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Abstract

We provide efficient constructions for trace-and-revoke systems with public traceability in the black-box
confirmation model. Our constructions achieve adaptive security, are based on standard assumptions and
achieve significant efficiency gains compared to previous constructions.

Our constructions rely on a generic transformation from inner product functional encryption (IPFE) schemes
to trace-and-revoke systems. Our transformation requires the underlying IPFE scheme to only satisfy a very
weak notion of security – the attacker may only request a bounded number of random keys – in contrast to the
standard notion of security where she may request an unbounded number of arbitrarily chosen keys. We exploit
the much weaker security model to provide a new construction for bounded collusion and random key IPFE
from the learning with errors assumption (LWE), which enjoys improved efficiency compared to the scheme of
Agrawal et al. [CRYPTO’16].

Together with IPFE schemes from Agrawal et al., we obtain trace and revoke from LWE, Decision Diffie
Hellman and Decision Composite Residuosity.

Keywords: Inner-product functional encryption; Trace-and-revoke; Public traceability.

1 Introduction

A traitor tracing system Chor et al. (1994) is a multi-receiver encryption system, which aids content distributors
in identifying malicious receivers that construct pirate decryption boxes. In more detail, data is encrypted under
some public key pk and each legitimate user of the system is provided a secret key ski that allows her to decrypt
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the content. Since nothing prevents a user from making copies of her key and selling them for profit, traitor
tracing systems provide the following security guarantee to deter such behavior: if a coalition of users pool
together their keys and construct a pirate decoder box capable of decrypting the ciphertext, then there is an
efficient “trace” algorithm which, given access to any such decoder, outputs the identity of at least one guilty
user.

An orthogonal functionality is that of broadcast encryption Fiat and Naor (1993), where the content provider
encrypts data to some subset S of users. Functionality requires that any user in S be able decrypt the content
and security posits that no collusion of users outside S can do so. Trace-and-revoke systems combine these two
functionalities – when the system is deployed, the content is encrypted to all users on the channel. However,
if copyright infringement occurs, then tracing is used to detect the malicious users, or “traitors”, and future
content is encrypted using broadcast encryption to all users except the traitors.

Trace-and-revoke systems have been studied extensively Naor and Pinkas (2000); Naor et al. (2001); Dodis
and Fazio (2003); Kim et al. (2003); Phan and Trinh (2011) and are notoriously hard to construct (please see
Boneh and Waters (2006) for a detailed discussion). A desirable attribute for trace-and-revoke systems is public
traceability, meaning that the tracing algorithm does not require any additional secrets. Due to this property,
the overall system remains secure even if the tracing party is compromised. Moreover, the tracing capability can
be outsourced to an untrusted party in this setting.

To the best of our knowledge, trace-and-revoke systems with public traceability have only been achieved by
Boneh and Waters Boneh and Waters (2006), and quite recently by Nishimaki, Wichs and Zhandry (NWZ) Nishi-
maki et al. (2016). The Boneh-Waters construction is quite powerful in that it supports malicious collusions of
unbounded size but its ciphertexts are very large (their size grows proportionally to

√
N , where N is the total

number of users) and the scheme relies on pairing groups of composite order. To achieve a ciphertext size that
does not depend on the total number of users in the system, we consider the bounded collusion model, where
the number of possible traitors is a priori bounded by some t that is polynomial in the security parameter λ.
The bounded collusion model is quite standard in traitor tracing schemes and has received significant atten-
tion; however, until the work of Nishimaki et al. (NWZ) Nishimaki et al. (2016), all known schemes in this
model Boneh and Franklin (1999); Hofheinz and Striecks (2014); Ling et al. (2014) support either revocation or
public traceability but not both.

