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Abstract. We present a new technique for generating a formal proof that an ac-
cess request satisfies access-control policy, for use in logic-based access-control
frameworks. Our approach is tailored to settings where credentials needed to
complete a proof might need to be obtained from, or reactively created by, distant
components in a distributed system. In such contexts, our approach substantially
improves upon previous proposals in both computation and communication costs,
and better guides users to create the most appropriate credentials in those cases
where needed credentials do not yet exist. At the same time, our strategy offers
strictly superior proving ability, in the sense that it finds a proof in every case that
previous approaches would (and more). We detail our method and evaluate an
implementation of it using both policies in active use in an access-control testbed
at our institution and larger policies indicative of a widespread deployment.

1 Introduction

Much work has given credence to the notion that formal reasoning can be used to but-
tress the assurance one has in an access-control system. While early work in this vein
modeled access-control systems using formal logics (e.g., [9,18]), recent work has im-
ported logic into the system as a means to implement access control (e.g., [6]). In these
systems, the resource monitor evaluating an access request requires a proof, in formal
logic, that the access satisfies access-control policy. In such a proof, digitally signed
credentials are used to instantiate formulas of the logic (e.g., “KAlice signed delegate
( Alice, Bob, resource)” or “KCA signed KAlice speaksfor KCA.Alice”), and then in-
ference rules are used to derive a proof that a required policy is satisfied (e.g., “Manager
says open(resource)”). The resource monitor, then, need only validate that each re-
quest is accompanied by a valid proof of the required policy.

Because the resource monitor accepts any valid proof of the required policy, this
framework offers potentially a high degree of flexibility in how proofs are constructed.
This flexibility, however, is not without its costs. First, it is essential that the logic is
sound and free from unintended consequences, giving rise to a rich literature in de-
signing appropriate authorization logics (e.g., [9,19,16,14]). Second, and of primary
concern in this paper, it must be possible to efficiently find proofs for accesses that
should be allowed. Rather than devising a proving strategy customized to each applica-
tion, we would prefer to develop a general proof-building strategy that is driven by the
logic itself and that is effective in a wide range of applications.
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In this paper we focus on systems where needed credentials are distributed among
different components, if they exist at all, and may be created at distant components re-
actively and with human intervention. Such systems give rise to new requirements for
credential-creation and proof-construction algorithms. To address these requirements,
we combine a number of new and existing techniques into a proof-generation strategy
that is qualitatively different from those proposed by previous works. In comparison
to these works (notably [4]), we show that our strategy offers dramatic improvements
in the efficiency of proof construction in practice, consequently making such systems
significantly more useable. Moreover, our strategy will find proofs whenever previous
algorithms would (and sometimes even when they would not). Our method builds from
three key principles. First, our method strategically delays pursuing “expensive” sub-
goals until, through further progress in the proving process, it is clear that these subgoals
would be helpful to prove. Second, our method precomputes delegation chains between
principles in a way that can significantly optimize the proving process on the critical
path of an access. Third, our method eliminates the need to hand-craft tactics, a fragile
and time-intensive process, to efficiently guide the proof search. Instead, it utilizes a
new, systematic approach to generating tactics from the inference rules of the logic.

The technique we report here is motivated by an ongoing deployment at our institu-
tion of a testbed environment where proof-based access control is used to control access
to both physical resources (e.g., door access) and information resources (e.g., computer
logins). The system has been deployed for over a year, guards access to about 35 re-
sources spanning two floors of our office building, and is used daily by over 35 users.
In this deployment, smartphones are used as the vehicle for constructing proofs and
soliciting consent from users for the creation of new credentials, and the cellular net-
work is the means by which these smartphones communicate to retrieve needed proofs
of subgoals. In such an environment, both computation and communication have high
latency, and so limiting use of these resources is essential to offering reasonable re-
sponse times to users. And, for the sake of usability, it is essential that we involve users
in the proof generation process (i.e., to create new credentials) infrequently and with as
much guidance as possible. We have developed the technique we report here with these
goals in mind, and our deployment suggests that it offers acceptable performance for the
policies with which we have experimented and is a drastic improvement over previous
approaches. All of the examples used in this paper are actual policies drawn from the
deployment. We evaluate the scalability of our algorithm on larger, synthetically gen-
erated policies in Section 4.2 and show that the quantity of precomputed state remains
reasonable and the performance advantage of our approach remains or increases as the
policy grows. Our approach has applications beyond the particular setting in which we
describe it; we briefly discuss one such application in Section 5.

The contributions of this paper are to: (1) identify the requirements of a proving algo-
rithm in a distributed access-control system with dynamic credential creation
(Section 2); (2) propose mechanisms for precomputing delegation chains (Section 3.2)
and systematically generating tactics (Section 3.3); (3) describe a technique for utiliz-
ing these pre-computed results to find proofs in dramatically less time than previous
approaches (Section 3.3); and (4) evaluate our technique on a collection of policies
representative of those used in practice (Section 4.1) and those indicative of a larger
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φ ::= s signed φ′ | p says φ′

φ′ ::= open (s) | p speaksfor p | delegate(p, p, s)
(s ranges over strings and p over principals)

pubkey signed F

key(pubkey) says F
(SAYS-I)

A says (A.S says F )
A.S says F

(SAYS-LN)

A says (B speaksfor A) B says F

A says F
(SPEAKSFOR-E)

A says (B speaksfor A.S) B says F

A.S says F
(SPEAKSFOR-E2)

A says (delegate(A, B,U )) B says (open(U, N))
A says (open(U, N)) (DELEGATE-E)

Fig. 1. A sample access-control logic [4]

deployment (Section 4.2). In Section 5, we discuss the use of our techniques in the con-
text of additional logics, systems and applications. Proofs of our theorems, and discus-
sion of related work elided due to space constraints, can be found in our accompanying
technical report [5].

2 Goals and Contributions

As discussed in Section 1, we will describe new techniques for generating proofs in an
authorization logic that an access request is consistent with access-control policy. It will
be far easier to discuss our approach in the context of a concrete authorization logic,
and for this purpose we utilize the same sample logic as we used in previous work [4],
which is reproduced in Figure 2. However, our techniques are not specific to this logic,
or even necessarily to a logic-based system; rather, they can be adapted to a wide range
of authorization systems provided that they build upon a similar notion of delegation,
as discussed in Section 5.

