
Efficient Provenance Storage over Nested Data Collections

Manish Kumar Anand1, Shawn Bowers2, Timothy McPhillips2, Bertram Ludäscher1,2

1Dept. of Computer Science, University of California, Davis
2Genome Center, University of California, Davis

{maanand, sbowers, tmcphillips, ludaesch}@ucdavis.edu

ABSTRACT

Scientific workflow systems are increasingly used to automate com-

plex data analyses, largely due to their benefits over traditional ap-

proaches for workflow design, optimization, and provenance record-

ing. Many workflow systems employ a simple dependency model

to represent the provenance of data produced by workflow runs.

Although commonly adopted, this model does not capture explicit

data dependencies introduced by “provenance-aware” processes,

and it can lead to inefficient storage when workflow data is com-

plex or structured. We present a provenance model, extending the

conventional approach, that supports (i) explicit data dependencies

and (ii) nested data collections. Our model adopts techniques from

reference-based XML versioning, adding annotations for process

and data dependencies. We present strategies and reduction tech-

niques to store immediate and transitive provenance information

within our model, and examine trade-offs among update time, stor-

age size, and query response time. We evaluate our approach on

real-world and synthetic workflow execution traces, demonstrating

significant reductions in storage size, while also reducing the time

required to store and query provenance information.

1. INTRODUCTION
The automation of scientific data analyses often requires dis-

tinct software programs and services to be combined in complex

ways. Traditionally, scientists use batch files and scripting lan-

guages (e.g., Perl) to automate the execution of individual pro-

grams and the routing of data between them. However, these ap-

proaches require significant technical skills and can be cumber-

some and time-consuming for scientists, especially in data- and

compute-intensive applications. Scientific workflow systems try to

address these challenges, and promise to better support scientists

wishing to automate their computational tasks [19].

Scientific workflow systems are often based on dataflow lan-

guages [24] in which a workflow is represented as a directed graph

of nodes denoting computational steps implemented by actors, and

connections representing the desired dataflow between steps. These

systems additionally offer support for workflow design and analy-

sis [20, 29], efficient execution and deployment of workflows [17,

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT’09, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

21], and automatic recording of data and process dependencies

(i.e., provenance) introduced during workflow runs [15, 33, 38].

Provenance support in particular has been recognized as an im-

portant added value of scientific workflow systems over traditional

approaches. However, a number of data-management challenges

must be overcome to effectively represent, store, and query the of-

ten large amounts of provenance information generated by work-

flow executions [15, 16, 33, 38].

Many workflow systems (e.g., [37, 4, 2, 40, 41, 35]) and prove-

nance approaches (e.g., [13, 3, 10, 22, 34]) employ a simple prove-

nance model that is data “agnostic” [15]. This model generally can

be characterized as recording the inputs and outputs for each actor

invocation occuring within a workflow run. Conceptually, a work-

flow execution trace in such a model consists of pairs of records

in(x, a) and out(a, y), stating that x was an input and y an output of

an actor invocation a.1 This information is then used to infer data

and process dependencies. For example, a run of a simple workflow

X
−→ A

Y
−→ B

Z
−→

can be captured by a set of trace facts in(x, a), out(a, y), in(y, b), and

out(b, z), implying that invocation a of actor A directly preceded in-

vocation b (of B), and that output y directly depended on x, while

z indirectly depended on x. In most systems, each input and output

of an invocation is denoted by one or more tokens that encapsulate

data values (e.g., DNA sequences) or references to values (e.g., file-

names or accession numbers). Tokens are assumed to be immutable

(once created their values cannot be modified), are assigned unique

identifiers, and may be further organized into records, lists, trees,

streams, and so on [34, 29, 32].

This “conventional” model of provenance is useful for represent-

ing data and process dependencies of scientific workflows consist-

ing primarily of black-box transformations [14], in which actors

(1) produce new outputs from their inputs; and (2) use all inputs to

derive their outputs, implying that all invocation outputs depended

on all invocation inputs.

However, many scientific workflows do not operate under these

assumptions, and in such cases directly employing the conventional

model can result in inefficient provenance storage and insufficient

(or even incorrect) inferences of data dependencies. For instance,

many systems (e.g., [27, 32, 36, 31, 23, 39, 29, 30, 18, 26]) support

actors that make only small changes or updates to incoming data,

passing on some or all of their input to downstream actors. Thus,

if invocation a above retains within its output y some unchanged

1Additional information may also be captured, e.g., timestamps of
invocation reads and writes, and invocation parameters.

958

substructure s from its input x, denoted as2

x = (s ⊕ x0), y = (s ⊕ y0)

then s will be stored twice: once in the trace record in(x, a) (call

this occurrence sx) and once in out(a, y) (call this occurrence sy).

In the conventional model, all parts of output y are said to depend

on all parts of input x, so these records may also incorrectly imply

that sy depends on x0.

Furthermore, because actors often wrap complex external appli-

cations and services, various patterns of data dependencies (e.g.,

see [31, 32, 36, 7]) can arise in which not all parts of the output

depend on all parts of the input. Assume, e.g., that invocation a

above receives input x and produces output y as follows

x = (x1 ⊕ . . . ⊕ xn), y = (y1 ⊕ . . . ⊕ ym).

Common examples of a with data dependency patterns not sup-

ported by the conventional model include:

(a) actors that filter data prior to applying a scientific function,

resulting in dependencies where each yi depends only on some of

the x j’s

(b) actors that process each input token in turn, resulting in de-

pendencies where each yi depends on a single x j (j = i)

(c) actors that perform running aggregates over their input, re-

sulting in dependencies where each yi depends on the set {x1, . . . , xi}

(d) actors that apply functions over their input using sliding win-

dows of a fixed size w, resulting in dependencies where each yi

depends on the window {xi−w, . . . , xi}

Because many possible dependency patterns may occur (e.g., via

combinations or variations of the above), in general all data de-

pendencies must be recorded explicitly for each workflow run to

accurately represent data lineage.

Contributions. We present a new provenance model that general-

izes the conventional approach described above to support (i) actors

that employ update and “add-only” semantics (y = x ± ∆, for input

x and output y) and (ii) explicit declarations of data dependencies.3

The model is an integral part of the Project Histories management

framework [8] being developed within the Kepler scientific work-

flow system [27]. A goal of this framework is to allow scientists

to easily store, interconnect, organize, and query comprehensive

provenance information for multiple workflow runs, together with

input and derived data products used within their research projects.

In the conventional model, the amount of provenance information

that must be stored may be many times larger than the data prod-

ucts generated, even for single runs [10, 22, 15]. The feasability of

managing multiple, interconnected runs therefore relies on an effi-

cient representation of provenance information that also minimizes

the time needed to store and query traces.

Our model uses nested collections (i.e., XML trees) for repre-

senting scientific data—similar tree-structured models also have

been employed in Kepler [29] and other approaches [32, 23, 10].

We support actor update semantics and explicit data dependencies

on these nested collection structures by employing embedded (or

“inline”) provenance annotations, which describe the changes (or

deltas ∆) made to token streams by invocations at each workflow

2“⊕” splits complex data into subparts (e.g., into list elements, sub-
trees, etc.); the details are not important here.
3Explicit dependencies may be obtained, e.g., from actors that del-
care their dependencies or via inferences made from workflow sys-
tem “observables” such as timestamps or state information [7].

step. These annotations are used to record the tokens that were in-

serted (added to the token stream) and deleted (removed from the

token stream) by invocations, and the token dependencies that were

introduced. Thus, instead of separately storing input and output

structures of each actor invocation, our traces consist of a single,

“condensed” version of the overall structure, and the complete ver-

sion history including all intermediate “snapshots” can be recon-

structed as needed from the provenance annotations of the trace.

In the introductory example, invocation b received input y and

produced output z. Let ∆b denote the changes that b made to y to

produce z, i.e., z = ∆b(y). Our approach is to store only the most

recent version of data (e.g., z), but add provenance annotations (∆b)

that allow us to “undo” any updates and obtain all earlier versions

of data products in the processing history. In this way, we can rep-

resent y as the pair (∆−
b
, z), where the backward delta ∆−

b
denotes

the inverse of ∆b, thus

y = ∆−b (z).

Similarly, the input x of invocation a can be represented by the pair

(∆−a , y) such that

x = ∆−a (y) = ∆−a (∆−b (z)).

An advantage of this approach is that provenance information can

be represented without introducing unnecessary redundancy. For

example, if y and z share a subtree s, then s is stored only once

in the resulting trace. Our model can also reduce the number of

stored data dependencies by exploiting the nested structure of data

collections to “cascade” dependencies within a trace.

