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ABSTRACT

Elasticity is the ability of a cloud infrastructure to dynami-
cally change the amount of resources allocated to a running
service as load changes. We build an autonomous elasticity
controller that changes the number of virtual machines al-
located to a service based on both monitored load changes
and predictions of future load. The cloud infrastructure is
modeled as a G/G/N queue. This model is used to con-
struct a hybrid reactive-adaptive controller that quickly re-
acts to sudden load changes, prevents premature release of
resources, takes into account the heterogeneity of the work-
load, and avoids oscillations. Using simulations with Web
and cluster workload traces, we show that our proposed con-
troller lowers the number of delayed requests by a factor of
70 for the Web traces and 3 for the cluster traces when com-
pared to a reactive controller. Our controller also decreases
the average number of queued requests by a factor of 3 for
both traces, and reduces oscillations by a factor of 7 for
the Web traces and 3 for the cluster traces. This comes at
the expense of between 20% and 30% over-provisioning, as
compared to a few percent for the reactive controller.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.4 [Performance of systems]

General Terms

Algorithms, Performance, Reliability
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1. INTRODUCTION
Elasticity of the cloud infrastructure is the ability of the

infrastructure to allocate resources to a service based on the
running load as fast as possible. An elasticity controller aims
to allocate enough resources to a running service while at the
same time avoiding costly over-provisioning. The problem
for an elasticity controller is thus to decide when, and how
much, to scale up or down. Scaling can be done either hor-
izontally, by increasing or decreasing the number of Virtual
Machines (VMs) allocated, or vertically, by changing the
hardware configuration for CPU, memory, etc. of already
running VMs. The resources allocated to a service can vary
between a handful of VMs to tens of thousands of VMs de-
pending on the load requirements. Most Infrastructure as a
Service (IaaS) providers does not host a single service but
rather quite a few scalable services and applications. Given
the scale of the current and future cloud datacenters and
services, these are impossible to manage manually, making
autonomic management a key issue for clouds.

Recently, the scientific computing community started dis-
cussing the potential use of cloud computing infrastructures
to run scientific experiments such as medical NLP process-
ing [6] and workflows for astronomical data released by the
Kepler project [25]. Most of the applications are embarrass-
ingly parallel [11]. There are some limitations to the wide
adoption of the cloud paradigm for scientific computing as
identified by Truong et al. [23] such as the lack of cost eval-
uation tools, cluster machine images and, as addressed in
this paper, autonomic elasticity control.

There are many approaches to solve the elasticity problem
[5, 7, 10, 17, 18, 20, 24, 27, 28], each with its own strengths
and weaknesses. Desired properties of an elasticity controller
include the following:

• Fast: The time required by the controller to make a
decision is a key factor for successful control, for ex-
ample, limited look-ahead control is shown to have su-
perior accuracy but requires 30 minutes to control 60
VMs on 15 physical servers [14].

• Scalable: The controller should be scalable with re-
spect to the number of VMs allocated to a service
and with respect to the time of running the algorithm.
There are many techniques that can be used for esti-
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mation of the load and elasticity control which are not
scalable with either time or scale e.g., regression based
control is not scalable with respect to the algorithm
execution time [1].

• Adaptive: Scientific workloads and Internet traffic are
very dynamic in nature [2, 15]. Elasticity controllers
should have a proactive component that predicts the
future load to be able to provision resources a priori.
Most prediction techniques such as neural networks
build a model for the load in order to predict the fu-
ture. Another desired property of an adaptive con-
troller is the ability to change the model whenever the
load dynamics change.

• Robust and reliable: The changing load dynamics might
lead to a change in the controller behavior [9, 19]. A
controller should be robust against changing load dy-
namics. A robust controller should prevent oscillations
in resource allocation i.e., the controller should not re-
lease resources prematurely. A reactive controller (step
controller) is a controller that only allocates new VMs
to a service when the load increases and deallocates
the VMs once the load decreases beyond a certain level.
This type of controller thus reduces the number of VMs
provisioned and minimizes the provisioning costs, at
the expense of oscillations.