If pubkey is a particular public key, then key(pubkey) is the principal that cor-
responds to that key. If Alice is a principal, we write Alice.secretary to denote the
principal whom Alice calls “secretary.” The formulas of our logic describe principals’
beliefs. If Alice believes that the formula F is true, we write Alice says F . To indicate
that she believes a formula F is true, a principal signs it with her private key—the re-
sulting sequence of bits will be represented by the formula pubkey signed F , which
can be transformed into a belief (key(pubkey) says F ) using the SAYS-I inference
rule. To describe a resource that a client wants to access, we use the open constructor.
A principal believes the formula open(resource) if she thinks that it is OK to access
resource.1 Delegation is described with the speaksfor and delegate predicates. The
formula Alice speaksfor Bob indicates that Bob has delegated to Alice his authority
to make access-control decisions about any resource. delegate(Bob, Alice, resource)
transfers to Alice only the authority to access the resource called resource.

1 open takes a nonce as a second parameter, which we omit here for simplicity.
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2.1 Requirements

To motivate our requirements, we use as an example a simple policy in use on a daily
basis in our system. This policy is chosen for illustrative purposes; the performance
advantage of our technique actually widens as the policy becomes more complicated
(see Section 4.2). All the resources in our example are owned by our academic depart-
ment, and so to access a resource (resource) one must prove that the department has
authorized the access (Dept says open(resource)).

Alice is the manager in charge of a machine room with three entrances: door1, door2,
and door3. To place her in charge, the department has created credentials giving Al-
ice access to each door, e.g., KDept signed delegate(Dept, Alice, door1). Alice’s re-
sponsibilities include deciding who else may access the machine room. Instead of in-
dividually delegating access to each door, Alice has organized her security policy by
(1) creating a group Alice.machine-room; (2) giving all members of that group access
to each door (e.g., KAlice signed delegate(Alice, Alice.machine-room, door1)); and,
finally, (3) making individuals like Bob members of the group (KAlice signed (Bob
speaksfor Alice.machine-room)).

Suppose that Charlie, who currently does not have access to the machine room,
wishes to open one of the machine-room doors. When his smartphone contacts the
door, it is told to prove Dept says open(door1). The proof is likely to require creden-
tials created by the department, by Alice, and perhaps also by Bob, who may be willing
to redelegate the authority he received from Alice.

Previous approaches to distributed proof generation (notably [4] and [21]) did not
attempt to address three requirements that are crucial in practice. Each requirement may
appear to be a trivial extension of some previously studied proof-generation algorithm.
However, straightforward implementation attempts suffer from problems that lead to
greater inefficiency than can be tolerated in practice, as will be detailed below.

Credential creation. Charlie will not be able to access door1 unless Alice, Bob, or the
department creates a credential to make that possible. The proof-generation algorithm
should intelligently guide users to create the “right” credential, e.g., KAlice signed
( Charlie speaksfor Alice.machine-room), based on other credentials that already ex-
ist. This increases the computation required, as the prover must additionally investigate
branches of reasoning that involve credentials that have not yet been created.

Exposing choice points. When it is possible to make progress on a proof in a number
of ways (i.e., by creating different credentials or by asking different principals for help),
the choice points should be exposed to the user instead of being followed automatically.
Exposing the choice points to the user makes it possible both to generate proofs more
efficiently by taking advantage of the user’s knowledge (e.g., Charlie might know that
Bob is likely to help but Alice isn’t) and to avoid undesired proving paths (e.g., bother-
ing Alice at 3AM with a request to create credentials, when she has requested she not
be). This increase in overall efficiency comes at a cost of increased local computation,
as the prover must investigate all possible choice points prior to asking the user.

Local proving. Previous work showed that proof generation in distributed environ-
ments was feasible under the assumption that each principal attempted to prove only the
formulas pertaining to her own beliefs (e.g., Charlie would attempt to prove formulas
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like Charlie says F , but would immediately ask Bob for help if he had to prove
Bob says G) [4]. In our example, if Charlie asks Alice for help, Alice is able to create
sufficient credentials to prove Dept says open(door1), even though this proof involves
reasoning about the department head’s beliefs. Avoiding a request to the department
head in this case improves the overall efficiency of proof generation, but in general re-
quires Alice to try to prove all goals for which she would normally ask for help, again
increasing the amount of local computation.

The increase in computation imposed by each requirement may seem reasonable,
but when implemented as a straightforward extension of previous work, Alice’s prover
running on a Nokia N70 smartphone will take over 5 minutes to determine the set of
possible ways in which she can help Charlie gain access. Using the technique described
in this paper, Alice is able to find the most common options (see Section 3.3) in 2
seconds, and is able to find a provably complete set of options in well less than a minute.

2.2 Insights

We address the requirements outlined in Section 2.1 with a new distributed proving
strategy that is both efficient in practice and that sacrifices no proving ability relative
to prior approaches. The insights embodied in our new strategy are threefold and we
describe them here with the help of the example from Section 2.1.

Minimizing expensive proof steps. In an effort to prove Dept says open(door1),
suppose Charlie’s prover directs a request for help to Alice. Alice’s prover might de-
compose the goal Dept says open(door1) in various ways, some that would require the
consent of the user Alice to create a new credential (e.g., Alice says Charlie speaksfor
Alice.machine-room) and others that would involve making a remote query (e.g., to
Dept, since this is Dept’s belief). We have found that naively pursuing such options
inline, i.e., when the prover first encounters them, is not reasonable in a practical imple-
mentation, as the former requires too much user interaction and the latter induces too
much network communication and remote proving.

We employ a delayed proof procedure that vastly improves on these alternatives for
the policies we have experimented with in practice. Roughly speaking, this procedure
strategically bypasses formulas that are the most expensive to pursue, i.e., requiring
either a remote query or the local user consenting to signing the formula directly. Each
such formula is revisited only if subsequent steps in the proving process show that
proving it would, in fact, be useful to completing the overall proof. In this way, the most
expensive steps in the proof process are skipped until only those that would actually be
useful are determined. These useful steps may be collected and presented to the user to
aid in the decision-making process.