Our other main contributions are the development and compari-

son of different strategies for efficiently storing, updating, and query-

ing provenance traces expressed in our model using a relational

database system. We define: (i) inference techniques for expanding

and collapsing the implied data and process dependencies within a

trace; (ii) reduction techniques for minimizing the size of prove-

nance storage for direct and transitive data and process dependen-

cies (these techniques are generic and applicable to both hierarchi-

cal and non-hierarchical data structures); and (iii) relational views

for recovering all implied and reduced dependencies generated by

the inference and reduction techniques. We compare trade-offs in

terms of provenance storage size, update time, and query response

time, and show using real-world and synthetic provenance traces

that our techniques can improve each of these.

Outline. The rest of this paper is organized as follows. Section 2

develops a formal model of our provenance approach. Section 3

describes our overall framework and optimization strategies for ef-

ficiently storing workflow traces. Section 4 presents our experi-

mental results, demonstrating the advantages of our reduction tech-

niques presented in Section 3 and examines the trade-offs among

the different strategies for storage, udpate, and query. Section 5 de-

scribes related work, comparing our approach to other provenance

models and provenance optimization approaches. Section 6 con-

cludes by summarizing our results.

2. PROVENANCE MODEL
We use unranked, labeled, ordered trees (similar to XML) to rep-

resent workflow data products. Tree nodes are either collection to-

kens or data tokens. A collection token may be an internal node

(representing a non-empty collection) or a leaf node (empty collec-

tion); data tokens occur as leaf nodes only. All tokens are assumed

to have unique identifiers (e.g., positive integers), and labels are

used to tag (or type) nodes. For example, a data token containing

959

A

B

C

D
X
1

X
5

X
2

X
2

X
3

X
4

Figure 1: Workflow graph W with actors A, B, C, and D, and

dataflow edges X1 to X4.

a

1

2

3

54

1

2

87

6

b

c

d

1

2 9

87

10 11

6

12

1

2

87 13 14

6

12

1

2 9

15

87

10

16

11

13 14

176

x
1

x
2

x
3

x
4

x
5

Figure 2: Execution (or run) of workflow W, showing versions

x1, . . . , x5 of intermediate data products received/produced by

invocations a, b, c, and d.

a single DNA sequence may have the label dna_sequence; a col-

lection token representing a DNA sequence alignment (i.e., a list of

aligned sequences) may have the label dna_alignment.

Figure 1 shows an example workflow graph; a workflow run is

given in Figure 2. In this example, invocation a receives the over-

all workflow input but only uses the subtree at node 3 as input to

generate a new output subtree at node 6 (integers ‘3’ and ‘6’ are

node identifiers). We say that node 6 depended on node 3;4 or al-

ternatively, 3 contributed to 6. The remaining parts of the input

are passed on with node 6 to downstream actor invocations b and

c. The changes ∆a made by a can be represented by the following

provenance annotations:

∆a = {ins(6, a), del(3, a), dep(6, 3)},

stating that (i) node 6 was inserted by invocation a, (ii) node 3 was

deleted by invocation a, and (iii) 6 depended on 3. Annotations

like these are recorded during workflow execution and constitute

the provenance of the invocation. The remaining invocations of

Figure 2 are represented by the following sets of annotations:

∆b = {ins(9, b), dep(9, 2)}

∆c = {ins(12, c), dep(12, 6)}

∆d = {ins(15, d), dep(16, 9), dep(17, 12)}

In the conventional model described above, the input and output of

each invocation (i.e., x1, . . . , x5 in Figure 2) would be recorded as

part of the workflow trace. This approach would require storing

the same sets of nodes multiple times, e.g., nodes 1 and 2 are part

of every intermediate data product of the run. Instead, in our ap-

proach, only the unique set of nodes across all inputs and outputs

are recorded together with the above provenance annotations.

Figure 3 shows this “condensed” trace for the workflow run of

Figure 2. We use the following conventions to represent anno-

tations in the figure: “+a” denotes an insertion annotation, here:

ins(6, a); “-a” denotes a deletion annotation, here: del(3, a); dashed

arrows between nodes represent data dependency annotations, e.g.,

4We say ‘node n’ or simply ‘n’ for ‘the subtree rooted at n’.

12

1

2 9

15

87

10

3

54

16
+b

+a

+d

+c
-a

11

13 14

176

a ≺ b, a ≺ c, b ≺ d, c ≺ d

Figure 3: “Condensed” workflow trace of Figure 2, with collec-

tion tokens (white), data tokens (gray), insertion (+x) and dele-

tion (−x) annotations, data-dependency annotations (dashed

lines), and partial invocation order (≺-relation at the bottom).

the arrow from node 6 to 3 denotes an annotation dep(6, 3); and

a ≺ b denotes that invocation a preceded invocation b.

2.1 The Basic Model
Data collections are represented as (XML) trees; these token

streams constitute the dataflow shown in Figure 1. From the per-

spective of provenance, we assume actor invocations operate by:

(1) inserting new subtrees into the tree (i.e., data stream); and (2)

deleting subtrees from the tree, thereby removing nodes from the

data stream and not passing them on to downstream invocations.5

A workflow execution trace T = (S , I, A,≺I) consists of a tree

structure S , invocations I, node annotations A, and a strict, partial

invocation order ≺I (i.e., representing a DAG). The tree S = (N, E)

is unranked, labeled, and ordered; N is a set of nodes, and E ⊆

N × N is a set of (ordered) parent-child edges. A node annotation

A is a (partial) mapping

A : N → I+ × I− × 2N

associating with a node n ∈ N the invocation that inserted n (else

⊥), the invocation that deleted n (else ⊥), and a subset of nodes

from N on which an insertion depended. We consider both node

annotations A and invocation order ≺I as constituting provenance

annotations. For a node n such that

A(n) = (+a,−b, {x1, . . . , xn}),

the invocation that inserted n is a, the invocation that deleted n is

b, and the insertion of n depended on all xi (1 ≤ i ≤ n). We use

child(x, y) to denote that the child of node x is y. The following

relations express provenance annotations:

(1) ins(n, a) states that a node n was inserted by invocation a.

Nodes are either inserted by an invocation or else were part of the

overall workflow input.

(2) del(n, a) states that a node n was deleted (i.e., not passed

on) by an invocation a. The node is still stored within the trace,

but is “marked” deleted. Marked deletions allow us to reconstruct

intermediate versions of the trace.

(3) dep(n, d) states that the insertion of a node n directly de-

pended on a node d (i.e., d “contributed to” n’s insertion).

(4) a ≺ b states that invocation a preceded invocation b, i.e., b

received input which includes (part of) a’s output.6

5Workflow systems typically allow only these operations to better
support concurrent execution of actors by avoiding potential race
conditions caused by allowing ad-hoc structural modifications [29].
6a ≺ b does not imply that a finished executing before b started.
Streaming execution models can exploit this flexibility [29].

960

del⊥ins⊥

if +x then x ! y

if -z then z !!y-z

+x

-z

+x

(5)

+x

-y n

x ! y

(6)

+x

x ! y

+y

d n

(2)

-x

-x p

c

-x p

c

(10)
+y

+y

p

c

n

+y

+y

p

c

n

(9)
+yn

c

p

+yn

c

p

+x

x ! y

-y

d n

(8)

-x

y ! x

+y

d n

(7)

+x

+x p

c

+x p

c

(1)

x ! y

+x

x ! y

+y

p

c

(3)

x ! y

-x

y ! x

-y

p

c

(4)

Insertion/Deletion

Propagation

Node and Parent-Child

Invocation Order Inference

Dependency Invocation

Order Inference

Dependency Expansion

and Propagation

Figure 4: Rules for computing fully annotated traces shown

graphically with antecedents drawn above each line and conse-

quents below.

2.2 Minimizing Annotations
An important feature of our model is that not all nodes in a trace

require explicit provenance annotations. Instead, these annotations

can be inferred from the annotations of other nodes in a trace. This

approach allows traces to be stored in a more compact form as com-

pared to an equivalent trace that is fully annotated. The hierarchical

structure of a trace is used to minimize the number of provenance

annotations recorded. For example, insertion annotations can be

recorded at the highest node n in the trace where they apply, and

implicitly cascade to descendent nodes (i.e., all subtree nodes of n)

that existed at the time of the insertion (similarly for deletion anno-

tations). Nodes that depend on a collection (node) c also depend on

all descendents (subtree nodes) of c that were present at the time of

insertion of nodes. In Figure 3, e.g., the insertion and dependency

annotations for nodes 7 and 8 are the same as for node 6; nodes 6,

7, and 8 have (implicit) dependencies on nodes 4 and 5.

A partially annotated trace is expanded by applying a set of in-

ference rules, shown graphically in Figure 4 and in first-order logic

in Figure 5. Rules 1–10 in Figure 5 correspond to those in Figure 4;

whereas rules 11–13 place additional constraints on traces. We em-

ploy unary relations ins⊥(N) and del⊥(N) in Figure 5 to mark nodes

of a trace without initial insertion or deletion annotations.