Our previous work [1] studies different ways to combine
reactive and proactive control approaches for horizontal elas-
ticity. The two simple hybrid controllers proposed combine
reactive scaling up with proactive scale-down. These con-
trollers act on the monitored and predicted service load,
but ignore multiple important aspects of infrastructure per-
formance and service workload. In this paper, our previous
work is extended by an enhanced system model and con-
troller design. The new controller takes into account the
VM startup time, workload heterogeneity, and the changing
request service rate of a VM. It thus controls the allocated
capacity instead of only the service load. The controller de-
sign is further improved by adding a buffer to the controller
to store any delayed requests for future processing. This
buffer model characterizes many scientific workloads where
jobs are usually queued for future processing. The proposed
controller can be used by both the cloud service provider
and the cloud user to reduce the cost of operations and the
cost of running a service or an experiment in the cloud. The
controller can be used also to control the elasticity of a pri-
vately run cloud or cluster.

The performance of the controller is tested using two sets
of traces, a Web workload from the FIFA world cup [3] and a
recently published workload from a Google cluster composed
of around 11 thousand machines [26]. The Web trace is
selected as it is a well known and rather bursty workload
and thus challenging for an elasticity controller. The cluster
traces, consisting mostly of MapReduce jobs, are chosen to
evaluate the behavior of our approach on traces more similar
to scientific workloads.

The rest of this paper is organized as follows. Section 2
describes the system model and the design of the proposed
controller. In Section 3, the simulation framework and the
experiments are described and the results are discussed. Sec-
tion 4 discusses some of the different approaches available
in the literature for building elasticity controllers. Section 5
contains the conclusions.

Figure 1: Queueing model and elasticity control for

a cloud service.

2. CONTROLLER DESIGN

2.1 System model
In this work, the cloud infrastructure is modeled as a

closed loop control system and queueing models are used
to design a feedback elasticity controller. The cloud infras-
tructure is modeled as a G/G/N stable queue in which the
number of servers N required is variable [16] as shown in
Figure 1. This is a generalization of the work by Khazaei
et al. [13] where a cloud is modeled as an M/G/m queue
with a constant number of servers, m. We assume that the
system serves generic requests that can be anything from a
Web query to Pubmed [12] to a job in a workflow to process
astronomical data [25].

The number of VMs allocated to a service at any time
unit, N , changes according to the controller output. When
the load increases, VMs are added and when it decreases
VMs are removed. We assume that it takes one time unit
for a VM to boot and get intialized. In practice, it also takes
time to shut-down a VM, but for most applications, no more
requests are sent to a VM after a shutdown command is
issued. It is thus assumed that the effect of VM shut down
on capacity is instantaneous.

In our model, requests not served are buffered and de-
layed as shown in Figure 1. We make no assumptions about
a finite buffer size, but the designed controller uses the num-
ber of buffer requests as one criteria for adding VMs. The
buffer length is also used as a performance metric in the
evaluation section. A buffered request is delayed and thus
the larger the number of buffered requests, the slower the
request response time. Assuming the queue is stable, the
average service rate over time is equal to the average arrival
rate over time. Whenever the system is at risk of instability
due to increase in the demand, the elasticity controller in-
creases N to enforce system stability. The elasticity control
problem can be stated as follows: the elasticity controller
should add or remove VMs to ensure system stability, i.e.,
over a long period of time, the number of serviced requests
(the service capacity) is equal to the total number of re-
ceived requests received with an error tolerance (number of
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Table 1: Overview of used notation.
Variable Description

N Number of VMs deployed
L(t) Total service load at time t
R(t) Total service capacity available at time t
C(t) Service capacity required at time t
A(t) Arriving (new) requests at time t
D(t) Increase/decrease in required capacity at time t
B(t) Size of buffer at time t
E(t) Amount of already processing requests at time t
K Number of queued requests before starting a new

VM
r Number of time units needed to start all buffered

requests
Td Estimation interval (time between two estima-

tions)

LTd
Average load over the last estimation interval

Lt Average load over all time

D̃ Predicted value for request change rates over next
Td time units

P Estimated ratio between D̃ and average load
MAvg The average of the median request service rates

per unit time over the the Td

buffered requests). This should be achieved irrespective of
the change in the request arrival rate and while maintaining
the number of VMs to a minimum.