Precomputing delegation chains. A second insight is to locally precompute and
cache delegation chains using two approaches: the well-studied forward chaining al-
gorithm [22] and path compression, which we introduce here. Unlike backward chain-
ing, which recursively decomposes goals into subgoals, these techniques work for-
ward from a prover’s available credentials (its knowledge base) to derive both facts
and metalogical implications of the form “if we prove Charlie says F , then we can
prove David says F ”. By computing these implications off the critical path, numerous
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lengthy branches can be avoided during backward chaining. While these algorithms
can theoretically produce a knowledge base whose size is exponential in the number of
credentials known, our evaluation indicates that in practice most credentials do not com-
bine, and that the size of the knowledge base increases roughly linearly with the number
of credentials (see Section 4.2). As we discuss in Section 3.3, the chief challenge in us-
ing precomputed results is to effectively integrate them in an exhaustive time-of-access
proof search that involves hypothetical credentials.

If any credential should expire or be revoked, any knowledge derived from that cre-
dential will be removed from the knowledge base. Each element in the knowledge base
is accompanied by an explicit derivation (i.e., a proof) of the element from credentials.
Our implementation searches the knowledge base for any elements that are derived
from expired or revoked credentials and removes them. Our technique is agnostic to the
underlying revocation mechanism.

Systematic tactic generation. Another set of difficulties in constructing proofs is re-
lated to constructing the tactics that guide a backward-chaining prover in how it de-
composes a goal into subgoals. One approach to constructing tactics is simply to use
the inference rules of the logic as tactics. With a depth-limiter to ensure termination,
this approach ensures that all possible proofs up to a certain size will be found, but is
typically too inefficient for use on the critical path of an access because it may enu-
merate all possible proof shapes. A more efficient construction is to hand-craft a set
of tactics by using multiple inference rules per tactic to create a more specific set of
tactics [13]. The tactics tend to be designed to look for certain types of proofs at the
expense of completeness. Additionally, the tactics are tedious to construct, and do not
lend themselves to formal analysis. While faster than inference rules, the hand-crafted
tactics can still be inefficient, and, more importantly, often suffer loss of proving ability
when the policy grows larger or deviates from the ones that inspired the tactics.

A third insight of the approach we describe here is a new, systematic approach for
generating tactics from inference rules. This contribution is enabled by the forward
chaining and path compression algorithms mentioned above. In particular, since our
prover can rely on the fact that all delegation chains have been precomputed, its tactics
need not attempt to derive the delegation chains directly from credentials when gener-
ating a proof of access. This reduces the difficulty of designing tactics. In our approach,
an inference rule having to do with delegation gives rise to two tactics: one whose chief
purpose is to look up previously computed delegation chains, and another that identi-
fies the manner in which previously computed delegation chains may be extended by
the creation of further credentials. All other inference rules are used directly as tactics.

3 Proposed Approach

The prover operates over a knowledge base that consists of tactics, locally known cre-
dentials, and facts that can be derived from these credentials. The proving strategy
we propose consists of three parts. First, we use the existing technique of forward
chaining to extend the local knowledge base with all facts that it can derive from existing
knowledge (Section 3.1). Second, a path-compression algorithm (which we introduce in
Section 3.2) computes delegation chains that can be derived from the local knowledge



Efficient Proving for Practical Distributed Access-Control Systems 25

base but that cannot be derived through forward chaining. Third, a backward-chaining
prover uses our systematically generated tactics to take advantage of the knowledge
generated by the first two steps to efficiently compute proofs of a particular goal (e.g.,
Dept says open(door1)) (Section 3.3).

The splitting of the proving process into distinct pieces is motivated by the obser-
vation that if Charlie is trying to access door1, he is interested in minimizing the time
between the moment he indicates his intention to access door1 and the time he is able
to enter. Any part of the proving process that takes place before Charlie attempts to
access door1 is effectively invisible to him. By completely precomputing certain types
of knowledge, the backward-chaining prover can avoid some costly branches of inves-
tigation, thus reducing the time the user spends waiting.

3.1 Forward Chaining

Forward chaining (FC) is a well-studied proof-search technique in which all known
ground facts (true formulas that do not contain free variables) are exhaustively com-
bined using inference rules until either a proof of the formula contained in the query is
found, or the algorithm reaches a fixed point from which no further inferences can be
made. We use a variant of the algorithm known as incremental forward chaining [22]
in which state is preserved across queries, allowing the incremental addition of a single
fact to the knowledge base. The property we desire from FC is completeness—that it
finds a proof of every formula for which a proof can be found from the credentials in
the knowledge base (KB ). More formally:

Theorem 1. After each credential f ∈ KB has been incrementally added via FC, for
any p1 . . . pn ∈ KB , if (p1 ∧ . . . ∧ pn) ⊃ q then q ∈ KB .

If forward chaining is invoked on a knowledge base for which there is no fixed point, the
algorithm is not guaranteed to terminate. Because of this, forward chaining is frequently
restricted to Datalog knowledge bases, for which it can be shown to be complete [22].
Our logic includes some functions that are not representable in Datalog, but we show
that these functions are crafted to not affect completeness. For a proof of Theorem 1
and all other theorems in this paper, please see our technical report [5].

3.2 Path Compression

A path is a delegation chain between two principals A and B such that a proof of
B says F implies that a proof of A says F can be found. Some paths are represented
directly in the logic (e.g., B speaksfor A). Other paths, such as the path between A
and C that results from the credentials KA signed (B speaksfor A) and KB signed
(C speaksfor B), cannot be expressed directly—they are metalogical constructs, and
cannot be computed by FC. More formally, we define a path as follows:

Definition 1. A path (A says F, B says F ) is a set of credentials c1, . . . , cn and a
proof P of (c1, . . . , cn, A says F ) ⊃ B says F .

For example, the credential KAlice signed Bob speaksfor Alice will produce the path
(Bob says F, Alice says F ), where F is an unbound variable. Now, for any concrete
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0 global set paths /* All known delegation chains. */
1 global set incompletePaths /* All known incomplete chains. */

2 PC(credential f )
3 if (credToPath(f) = ⊥), return /* If not a delegation, do nothing. */
4 (x, y) ← depends-on(f) /* If input is a third-person delegation,
5 if (((x, y) �= ⊥) ∧ ¬((x, y) ∈ paths)) add it to incompletePaths . */
6 incompletePaths ← incompletePaths ∪ (f, (x, y))
7 return

8 (p, q) ← credToPath(f) /* Convert input credential into
9 add-path((p, q)) a path. */

10 foreach (f ′, (x′, y′)) ∈ incompletePaths /* Check if new paths make any
11 foreach (p′′, q′′) ∈ paths previously encountered third-
12 if((θ ← unify((x′, y′), (p′′, q′′))) �= ⊥) person credentials useful. */
13 (p′, q′) ← credToPath(f ′)
14 add-path((subst(θ, p′), subst(θ, q′)))