In Figure 4, the first set of inference rules (1–2) propagate inser-

tion and deletion annotations from collection nodes to their chil-

dren nodes. For example, if a collection (or parent) node p has an

insertion annotation ins(p, x), and a child c of p does not have an

associated insertion annotation, then applying the inference rule re-

sults in the annotation ins(c, x). The second set of rules (3–5) infer

invocation order according to the insertion and deletion annotations

of parent-child relationships and individual nodes. The third set of

rules (6–8) infer invocation order, but using insertion and deletion

annotations on token dependencies. The final set of rules (9–10)

expand the set of dependencies of nodes and propagate dependen-

cies to child nodes.

(1) child(p, c) ∧ ins(p, x) ∧ ins⊥(c)→ ins(c, y)

(2) child(p, c) ∧ del(p, x) ∧ del⊥(c)→ del(c, y)

(3) child(p, c) ∧ ins(p, x) ∧ ins(c, y) ∧ x , y→ (x ≺ y)

(4) child(p, c) ∧ del(p, x) ∧ del(c, y) ∧ x , y→ (y ≺ x)

(5) ins(n, x) ∧ del(n, y)→ (x ≺ y)

(6) dep(n, d) ∧ ins(d, x) ∧ ins(n, y)→ (x ≺ y)

(7) dep(n, d) ∧ del(d, x) ∧ ins(n, y)→ (y ≺ x)

(8) dep(n, d) ∧ ins(d, x) ∧ del(n, y)→ (x ≺ y)

(9) dep(n, p) ∧ child(p, c) ∧ ins(n, y) ∧
((ins(c, x) ∧ (x ≺ y)) ∨ ins⊥(c)) ∧
((del(c, z) ∧ (z 6≺ y)) ∨ del⊥(c))→ dep(n, c)

(10) child(p, c) ∧ dep(p, n) ∧ ins(p, y) ∧ ins(c, y)→ dep(c, n)

(11) ins(n, a) ∧ ins(n, b)→ (a = b)

(12) dep(n, d)→ ∃a ins(n, a)

(13) del(n, a) ∧ del(n, b)→ (a 6≺ b) ∧ (b 6≺ a)

Figure 5: First-order logic rules for computing fully annotated

traces (1–10), and additional constraints (11–13) for checking

well-formedness. Free variables are implicitly ∀-quantified.

The additional rules of Figure 5 define constraints on traces re-

quiring that: (11) each node is inserted by at most one invocation;

(12) any node that is dependent on another node is inserted by some

invocation; and (13) an invocation receiving a deleted node cannot

delete the node again.

Complete Traces. We say that a trace is complete (or fully anno-

tated) if no new annotations can be inferred using the above infer-

ence rules. Let Σ be the set of annotation inference rules (1–10) of

Figure 5, and T be a workflow trace. We can complete T by com-

puting the deductive closure DC of T w.r.t. Σ, i.e., complete(T) =

DC(Σ,T). Note that Σ can be encoded as a safe, negation-free Dat-

alog program, and thus the completion of T is guaranteed to be

unique (i.e., resulting in a unique minimal model) [1].

Equivalent, Well-Formed, and Minimal Traces. We can use

trace completion to define the equivalance of traces, as well as to

check if a trace is well-formed: Two traces are equivalent if their

completions are equivalent. A trace is well-formed if its comple-

tion consists of a well-formed tree structure S , satisfies all axioms

of Figure 5, and ≺I induces a strict partial order over invocations

I. Trace equivalence can be used to define the notion of a mini-

mal trace: A trace is minimal if there is no other equivalent trace

with fewer provenance annotations. While the completion of T is

unique, there can be multiple minimal traces for T . For example,

Figure 6 shows three equivalent traces in which (a) and (b) are both

minimal, and (c) is completed.

Cycle-Free Traces. Token dependencies in a well-formed trace

are guaranteed to be acyclic, which follows the intuitive notion of

causality that has been identified as an important property of prove-

nance representations [34]. To see that dependencies are always

acyclic in our model, first note that because we require a strict par-

tial order over invocations, invocation order is by definition cycle-

free.7 For a cyclic data dependency, there must exist nodes n and d

7This does not preclude loops in the workflow graph: Multiple in-
vocations a1, . . . , an can arise either by an actor A “firing” multiple
times on a data stream or by repeatedly firing within a workflow
loop. In either case, the partial order on invocations is strict.

961

(a)

+a +b
5

6

1

2

3

4

+a +b
5

6

1

2

3

4 a ! b

(b)

+a +b
5

6

1

2

3

4

(c)

a ! b

Figure 6: The same trace shown minimally annotated in (a) and

(b) and fully annotated in (c).

such that n is directly or indirectly dependent on d, and d is directly

dependent on n. In such a case, if ins(n, a) and ins(d, b), then by

axiom (6) we have a ≺ b and b ≺ a, thereby violating the strict

partial ordering restriction on invocations.

Expanding and Collapsing Traces. We use structural recursion to

expand and collapse traces, i.e., to construct equivalent traces with

larger or smaller sets of provenance annotations. Specifically, we

can complete a trace by traversing its collection and data nodes, and

at each step in the traversal apply the annotation rules of Figure 4.

In general, it is not possible to fully expand a given trace in a sin-

gle pass, i.e., a single preorder, inorder, postorder, or breadth-first

traversal, in which each node of the trace is visited only once. As a

simple counter-example, consider the trace in Figure 6(a). Its com-

pleted version cannot be computed using one of the above traversal

algorithms, since node 6 must be visited before 2, node 2 must be

visited before 3, and node 3 must be visited before 4.

Our approach is to expand traces using three distinct preorder

(i.e., top-down, left-to-right) traversals of S . The first pass prop-

agates insertion and deletion annotations according to inference

rules (1–2) of Figure 4, followed by applications of rules (3–5) to

infer invocation order from nodes and parent-child relationships.

The second pass generates the remaining invocation precedence re-

lationships based on the rules (6–8). The third pass expands de-

pendency sets and propagates dependencies to child nodes using

the rules (9–10). Insertion and deletion annotations must be prop-

agated before the second pass since both sides of a dependency re-

quire an insertion and/or deletion to infer the remaining invocation

precendence relationships. Similarly, invocation order must also be

known before dependencies can be expanded and propagated.

Expanded traces can also be minimized using a similar approach.

Specifically, collapsing a fully annotated trace can be performed

using a postorder (i.e, bottom-up, left-to-right) traversal of the trace

where the following annotations are removed for each node n: (i)

dep(n, c) if dep(n, p) and child(p, c); (ii) dep(n, d) if child(p, n) and

dep(p, d); (iii) ins(n, x) if child(p, n) and ins(p, x); and (iv) del(n, y)

if child(p, n) and del(p, y). Finally, we remove the invocation order

annotations that are implied according to the rules in Figure 4(3–8).

Determining Intermediate Versions. Another important feature

of our provenance model is that although each token is stored only

once in a trace, the input and output of each invocation can be re-

constructed by computing the corresponding “version” of the fi-

nal workflow output. As described previously, the intermediate

versions of the tree structures of Figure 3 are shown in Figure 2.

Given a fully annotated trace, we compute the corresponding ver-

sion of the input structure used by an invocation b as follows. Let

P = {a ∈ I | a ≺ b} be the set of invocations that preceded b.

The version corresponding to the input of b includes all nodes not

deleted by an invocation in P such that either the node (1) was in-

serted by an invocation in P or (2) has no insertion annotation and

thus was an input to the workflow run. The output of b is computed

similarly, i.e., by removing from the input of b the nodes deleted

by b and adding the nodes inserted by b.

Provenance Recording and Extensions. The model described

here is implemented within Kepler for representing the provenance

of scientific workflows developed using the COMAD workflow de-

sign paradigm [29, 6]. COMAD is one of many dataflow-based

computation models supported in Kepler, and is based on the pro-

cess network model [27] in which each actor runs concurrently

over one or more input token streams. The COMAD framework

provides built-in support for both nested data collections (analo-

gous to tokenized XML data streams) and actor update semantics.

Provenance information in COMAD is recorded during a work-

flow run by adding special provenance annotation tokens directly

into the token stream. These tokens are added based on the inser-

tions and deletions of actor invocations, and invocations explicitly

declare dependencies for inserted tokens. Workflow traces gener-

ated by COMAD are collapsed, i.e., actors declare dependencies,

insertions, and deletions for the “highest” relevant token in the

tree, however, there is no guarantee that any given trace is min-

imal. Traces are serialized into XML, which are used by tools

that display, navigate, and query trace files (e.g, see [6, 8]). Our

provenance model implementation employed within COMAD also

provides a number of extensions beyond the core model described

here. These extensions include metadata annotations (name-value

pairs) that can be associated with collection and data tokens, pa-

rameter annotations for recording invocation parameter values, and

deletion dependencies. These additional annotations can also im-

plicitly cascade (or propagate) to descendent nodes [8].