Recently, Nishimaki et al. (NWZ) Nishimaki et al. (2016) provided a generic construction for traitor tracing
systems from functional encryption schemes. Functional encryption Sahai and Waters (2005); Boneh et al.
(2011) is a generalization of public key encryption allowing fine grained access to encrypted data. We note
that the strongest constructions in Nishimaki et al. (2016) are based on the existence of indistinguishability
obfuscation Barak et al. (2012), for which we do not at present have any candidate construction based on
well established hardness assumptions. Since our focus is on efficient constructions based on well established
hardness assumptions, we do not consider these in this work. One may also instantiate the NWZ compiler
with a bounded collusion functional encryption scheme which can be based on standard assumptions such as the
existence of public key encryption Gorbunov et al. (2012) or subexponential time hardness of learning with errors
(LWE) Goldwasser et al. (2013); Agrawal and Rosen (2016). For trace and revoke, this results in a construction
that supports public black box traceability and adaptive security in addition to anonymity of honest users and
an exponential size universe of identities.

However, the generic nature of their construction results in loss of concrete efficiency. For instance, when
based on the bounded collusion FE of Gorbunov et al. (2012), the resulting scheme has a ciphertext size growing
at least as O(r+t)5Poly(λ)) where r is the maximum size of the list of revoked users and t the maximum coalition
size (please see Appendix 6 for an explanation of the bound). By relying on learning with errors, this blowup
can be improved to O((r + t)4Poly(λ)) but at the cost of relying on heavy machinery such as attribute based
encryption Gorbunov et al. (2013) and fully homomorphic encryption Goldwasser et al. (2013). Additionally,
this construction must also rely on complexity leveraging for adaptive security and learning with errors with
subexponential error rates. The bounded collusion FE of Agrawal and Rosen (2016) leads to better asymptotic
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bounds O(r + t)3Poly(λ)) but suffers from large polynomial factors which hurt concrete efficiency.

Our Approach. In this work, we revisit the connection between functional encryption and trace-and-revoke
systems and observe that the notion of FE required for bounded collusion trace-and-revoke schemes is significantly
weaker than that considered by Nishimaki et al. (2016). To begin, we show that the functionality required from
the underlying functional encryption scheme may be significantly weakened; rather than FE for polynomial sized
circuits,1 we show that inner product functional encryption (IPFE) Abdalla et al. (2015); Agrawal et al. (2016)
suffices. Efficient constructions for IPFE satisfying adaptive security are available Agrawal et al. (2016), leading
to trace-and-revoke systems which are significantly simpler and more efficient than those implied by Nishimaki
et al. (2016). We further improve our constructions by observing that for the application of trace and revoke, the
underlying IPFE schemes must be secure in a much weaker security model than full fledged IPFE: the adversary
may be restricted to only make a bounded number of key queries, and only key queries for randomly chosen
vectors. We exploit the much weaker security model to provide new constructions for bounded collusion and
random key IPFE from LWE and Decision Composite Residuosity (DCR), which enjoy substantial benefits over
using those of Agrawal et al. (2016) in terms of parameter sizes. The improvement is greatest for the LWE
construction, as the LWE modulus can be slightly super-polynomial rather than subexponential, itself allowing
to choose a smaller LWE dimension.

Our Results. We construct efficient trace-and-revoke systems with bounded collusion resistance, from standard
assumptions. Our schemes support public, black-box traceability and achieve the strongest notion of adaptive
security as defined by Boneh and Waters (2006). Our construction is generic and leverages recent constructions of
modular inner product functional encryption (IPFE) Abdalla et al. (2015); Agrawal et al. (2016). Moreover, by
targeting the weak security game required by our application, we obtain more efficient versions of IPFE schemes
that suffice for our purposes. While Nishimaki et al. (2016) achieves trace-and-revoke in the strong security
model under the existence of public-key encryption, our approach leads to significantly more efficient schemes
under the DCR, LWE and DDH assumptions. In particular, we achieve ciphertext and key sizes that are linear
in the sum of revoked list size r and maximum coalition size t. Our DDH-based construction achieves ciphertext
and key sizes O((r + t)λ), our DCR-based construction achieves ciphertext and key sizes Õ((r + t)λ3), while
our LWE-based construction has ciphertext size Õ(r + t + λ) and key size Õ((r + t + λ)λ). We note that our
security definition considers the strongest notion of “usefulness” Boneh and Waters (2006) of the pirate decoder,
which is not satisfied by most other constructions. Indeed some schemes Naor and Pinkas (2000); Dodis and
Fazio (2003) are actually insecure in this strong game (see Appendix 6 for a detailed discussion). Finally, we
give a DDH-based traitor tracing construction (without revocation) that supports encryption of k messages with
ciphertext and key sizes O((k+ t)λ). This improves ciphertext expansion over the trace-and-revoke construction,
as the plaintext messages are binary.