15 add-path(chain (p, q))
16 local set newPaths = {}
17 paths ← union((p, q), paths) /* Add the new path to set
18 newPaths ← union((p, q),newPaths) of paths. */

19 foreach (p′, q′) ∈ paths
20 if((θ ← unify(q, p′)) �= ⊥) /* Try to prepend new path to
21 c ← (subst(θ, p), subst(θ, q′)) all previous paths. */
22 paths ← union(c, paths)
23 newPaths ← union(c, paths)

24 foreach (p′, q′) ∈ paths
25 foreach (p′′, q′′) ∈ newPaths /* Try to append all new paths
26 if((θ ← unify(q′, p′′)) �= ⊥) to all previous paths. */
27 c ← (subst(θ, p′), subst(θ, q′′))
28 paths ← union(c, paths)

Fig. 2. PC, an incremental path-compression algorithm

formula g, if Bob says g is true, we can conclude Alice says g. If Bob issues the cre-
dential KBob signed delegate(Bob, Charlie, resource), then we can construct the path
(Charlie says open(resource), Bob says open(resource)). Since the conclusion of
the second path unifies with the premise of the first, we can combine them to construct
the path (Charlie says open(resource), Alice says open(resource)). Unlike the two
credentials above, some delegation credentials represent a meaningful path only if an-
other path already exists. For example, Alice could delegate authority to Bob on behalf
of Charlie (e.g., KAlice signed delegate(Charlie, Bob, resource)). This credential by
itself is meaningless because Alice lacks the authority to speak on Charlie’s behalf. We
say that this credential depends on the existence of a path from Alice to Charlie, because
this path would give Alice the authority to speak on Charlie’s behalf. Consequently, we
call such credentials dependent, and others independent.

Algorithm. Our path compression algorithm, shown in Figure 2, is divided into two
subroutines: PC and add-path. The objective of PC is to determine if a given credential
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represents a meaningful path, and, if so, add it to the set of known paths by invoking
add-path. add-path is responsible for constructing all other possible paths using this
new path, and for adding all new paths to the knowledge base. The subroutine subst
performs a free-variable substitution and unify returns the most general substitution (if
one exists) that, when applied to both parameters, produces equivalent formulas.

PC ignores any credential that does not contain a delegation statement (Line 3 of
Figure 2). If a new credential does not depend on another path, or depends on a path
that exists, it will be passed to add-path (Line 9). If the credential depends on a path
that does not exist, the credential is instead stored in incompletePaths for later use
(Lines 5–7). Whenever a new path is added, PC must check if any of the credentials in
incompletePaths are now meaningful (Lines 10–12), and, if so, covert them to paths
and add the result to the knowledge base (Lines 13–14).

After adding the new path to the global set of paths (Line 17), add-path finds the
already-computed paths that can be appended to the new path, appends them, and adds
the resulting paths to the global set (Lines 19–23). Next, add-path finds the existing
paths that can be prepended to the paths created in the first step, prepends them, and
saves the resulting paths (Lines 24–28). To prevent cyclic paths from being saved,
the union subroutine adds a path only if the path does not represent a cycle. That is,
union((p, q), S) returns S if unify(p, q) �= ⊥, and S ∪ {(p, q)} otherwise.

Completeness of PC. The property we desire of PC is that it constructs all possible
paths that are derivable from the credentials it has been given as input. We state this
formally below.

Theorem 2. If PC has completed on KB , then for any A, B such that A �= B, if for
some F (B says F ⊃ A says F ) then (B says F, A says F ) ∈ KB .

For the proof of Theorem 2, please see our technical report [5]. Informally: We first
show that add-path will combine all paths that can be combined—that is, for any paths
(p, q) and (p′, q′) if q unifies with p′ then the path (p, q′) will be added. We then show
that for all credentials that represent a path, add-path is immediately invoked for inde-
pendent credentials (Line 9), and all credentials that depend on the existence of another
path are passed to add-path whenever that path becomes known (Lines 10–14).

3.3 Backward Chaining

Backward-chaining provers are composed of tactics that describe how formulas might
be proved and a backward-chaining engine that uses tactics to prove a particular for-
mula. The backward-chaining part of our technique must perform two novel tasks.
First, the backward-chaining engine needs to expose choice points to the user. At each
such point the user can select, e.g., which of several local credentials to create, or
which of several principals to ask for help. Second, we want to craft the tactics to
take advantage of facts precomputed through forward chaining and path compression
to achieve greater efficiency and better coverage of the proof space than previous ap-
proaches.

Delayed backward chaining. While trying to generate a proof, the prover may inves-
tigate subgoals for which user interaction is necessary, e.g., to create a new credential or
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to determine the appropriate remote party to ask for help. We call these subgoals choice
subgoals, since they will not be investigated unless the user explicitly chooses to do so.
The distributed theorem-proving approach of our previous work [4] attempted to pursue
each choice subgoal as it was discovered, thus restricting user interaction to a series of
yes or no questions. Our insight here is to pursue a choice subgoal only after all other
choice subgoals have been identified, thus delaying the proving of all choice subgoals
until input can be solicited from the user. This affords the user the opportunity to guide
the prover by selecting the choice subgoal that is most appropriate to pursue first.

Converting the algorithm from previous work to the delayed strategy is straightfor-
ward. Briefly, the delayed algorithm operates by creating a placeholder proof whenever
it encounters a choice subgoal. The algorithm then backtracks and attempts to find al-
ternate solutions, returning if it discovers a proof that does not involve any choice sub-
goals. If no such proof is found, the algorithm will present the list of placeholder proofs
to the user, who can decide which one is most appropriate to pursue first. As an opti-
mization, heuristics may be employed to sort or prune this list. As another optimization,
the prover could determine whether a choice subgoal is worth pursing by attempting to
complete the remainder of the proof before interacting with the user. This algorithm will
identify a choice subgoal for every remote request made by previous approaches, and
will additionally identify a choice subgoal for every locally creatable credential such
that the creation of the credential would allow the completion of the proof from local
knowledge. For a more detailed description, please see our technical report [5].

Tactics. In constructing a set of tactics to be used by our backward-chaining engine,
we have two goals: the tactics should make use of facts precomputed by FC and PC,
and they should be generated systematically from the inference rules of the logic.