In the following, we describe strategies for efficiently storing and

querying trace files that are generated by COMAD workflow runs

or other tools supporting the provenance model. We focus on stor-

age strategies for the core model presented here, although our ap-

proaches can also support the various extensions described above.

3. PROVENANCE STORAGE
Maintaining provenance information for all nodes in a workflow

trace can lead to prohibitively expensive storage costs in terms of

database size and update time (i.e., the time needed to load prove-

nance information into the database) [10, 22, 15]. We show that

these costs can be decreased using our provenance model by ex-

ploiting trace equivalence to collapse provenance annotations (Sec-

tion 4). However, reducing the number of annotations in this way

can lead to increases in query execution time, e.g., queries that need

to access collapsed annotations will need to expand these annota-

tions as part of the query.

Moreover, provenance queries often require dependencies to be

transitively closed, e.g., to find the nodes or invocations that di-

rectly or indirectly contributed to a specific node. Storing depen-

dency closures can further increase storage cost, whereas storing

only immediate dependencies requires more expressive query con-

structs, such as recursion, that often increase query time [22].

We present optimizations for balancing this trade-off between

storage size, update time, and query-response time. Our focus is on

efficiently storing, loading, and querying individual traces within a

relational database system. We also define a set of strategies for

storing traces (Figure 7), each of which consist of: (i) workflow

run identifiers; (ii) nested collection structures; (iii) insertions and

deletions; (iv) immediate and transitive node dependencies; and

(v) immediate and transitive invocation order. Similar to other ap-

proaches [10, 22], we define new techniques for storing direct and

indirect node dependencies and invocation order, allowing prove-

962

Workflow

Trace File

(XML)

Scientific

Workflow

Run

Pre-Process
1. Propagate provenance annotations

2. Compute invocation closure

3. Expand dependency sets

4. Compute expanded dependency closure

5. Collection interval encoding

Query using

Expand-Annotation

View

Query using

Expand-Annotation

View

Provenance

Query

Query using

Expand-Reduction

View

Update Time (U) Storage Size (S)

Collapsed
1. Compute and reduce collapsed dependency set

2. Reduce dependency-pointer closure

3. Reduce invocation closure

Asserted
1. Select and reduce asserted dependency set

2. Reduce dependency-pointer closure

3. Reduce invocation closure

Expanded
1. Reduce expanded dependency set

2. Reduce dependency-pointer closure

3. Reduce invocation closure

Query Time (T)

Figure 7: Basic trace storage strategies. Traces are stored in either their collapsed, asserted, or expanded form; reduction techniques

are applied to minimize storage size; and relational views are used to rewrite provenance queries expressed against the store.

nance queries to be expressed using purely relational languages

instead of the more typical approach of using expressive but less

efficient recursive query constructs (e.g., [5, 9]). Section 4 uses

these strategies and reduction techniques to compare the effective-

ness of approaches for minimizing storage size, update time, and

query time on real-world and synthetic traces.

3.1 Storage Strategies
The basic setting we consider for storing workflow traces is sum-

marized in Figure 7. Given an XML file containing a workflow

trace, we first perform a number of pre-processing tasks before

loading the file into a database. Pre-processing includes parsing

the trace file, applying trace inference rules, determining interval-

encodings [25] for nested data collections, and computing transitive

dependency and invocation-order closures. Interval encodings are

used to efficiently access the ancestors and descendents of nested

collections. Similarly, we store both direct and indirect node de-

pendencies and invocation orders (although in a reduced form) to

increase overall query performance and to allow lineage queries to

be expressed using relational queries.

Once a trace is pre-processed, one of the following three storage

strategies is selected (shown in the middle of Figure 7):

Collapsed Strategy. The first strategy stores a collapsed, but not

minimal, representation of the trace. In particular, we only collapse

the trace with respect to node dependency sets. The trace result-

ing from the pre-processing step is partially collapsed by remov-

ing all implied dependencies of nodes (applying the inverse of the

dependency-expansion rule 9 of Figure 5). Note that in this strat-

egy, node insertion and deletion annotations are still propagated to

their children. Since a node can be inserted and deleted only once,

it is not expensive to store the insertions and deletions for all nodes.

However, because nodes can have many other nodes as their im-

mediate dependencies, storing collapsed dependencies reduces the

overall number of annotations.

Asserted Strategy. The second strategy stores the asserted trace,

i.e., the input trace to the system (Figure 7). An asserted trace may

contain redundant (i.e., implied) data dependency and invocation

order annotations. For both the collapsed and asserted strategies,

provenance queries are rewritten (via the expand-annotation view

of Figure 7; see Section 3.3) to dynamically reconstruct the relevant

portion of the expanded trace for the query. In the asserted strat-

egy, we also record during the update process which nodes in the

trace are expanded. Although not described further here, this ap-

proach allows the expand-annotation view to be applied only when

an unexpanded portion of the trace is being queried.

Expanded Strategy. The third strategy stores the fully-annotated

(i.e., expanded) trace, which includes all annotations that are de-

rived from applying the inference rules of Figure 5.

Each of these three strategies employ space-reduction techniques

for storing only once the common subsets of node dependency sets,

node dependency closures, invocation orders, and invocation order

closures. Similar to denormalization, these techniques require split-

ting dependency and closure relations into multiple tables. Prove-

nance queries for each case are rewritten (via the expand-reduction

view of Figure 7; see Section 3.3) to reconstruct the relevant por-

tion of the original tables representing dependencies and invocation

order. Update time (U) consists of the time required to pre-process

the trace; compute interval encodings of nested collections; col-

lapse or expand the trace; reduce common dependency and closure

subsets; and load the resulting records into the database.

3.2 Reduction Techniques
Nodes within a trace often have similar sets of immediate depen-

dencies. Using a straightforward representation that stores node-

dependency pairs as tuples R(N,D), each shared dependency node

in R will be stored multiple times. For example, if n1 and n2 both

depend on n3 and n4, R will contain the tuples R(n1, n3), R(n1, n4),

R(n2, n3), and R(n2, n4), resulting in n3 and n4 being stored twice.

Below we describe four approaches that can be applied sequen-

tially to reduce the redundancy of dependency sets. Each ap-

proach requires slight changes to the simple dependency schema

R(N,D) to minimize the number of duplicate node occurrences

within a provenance database, thereby reducing the overall size

of the database. While many possible reduction techniques can

be considered, we employ the techniques below because they are

simple enough to be applied efficiently at runtime and the reduced

provenance store can be queried directly through relational views

defined over the reduced schema. Table 1 demonstrates these tech-

niques using four simple dependency sets. The unique dependency

nodes in this example are 10, 20, 30, 40, and 50; whereas nodes

100, 200, 300, and 400 are dependent on subsets of these depen-

dency nodes. We use the notation n → {n1, ..., nk} in the figure to

denote tuples of the form R(n, n1), ...,R(n, nk). When no reductions

are applied (first row of Table 1), the dependencies given in the

example consist of 5 unique dependency nodes requiring 17 total

dependency nodes to be stored.

Duplicate-Set Reduction. This reduction technique is a common

storage optimization (e.g., [10]) in which nodes indirectly relate

to their dependency sets through “pointers” (i.e., integer identi-

fiers x, denoted by &x). Storage size is reduced by using the

963

Table 1: The result of sequentially applying reduction techniques on example dependency sets
Technique Input Dependencies Nodes Output Dependencies Subsequence Subset Total Dep.

Nodes

(0) None 100→ {10, 20, 30, 40, 50} 100 - - - 17

200→ {10, 20, 30, 40, 50} 200

300→ {10, 20, 30, 40} 300

400→ {10, 30, 50} 400

(1) Duplicate-Set 100→ {10, 20, 30, 40, 50} 100→ &1 &1→ {10, 20, 30, 40, 50} - - 12

Reduction 200→ {10, 20, 30, 40, 50} 200→ &1

300→ {10, 20, 30, 40} 300→ &2 &2→ {10, 20, 30, 40}

400→ {10, 30, 50} 400→ &3 &3→ {10, 30, 50}

(2a) Subsequence &1→ {10, 20, 30, 40, 50} 100→ &1 &1→ {10, 20, 30, 40, 50} - 10

Reduction 200→ &1

Applied to result of (1) &2→ {10, 20, 30, 40} 300→ &2 &2→ &1, [10, 40]

&3→ {10, 30, 50} 400→ &3 &3→ {10, 30, 50}

(2b) Subset &1→ {10, 20, 30, 40, 50} 100→ &1 &1→ {50} - &1→ &2 8

Reduction 200→ &1

Applied to result of (1) &2→ {10, 20, 30, 40} 300→ &2 &2→ {10, 20, 30, 40}

&3→ {10, 30, 50} 400→ &3 &3→ {10, 30, 50}

(3) Subsequence-Subset &1→ {10, 20, 30, 40, 50} 100→ &1 &1→ {20, 40} &1→ &3 7

Reduction 200→ &1 &2→ &1, [10, 40]

Applied to result of (2a) 300→ &2

&3→ {10, 30, 50} 400→ &3 &3→ {10, 30, 50}

same pointer for each node that depends on the same set of de-

pendencies. In Table 1, applying this technique reduces the to-

tal number of nodes stored to 12. Duplicate-set reduction di-

vides the original dependency relation into two distinct relations

RN(N,&P) and RD(&P,D), represented in Table 1 using n → &p

and &p → {n1, ..., nk}. Algorithm 1 describes this technique in

more detail. The duplicate-set algorithm takes O(N) time, where N

is the number of nodes in the trace.