Our Techniques. Let FE = (FE .Setup,FE .KeyGen,FE .Enc,
FE .Dec) be a functional encryption scheme for the inner-product functionality over Z`p. Recall the inner product

functionality: the ciphertext encodes a vector v ∈ Z`p, the secret key encodes a vector x ∈ Z`p and decryption
recovers the inner product 〈x,v〉 mod p.

To construct a trace-and-revoke scheme, we proceed as follows. At the time of key generation, a user id is
first assigned a uniformly sampled vector xid ∈ Z`p and the entry pid = (id,xid) is stored in the public directory
pd for full public traceability. We may consider revocation and tracing as two distinct functionalities that need
to be combined so that neither interferes with the security properties of the other. We employ two different
techniques to implement these functionalities.

1More accurately, the circuits required by the NWZ compiler are relatively simple, but ones for which we do not know any better
FE constructions than the general case.
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To revoke a set R of users with |R| ≤ r, we first deterministically compute a vector vR ∈ Z`p such that for
all id ∈ R, we have 〈xid,vR〉 = 0 (modulo p). Note that this can be implemented only if r < `. At the same
time, for a user id /∈ R, the probability that 〈xid,vR〉 = 0 must be negligible, as otherwise it would de facto be
handled as a revoked user. To guarantee this, we require that p is λω(1). Since we choose xid uniformly random,
we have 〈xid,vR〉 6= 0 for id 6∈ R with overwhelming probability.

Using the underlying FE scheme, we would like to encrypt the message m ∈ Z?p such that the users in the
set R are not able to decrypt the message, but users not in R are able to decrypt. We achieve it as follows:

C = (FE .Enc(pk,m · vR),R) = (C1, C2).

Here the operation · denotes the scalar multiplication of each component of vR with m. To decrypt, the user id
with the vector xid and the FE secret key skxid

proceeds as follows:

(a) Compute vR from R and abort if 〈xid,vR〉 = 0.

(b) If 〈xid,vR〉 6= 0, compute
FE .Dec(skxid

, C1)

〈xid,vR〉
=
〈xid,m · vR〉
〈xid,vR〉

= m.

A non-revoked user will be able to correctly decrypt this ciphertext with overwhelming probability. On the other
hand, a revoked user cannot implement Step (b).

We now consider the (public) tracing procedure. We will show that given an oracle access to a pirate decoderD
and a set S = {id1, id2, . . . , } of suspected traitors with |S| ≤ t, it is possible to find an identity id in the set T
of traitors, as long as T ⊆ S. Here, we assume R∩ S = ∅ for simplicity.

Given a pirate decoder D, our tracing algorithm first finds a pair of messages m and m′ such that D can
distinguish the encryption of m and m′ with noticeable probability. As we will show in the main body, such a
pair can be found efficiently. Then, the tracing algorithm proceeds as follows. Let us consider a subset of suspect
traitors Si = {idi, idi+1, . . .} for i = 1, . . . , |S|+ 1. We then generate a probe ciphertext CSi associated to Si with
the following properties:

• The distribution of CS corresponds to the normal encryption of m.

• The distribution of C∅ corresponds to the normal encryption of m′.

• The probes CSi−1 and CSi are indistinguishable without a secret key for idi−1.

The tracing algorithm then estimates the distinguishing advantage of the decoder D for CSi−1 and CSi for all
i ∈ {2, . . . , |S| + 1}. It outputs the identity idi−1 of the user that is excluded from Si−1 to get Si such that the
distinguishing advantage between them is non-negligible.

We prove that the tracing algorithm always outputs some user in T . To see this, we first observe that by the
first and second properties above, the decoder D distinguishes CS1 = CS and CS|S|+1 = C∅ with non-negligible
advantage. Therefore, by the triangle inequality, there exists at least one index i such that D distinguishes CSi−1

and CSi with non-negligible advantage. By the third property above, the identity idi−1 indeed corresponds to a
traitor.