If a formula F can be proved from local credentials, and all locally known credentials
have been incrementally added via FC, then, by Theorem 1, a proof of F already exists
in the knowledge base. In this case, the backward-chaining component of our prover
need only look in the knowledge base to find the proof. Tactics are thus used only when
F is not provable from local knowledge, and in that case their role is to identify choice
subgoals to present to the user.

Since the inference rules that describe delegation are the ones that indirectly give
rise to the paths precomputed by PC, we need to treat those specially when generating
tactics; all other inference rules are imported as tactics directly. We discuss here only
delegation rules with two premises; for further discussion see Section 5.

Inference rules about delegation typically have two premises: one that describes a
delegation, and another that allows the delegated permission to be exercised. Since tac-
tics are applied only when the goal is not provable from local knowledge, one of the
premises must contain a choice subgoal. For each delegation rule, we construct two tac-
tics: (1) a left tactic for the case when the choice subgoal is in the delegation premise,
and (2) a right tactic for the case when the choice subgoal is in the other premise.2 We
call tactics generated in this manner LR tactics.

2 For completeness, if there are choice subgoals in both premises, one will be resolved and
then the prover will be rerun (see [5] for details). In practice, we have yet to encounter a
circumstance where a single round of proving was not sufficient.
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A says (B speaksfor A) B says F

A says F (SPEAKSFOR-E)

left tactic prove(A says F ) :- pathLookup(B says F , A says F ),
prove(B says F ).

right tactic prove(A says F ) :- proveWithChoiceSubgoal(A says (B speaksfor A)),
factLookup(B says F ).

Fig. 3. Example construction of LR tactics from an inference rule

The insight behind the left tactic is that instead of looking for complete proofs of the
delegation premise in the set of facts in the knowledge base, it looks for proofs among
the paths precomputed by PC, thus following an arbitrarily long delegation chain in
one step. The premise exercising the delegation is then proved normally, by recursively
applying tactics to find any remaining choice subgoals. Conversely, the right tactic as-
sumes that the delegation premise can be proved only with the use of a choice subgoal,
and restricts the search to only those proofs. The right tactic may then look in the knowl-
edge base for a proof of the right premise in an effort to determine if the choice subgoal
is useful to pursue.

Figure 3 shows an inference rule and the two tactics we construct from that rule.
All tactics are constructed as prove predicates, and so a recursive call to prove may
apply tactics other than the two shown. The factLookup and pathLookup predicates
inspect the knowledge base for facts produced by FC and paths produced by PC. The
proveWithChoiceSubgoal acts like a standard prove predicate, but restricts the search to
discard any proofs that do not involve a choice subgoal. We employ rudimentary cycle
detection to prevent repeated application of the same right rule.

Optimizations to LR. The dominant computational cost of running a query using
LR tactics is repeated applications of right tactics. Since a right tactic handles the
case in which the choice subgoal represents a delegation, identifying the choice sub-
goal involves determining who is allowed to create delegations, and then determining
on whose behalf that person wishes to delegate. This involves exhaustively searching
through all paths twice. However, practical experience with our deployed system indi-
cates that people rarely delegate on behalf of anyone other than themselves. This allows
us to remove the second path application and trade completeness for speed in finding
the most common proofs. If completeness is desired, the optimized set of tactics could
be run first, and the complete version could be run afterwards. We refer to the opti-
mized tactics as LR′. This type of optimization is made dramatically easier because of
the systematic approach used to construct the LR tactics.

Alternative approaches to caching. Naive constructions of tactics perform a large
amount of redundant computation both within a query and across queries. An appar-
ent solution to this problem is to cache intermediate results as they are discovered to
avoid future recomputation. As it turns out, this type of caching does not improve per-
formance, and even worsens it in some situations. If attempting to prove a formula with
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an unbound variable, an exhaustive search requires that all bindings for that variable be
investigated. Cached proofs will be used first, but as the cache is not necessarily all-
inclusive, tactics must be applied as well. These tactics in turn will re-derive the proofs
that are in cache. Another approach is to make caching part of the proving engine
(e.g., Prolog) itself. Tabling algorithms [10] provide this and other useful properties,
and have well-established implementations (e.g., http://xsb.sourceforge.net/).
However, this approach precludes adding to cache proofs that are discovered via differ-
ent proving techniques (e.g., FC, PC, or a remote prover using a different set of tactics).

Completeness of LR. Despite greater efficiency, LR tactics have strictly greater prov-
ing ability than the depth-limited inference rules. We state this formally below.

Theorem 3. Given one prover whose tactics are depth-limited inference rules (IR), and
a second prover that uses LR tactics along with FC and PC, if the prover using IR tactics
finds a proof of goal F , the prover using LR tactics will also find a proof of F .

For the proof of Theorem 3, please see our technical report [5]. Informally: We first
show show that provers using LR and IR are locally equivalent—that is, if IR finds a
complete proof from local knowledge then LR will do so as well and if IR identifies
a choice subgoal then LR will identify the same choice subgoal. We show this by first
noting that if IR finds a complete proof from local knowledge, then a prover using LR
will have precomputed that same proof using FC. We show that LR and IR find the same
choice subgoals by induction over the size of the proof explored by IR and noting that
left tactics handle the case where the proof of the right premise of an inference rule con-
tains a choice subgoal and that right tactics handle the case where the the left premise
contains a choice subgoal. Having shown local equivalence, we can apply induction
over the number of remote requests made to conclude that a prover using LR will find a
proof of F if a prover using IR finds a proof of F .

4 Empirical Evaluation

Since the usability of the distributed access-control system as a whole depends on the
timeliness with which it can generate a proof of access, the most important evaluation
metric is the amount of time it takes either to construct a complete proof, or, if no com-
plete proof can be found, to generate a list of choices to give to the user. We also con-
sider the number of subgoals investigated by the prover and the size of the knowledge
base produced by FC and PC. The number of subgoals investigated represents a coarse
measure of efficiency that is independent of any particular Prolog implementation.

We compare the performance of five proving strategies: three that represent previous
work and two (the combination of FC and PC with either LR or LR′) that represent
the strategies introduced here. The strategies that represent previous work are backward
chaining with depth-limited inference rules (IR), inference rules with basic cycle de-
tection (IR-NC), and hand-crafted tactics (HC). HC evolved from IR during our early
deployment as an effort to improve the efficiency of the proof-generation process. As
such, HC represents our best effort to optimize a prover that uses only backward chain-
ing to the policies used in our deployment, but at the cost of theoretical completeness.

http://xsb.sourceforge.net/
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We analyze two scenarios: the first represents the running example presented pre-
viously (which is drawn from our deployment), and the second represents the policy
described by our previous work [4], which is indicative of a larger deployment. As
explained in Section 4.2, these large policies are the most challenging for our strategy.