Algorithm 1 Duplicate-Set Reduction

Input: Fully-annotated trace T

Output: Dictionaries D and P

1: D← [], P← [], S ← [], i← 1

2: for n in nodes of T do

3: Dn ← {d | dep(n, d)}

4: if S [Dn] = nil then

5: D[n]← &i, P[&i]← Dn, S [Dn]← &i

6: i← i + 1

7: else

8: D[n]← S [Dn] /* reduction step */

9: end if

10: end for

Subsequence Reduction. This reduction technique identifies

dependency sets that represent subsequences of larger depen-

dency sets, and stores only the range of the subsequence rela-

tive to the larger set. This technique is applied after duplicate-

set reduction. Each unique dependency set is sorted (e.g., us-

ing node identifiers) to identify subsequences. The approach

stores the largest dependency sequences and creates a new relation

Rsubseq(&Pfrom,&Pto, i, j) to store subsequences in which i and j de-

note the (inclusive) range of the subsequence. Only subsequences

of length 3 or greater are considered. In Table 1, applying this tech-

nique reduces the total number of nodes stored to 10. Subsequence

reduction (cf. Section 4) is effective in cases where actors perform a

form of running aggregation, either within their invocation or with

respect to the overall token stream. Algorithm 2 describes this tech-

nique in more detail. Subsequence reduction takes O(|P|2) time, in

which for each unique dependency set (where |P| is the number of

unique sets) the largest containing sequence is found.

Subset Reduction. This reduction technique identifies dependency

sets that are proper subsets of larger dependency sets. This tech-

nique is also applied after duplicate-set reduction. Unlike in subse-

quence reduction, this approach stores the smaller set and creates

Algorithm 2 Subsequence Reduction

Input: Dictionary P mapping pointers to sorted dependency sets

Output: Dictionaries P and S

1: S ← []

2: for ps in keys of P and |P[ps]| > 2 do

3: found← false, maxlen← 0, pb ← ⊥, Ds ← P[ps]

4: for p in keys of P and p , ps do

5: Db ← P[p]

6: if Ds is a subsequence of Db and |Db | > maxlen then

7: found← true, pb ← p, maxlen← |Db |

8: end if

9: end for

10: if found then

11: i← first(Ds), j← last(Ds)

12: S [ps]← (pb, i, j) /* reduction step */

13: P[ps]← ∅ /* reduction step */

14: end if

15: end for

a new relation Rsubset(&Pfrom,&Pto) such that Pto ⊆ Pfrom, where

P denotes the dependency set pointed to by &P. Only subsets of

length 2 or greater are considered. We also only permit one level

of subset reduction, i.e., a dependency set that is stored as a sub-

set of another set cannot itself be represented through a subset. If

the number of nested subset relationships is not held constant (in

our case we allow one level of nesting), recursive views would be

required in general to reconstruct dependency sets. In Table 1, ap-

plying our subset reduction technique reduces the total number of

nodes stored to 8. Algorithm 3 describes this technique in more

detail. Subset reduction takes O(|P|3) time, in which the subset

that gives the largest reduction is identified in O(|P|2) time and in

the worst case |P| such subsets are found. In each pass, the subset

that maximizes the product of its size and the number of sets that

contain it is selected, and the set is not considered for reduction in

subsequent passes.

Subseqence-Subset Reduction. This reduction technique first ap-

plies the subsequence reduction, and then applies the subset reduc-

tion to the result. In Table 1, applying this technique reduces the

total number of nodes stored to 7. This approach always provides

better reduction than using only subsequence reduction. However,

in certain situations applying only the subset technique can pro-

vide better overall reduction than applying subsequence followed

by subset (cf. Section 4). Thus, our current implementation applies

both techniques (during the pre-processing phase) and selects the

964

Algorithm 3 Subset Reduction

Input: Dictionary P mapping pointers to dependency sets

Output: Dictionaries P and S

1: S ← [], savings← true, M ← ∅

2: while savings do

3: savings← false, r ← 0, ps ← ⊥, B← ∅,

4: for p′s in keys of P, p′s not in M, and |P[p′s]| > 1 do

5: B′ ← ∅

6: for p′
b

in keys of P, p′
b
, p′s, and p′

b
not in M do

7: if P[p′s] ⊆ P[p′
b
] then

8: B′ ← B′ ∪ {p′
b
},

9: end if

10: end for

11: if |P[p′s]| ∗ |B
′ | > r then

12: savings← true, r ← |P[p′s]| ∗ |B
′ |, ps ← p′s, B← B′

13: end if

14: end for

15: if savings then

16: for pb in B do

17: P[pb]← P[pb] − P[ps], S [pb]← ps /* reduction step */

18: end for

19: M ← M ∪ {ps}

20: end if

21: end while

Table 2: Node and node dependency schemas
Before Reduction After Reduction

node(R, N, Iins, Idel) r-node(R, N, Iins, Idel, &Pdep, &Pdepc)

dep(R, N, Ndep) r-dep(R, &Pdep, Ndep)

r-dep-subseq(R, &P
from

dep
, &Pto

dep
, i, j)

r-dep-subset(R, &P
from

dep
, &Pto

dep
)

depc(R, N, Ndepc) r-depc(R, &Pdepc, &Pdep)

r-depc-subseq(R, &P
from

depc
, &Pto

depc
, i, j)

r-depc-subset(R, &P
from

depc
, &Pto

depc
)

result with better overall reduction. Similar to subset reduction,

this algorithm runs in O(|P|3) time.

Closure Reduction. The above reduction techniques can be gener-

ically applied to any transitive binary relation. We apply the reduc-

tions to immediate data dependencies, dependency closures, im-

mediate invocation order, and invocation-order closures. A portion

of the schema we use to represent immediate data dependencies is

shown in Table 2 (for storing nodes, and immediate and transitive

dependencies); similar relations are defined for immediate invoca-

tion order and its closure. As shown in Table 2, we employ the

reduction techniques over closures of pointers instead of closures

of nodes (similarly, for invocations). This approach results in an

overall smaller representation compared to directly reducing node

closures, since pointer closures do not store nodes and also do not

store the immediate-node reduction.

For example, the result of applying the duplicate-set reduction

technique to the trace of Figure 3 gives the immediate dependencies

17 → &3, 12 → &2, and 6 → &1 such that &3 → {12, 13, 14},

&2 → {6, 7, 8}, and &3 → {3, 4, 5}. The transitive dependency

closure for node 17 is {3, 4, 5, 6, 7, 8, 12, 13, 14}, which is repre-

sented in our approach by the set of immediate dependency point-

ers {&1,&2,&3}. We further reduce these pointer-based closures

using our reduction techniques, resulting in a representation that is

smaller than the corresponding reduction of the node-based closure.

As shown in Table 2, we store multiple workflow traces that are dis-

tinguished by a run identifier R. Additionally, each node is stored

node(R,N, Iins, Idel) :- r-node(R,N, Iins, Idel, _, _).

dep(R,N,Ndep) :- r-node(R,N, _, _, P, _), v-dep(R, P,Ndep).

v-dep(R, P,N) :- v-dep0(R, P,N).

v-dep(R, P,N) :- r-dep-subseq(R, P, Pto, I, J), v-dep0(R, Pto,N),

N ≥ I,N ≤ J.

v-dep0(R, P,N) :- r-dep(R, P,N).

v-dep0(R, P,N) :- r-dep-subset(R, P, Pto), r-dep(R, Pto,N).

Figure 8: Expand-reduction view for immediate dependencies.

depc(R,N,Ndepc) :- r-node(R,N, _, _, _, P), v-depc(R, P, Pdep),

v-dep(R, Pdep,Ndepc).

v-depc(R, P, Pdep) :- v-depc0(R, P, Pdep).

v-depc(R, P, Pdep) :- r-depc-subseq(R, P, Pto, I, J), v-depc0(R, Pto, Pdep),

Pdep ≥ I, Pdep ≤ J.

v-depc0(R, P, Pdep) :- r-depc(R, P, Pdep).

v-depc0(R, P, Pdep) :- r-depc-subset(R, P, Pto), r-depc(R, Pto, Pdep).