2.2 Estimating future usage
The optimal total service capacity, C(t), required for time

t is:

C(t) = C(t− 1) +D(t), (1)

where C(t− 1) is the capacity required in the last time step
and D(t) is the increase or decrease in capacity needed in
order to meet SLAs while maintaining the number of VMs to
a minimum. The controller is activated each Td time units.
When evoked at time t, it estimates the change in workload
for the next Td time units, D(t+1), D(t+2), . . . , D(t+Td).
VM allocations are adjusted at times t+ 1, t+ 2, . . . , t+ Td

according to these predictions, followed by a new prediction
for t + Td . . . t + 2Td. We define A(t) as the arrival rate
of new requests to the service. A suitable initial service
configuration could be C(0) = A(0).

We define the total workload of the service, L(t), as the
sum of the arriving requests, the existing, already processing
requests, E(t), and any buffered requests to be served. No
assumptions are thus made about the time needed to serve a
request, which can vary from seconds to hours. We use B(t)
to denote the number of requests in the buffer at time t. If
enough VMs are allocated to initialize all buffered requests
in the next time unit, these machines may become idle and
be released shortly after, causing oscillations in resource al-
locations. We thus define r, a system parameter specifying
over how many time units the currently buffered load should
be started. Now, the total workload at time t can be written
as:

L(t) = A(t) + E(t) +
B(t)

r
. (2)

The capacity change required can be written as

D(t) = L(t)−R(t) (3)

where R(t) denotes the currently allocated capacity. Assum-
ing that A(t) remains constant for the next time unit, the
estimated change in the current service capacity required,
D̃ for the future Td time units can be estimated by

D̃ = PLTd
(4)

where P represents the estimated rate of adding or removing
VMs. We define LTd

to be the average periodical service load
over the past Td time units,

LTd
=

∑Td

i=0
L(t− i)

Td

. (5)

Similarly, we define Lt, as the average load over all time as
follows:

Lt =

∑t

i=0
L(i)

t
. (6)

Now, P represents the estimated ratio of the average change
in the load to the average load over the next Td time units
and LTd

is the estimated average capacity required to keep
the buffer size stable for the next Td time units. P is pos-
itive if there is an increase in total workload (new service
requests, buffered requests, and requests that need to be
processed longer); negative if this sum decreases (with the
buffer empty); and zero if the system is at a steady state
and the buffer is empty.

We define P to be the ratio between D(t) and the average
system load over time,

P =
D(t)

Lt

. (7)

This value represents the change in the load with respect to
the average capacity. By substituting Equations 7 in Equa-
tion 4,

D̃ =
LTd

Lt

D(t). (8)

This formulation is a proportional controller [21] where D(t)
is the error signal and LTd

/Lt, the normalized service capac-
ity, is the gain parameter of the controller. By substituting
Equation 5 in Equation 8, we obtain

D̃ =

∑Td

i=0
L(t− i)

Lt

D(t)

Td

. (9)

If Td is optimal, i.e., estimations occur when the rate of
change of the load changes, then D(t)/Td is the slope of the
changing load multiplied by the ratio between the instanta-
neous load and the overtime average load.

2.3 Determining suitable estimation intervals
The interval between two estimations, Td, is a crucial pa-

rameter affecting the controller performance. It is used to
calculate P and D̃ and Td also controls the reactivity of the
controller. If Td is set to one, the controller performs pre-
dictions every time unit. At the other extreme, if Td is set
to ∞, the controller performs no predictions at all. As the
workloads observed in datacenters are dynamic [2], setting
an adaptive value for Td that changes according to the load
dynamics is important.
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We define the maximum number of buffered requests, K,
as the tolerance level of a service i.e., the maximum number
of requests queued before making a new estimation or adding
a new VM, thus:

Td =

{

K/|D̃| if K>0 and |D̃| �= 0

1 if K=0 or D̃ = 0
(10)

The value of K can be used to model SLAs with availability
guarantees. A low value for K provides quicker reaction to
load changes, but will also result in oscillations as resources
will be provisioned and released based on the last few time
units only. Conversely, K is large, the system reacts slowly
to changing load dynamics. Similarly, r affects the rate with
which buffered requests should be started, and thus impose
similar tradeoffs between oscillations and quickly reacting to
load increases.