Our system is built using Java Mobile Edition (J2ME), and the prover is written in Pro-
log. We perform simulations on two devices: a Nokia N70 smartphone,which is the device
used in our deployment, and a dual 2.8 Ghz Xeon workstation with 1 GB of memory. Our
Prolog interpreter for the N70 is JIProlog (http://www.ugosweb.com/jiprolog/)
due to its compatibility with J2ME. Simulations run on the workstation use SWI-Prolog
(http://www.swi-prolog.org/).

4.1 Running Example

Scenario. As per our running example, Alice controls access to a machine room. We
simulate a scenario in which Charlie wishes to enter the machine room for the first time.
To do so, his prover will be asked to generate a proof of Dept says open(door1). His
prover will immediately realize that Dept should be asked for help, but will continue to
reason about this formula using local knowledge in the hope of finding a proof without
making a request. Lacking sufficient authority, this local reasoning will fail, and Charlie
will be presented with the option to ask Dept for help. Preferring not to bother the
department head, Charlie will decide to ask his manager, Alice, directly.

0 KDept signed (delegate(Dept, Alice, door1))
1 KDept signed (delegate(Dept, Alice, door2))
2 KDept signed (delegate(Dept, Alice, door3))
3 KAlice signed delegate(Alice, Alice.machine-room, door1)
4 KAlice signed delegate(Alice, Alice.machine-room, door2)
5 KAlice signed delegate(Alice, Alice.machine-room, door3)
6 KAlice signed (Bob speaksfor Alice.machine-room)
7 KAlice signed (David speaksfor Alice.machine-room)
8 KAlice signed (Elizabeth speaksfor Alice.machine-room)
9 KDept signed delegate(Dept, Alice, office)
10 KDept signed (delegate(Dept, Dept.residents, lab-door))
11 KDept signed (Alice speaksfor Dept.residents)
12 KCharlie signed open(door1)

Fig. 4. Credentials on Alice’s phone

13 KDept signed (delegate(Dept, Dept.residents, lab-door))
14 KDept signed (Charlie speaksfor Dept.residents)
15 KCharlie signed open(door1)

Fig. 5. Credentials on Charlie’s phone

Creating a complete proof
in this scenario requires three
steps: (1) Charlie’s prover at-
tempts to construct a proof, re-
alizes that help is necessary,
and asks Alice, (2) Alice’s
phone constructs a proof con-
taining a delegation to Char-
lie, and (3) Charlie assembles
Alice’s response into a final
proof. As Alice’s phone holds
the most complicated policy,
step 2 dominates the total time
required to find a proof.

Policy. The policy for this sce-
nario is expressed in the cre-
dentials known to Alice and
Charlie, shown in Figures 4 and
5. The first six credentials of Figure 4 represent the delegation of access to the
machine-room doors from the department to Alice, and her redelegation of these re-
sources to the group Alice.machine-room. Credentials 6–8 indicate that the group
Alice.machine-room already includes Bob, David, and Elizabeth. Notably, Alice has
not yet created a credential that would give Charlie access to the machine room. We
will analyze the policy as is, and with the addition of a credential that adds Charlie
to the machine-room group. Credentials 9–11 deal with other resources that Alice can

http://www.ugosweb.com/jiprolog/
http://www.swi-prolog.org/


32 L. Bauer, S. Garriss, and M.K. Reiter

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

LR’LRHCIR-NCIR
 0

 50

 100

 150

 200

 250

A
ve

ra
ge

 P
ro

of
 G

en
er

at
io

n 
T

im
e 

on
 P

ho
ne

 (
m

s)

A
ve

ra
ge

 P
ro

of
 G

en
er

at
io

n 
T

im
e 

on
 w

or
ks

ta
tio

n 
(m

s)

Credential missing (workstation)
Credential missing (on phone)

Credential exists (on phone)

Fig. 6. Alice’s prover generates complete proof
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 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

LR’LRHCIR-NCIR

A
ve

ra
ge

 P
ro

of
 G

en
er

at
io

n 
T

im
e 

on
 P

ho
ne

 (
m

s) FC and PC
Tactics

Fig. 7. Aggregate proving time: Charlie’s be-
fore help request + Alice’s + Charlie’s after
help request

access. The final credential is given to Alice when Charlie asks her for help: it indicates
Charlie’s desire to open door1.

Charlie’s policy (Figure 5) is much simpler. He has access to a shared lab space
through his membership in the group Dept.residents, to which the department has del-
egated access. He has no credentials pertaining to the machine room.

The only credential in Figures 4 and 5 that was created at the time of access is the
one indicating Charlie’s desire to access door1. This means that FC and PC have already
been run on all other credentials.

Performance. Figure 6 describes the proving performance experienced by Alice when
she attempts to help Charlie. Alice wishes to delegate authority to Charlie by giving
him membership in the group Alice.machine-room. We show performance for the case
where this credential does not yet exist, and the case where it does. In both cases,
Alice’s phone is unable to complete a proof with either IR or IR-NC as both crash
due to lack of memory after a significant amount of computation. To demonstrate the
relative performance of IR and IR-NC, Figure 6 includes (on a separate y-axis) results
collected on a workstation. IR, IR-NC, and HC were run with a depth-limit of 7, chosen
high enough to find all solutions on this policy.

In the scenario where Alice has not yet delegated authority to Charlie, HC is over six
times slower than LR, and more than two orders of magnitude slower than LR′. If Alice
has already added Charlie to the group, the difference in performance widens. Since FC
finds all complete proofs, it finds the proof while processing the credentials supplied
by Charlie, so the subsequent search by LR and LR′ is a cache lookup. The result is
that a proof is found by LR and LR′ almost 60 times faster than HC. When run on the
workstation, IR and IR-NC are substantially slower than even HC.