Figure 9: Expand-reduction view for transitive dependencies.

with its insertion and deletion annotation as well as its immediate-

dependency &Pdep and transitive-dependency &Pdepc pointers.

3.3 Rewriting Provenance Queries
For expanded traces, provenance queries over the schema shown

on the left-side of Table 2 are answered using the view definition

expressed over the schema for storing reductions (Table 2, right).

We consider the case of node dependencies, however, invocation-

order is handled in a similar way. The views are relational queries

written in non-recursive Datalog and can be expressed, e.g., using

SQL. The view definitions in Figure 8 are used to recover nodes and

immediate dependencies. Similarly, the view definitions in Figure 9

are used to recover dependency closures.

We also define a relational view in Figure 10 for expanding traces

stored using the collapsed (or asserted) strategy. A relational query

can be used to expand a collapsed trace since: (i) we explicitly store

the transitive closure of the invocation order; (ii) we store the inser-

tion and deletion annotations of each node directly within the node

relation; (iii) we store the dependency set pointer of each node di-

rectly within the node relation; and (iv) we use interval encod-

ings for nested collections. Thus, a traced stored via the collapsed

strategy can be expanded by simply applying rule 9 in Figure 5,

since (i), (ii), and (iii) already store the provenance information that

would be derived from the remaining rules. We use (iv) to access

collection descendents instead of children as in rule 9 of Figure 5.

The variable X is the insertion invocation of N, and Y and Z are the

insertion and deletion invocations of node C, respectively. Node

C here is a descendent of Ndep, where Ndep corresponds to node p

in rule 9 of Figure 5. The inv-beforec relation stores the transi-

tive closure of the invocation order. Expanding dependency sets

is performed using the expand-reduction view, which accesses the

reduced representation of the database. The view in Figure 10 is

applied only in the collapsed and asserted strategies of Figure 7,

since the expanded strategy stores fully-annotated traces.

4. EXPERIMENTAL EVALUATION
Here we evaluate our provenance model, storage strategies, and

reduction techniques on both real and synthetic traces. Real traces

were generated from existing workflows implemented within the

Kepler system (see [6, 33]). We compare our storage strategies to

the conventional provenance model discussed in Section 1 as well

as to approaches that do not employ our reduction techniques. Our

experiments evaluate the various approaches in terms of storage

size, update time, and query time. All experiments were performed

965

exp-dep(R,N,Ndep) :- dep(R,N,Ndep).

exp-dep(R,N,Ndep) :- dep(R,N,Ndep), descendent(Ndep,C),

node(R,N,Y, _), node(R,C, X,Z),

inv-beforec(R, X,Y),¬inv-beforec(R,Z,Y).

exp-dep(R,N,Ndep) :- dep(R,N,Ndep), descendent(Ndep,C),

node(R,N,Y, _), node(R,C, null, Z),

¬inv-beforec(R,Z,Y).

exp-dep(R,N,Ndep) :- dep(R,N,Ndep), descendent(Ndep,C),

node(R,N,Y, _),

node(R,C, X, null), inv-beforec(R, X, Y).

exp-dep(R,N,Ndep) :- dep(R,N,Ndep), descendent(Ndep,C),

node(R,N, _, _), node(R,C, null, null).

Figure 10: Expand-annotation view for dependencies.

using a 2.4GHz Intel Core 2 duo PC with 2 GB RAM and 120 GB

disk space. Our implementation stores provenance information and

base data using MySQL 5. Our algorithms were implemented in

Java and use JDBC to communicate with the provenance database.

Table 3 lists the storage strategies we consider. These strategies

were compared using a set of synthetic traces that consist of actors

employing the dependency patterns shown in Table 4. For each pat-

tern, we consider traces of increasing numbers of nodes, ranging

from 100 to 6000, and dependency annotations ranging from 103

to 106 with 104 to 108 transitive dependency edges. We also evalu-

ated our approaches using the following real traces from scientific

workflows implemented within Kepler: the CGR and PLC work-

flows [6] infer phylogenetic trees from protein and morphological

sequence data; the FPC workflow was used within the first prove-

nance challenge [33]; and the Steam workflow characterizes micro-

bial communities by clustering and identifying DNA sequences of

16S ribosomal RNA. The dependency annotations of these traces

range from 2 · 103 to 2 · 104 with 5 · 103 to 5 · 104 transitive de-

pendency edges. Our goal in defining the patterns of Table 4 is

to demonstrate the range of reductions possible. In general, actual

workflow traces will (including those considered here) contain one

or more of these patterns.

Storage Size. Figure 12 shows the storage sizes observed for the

TD, DA, and Mixed synthetic traces. Note that we only consider the

conventional (Conv) approach for the TD case, since it cannot be

used to correctly represent the other dependency patterns. The stor-

age space for SE grows exponentially because it stores provenance

and closure records for each node (which ranges from thousands

to millions of records). The storage size for NE also grows expo-

nentially, similarly requiring millions of records to store the larger

traces. Alternatively, the storage size of RC and RE grows linearly,

and is comparable to NC, although RC and RE require slightly less

storage space. Thus, storing the closure information for all nodes

results in exponential growth in storage space for SE, whereas our

reduction techniques reduce the same information such that RE

and RC have linear growth in storage space and both require less

space than NC. Note that for strategies that collapse provenance

annotations, less storage space is used than for their correspond-

ing expanded strategies (e.g., NC versus NE, and RC versus RE).

The relative ranking of the strategies in Figure 7 for storage size is

RC < RE < NC < NE < SE.

Figure 11 shows the comparative reductions (to NE) achieved

when different techniques are applied across each of the synthetic

and real traces. Different techniques give minimal reduction de-

pending upon the nature of the trace annotations. For example, for

FC the subset reduction technique provides the greatest reduction,

whereas in each of the other cases, the subsequence-subset tech-

nique provides the best reduction. Figure 11 also shows the addi-

C"m$a&'(") "+ Re./0t'") 2e03)'4/e(

!

"!

#!!

#"!

$!!

%&'()#) +& '()#) +%'()#) ,-./%'(01) 234'(#1)) 562'(#"$) 72'(#0") 89:a<'("#")

5"&6+7"8 E:e0/t'") 2&a0e(

;
 "

+
N

E
 S

'>
e

=/ =/>?:@c %B@CDca9: 8BbF:GB:Hc: 8BbF:9 8BbF:GB:Hc: I8BbF:9

Figure 11: Comparison of reduction techniques.

tional space required to store pointer-based closures (NE+depc).

Update Time. Parsing trace files, expanding and collapsing an-

notations, and loading provenance records into the database com-

prise the update time for the NC, NE, and SE strategies. Update

time for RE and RC consists of the time required to pre-process the

trace, collapse or expand annotations, apply reduction techniques,

and load the resulting records into the provenance database. Fig-

ure 15 shows the time taken to upload provenance records for the

MIXED pattern traces. Similar to storage size, because SE must

upload provenance and closure records for each node, its update

time grows exponentially. NE also requires significant update time

as the size of the traces increase. The update times for RC and

RE are linear in the MIXED pattern and are less than that for NC

(which does not store closures), demonstrating than the costs of

pre-processing and applying reductions is low. As shown in Fig-

ure 15, the cost of applying our reduction algorithms grows linearly

with increasing numbers of dependency annotations. While SE and

NE do not incur the overhead associated with reduction, as shown

in Figure 15 they exhibit exponential growth in update time over

increasing numbers of annotations. RE and RC have relatively low

update times for the real execution traces as shown in Figure 13(a).

Similar to storage size, the relative ranking of these strategies with

respect to update time is RC < RE < NC < NE < SE for the

MIXED, TA, and TD patterns. For the DA pattern, dependencies

grow exponentially resulting in RE and RC having a corresponding

exponential increase in update time due to the cost of expanding

annotations. For the DA pattern, the relative ranking of these strate-

gies with respect to update time is NC < RC < RE < NE < SE.

Query Time. Because our reduction techniques partition the im-

mediate dependency, transitive dependency, and invocation order

tables into multiple tables, we must apply the views defined in

Figures 8 and 9 to answer provenance queries. To evaluate the

cost of applying these views, we consider three basic provenance

queries. Given a specific node, we measure the query time to find:

(1) the immediate dependencies of the node; (2) the transitive de-

pendencies of the node; and (3) the sequence of invocations that

contributed to the node being inserted. In our experience, (2) is

the most widely used of these within provenance queries [7, 33].

Figure 14 shows the query response times for the MIXED pattern

traces. Figure 14(a) shows that to find immediate dependencies, the

RE strategy performs as good as the other methods (NE and SE).

