
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parties are shown in Table 2. In [8] only the protocol for the semi-honest model
is given.

Comparisons of 3 protocols. From Table 2, the computation costs of Protocol
1, protocols in [18] and [8] are respectively O(cSNlgN ), O(cS2lgN ), O(S(S +
N)lgN ) modular multiplications. Practically the size of a set, S, may be much
larger than the number of parties, N . Then it’s easy to see that Protocol 1 is more
efficient in computation than [18] and [8], and more efficient in communication
than [18].

For a quantitative analysis, we conservatively set S = 20, N = 5, and set
c = 3, lgN = 1024, then Protocol 1 saves 81% and 63% computation costs, 17%
and 20% communication costs in comparison with [18] and [8]. We also notice
that if c = 4, i.e., all of the N parties are semi-honest, then the communication
cost in Protocol 1 will increase by 6% in comparison with [8]. Thus Protocol 1
can utilize the knowledge on honest relationships among some of the N parties
to reduce the communication cost.

Table 2. Comparisons of solutions for the PPSI problem

Computation Cost Communication Cost
Our Protocol 1 2(c(S + 2)(N − 1) − 2)lgN + c(S + 2)(N + 3) 2cN(4S + 5)lgN
Protocol in [18] 2(c(S + 1)2 + 5S + 3)lgN + c(S2 + 4S + 2) 2cN(5S + 2)lgN
Protocol in [8] ((S + 1)(S + 2) + 3S(N − 1) − 1)2lgN + S(S + 1) 10S(N − 1)2lgN

7.2 Comparisons for Protocol 2

Complexity of Protocol 2. In Protocol 2, on each party the computation
on encryptions and multiplications of ciphertexts requires 2N2S2lgN + N3S
modular multiplications (mod N 2). The communication cost among all parties
is 4N(N − 1)2SlgN bits.

The complexity of Protocol 2 can be reduced if all parties ensure that there
may be a coalition of c (1 ≤ c ≤ N − 1) parties. In Step 2.1), P1 can send
E(F1(j−1) ∗f1) to c parties; in Step 2.2), Pj can send E(F1(j−1) ∗fj) to c parties;
At the end of Step 2), P1 gets E(F1) = E(

∏N
j=2(f1 ∗

∑c+1
k=1 rjk + fj ∗

∑c+1
k=1 r′jk)).

The iterations in Step 3) can also be made in parallel with Step 2). Then the
computation cost is 2cNS2lgN + cN2S modular multiplications, and the com-
munication cost is 4c(N − 1)2SlgN bits.

Solution D1 Derived from [18]. The main idea of the private set intersection
protocol in [18] is to plus the randomized polynomials representing the data
sets, and their private set union protocol is mainly to multiply the polynomials
representing the data sets. Therefore, Solution D1 (as described in Section 2)
should firstly compute (fi ∗

∑N
k=1 ri′k + fi′ ∗

∑N
k=1 r′i′k) for Ti ∩ Ti′ for i′ =

1, ..., N, i′ �= i, then compute Fi =
∏

i′=1...N,i′ �=i(fi ∗
∑N

k=1 ri′k + fi′ ∗
∑N

k=1 r′i′k)
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for
⋃

i′=1...N,i′ �=i(Ti ∩ Ti′), and evaluate it. In [18], the way to privately compute
the encryption of Fi wasn’t provided, and all ri′k and r′i′k are randomly chosen
polynomials with degree S. Because ri′k and r′i′k have the same degree with fi

and f ′
i , Solution D1 needs a high cost to compute the encrypted polynomial

multiplications and evaluations. The computation and communication costs of
Solution D1 are shown in Table 3.

Comparisons. From Table 3, it’s easy to see that Protocol 2 is more efficient
in computation and communication than Solution D1. Suppose N = 5, c = 4,
S = 20, lgN = 1024, then Protocol 2 saves 80% computation cost and 50%
communication cost.