The above idea is implemented using inner product functional encryption. To create the probe ciphertext,
we first set vS ∈ Z`p as follows: If i = 1, we set vS = 0; If i = |S| + 1, we set vSi = (m′ −m) · vR where vR is
chosen as in the ordinary encryption algorithm; Otherwise, we set vSi so that

• 〈xid,vSi〉 = 0 for every id ∈ Si ∪R,

• 〈xid,vSi〉 = (m′ −m) · 〈xid,vR〉 for every id ∈ S1\Si.
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Note that this can be implemented only if r + t < `. We then set the probe ciphertext as follows:

CSi = (C1, C2) = (FE .Enc(pk,vSi +m · vR),R) .

We will show that by setting the probe ciphertext for tracing as above, we can satisfy the three requirements.
By construction, the first and the second requirements are satisfied. To see the third property, we consider the
decryption result of the ciphertext using a secret key skxid

for id. We have

FE .Dec(skxid
, C1)

〈xid,vR〉
=
〈xid,vSi +m · vR〉

〈xid,vR〉
=
〈xid,vSi〉
〈xid,vR〉

+m.

Therefore, the decryption result of the probe ciphertext CSi is m if id ∈ Si and m′ if id ∈ S\Si. Then we observe
that the decryption results of CSi and CSi−1 are the same, as long as we use a secret key for id ∈ S ∪ R with
id 6= idi−1. By the security property of inner product functional encryption, this implies that any coalition of
users ⊆ S cannot distinguish two ciphertexts without having skxidi−1

. Namely, the third requirement regarding
the probe ciphertext also holds.

Our LWE-based IPFE Here, we give the overview of our direct construction of LWE-based IPFE scheme
that enjoys improved efficiency compared to Agrawal et al. (2016). Let ` and p be the dimension and modulus
of the space on which inner-products are taken. Furthermore, let q = pk be the LWE modulus, where k is some
integer. In our scheme, the master secret key is Z ∈ Z`×n, chosen from a Gaussian distribution with standard
deviation σ. The public key is of the form pk = (A ∈ Zm×nq ,U = ZA ∈ Z`×nq ). To generate a secret key for

the vector x ∈ Z`p, we first pick a vector x̄ ∈ Z` from a short Gaussian distribution over Z` conditioned on
x̄ ≡ x mod p. Then, the secret key is set as skx = (x̄t, x̄t ·Z). One may wonder why do we set x̄ like this instead
of just setting x̄ = x. This is because we will use some nice properties of the Gaussian distribution in our security
proof, as will be explained later. The ciphertext for a vector y ∈ Z`p is of the form (c0 ≈ As, c1 ≈ Us + pk−1 · y)
where x ≈ y means that ‖x− y‖ is small.

Here, we skip the explanation of the decryption algorithm and directly go to the intuition for the security
proof. We first observe that since all entries of Z are small, c1 ≈ ZAs ≈ Zc0. Given this observation, we can
change the distribution of the ciphertext as c0 being a random vector u ←↩ Z`q and c1 ≈ Zu + pk−1 · y without
being detected by the adversary, assuming the LWE assumption.

The main difficulty in the proof is in showing that c1 ≈ Zu + pk−1y does not leak any information more
than necessary. Note that c1 does leak some information. Namely, given a secret key skx for x, we can still
decrypt the modified ciphertext to obtain 〈x,y〉 mod p. What we have to prove is that the ciphertext does not
leak any information of 〈x′,y〉 mod p for all x′ 6∈ SpanZp

({xi}i∈[L]), where L is the number of key queries and
{x1, . . . ,xL} is the set of vectors for which the adversary is given corresponding secret keys.

This will be shown by an information theoretic argument using the fact that certain amount of information
on Z is hidden from the adversary. In particular, we explain that an attempt to obtain any information of
〈x′,y〉 mod p by computing 〈x′, c1〉 ≈ x′tZu + pk−1 · 〈x′,y〉 mod q fails because x′tZ retains sufficiently high
min-entropy and thus x′tZu is uniformly random modulo q by the leftover hash lemma.