2.4 Hybrid elasticity control
The main goal of an elasticity controller is to allocate

enough resources to enforce the SLAs while decreasing total
resource usage. It is very hard to anticipate whether an ob-
served increase in load will continue to rise to a large peak
[2] as there are no perfect estimators or controllers. Using
pure estimation for scale-up decisions is dangerous as it can
lead to system instability and oscillations if the load dynam-
ics change suddenly while the controller model is based on
the previous load.

Data: r, K
Result: Perform resource (de)allocation to keep the

system stable

1 Proactive Aggregator ← 0;
2 Td ← 1;
3 for each time step t do

4 Update R(t),A(t), B(t), and E(t) from monitoring
data;

5 Calculate D(t) using Equation 3;
6 if Time from last estimation ≥ Td then

7 Calculate LTd
from Equation 5;

8 Calculate Lt from Equation 6;
9 Calculate P from Equation 7;

10 Calculate D̃ from Equation 8;
11 Update MAvg;
12 Calculate Td from Equation 10;

13 NReactive ← ⌈D(t)/MAvg⌉;

14 Proactive Aggregator+= D̃/MAvg;
15 NProactive ← ⌊Proactive Aggregator⌋;
16 Proactive Aggregator−= NProactive;
17 if NReactive > K then

18 if NProactive > 0 then

19 Deploy NProactive +NReactive servers
20 else

21 Deploy NReactive servers

22 else

23 (Un)deploy NProactive servers

Algorithm 1: Hybrid elasticity controller with both proac-
tive and reactive components.

Our design is a hybrid controller where a reactive com-
ponent is coupled with the proposed proactive component
for scale up and a proactive only component for scale down.

The details of the implementation are given in Algorithm
1. The controller starts by receiving monitoring data from
the monitoring subsystem in Line 4. If Td time units passed
since the last estimation, the system model is updated by
reestimating D̃ and Td as shown from Line 6 to Line 12. The
unit of D̃ is requests per time unit.

The actual calculation of the number of VMs to be added
or removed by the different controllers is done between lines
13 and 16. In some applications, D̃ is divided by MAvg in
Line 14 to find the number of servers required. The rate of
the proactive controller can be steered by multiplying D̃ by
a factor, e.g., to adding double the estimated VMs for some
critical applications. The reactive controller is coupled with
the proactive controller to reach a unified decision as shown
from Line 17 to Line 22. For scale up decisions, when the
decisions of both the reactive component and the proactive
component are to scale up, the decisions are added. For
example, if the reactive component decides that two more
VMs are required while the proactive component decides
that three VMs are needed, five VMs are added. The re-
active component is reacting for the current load while the
proactive component is estimating the future load based on
the past load. If the reactive component decides that a scale
up is needed while the proactive decides that a scale down
is needed then the decision of the reactive component alone
is performed because the reactive component’s decision is
based on the current load while the proactive component’s
decision may be based on a skewed model that needs to be
changed.

For the reactive and proactive components to calculate
the number of VMs required for a given load, the controller
needs to know the service capacity of a VM i.e., the number
of requests serviced per VM every time unit. This number
is variable as the performance of a VM is not constant.

In addition, there are different request types and each
request takes different time to service. As a solution, we
calculate MAvg, the average of the median request service
rates per VM per unit time over the past estimation period
Td. MAvg is used by the reactive and proactive components
to calculate the number of VMs required per unit time to
service all the requests while meeting the different SLAs.
The median is chosen as it is a simple and efficient statistical
measure which is robust to outliers and skewed distributions.
No assumptions are made about the service rate distribution
for a VM. MAvg is a configurable parameter which can be
changed based on deployment requirements.

3. EXPERIMENTAL EVALUATION
To validate the controller, a three-phase discrete-event

simulator [4] was built using python that models a service
deployed in the cloud. Two different workloads are used
for the evaluation, the complete traces from the FIFA 1998
world cup [3] and a set of Google cluster traces [26].