The overhead of applying the view in this case is the cost of joining

the reduction tables. RC, however, takes significantly more time to

find immediate dependencies, since the query must use the expand-

annotation view which involves more join operations (Figure 10).

Figure 14(b) shows that for transitive dependencies, RE does as

well as SE (again with only minor overhead). Because NE does not

966

Table 3: Provenance storage strategies
Strategy Label Annotations Dep. Closure Reduced Optimizes

Simple Expanded SE Expanded Node-Based No Immediate & Transitive Queries

Naive Expanded NE Expanded No No Immediate queries

Naive Collapsed NC Collapsed Dependencies No No Storage size

Reduced Expanded RE Expanded Pointer-Based Yes Storage Size, Immediate & Transitive Queries

Reduced Collapsed RC Collapsed Dependencies Pointer-Based Yes Storage Size

Table 4: Workflow execution trace patterns
Pattern Label Dependencies Removes Input Nodes from Stream

Dependency All DA All output depend on all inputs in token stream at time of insertion No

Transform Add TA All invocation outputs depend on all invocation inputs No

Transform Delete TD All invocation outputs depend on all invocation inputs Yes

Mixed Pattern MIXED Repeatedly perform DA followed by TA followed by TD Yes (via TD)

Storage Size (Transform-Delete Pattern)

Conv

NE

NC

SE

RE

RC0

100

200

300

400

500

0 1000 2000 3000 4000 5000 6000 7000

Trace Nodes

C
e
ll
s
 (

1
0
0
0
)

Conv

NE

NC

SE

RE

RC

Storage Size (Dependency-All Pattern)

NE

NC

SE

RE

RC0

50

100

150

200

250

300

350

400

450

0 1000 2000 3000 4000 5000 6000 7000

Trace Nodes

C
e
ll
s
 (

1
0
0
0
)

NE

NC

SE

RE

RC

Storage Size (Mixed Pattern)

NE

NC

SE

RE

RC
0

50

100

150

200

250

300

350

400

450

500

0 1000 2000 3000 4000 5000 6000 7000

Trace Nodes

C
e
ll
s
 (

1
0
0
0
)

NE

NC

SE

RE

RC

(a) (b) (c)

Figure 12: Provenance storage size for different patterns of synthetic traces.

Update Time (Real-World Provenance Traces)

0

2

4

6

8

10

12

14

CGR (147) PLC (152) FC (185) Steam (515)

Traces

T
im

e
 (

s
)

RC

RE

NC

NE

Query Time (Real-World Provenance Traces)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CGR (147) FC (185) PLC (152) Steam (515)

Traces

T
im

e
 (

s
)

RC

RE

NE

SE

Storage Size (Real-World Provenance Traces)

0

10

20

30

40

50

60

70

80

90

100

CGR (147) PLC (152) FC (185) Steam (515)

Traces

%
 o

f
N

E
 S

iz
e

RC

RE

NC

NE

(a) (b) (c)

Figure 13: Update time, query response time, and storage size for real execution traces.

store the transitive closure, a recursive stored procedure is used to

answer the query. In RC, the expand-annotation view must be used

for all nodes in its lineage path. NC will take even more time to

answer this query than RC, since each transitive dependency node

must be identified recursively and the expand-annotation view must

be applied to all such nodes.

In Figure 14(c), determing the sequence of invocations that led

to the insertion of a node takes less than 0.1 seconds for NE, SE,

RE, and RC even for larger traces. The reason for this low query

time is that the number of invocations in a trace typically is only on

the order of at most 100’s of invocations.

Figure 13(b) shows the total query time across these queries for

the real execution traces. As shown, RE and SE have almost the

same query response time. The relative ranking of these strategies

with respect to query time is SE < RE < NE < RC.

Analysis of Storage Strategies. NC optimizes storage and up-

date time, but requires recursion (e.g., via stored procedures) to an-

swer both immediate and transitive dependency queries, and thus

exhibits the worst query response time. NE is better than NC for

answering direct provenance annotation queries, but also requires

recursion to answer transitive dependency queries. In addition, as

the number of provenance annotations increase, NE also leads to

exponential growth in storage space and an increasingly high up-

date time. SE optimizes query response time, but incurs exponen-

tial storage size and upload time, making it impractical except for

small traces. RE optimizes all three metrics, i.e., storage space,

update time, query response time. Applying the expand-reduction

views for RE incurs only minor overhead for query response time.

RC optimizes storage size and update time, but incurs significant

overhead by applying the expand-reduction and expand-annotation

views. The table below gives a relative ranking of these strategies

for storage size, update time, and query response time. In partic-

ular, SE is generally impractical with respect to storage size and

967

Immediate Dependency Selection (Mixed Pattern)

NESE

RE

RC

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000 6000 7000

Trace Nodes

T
im

e
 (

s
)

NE

SE

RE

RC

(a) (b) (c)Transitive Dependency Selection (Mixed Pattern)

NE

SE
RE

RC

0

10

20

30

40

50

0 1000 2000 3000 4000 5000 6000 7000

Trace Nodes

T
im

e
 (

s
)

NE

SE

RE

RC

Transitive Invocation Selection (Mixed Pattern)

NE

SE

RE

RC

0

0.02

0.04

0.06

0.08

0.1

0 50 100 150 200 250 300

Trace Invocations

T
im

e
 (

s
)

NE

SE

RE

RC

(b) (c)

Figure 14: Query response time for MIXED pattern traces.

Update Time (Mixed Pattern)

NE

NC

SE

RE

RC

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000 7000

Trace Nodes

T
im

e
 (

s
)

NE

NC

SE

RE

RC

Figure 15: Provenance update time for the Mixed pattern.

update time, and executing queries using RC is expensive and pro-

vides only minor storage savings over RE. In addition, RE reduces

the exponentially growing storage size of storing provenance and

dependency relations to linearly growing storage size by applying

reduction techniques. Thus, we consider RE to be the best of these

strategies when considering all three criteria.

metric ranking

storage RC < RE < NC < NE < SE

update time RC < RE < NC < NE < SE

query time SE < RE < NE < RC < NC

5. RELATED WORK
Scientific workflow approaches are used in many science do-

mains; and numerous approaches have recently been proposed to

represent provenance information generated from scientific work-

flows runs (e.g., [38, 2, 33, 15, 16, 37, 4, 40, 41, 35, 13, 3, 7,

34]). Most of these approaches adopt a “conventional” provenance

model in which invocation outputs are assumed to depend on all

associated inputs, and invocations only produce new data, i.e., they

do not employ an “update” semantics. In [31] and [32], these as-

sumptions are relaxed such that constraints are used to describe

anticipated dependency patterns of actors. In contrast, our goal

is to record explicit invocation dependencies—generated, e.g., by

“dependency-aware” actors or by inference-based approaches over

state information or read/write timestamps [7, 2]—thereby support-

ing the many possible patterns of data dependencies that can be

recorded for actor invocations.

Our provenance model is inspired by approaches for reference-

based versioning of XML [12, 28, 9] and semistructured data [11],

and employs a versioning model that supports only a small set of

operations over XML structures while adding new annotations for

data and invocation dependency annotations. While many XML

versioning approaches allow ad hoc restructuring and updates to

data values (attributes and text nodes), our approach only permits

operations for inserting and deleting subtrees. However, this more

accurately captures the operations permitted on token streams in

dataflow-based computation models [24, 27], and supports concur-

rent actor execution by allowing for partially-ordered versions.

With the adoption of scientific workflow approaches and the

need for recording large amounts of provenance information, tech-

niques have recently been proposed to efficiently store and query

provenance metadata [10, 22, 15]. The approach in [10] can re-

duce the storage size of process (i.e., invocation) lineage, assum-

ing a restricted version of the conventional provenance model is

used where process lineage is defined by sequences of invocations;

whereas most other provenance models support DAG-based lin-

eage structures (e.g., [2, 34, 13, 7]). XML is used to represent

data in [10], where nodes are stored with the sequence of pro-

cesses that led to their creation. These annotations are reduced

by collapsing annotations to the highest associated node in a tree

(an often-used approach, e.g., see [8, 9] among others). Similarly,

“basic factorization” is used in [10] to maintain only a single copy

of identical provenance annotations (process sequences). We in-

troduce new algorithms not considered in [10] that exploit depen-

dency and pointer-based closure sets that can be expressed as sub-

sequences and/or subsets of one or more existing sets. Thus, our

reduction algorithms are applied to both immediate and transitive

data and invocation dependencies (in general, arbitrary binary re-

lations), whereas those of [10] only apply to simple sequences of

processes. Also, the goal in [10] is to reduce the size of an exist-

ing provenance store, whereas we include semantics to minimize

annotations within our provenance model so that reduction tech-

niques can be applied before a trace is loaded into a database, thus

allowing both storage size and update time to be optimized.