To see this, let Xtop ∈ ZL×` be the matrix obtained by vertically concatenating {x̄i ∈ Z`}i∈L. Via secret
keys, the adversary learns the value of XtopZ. Let us ignore the additional leakage on Z from the public key in
this overview. Note that in XtopZ, the matrix Xtop acts in parallel on the columns of Z. We can hence restrict
ourselves to the distribution of zi conditioned on bi := Xtopzi. It can be seen that zi is distributed on the shifted
kernel lattice Λ, defined as

Λ = {v ∈ Zm : Xtop · v = 0}.

If the standard deviation σ is sufficiently large (i.e., larger than the smoothing parameter of Λ), the vector zi
behaves like the continuous Gaussian even though it is sampled from the discrete Gaussian. In particular, it
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spreads all directions under the only constraint that Xtopzi = bi, and thus 〈x′, zi〉 has sufficiently high entropy,
allowing us to conclude. In Agrawal et al. (2016), the equivalent of Xtop in their proof is arbitrarily chosen by
the adversary and ` = L + 1. This results in exponentially large smoothing parameter for corresponding Λ.
Therefore, they have to take σ exponentially large, which is exactly the source of the inefficiency in their scheme.
In our case, the matrix Xtop is chosen uniformly at random from a small-width Gaussian distribution. (Recall
that in our weakened security definition, the adversary does not have control over xi.) Furthermore, we set `
large compared to L. We can then invoke the result of Agrawal et al. (2013), which says that the smoothing
parameter of Λ corresponding to such Xtop is small. This allows us to choose σ much smaller and significantly
improve the efficiency.

Organization of the paper. The remainder of the paper is organized as follows. In Section 2, we provide
definitions and preliminaries required for our work. In Section 3, we provide our generic construction of trace-
and-revoke systems from inner product functional encryption. In Section 4, we provide our new construction
of bounded collusion IPFE from LWE and in Section 5 we provide concrete instantiations of trace-and-revoke
systems from the DDH and DCR assumptions. We provide a generic transformation from an inner product
functional encryption scheme to a traitor tracing scheme that supports multi-message encryption in the full
version of this work that is on ePrint Agrawal et al. (2017).

2 Definitions and Preliminaries

Notation. The set {1, . . . , n} of natural numbers is denoted by [n]. A set is denoted by an uppercase letter. The
cardinality of a set X is denoted as |X|. If X is finite, we let U(X) denote the uniform distribution over X,
and we may write x ←↩ X to refer to x being sampled from U(X). Vectors will be denoted by bold letters. By
default, we treat a vector as a column vector. For two vectors x and y, we let 〈x,y〉 denote the canonical inner
product between them and (x‖y) denote the vertical concatenation of them. For a positive integer N , we let
ZN denote the ring of integers with addition and multiplication modulo N . The set of all functions that run in
polynomial time is denoted by Poly(·).

In our scheme descriptions, a user’s identifying information is denoted by id. A set of users is thus represented
by a set of their respective identifying information. A set of users is denoted by an uppercase calligraphic letter.
The set of revoked users is denoted by R. The set of traitors is denoted by T and the set of users that are
suspected to be traitors is denoted by S.

In this section, we recall the notions of trace-and-revoke systems and inner product functional encryption.

2.1 Trace-and-Revoke Systems

In a public key traitor tracing encryption scheme, there is a single public key for encryption and many users
with decryption capabilities, each having its own unique secret key. Additionally, the encryption scheme provides
a feature to identify at least one user from a coalition of malicious users (traitors) that built an unauthorized
decryption device D. Let T be the set of traitors and we assume that the size |T | of the traitor coalition is at
most t. The tracing algorithm aims at disclosing the identity of at least one user from the set T of traitors.