In all evaluations, the controller time step, i.e., the time
it takes to start a VM is selected to be 1 minute, which is
a reasonable assumption [22]. The effects of the controller’s
decision to increase the resources provisioned does thus not
appear until after one minute has elapsed and the new VMs
are running. The granularity of the monitoring data used
by the controller is also 1 minute.

The controller’s performance is compared to a completely
reactive controller similar to the one proposed by Chieu et
al. [8]. The design of the reactive controller is shown in
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Data: r, K
Result: Perform resource (de)allocation to keep the

system stable

1 for each time step t do

2 Update R(t),A(t), B(t), and E(t) from monitoring
data;

3 Calculate MAvg ;
4 Calculate D(t) using Equation 3;
5 NReactive ← ⌈D(t)/MAvg⌉;
6 if NReactive > 0 and D(t) > K then

7 Deploy NReactive servers
8 if NReactive < −2 then

9 Undeploy NReactive servers

Algorithm 2: Reactive elasticity controller.

Algorithm 2. The calculation of the median service rate
is done every minute as this is the time between two load
estimations. In order to reduce oscillations in the reactive
controller, scale down is not done until the capacity change
D(t) is less than the current provisioned capacity C(t) by
2MAvg , i.e., scale down is only done when there are more
than two extra VMs provisioned. In the experiments, we
refer to our controller in Algorithm 1 as CHybrid and the
reactive controller in Algorithm 2 as CReactive.

With a few exceptions, most of the work available on elas-
ticity control compares performance with static provision-
ing. However, we chose to compare our controller with a
reactive controller to highlight the tradeoffs between over-
provisioning, SLA violations, and oscillations.

3.1 Performance Metrics
Different metrics can be used to quantify the controller

performance. We define OP to be the number of over-
provisioned VMs by the controller per time unit aggregated
over the whole trace. OP is the average number of over-
provisioned VMs by the controller per minute. Similarly,
UP and UP are the aggregate and the average number of
under-provisioned VMs by the controller per minute. We
also define V , the average number of servers required to ser-
vice the buffered load per minute,

V = Σ
Buffered Load

Median Service rate of a VM
. (11)

V represents the way the buffers get loaded. It does not
represent the optimal number of servers required to service
the load but rather represents average required number of
VMs due to the queue build up. We use N to denote the
average number of VMs deployed over time.

3.2 Web workload performance evaluation
TheWeb workload contains 1.3 billion Web requests recorded

at servers for the 1998 FIFA world cup in the period between
April 30, 1998 and July 26, 1998. The aggregate number of
requests per second were calculated from these traces. In the
simulation, the requests are grouped by time of arrival. The
focus is not on individual requests but rather on the macro-
system performance. For the experiments, the average ser-
vice rate of a VM is drawn from a Poisson distribution with
an average equal to λ requests per second. It is assumed
that the time required to process one request is 1 second.
The tolerance level K is chosen to be 5, i.e., 5 requests may
be buffered before the controller reacts.

Assuming perfect load balancing, the performance of the
controller is the only factor affecting performance in the sim-
ulation. We set r to 60 seconds, i.e., queued requests are
emptied over one minute.

The controller is configured for the worst case scenario by
using the maximum load recorded during the past minute
as the input request arrival rate to the controller. This as-
sumption can be relaxed by monitoring the average or me-
dian load for the past minute instead. Using the median or
the average will result in provisioning less resources for most
workloads.

As the Web traces are quite old, we have multiplied the
number of requests by a factor F in order to stress test the
controller performance under different load dynamics. For
different experiments, λ is also changed. Table 2 shows the
performance of the two controllers when F takes the values
of 1, 10, 20, 30, and 40 while λ takes the values of 100, 200,
300, and 400. Due to the size of the trace, the aggregate
metrics UP and OP are quite large.

For the over-provisioning metrics, OP and OP , it is clear
that CHybrid has a higher over-provisioning rate compared
to CReactive. This is intuitive because CHybrid provisions re-
sources ahead in time to be used in the future and delays the
release of resources in order to decrease oscillations. When
λ changes such that the ratio between λ and F is constant
at 10, OP and OP are reduced for both controllers com-
pared to when only F increases and the rate of increase of
both values is lower. Notably, these values are quite small if
we compare them to static provisioning. If capacity would
be statically provisioned for the workload, 42 servers would
be needed when F = 1 and λ = 100, whereas using the
proactive controller or even the reactive controller, the av-
erage number of provisioned servers is around 3, reducing
resource use by around 92.5% compared to static provision-
ing but at the cost of an increase in the number of delayed
requests.