Figure 7 shows the total time required to generate a proof of access in the scenario
where Alice must reactively create the delegation credential (IR and IR-NC are omitted
as they crash). This consists of Charlie’s initial attempt to generate a proof, Alice’s proof
generation that leads to the creation of a new credential, and Charlie assembling Alice’s
reply into a final proof. The graph also shows the division of computation between the
incremental algorithms FC and PC and the backward search using tactics. In overall
computation, HC is six times slower than LR and 60 times slower than LR′. This does
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not include the transit time between phones, or the time spent waiting for users to choose
between different options.
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Since computation time is dependent
on the Prolog implementation, as a more
general metric of efficiency we also mea-
sure the number of formulas investigated
by each strategy. Figure 8 shows the to-
tal number of formulas investigated (in-
cluding redundant computation) and the
number of unique formulas investigated
(note that each is measured on a sepa-
rate y-axis). LR and LR′ not only inves-
tigate fewer unique formulas than previ-
ous approaches, but drastically reduce the
amount of redundant computation.

4.2 Large Policies

Although our policy is a real one used in practice, in a widespread deployment it is
likely that policies will become more complicated, with users having credentials for
dozens of resources spanning multiple organizations. Our primary metric of evalua-
tion is proof-generation time. Since backward chaining only considers branches, and
hence credentials, that are relevant to the proof at hand, it will be least efficient when
all credentials must be considered, e.g., when they are generated by members of same
organization. As a secondary metric, we evaluate the size of the knowledge base, as
this directly affects the memory requirements of the application as well as the speed
of unification. Since credentials from the same organization are more likely to be com-
bined to produce a new fact or path, the largest knowledge base will occur when all
credentials pertain to the same organization. In this section, we evaluate a policy where
all credentials pertain to the same organization as it represents the worst case for both
metrics.

Policy. We evaluate our work with respect to the policy presented in our previous
work [4]. This policy represents a university-wide deployment. In addition to its larger
size, this policy has a more complex structure than the policy described in Section 4.1.
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For example, the university maintains a certification authority (CA) that binds names
to public keys, thus allowing authority to be delegated to a principal’s name. Further-
more, many delegations are made to roles (e.g., Dept.Manager1), to which principals
are assigned using additional credentials.

We simulate the performance of our approach on this policy from the standpoint of a
principal who has access to a resource via a chain of three delegations (assembled from
10 credentials), and wants to extend this authority to a subordinate.

Performance. Figure 9 shows the proof-generation time of the different strategies for
different numbers of subordinates on the workstation. For these policies, the depth limit
used by IR, IR-NC, and HC must be 10 or greater. However, IR crashed at any depth limit
higher than 7, and is therefore not included in these simulations. Simulations on this
policy used a depth-limit of 10. IR-NC displays the worst performance on the first three
policy sizes, and exhausts available memory and crashes for the two largest policies. HC
appears to outperform LR, but, as the legend indicates, was unable to find 11 out of the
14 possible solutions, including several likely completions, the most notable of which
is the desired completion Alice says (Charlie speaksfor Alice. machine-room). This
completion is included in the subset of common solutions that LR′ is looking for. This
subset constitutes 43% of the total solution space, and LR′ finds all solutions in this
subset several orders of magnitude faster than any other strategy.

The size of the knowledge base for each policy is shown in Figure 10. The knowledge
base consists of certificates and, under LR and LR′, facts and paths precomputed by FC
and PC. We observe that many credentials from the same policy cannot be combined
with each other, yielding a knowledge base whose size is approximately linear with
respect to the number of credentials.

In summary, the two previous, theoretically complete approaches (IR and IR-NC)
are unable to scale to the larger policies. HC, tailored to run on a particular policy, is
unable to find a significant number of solutions when used on larger policies. LR is
able to scale to larger policies while offering theoretical completeness guarantees. LR′,
which is restricted to finding a common subset of solutions, finds all of those solutions
dramatically faster than any other approach.

5 Generality of Our Approach

Although we described and evaluated our technique with respect to a particular access-
control logic and system, it can be applied to others, as well. There are three aspects of
generality to consider: supporting the logical constructs used by other logics, perform-
ing efficiently in the context of different systems, and enabling other applications.

Other logics. When applying our approach to other logics, we must consider individ-
ually the applicability of each component of our approach: FC, PC, and the generation
of LR tactics. We consider our technique with respect to only monotonic authorization
logics, i.e., logics where a formula remains provable when given more credentials. This
constraint is commonly used in practical systems (cf., [8]).

As discussed previously, to ensure that the forward-chaining component of our
prover terminates, the logic on which it is operating should be a subset of Datalog, or,
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if function symbols are allowed, their use must be constrained (as described in Sec-
tion 3.1). This is sufficient to express most access-control logics, e.g., the logics of
SD3 [17], Cassandra [7], and Binder [11], but is not sufficient to express higher-order
logic, and, as such, we cannot fully express the access-control logic presented by Appel
and Felten [2]. The general notion of delegation introduced in Definition 1 is conceptu-
ally very similar to that of the various logics that encode SPKI [1,19,16], the RT family
of logics [20], Binder [11], Placeless Documents [3], and the domain-name service logic
of SD3 [17], and so our technique should apply to these logics as well.

Our path-compression algorithm and our method for generating LR tactics assume
that any delegation rule has exactly two premises. Several of the logics mentioned above
(e.g., [17,11,3]) have rules involving three premises; however, initial investigation sug-
gests that any multi-premise rule may be rewritten as a collection of two-premise rules.

Path compression requires a decidable algorithm for computing the intersection of
two permissions. That is, when combining the paths (Alice says F, Bob says F ) and
(Bob says open(door1), Charlie says open(door1)), we need to determine the in-
tersection of F and open(door1) for the resulting path. For our logic, computing the
permission is trivial, since in the most complicated case we unify an uninstantiated for-
mula F with a fully instantiated formula, e.g., open(door1). In some cases, a different
algorithm may be appropriate: for SPKI, for example, the algorithm is a type of string
intersection [12].

Other systems. Our strategies should be of most benefit in systems where (a) cre-
dentials can be created dynamically, (b) credentials are distributed among many par-
ties, (c) long delegation chains exist, and (d) credentials are frequently reused. Delayed
backward chaining pursues fewer expensive subgoals, thus improving performance in
systems with properties (a) and (b). Long delegation chains (c) can be effectively com-
pressed using either FC (if the result of the compression can be expressed directly in
the logic) or PC (when the result cannot be expressed in the logic). FC and PC extend
the knowledge base with the results of their computation, thus allowing efficient reuse
of the results (d).