In Boneh and Franklin (1999), the minimal black-box access model was considered where the tracing procedure
has access to the pirate decryption device D only through an oracle OD. The oracle OD takes as input any
message-ciphertext pair (M,C) and returns 1 if D(C) = M and 0 otherwise. Hence, it only tells whether the
decoder decrypts C to M or not. If the decoder fails to decrypt correctly, the tracing algorithm knows nothing
about the decrypted value returned by the decoder. A practical example supporting this assumption is that a
pirated media player will only indicate if it is able to play some encrypted media and nothing more about the
results of his attempts of decryption.
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The decryption device D is assumed to decrypt correctly with significant probability all messages that have
been properly encrypted, as otherwise the decryption device is not very useful. Let R be any set of revoked
users, of cardinality ≤ r. Let the message m be sampled uniformly at random from the message space M and
let C(R) be the output of the encryption algorithm Enc using the public encryption key pk and R as the set of
revoked users. With C(R) as input, the device D outputs m with probability significantly more than 1/|M|:

Pr
m←↩ U(M)

C(R) ←↩ Enc(pk,R,m)

[
OD(C(R),m) = 1

]
≥ 1

|M|
+

1

λc
, (1)

for some constant c > 0.2 The probability of decryption for a decoder D can be estimated by repeatedly
querying the oracle OD with plaintext-ciphertext pairs, using Hoeffding’s inequality. Alternatively, we may
force the correct decryption probability to be non-negligibly close to 1, by using an all-or-nothing transform
(see Kiayias and Yung (2002)). We also assume that the decoder D is stateless/resettable, i.e., it cannot see and
adapt to it being tested, and replies independently to successive queries. Handling stateful pirate boxes has been
investigated in Kiayias and Yung (2001b,a).

We let the identity space ID and the message space M be implicit arguments to the setup algorithm below.
We let the secret key space K and the ciphertext space C (along with ID and M) be implicit public parameters
output by the setup algorithm.

Definition 1 A dynamic identity-based trace-and-revoke scheme (t, r)-T R in black-box confirmation model is a
tuple T R = (Setup, KeyGen,Enc,Dec,Trace) of five probabilistic polynomial-time algorithms with the following
specifications.

• Setup(1λ, 1t, 1r) takes as input the security parameter λ, the bound t on the size of traitor coalitions and
the bound r on the number of revoked users. It outputs (msk, pk, pd) containing the master secret key, the
encryption key and the (initially empty) public directory pd. We will implicitly assume that pd is available
to all algorithms.

• KeyGen(msk, id) takes as input the master secret msk and an identity id ∈ ID of a user, and outputs a secret
key skid and some public information pid for id. It also updates the public directory pd to include pid.3

• Enc(pk,R,m) takes as input the public key pk, a set R of cardinality ≤ r which contains the pid of each
revoked user in pd, and a plaintext message m ∈M. It outputs a ciphertext C ∈ C.

• Dec(skid, C) takes as input a secret key skid of a user with identity id and a ciphertext C ∈ C. It outputs a
plaintext m ∈M.

• Trace(pd,R,S,OD) is a black-box confirmation tracing algorithm that takes as input the public directory pd,
a set R of ≤ r revoked users, a set S of ≤ t suspect users, and has black-box access to the pirate decoder D
through the oracle OD. It outputs an identity id or ⊥.

The correctness requirement is that, with overwhelming probability over the randomness used by the algorithms,
we have:

∀m ∈M,∀id ∈ ID : Dec(skid,Enc(pk,R,m)) = m,

for any set R of ≤ r revoked users and for any id such that id /∈ R.

2In Nishimaki et al. (2016), a weaker notion of usefulness is considered (leading to a better security guarantee): the box is
considered useful if it distinguishes between encryptions of two adversarially chosen plaintexts. We note that our security proof
actually handles this weaker usefulness. In fact, we show in Lemma 8 that the notion of usefulness given here implies that it is
possible to efficiently find two plaintexts whose ciphertext distributions can be distinguished by the decryption box. The rest of the
security proof carries over in an identical way for both usefulness notions.

3We emphasize that pid does not need to contain id.
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Public Traceability. It is required that, when S contains the set T of traitors who produced the pirate decoder
D, then the id output by the tracing algorithm belongs to T . This requirement is formalized using the following
game, denoted by AD-TT, between an adversary A and a challenger:

• The challenger runs Setup(1λ, 1t, 1r) and gives pk to A.

• Adversary A may ask the challenger to add polynomially many users in the system. Adversary A may
choose the id’s of the users, but does not obtain the corresponding skid. Nevertheless, the public directory
pd is updated accordingly.