Looking at the aggregate and the average under-provisioning
metrics, UP and UP , CHybrid is superior to CReactive. Since
CHybrid scales up and down proactively, it prevents oscil-
lations. It proactively allocates VMs to and does not re-
lease resources prematurely, thus decreasing the amount of
buffered and delayed requests. In fact, CReactive shows a
very high rate of under-provisioning due to the fact that all
delayed requests are buffered. The average number of under-
provisioned servers of CReactive is 70 times that of CProactive

when F = 1 and λ = 100. Since CReactive is always lagging
the load and releases resources prematurely causing oscilla-
tions, the performance of the controller is quite bad. In real
life, the buffer is not infinite and thus requests are dropped.
In comparison, using the proposed controller, CHybrid, the
request drop rate is quite low. Again, we note that for a
ratio between λ and F of 10, under-provisioning (UP and
UP ) is reduced for both controllers compared to when only
F increases. Actually, for CHybrid, UP and UP , are almost
constant while for CReactive, they decrease significantly with
the increase of λ and F while having a constant internal ra-
tio. We attribute this to the higher service capacity of the
VMs allowing the system to cope with higher system dy-
namics. For future work, we plan to investigate the effect
of the VM capacity on the performance of an elasticity con-
troller with different system dynamics and if the property
we have just noted is general for any arrival process.

The V columns in Table 2 show the average number of
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(a) CProactive (b) CReactive

Figure 2: Number of buffered requests over time for the Web workload.

(a) CHybrid (b) CReactive

Figure 3: Load and the provisioned capacity over time for the Web workload.

(a) CHybrid (b) CReactive

Figure 4: Load and the provisioned capacity for 1.5 hours of the Web workload.
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Table 2: Web workload performance overview.

CHybrid results CReactive results

F λ OP OP UP UP V N OP OP UP UP V N
1 100 41905 0.548 3883 0.05 2.5 3 35600 0.47 267402 3.49 5.98 2.95
10 100 535436 6.99 8315 0.1 19.7 26.09 206697 2.7 8835898 115.45 135.97 23.28
20 100 1075447 14.05 98678 1.29 38.9 51.76 380059 4.966 19611571 256.26 297.29 46.14
30 100 1617452 21.14 148896 1.9 58.1 77.46 555503 7.25 30944637 404.35 466 69.15
40 100 2155408 28.16 197660 2.58 77.3 103.11 732157 9.567 42265699 552.28 634.57 92.14
20 200 654596 8.55 35380 0.46 19.3 27.57 225979 2.95 5187614 67.78 87.63 22.86
30 300 761956 9.96 30951.0 0.4 19.3 28.94 235436 3.07 3783052 49.4 69 22.71
40 400 857608 11.2 30512 0.4 19.3 30.16 241854 3.16 3180898 41.56 61.04 22.7

Table 3: Number of VMs added and removed for

the Web workload with F = 1 and λ = 100.

XR XP

CProactive 1141 1152
CReactive 15029 N/A

VMs required to empty the buffer in one minute or the av-
erage number of minutes required by a single VM to empty
the buffer. This is illustrated by figures 2(a) and 2(b) that
show the average buffered requests per VM at any second
for CHybrid and CReactive respectively when N = 100 and
K = 1. In Figure 2(a) there are three major peaks when
the buffered load per VM is above 1000 requests resulting
in a relatively small V and UP in the table. These three
peaks are a result of sudden large load increases. On the
other hand, Figure 2(b) shows more peaks with buffered
load more than 50000 requests per VM, resulting in a rela-
tively high V and UP . The average required buffer size for
CReactive per VM in order to service all requests is almost
3 times the buffer size required by CProactive. Thus, for a
limited buffer size, CReactive drops many more requests than
CHybrid.