These four properties are not unique to our system, and so we expect our technique,
or the insights it embodies, will be useful elsewhere. For example, Greenpass [15] al-
lows users to dynamically create credentials. Properties (b) and (c) have been the focus
of considerable previous work, notably SPKI [1,19,16], the DNS logic of SD3 [17],
RT [20], and Cassandra [7]. Finally, we feel that (d) is common to the vast majority of
access-control systems, as a statement of delegation is typically intended to be reused.

Other applications. There are situations beyond our smartphone-oriented setting when
it is necessary to efficiently compute similar proofs and where the efficiency offered
by our approach is welcome or necessary. For example, user studies conducted at our
institution indicated that, independently of the technology used to implement an access-
control system, users strongly desired an auditing and credential-creation tool that would
allow them to better understand the indirect effects on policy of creating new creden-
tials by giving them real-time feedback as they experimented with hypothetical cre-
dentials. If Alice wants to create a new credential KAlice signed delegate(Alice,
Alice.machine-room, door4), running this hypothetical credential through the
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path-compression algorithm could inform Alice that an effect of the new credential is
that Bob now has access to door4 (i.e., that a path for door4 was created from Bob to
Alice). Accomplishing an equivalent objective using IR or IR-NC would involve assum-
ing that everyone is willing to access every resource, and attempting to prove access to
every resource in the system—a very inefficient process.

6 Conclusion

In this paper we presented a new approach to generating proofs that accesses comply
with access-control policy. Our strategy is targeted for environments in which creden-
tials must be collected from distributed components, perhaps only after users of those
components consent to their creation, and our design is informed by such a testbed we
have deployed and actively use at our institution. Our technique embodies three con-
tributions, namely: novel approaches for minimizing proof steps that involve remote
queries or user interaction; methods for inferring delegation chains off the critical path
of accesses that significantly optimize proving at the time of access; and a systematic ap-
proach to generating tactics that yield efficient backward chaining. We demonstrated an-
alytically that the proving ability of this technique is strictly superior to previous work,
and demonstrated empirically that it is efficient on policies drawn from our deployment
and will scale effectively to larger policies. Our method will generalize to other security
logics that exhibit the common properties detailed in Section 5.

References

[1] Abadi, M.: On SDSI’s linked local name spaces. Journal of Computer Security 6(1-2), 3–21
(1998)

[2] Appel, A.W., Felten, E.W.: Proof-carrying authentication. In: Proceedings of the 6th ACM
Conference on Computer and Communications Security, ACM Press, New York (1999)

[3] Balfanz, D., Dean, D., Spreitzer, M.: A security infrastructure for distributed Java applica-
tions. In: Proceedings of the 2000 IEEE Symposium on Security & Privacy, IEEE Computer
Society Press, Los Alamitos (2000)

[4] Bauer, L., Garriss, S., Reiter, M.K.: Distributed proving in acess-control systems. In: Pro-
ceedings of the 2005 IEEE Symposium on Security & Privacy, IEEE Computer Society
Press, Los Alamitos (2005)

[5] Bauer, L., Garriss, S., Reiter, M.K.: Efficient proving for practical distributed access-control
systems. Technical Report CMU-CyLab-06-015R, Carnegie Mellon University (2007)

[6] Bauer, L., Schneider, M.A., Felten, E.W.: A general and flexible access-control system for
the Web. In: Proceedings of the 11th USENIX Security Symposium (2002)

[7] Becker, M., Sewell, P.: Cassandra: Flexible trust management, applied to electronic health
records. In: Proceedings of the 17th IEEE Computer Security Foundations Workshop, IEEE
Computer Society Press, Los Alamitos (2004)

[8] Blaze, M., Feigenbaum, J., Strauss, M.: Compliance checking in the PolicyMaker trust-
management system. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, Springer, Heidel-
berg (1998)

[9] Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Transactions on
Computer Systems 8(1), 18–36 (1990)



Efficient Proving for Practical Distributed Access-Control Systems 37

[10] Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic programs. Jour-
nal of the ACM 43(1), 20–74 (1996)

[11] DeTreville, J.: Binder, a logic-based security language. In: Proceedings of the 2002 IEEE
Symposium on Security and Privacy, IEEE Computer Society Press, Los Alamitos (2002)

[12] Ellison, C.M., Frantz, B., Lampson, B., Rivest, R.L., Thomas, B.M., Ylonen, T.: SPKI
Certificate Theory, RFC2693 (1999)

[13] Felty, A.: Implementing tactics and tacticals in a higher-order logic programming language.
Journal of Automated Reasoning 11(1), 43–81 (1993)

[14] Garg, D., Pfenning, F.: Non-interference in constructive authorization logic. In: CSFW’06.
Proceedings of the 19th Computer Security Foundations Workshop (2006)

[15] Goffee, N.C., Kim, S.H., Smith, S., Taylor, P., Zhao, M., Marchesini, J.: Greenpass: De-
centralized, PKI-based authorization for wireless LANs. In: Proceedings of the 3rd Annual
PKI Research and Development Workshop (2004)

[16] Halpern, J., van der Meyden, R.: A logic for SDSI’s linked local name spaces. Journal of
Computer Security 9, 47–74 (2001)

[17] Jim, T.: SD3: A trust management system with certified evaluation. In: Proceedings of
the 2001 IEEE Symposium on Security & Privacy, IEEE Computer Society Press, Los
Alamitos (2001)

[18] Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distributed systems:
Theory and practice. ACM Transactions on Computer Systems 10(4), 265–310 (1992)

[19] Li, N., Mitchell, J.C.: Understanding SPKI/SDSI using first-order logic. International Jour-
nal of Information Security (2004)

[20] Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust management frame-
work. In: Proceedings of the 2002 IEEE Symposium on Security & Privacy, IEEE Computer
Society Press, Los Alamitos (2002)

[21] Minami, K., Kotz, D.: Secure context-sensitive authorization. Journal of Pervasive and Mo-
bile Computing 1(1) (2005)

[22] Russell, S., Norvig, P.: Artificial Intelligence, A Modern Approach, 2nd edn. Prentice Hall,
Englewood Cliffs (2003)


	Efficient Proving for Practical Distributed Access-Control Systems
	Introduction
	Goals and Contributions
	Requirements
	Insights

	Proposed Approach
	Forward Chaining
	Path Compression
	Backward Chaining

	Empirical Evaluation
	Running Example
	Large Policies

	Generality of Our Approach
	Conclusion