Table 3. Comparisons of solutions for the PPSM problem

Computation Cost Communication Cost
Our Protocol 2 2cNS2lgN + cN2S 4c(N − 1)2SlgN
Solution D1 2cN2S2lgN + 2cN2S 8c(N − 1)2SlgN

8 Conclusions and Open Problems

We address two problems in privacy preserving matching against distributed
datasets: Privacy Preserving Set Intersection (PPSI) and Privacy Preserving Set
Matching (PPSM) among N parties. The two problems are solved by construct-
ing polynomials representing elements in the set intersection and set matching,
and evaluating the polynomials to determine whether an element is in the set
intersection and set matching, without publishing the datasets on each party.
The security of the two protocols are proved assuming there is a coalition of
c (1 ≤ c ≤ N − 1) semi-honest parties. In comparison with related work in [18]
and [8], our two protocols have less computation and communication costs.

In the future, we will extend the two protocols in the semi-honest model to the
malicious model employing some zero-knowledge proofs. We will also utilize the
two protocols to protect the privacy in some practical problems, e.g., internet
congestion control ([23]).

In the problem formulation of Section 1, we have assumed that the size of each
party’s set (S) is much less than the size of the common set T to prevent the
dictionary attack. There are many applications fitting for this assumption, e.g.,
the intersection among the sets of credit card numbers. It’s well known that the
common set T for credit card numbers is large enough, so that given a suitable S,
the probability that an adversary arbitrarily chooses a number which equals any
number of the honest party is S

|T| → 0. However, there are also some applications
where S

|T| can’t be negligible. Then how can the dictionary attack be prevented?
In these cases, our two protocols can effectively resist the semi-honest behaviors
of the adversary, and be extended to resist the malicious behaviors, but it’s also
an important problem to prevent the adversary from defrauding the honest party
of inputs using the common set T when S

|T| isn’t negligible.
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Appendix: Proofs of Theorems

Theorem 1. Protocol 1 is a privacy preserving protocol for the PPSI problem.

Proof: By the definition of PPSI, we actually should compute a multi-party
function f: f(T1, ..., TN) = f(T ) = {PPSI(T (i, j))|T (i, j) ∈ Ti, i = 1, ..., N, j =
1, ..., S}, with the i-th element fi(T ) = {PPSI(T (i, j))|T (i, j) ∈ Ti, j = 1, ..., S}
for the party Pi, where PPSI(T (i, j)) = 1 if T (i, j) ∈ TI, and PPSI(T (i, j)) = 0
if T (i, j) /∈ TI.

Given any coalition of c (c ≤ N − 1) semi-honest parties indexed by I =
{i1, ..., ic}, their views after participating in Protocol 1 are denoted by
V IEWΠ

I (T ) = (I, V IEWΠ
i1

(T ), ..., V IEWΠ
ic

(T )). We also let fI(T ) = (fi1(T ), ...,
fic(T )). From the definition in Section 3.1, we have to show that there exists a
PPT algorithm S such that S(I, (Ti1 , ..., Tic), fI(T )) and V IEWΠ

I (T ) are com-
putationally indistinguishable.

V IEWΠ
I (T )={V1, V2, V3, V4}: 1) V1 is I ={i1, ..., ic}. 2)V2 are Ti1 , ..., Tic . 3)V3

are E(G) and the intermediate encryptions received by PI . 4)V4 are G(T (it, j))
for any it ∈ I. With these views, the coalition can do the following two types of
analysis:

1) Cryptanalysis on (V1, V2, V3): Due to the semantic security of the threshold
HE cryptosystem, Pi can’t gain extra information from the encryptions in V3.
That is, supposing V3 has s encryptions, with only negligible probability, Pi

can distinguish V3 and ER1 = (E(r1), ..., E(rs)) by randomly choosing R1 =
(r1, ..., rs) over the plaintext space of the HE scheme. Thus, (V1, V2, V3) ≡c

(V1, V2, R1, ER1).
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2) Roots analysis on (V1, V2, V4): From Lemma 3, PI can’t know roots other
than TI in any fi′ for ∀i′ ∈ I ′. Thus, V4 = (A, T I). A = {ait,j|it ∈
{i1, ..., ic}, j = 1, ..., S} in which ait,j = 1 if G(T (it, j)) = (0, ..., 0), and
ait,j = 0 otherwise.