Figures 3(a) and 3(b) show the load and the provisioned
capacity using both controllers for the full trace when λ =
100 and F = 1. These plots show the macro behavior of
the controllers. The total number of buffered requests is the
reason for having very high load peaks for CReactive. The
largest spike seen in Figure 3(a) was around the fifth of
May at 11:15. For ten minutes, the load suddenly increases
tenfold and then starts oscillating causing some instability
in CProactive. Notable, as the buffered load is emptied over
r time units, the capacity does not increase with the same
rate as the numbered of buffered requests increase.

To study the micro behavior of the controllers, figures
4(a) and 4(b) show the load and controller output for one
and half hour from 21:21:12 on 25 June, 1998 to 22:44:31
on the same day. These figures show that CProactive tracks
the envelope of the load by keeping the provisioned capacity
slightly higher than the load while CReactive oscillates the
provisioned capacity with the increase or decrease of the
load. Note that as the capacity of a single VM is variable,
the capacity in Figure 4(a), which is measured in number of
requests, appears to be oscillating. What actually happens
is that the number of provisioned VMs drops gradually from
13 to 6 with no oscillations.

Table 4: Properties of the cluster workload.

execution time queue time total time
Median 347.4 s 3.6 s 441.6 s
Average 3961.8 s 220.76 s 4182.5 s
90th percentile 3803 s 3325 s 4409 s

Table 3 shows XR, the total number of servers added and
removed by the reactive component of a controller, and XP ,
the total number of servers added and removed by the proac-
tive component, using CHybrid and CReactive for a simulation
run with F = 1 and λ = 100. The total number of server
added or removed by CProactive is 2293 servers almost one
seventh of the total number of server added or removed by
the reactive controller. These results illustrate how the re-
active controller increases resource oscillations.

3.3 Cluster workload performance evaluation
Recently, Google published a new sample dataset of re-

source usage information from a Google production cluster
[26]. The traces are from an cluster with 11000 servers. As
this cluster is used to run a mixture of MapReduce and other
computationally intensive jobs, the traces are representative
for scientific workloads.

In this experiment, there is no risk of causing oscillations
if r = 1 since most of the requests take more than 1 minute
to serve. The median job length in the workload is 347.5
seconds or almost 6 minutes. Table 4 summarizes the sta-
tistical properties of the tasks in the workload. Due to lack
of space we do not comment more on the properties of the
workload. K is set to 5 jobs also for this experiment. We
define that a job is delayed if it remains in the queue for
more than 1 minute. The median number of tasks that can
be processed on a single machine in the trace is 170, while
the minimum is 120. To be more conservative, we set the
number of tasks assigned to a server to 100.

Table 5 shows the performance of the proactive and reac-
tive controllers. The amount of under-provisioning using the
CReactive is almost three times that of CProactive. This comes
at the cost of over-provisioning on average 164 VMs com-
pared to around 1.4 VMs for the reactive controller. How-
ever, the amount of over-provisioning is still low, around
25%, as CProactive used 847 VMs on average, as compared
to 687 VMs for the reactive controller.

While OP and UP may be crucial for a workload like
the Web trace, they are less important for a workload of
jobs like the cluster trace where a job can wait in the queue
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(a) CProactive (b) CReactive

Figure 5: Number of buffered requests over time for the cluster workload.

(a) CProactive (b) CReactive

Figure 6: Load and the provisioned capacity over time for the cluster workload.

(a) CHybrid (b) CReactive

Figure 7: Load and the provisioned capacity for 3 hours of the cluster workload.
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Table 5: Cluster workload performance overview.

CProactive CReactive

OP 164 1.369

UP 1.76 5.384

N 847 686.9
V 3.48 10.22
XR 75415.0 505289
XP 78564.0 N/A

for minutes. More importantly for this workload type is V ,
the average number of buffered tasks. CProactive keeps the
average number of buffered tasks below K. On the contrary,
the reactive controller’s average buffer length is double the
allowed buffer size K and three times that of the proactive
controller. This is illustrated in figures 5(a) and 5(b) that
show the number of buffered requests over time.

We also note that in total, the number of VMs added and
removed by the reactive controller is 505289 compared to
153979 by the proactive controller. This means that the
reactive controller results in more oscillations also for the
cluster workload.