• Adversary A is allowed to make up to t arbitrary traitor key queries. It may observe the database pd to
choose its queries in an adaptive way. If it queries id ∈ ID to the challenger, then:

− If the key for id was previously generated, i.e., if pid is found in the database pd, then the challenger
responds with skid. The challenger records the identity query id in a list T .

− Otherwise (i.e., user id is a new user in the system), the challenger runs KeyGen(msk, id), responds
with skid and updates the directory pd with the public information pid for id. The challenger also
records the identity query id in the list T .

• Adversary A is allowed to (adaptively) choose a set R of up to r revoked users in pd. The challenger gives
A all the corresponding skid. These queries can be interleaved with extensions of the number of users and
user corruption queries, in an adaptive manner.

• Adversary A finally produces a pirate decoder D. It chooses a suspect set S of cardinality ≤ t that
contains T , and sends S to the challenger.

• The challenger then runs Trace(pd,R,S,OD). The adversary wins if both of the following hold:

− Equation (1) is satisfied for the set of revoked users R chosen by the adversary (i.e., decoder D is
useful),

− the execution of Trace outputs ⊥ or outputs an id that does not belong to T with probability ≥ 1/λc.

No probabilistic polynomial-time adversary A should be able to win game AD-TT with non-negligible probability.

Almost Public Traceability. This is the same as public traceability, except that Trace only outputs the
associated information about the traitors instead of their identities, namely pid instead of id. Consequently, the
second winning condition of the adversary should be adapted so that it only requires the execution of Trace to
output a pid that does not belong to pdT , which is the set of all pid′ for id′ ∈ T .

This restriction does not change much the functionality of the tracing because, from pid, the authority can
immediately map back to id and the authority can still delegate the tracing procedure to untrusted parties. On
the other side, this variant may be useful in practice as we do not leak the information of users in the public
directory.

We note that our proposed schemes satisfy the public traceability instead of the almost public traceability.
However, it is easy to modify them so that they satisfy the latter. Hereafter, we will not discuss about almost
public traceability.

Traitor Tracing Scheme. A traitor tracing scheme is simply a trace-and-revoke scheme without the capacity
of revoking users. It corresponds to the above definition where the revoked set is always set to be empty, in the
encryption as well as in the security game.
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Semantic Security. The IND-CPA security of a trace-and-revoke scheme T R is defined based on the following
game.

• The challenger runs Setup(1λ, 1t, 1r) and gives the produced public key pk to the adversaryA. The adversary
may ask the challenger to add polynomially many users in the system.

• The adversary (adaptively) chooses a set R of ≤ r revoked users in pd. The challenger gives A all the skid
such that pid ∈ R.

• The adversary then chooses two messages m0,m1 ∈M of equal length and gives them to the challenger.

• The challenger samples b←↩ {0, 1} and provides Cmb
←↩ Enc(pk,R,mb) to A.

• Finally, the adversary returns its guess b′ ∈ {0, 1} for the b chosen by the challenger. The adversary wins
this game if b = b′.

The advantage of the adversary is defined as AdvIND-CPA
T R,A = |Pr[b = b′]−1/2|. The scheme T R is said semantically

secure if there is no probabilistic polynomial-time adversary A that wins this game with non-negligible advantage.

2.2 Inner Product Functional Encryption

In this section, we define functional encryption for the functionality of inner products over Zp.

Definition 2 A functional encryption scheme FE for the inner product functionality over Zp is a tuple FE =
(FE .Setup, FE .KeyGen,FE .Enc,FE .Dec) of four probabilistic polynomial-time algorithms with the following spec-
ifications:

• FE .Setup(1λ, 1`) takes as input the security parameter λ and outputs the public key and the master secret
key pair (pk,msk);

• FE .KeyGen(msk,x) takes as input the master secret key msk and a vector x ∈ Z`p and outputs the secret
key skx;

• FE .Enc(pk,y) takes as input the public key pk and a message y ∈ Z`p and outputs the ciphertext cty;

• FE .Dec(skx, cty) takes as input the secret key of a user skx and the ciphertext cty, and outputs an element
from Zp ∪ {⊥}.