In sum, V IEWΠ
I (T ) ≡c (V1, V2, R1, ER1, A, T I).

fI(T ) also equals (A, T I) by the analysis of the cases 6.1.1) and 6.1.2) in
Section 6.1. Let R′

1 = {r′i|i = 1, ..., s} are randomly chosen by PI , and ER′
1

are the encryptions of the sequence in R′
1, then S(I, (Ti1 , ..., Tic), fI(T )) ≡c

(I, (Ti1 , ..., Tic), A, T I, R′
1, ER′

1) ≡c (V1, V2, A, T I, R1, ER1) ≡c V IEWΠ
I (T ).

Then Protocol 1 privately computes PPSI against the coalition of any c (c ≤
N − 1) semi-honest parties. �

Theorem 2. Protocol 2 is a privacy preserving protocol for the PPSM problem.

Proof: By the definition of PPSM, we actually should compute a multi-party func-
tion f: f(T1, ..., TN) = f(T ), with the i-th element fi(T ) = {PPSM(T (i, j))|T (i, j)
∈ Ti, j = 1, ..., S} for the party Pi, where PPSM(T (i, j)) = 1 if T (i, j) ∈⋃

i′=1,...,N,i′ �=i(Ti∩Ti′), and PPSM(T (i, j)) = 0 otherwise. Given any coalition of
c (c ≤ N −1) semi-honest parties indexed by I = {i1, ..., ic}, their views after par-
ticipating in Protocol 2 are V IEWΠ

I (T ). We also let fI(T ) = (fi1(T ), ..., fic(T )).
We show that there exists a PPT algorithm S such that S(I, (Ti1 , ..., Tic), fI(T ))
and V IEWΠ

I (T ) are computationally indistinguishable.
V IEWΠ

I (T ) = {V1, V2, V3, V4}: 1) V1 is I = {i1, ..., ic}. 2)V2 are Ti1 , ..., Tic .
3)V3 are E(Fi) and the intermediate encryptions received by PI . 4)V4 are
Fit(T (it, j)) for any it ∈ I. The coalition can do the following analysis:

1) Cryptanalysis on (V1, V2, V3): Due to the semantic security of the thresh-
old HE cryptosystem, supposing V3 has s encryptions, with only negligible
probability, Pi can distinguish V3 and ER1 = (E(r1), ..., E(rs)) by randomly
choosing R1 = (r1, ..., rs). Thus, (V1, V2, V3) ≡c (V1, V2, R1, ER1).

2) Roots analysis on (V1, V2, V4): From Lemma 4, V4 = (A, T , T ′, R2). A =
{aj

it
|it ∈ {i1, ..., ic}, j = 1, ..., S} in which aj

it
= 1 if Fit(T (it, j)) = 0, and

aj
it

= 0 otherwise. R2 = {Ri|i = 1, ..., t}, in which Ri is a random number
guessed by Pi, t ≥ 1.

In sum, V IEWΠ
I (T ) ≡c (V1, V2, R1, ER1, A, T , T ′, R2). fI(T ) = (A, T , T ′) by

the analysis of the cases 6.2.1), 6.2.2) and 6.2.3). Let R′
1 = {r′i|i = 1, ..., s}, R′

2 =
{R′

i|i = 1, ..., t} are randomly chosen by PI , and ER′
1 are the encryptions of the

sequence in R′
1. Then S(I, (Ti1 , ..., Tic), fI(T )) = (I, (Ti1 , ..., Tic), A, T , T ′, R′

1,
ER′

1, R′
2) ≡c V IEWΠ

I (T ). Then Protocol 2 privately computes PPSM against
the coalition of any c (c ≤ N − 1) semi-honest parties. �
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