Figures 6(a) and 6(b) show the load and provisioned ca-
pacity for CProactive and CReactive. The proactive controller
tracks the envelope of the workload, i.e., the capacity stays
ahead of the load most of the time, whereas the reactive con-
troller always lags the load by at least one time unit. Due
to the large number of points plotted, the load appears as
if it is completely covered with the capacity. In order to see
the micro behavior of the two controllers we plot the load
and capacity for both controllers for the first 3 hours of the
trace in figures 7(a) and 7(b). The figures show how oscilla-
tions are reduced using the proactive controller. For exam-
ple, for the sudden decreases in load at minutes 15 and 30,
CReactive quickly deallocated VMs followed by reallocations
as load increased again. In contrast, CProactive kept most of
the allocated VMs, causing less oscillations. To summarize
the experiments, the workload characteristics and the SLA
requirements influence the performance of both controllers
considerably. We also note that our elasticity controller is
highly scalable with respect to service workload and infras-
tructure size. In the performed evaluations, the controller
required on average a few milliseconds to make a decision.

4. RELATED WORK
Elasticity is an incarnation of the dynamic provisioning

problem which has been studied for over a decade [7] from
the perspectives of both server provisioning and cloud com-
puting. Different approaches have been proposed to solve
the problem in both its old and new incarnations. Some
previous research considered only vertical elasticity [17, 27].
while many others considered horizontal elasticity in differ-
ent contexts [20, 28].

Urgaonkar et al. [24] were among the first to discuss the
effect of virtualization on the provisioning problem or what
we call horizontal elasticity. They proposed an adaptive con-
troller composed of a predictive and a reactive components.
The predictive component acts in the time scale of hours or
days. It provisions resources based on the tail distribution
of the load. The reactive component acts in the time scale of
minutes to handle flash crowds by scaling up the resources
provisioned. The model of the predictive controller is tuned

according to the under-provisioning of resources seen in the
past a few hours. Scale down is not considered.

Gandhi et al. [10] propose a similar controller. The main
difference is in the predictive controller design. Their pre-
dictive controller identifies patterns in the workload using
a workload forecaster which discretizes it into consecutive,
disjoint time intervals with a single representative demand
value. Workload forecasting is done on the time scale of
days i.e., the model of the predictive controller is changed
at most once a day. In their approach there is no way to
tune the model of the predictive controller and they do not
consider scale down of resources.

Malkowski et al. [18] propose a controller for n-tiered
applications. They add to the predictive and reactive con-
troller a database of previous system states with good con-
figurations. The elasticity controller starts by looking up
if the current state of the system in the database. If the
state is found then the configuration corresponding to the
state is used. Otherwise, the reactive controller determines
the underutilized state or over-utilized state and provisions
resources according to the load. In addition, the predic-
tive controller uses Fourier transforms to forecast the future
workload for each tier from the past.

A much simpler approach is proposed by Calheiros et al.
[5]. They model a cloud provider using basic queueing the-
ory techniques. They assume heterogeneous requests that
take constant time to process.

5. CONCLUSION
In this paper, we consider the problem of autonomic elas-

ticity control for cloud infrastructures. The infrastructure
is modeled as a G/G/N queue with variable N . The model
is used to design an adaptive proportional controller that
proactively adapts based on the changes in the load dynam-
ics. The controller takes into account resource heterogeneity,
delayed requests, and variable VM service rates. A hybrid
controller combines the designed controller with a reactive
controller that reacts to sudden increases in the load. The
combined controller tries to follow the workload envelope
and avoids premature resource deallocation.

Using simulations we compare the proposed controller to
a completely reactive controller. Two traces with different
characteristics are used, Web traces from the FIFA world
cup that are quite bursty in nature with simple requests
and cluster traces from Google with jobs as long as 1 hour.
Simulation results show that our proposed controller outper-
forms the reactive controller by decreasing the SLA violation
rate by a factor between 70 for the Web workload and 3 for
the cluster one. The reactive controller required three times
larger buffers compared to our controller. The results also
show that the proposed controller reduces resource oscilla-
tions by a factor of seven for the Web workload traces and
a factor of three for the cluster traces. As a tradeoff, the
hybrid controller over-provisions between 20% and 30% re-
sources as compared to a few percent for the reactive one.
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