In [22], a reduction technique is proposed that is generically

applicable to transitive, acyclic binary relations. These tech-

niques employ complex graph manipulations (as opposed to our ap-

proaches that are based on dependency sets) to reduce the number

of duplicate nodes in a dependency graph. When compared with

their algorithms, our reduction techniques on the examples given in

[22] provide similar reductions. For example, on the fMRI [33, 22]

transitive dependency graph, our reduction techniques store only

60 total nodes, whereas their approach stores 107 total nodes [22].

The reduction approaches both store 22 total nodes for the main ex-

ample used in [22]. Both approaches support lineage queries using

standard relational constructs, whereas most others (e.g., [10, 9, 2])

require recursive queries to reconstruct lineage graphs.

968

6. CONCLUSION
We have proposed a framework to address open issues in the

representation and storage of provenance information for scientific

workflows. Specifically, we have described a formal provenance

model that generalizes the conventional model used for represent-

ing data and process provenance from workflow runs, by support-

ing a wider range of workflow types and workflow systems. Our

provenance model does not limit invocations to simple “black-box”

transformers, but allows the workflow system to declare and record

data dependencies, based on an underlying update semantics. Our

approach also simplifies provenance recording by not requiring im-

plied provenance information to be given explicitly, while at the

same time allowing detailed provenance to be recorded efficiently.

This paper extends our prior work [8, 6] by: (i) developing a

formal description of our provenance model together with a set of

first-order inference rules for expanding and collapsing traces; (ii)

a set of strategies for efficiently storing and querying instances of

the model; (iii) novel reduction techniques for minimizing redun-

dancy in direct and transitive dependency representations; and (iv)

a detailed experimental evaluation of our approach. Our reduction

techniques can be applied efficiently and are applicable to both hier-

archical and non-hierarchical data structures, and our results show

that these reduction techniques can decrease provenance storage

size, update time, and query-response time.

Acknowledgements. This work was supported through NSF

grants IIS-0630033, OCI-0722079, IIS-0612326, DBI-0533368,

and DOE grant DE-FC02-07-ER25811.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.

[2] I. Altintas, O. Barney, E. Jaeger-Frank. Provenance collection
support in the Kepler scientific workflow system. IPAW, 2006.

[3] R. S. B. Barga and L. A. Digiampietri. Automatic capture and
efficient storage of e-Science experiment provenance. Concurrency

and Computation: Practice and Experience, 20(5):419–429, 2008.

[4] L. Bavoil, S. P. Callahan, C. E. Scheidegger, H. T. Vo, P. Crossno,
C. T. Silva, J. Freire. Vistrails: Enabling interactive multiple-view
visualizations, IEEE Visualization, 2005.

[5] O. Biton, S. C. Boulakia, S. B. Davidson, and C. S. Hara. Querying
and managing provenance through user views in scientific
workflows. ICDE, 2008.

[6] S. Bowers, T. McPhillips, S. Riddle, M. Anand, B. Ludäscher.
Kepler/pPOD: Scientific workflow and provenance support for
assembling the tree of life. IPAW, 2008.

[7] S. Bowers, T. M. McPhillips, B. Ludäscher, S. Cohen, S. B.
Davidson. A model for user-oriented data provenance in pipelined
scientific workflows. IPAW, 2006.

[8] S. Bowers, T. M. McPhillips, M. Wu, B. Ludäscher. Project histories:
Managing data provenance across collection-oriented scientific
workflow runs. DILS, LNCS, 2007.

[9] P. Buneman, A. Chapman, J. Cheney. Provenance management in
curated databases. In SIGMOD, pp. 539–550. ACM, 2006.

[10] A. Chapman, H. V. Jagadish, P. Ramanan. Efficient provenance
storage. In SIGMOD, pp. 993–1006, 2008.

[11] S. S. Chawathe, S. Abiteboul, J. Widom. Representing and querying
changes in semistructured data. In ICDE, pp. 4–13, 1998.

[12] S.-Y. Chien, V. J. Tsotras, C. Zaniolo. Efficient schemes for managing
multiversion XML documents. VLDB Journal, 11(4):332–353, 2002.

[13] S. Cohen, S. C. Boulakia, S. B. Davidson. Towards a model of
provenance and user views in scientific workflows. In DILS, pages
264–279, 2006.

[14] Y. Cui, J. Widom. Lineage tracing for general data warehouse
transformations. The VLDB Journal, 12(1):41–58, 2003.

[15] S. B. Davidson, J. Freire. Provenance and scientific workflows:
challenges and opportunities. In SIGMOD, pp. 1345–1350, 2008.

[16] E. Deelman, A. L. Chervenak. Data management challenges of
data-intensive scientific workflows. CCGRID, pp. 687–692, 2008.

[17] R. Duan, R. Prodan, and T. Fahringer. Run-time optimisation of grid
workflow applications. In GRID, pp. 33–40, 2006.

[18] W. Fan, G. Cong, and P. Bohannon. Querying XML with update
syntax. SIGMOD, pp. 293–304, 2007.

[19] Y. Gil, E. Deelman, M. A. Ellisman, T. Fahringer, G. Fox,
D. Gannon, C. A. Goble, M. Livny, L. Moreau, and J. Myers.
Examining the challenges of scientific workflows. IEEE Computer,
40(12):24–32, 2007.

[20] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim. Wings for
pegasus: Creating large-scale scientific applications using semantic
representations of computational workflows. In AAAI, pp.
1767–1774, 2007.

[21] S. Gurmeet, C. Kesselman, and E. Deelman. Optimizing grid-based
workflow execution. J. Grid Comput., 3(3–4):201–219, 2005.

[22] T. Heinis and G. Alonso. Efficient lineage tracking for scientific
workflows. In SIGMOD, pp. 1007–1018, 2008.

[23] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, and J. V. den
Bussche. Petri net + nested relational calculus = dataflow. In OTM

Conferences, LNCS 3760, pp. 220–237, 2005.

[24] W. M. Johnston, J. R. Hanna, and R. J. Millar. Advances in dataflow
programming languages. ACM Computing Surveys, 36(1):1–34, 204.

[25] C. Koch. Processing queries on tree-structured data efficiently.
PODS, pp. 213–224, 2006.

[26] C. Koch and S. Scherzinger. Attribute grammars for scalable query
processing on XML streams. VLDB Journal, 16(3):317–342, 2007.

[27] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific workflow
management and the kepler system. Concurrency and Computation:

Practice & Experience, pp. 1039–1065, 2006.

[28] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet. Change-centric
management of versions in an xml warehouse. In VLDB, pp.
581–590, 2001.

[29] T. McPhillips, S. Bowers, D. Zinn, B. Ludäscher. Scientific workflow
design for mere mortals. Future Generation Computer Systems, 2008.

[30] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and F. Ngoc.
Exchanging intensional XML data. TODS, 30(1):1–40, 2005.

[31] A. Misra, M. Blount, A. Kementsietsidis, D. Sow, and M. Wang.
Advances and challenges for scalable data provenance in stream
processing systems. In IPAW, LNCS, 2008.

[32] P. Missier, K. Belhajjame, J. Zhao, and C. Goble. Data lineage model
for taverna workflows with lightweight annotation requirements. In
IPAW, LNCS, 2008.

[33] L. Moreau and et al. The first provenance challenge. Concurrency

and Computation: Practice and Experience – Special Issue on the

First Provenance Challenge, 20(5), 2008.

[34] L. Moreau, J. Freire, J. Futrelle, R. McGrath, J. Myers, and
P. Paulson. The open provenance model. Technical Report 14979,
ECS, University of Southampton, 2007.

[35] L. J. Osterweil, L. A. Clarke, R. Podorozhny, A. Wise, E. Boose,
A. M. Ellison, and J. Hadley. Experience in using a process language
to define scientific workflow and generate dataset provenance. In Intl.

Symp. on Foundations of Software Engineering, 2008.

[36] J. Qin and T. Fahringer. Advanced data flow support for scientific
grid workflow applications. In ACM/IEEE Conf. on Supercomputing,
2007.

[37] C. Silva, J. Freire, and S. P. Callahan. Provenance for visualizations:
Reproducibility and beyond. Computing in Science & Engineering,
9(5):82–89, 2007.

[38] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data
provenance in e-science. SIGMOD Record, 34(3):31–36, 2005.

[39] N. Walsh, A. Milowski, and H. S. T. (editors). XProc: An xml
pipeline language. W3C Working Draft, May 2008.

[40] J. Zhao, C. Goble, R. Stevens, and D. Turi. Mining Taverna’s
semantic web of provenance. Concurrency and Computation:

Practice and Experience, 20(5):463–472, 2008.

[41] Y. Zhao, M. Wilde, and I. Foster. Applying the virtual data
provenance model. In IPAW, LNCS 4145. Springer, 2006.

969