The correctness requirement is that, with overwhelming probability over the randomness used by the algorithms,
for (pk,msk)←↩ FE .Setup(1λ, 1`) and ∀x,y ∈ Z`p:

FE .Dec (FE .KeyGen(msk,x),FE .Enc(pk,y)) = 〈x,y〉 mod p.

Security of FE. We consider security of functional encryption in the standard indistinguishability setting Boneh
et al. (2011).

Definition 3 A functional encryption scheme FE = (FE .Setup, FE .KeyGen,FE .Enc,FE .Dec) provides semantic
security under chosen-plaintext attacks (or IND-CPA security) if no probabilistic polynomial-time adversary A
has non-negligible advantage in the following game:

• The challenger runs FE .Setup(1λ, 1`) and the master public key mpk is given to A.

• The adversary adaptively makes secret key queries to the challenger. At each query, adversary A chooses
a vector x ∈ Z`p and obtains the corresponding secret key skx ←↩ FE .KeyGen(msk,x).
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• Adversary A chooses distinct messages y0,y1 ∈ Z`p subject to the restriction that, for every vector x queried
in the previous step, it holds that 〈x,y0〉 = 〈x,y1〉 mod p and sends them to the challenger. In response,
the challenger samples b←↩ {0, 1} and sends ct? ←↩ FE .Enc(pk,yb) to A.

• Adversary A makes further secret key queries for arbitrary vectors x ∈ Z`p of its choice. As before, it is
required that 〈x,y0〉 = 〈x,y1〉 mod p for each query x made by A.

• Adversary A eventually outputs a bit b′ ∈ {0, 1} and wins if b′ = b.

The adversary’s advantage is defined as AdvA(λ) := |Pr[b′ = b]− 1/2|.

The Random-Key Bounded-Collusion Model. In bounded collusion functional encryption Gorbunov et al.
(2012), the adversary A is restricted to ask at most Q secret key queries for some fixed polynomial Q, which
is input to the setup algorithm. Additionally, our application permits an additional weakening of the security
model for inner product functional encryption: we are only required to show security against an adversary who
first sees arbitrarily many random vectors x←↩ Z`p, requests secret keys for an adaptively chose subset of them,
and does not make secret key queries after it gets the challenge ciphertext. The above definition of security
against such a restricted adversary will be called Q-IND-CPA.

2.3 Lattice background

A lattice Λ is a (non-zero) discrete subgroup of Rm. A basis of Λ is a linearly independent set of vectors whose
Z-span is Λ. We recall that the smoothing parameter of Λ is defined as

ηε(Λ) = min
(
σ > 0 :

∑
b̂∈Λ̂

exp(−π‖b̂‖2/σ2) ≤ 1 + ε
)
,

where Λ̂ = {b̂ ∈ SpanR(Λ) : b̂T · Λ ⊆ Z} refers to the dual of Λ. Note that if σ = Ω(
√
λ), we have that there

exists ε = 2−Ω(λ) such that σ ≥ ηε(Z).
For a lattice Λ ⊆ Rm, a vector c ∈ Rm, and an invertible Σ ∈ Rm×m, we define the Gaussian distribution

of parameter Λ, c, and Σ by DΛ,Σ,c(b) ∼ ρΣ,c(b) = exp(−π‖Σ−1(b− c)‖2) for all b ∈ Λ. When Σ = σIm, we
simply write DΛ,σ,c. Sometimes, for convenience, we use the notation DΛ+c,Σ as a shorthand for c +DΛ,Σ,−c.

For m ≥ n and a rank-n matrix X ∈ Rm×n, denote UX = {‖Xu‖ : u ∈ Rn, ‖u‖ = 1}. The least singular
value of X is then defined as sn(X) := inf(UX) and similarly the largest singular value of X is s1(X) := sup(UX).
For a matrix Y ∈ Rn′×m′ with n′ > m′, the least singular value and the largest singular value are defined as
s1(Y) := s1(Yt) and sm′(Y) := sm′(Y

t) respectively.
For the rest of this section, we assume that lattices are full-rank, i.e., the dimensions of the span and the

ambient space match.

Lemma 1 (Corollary 2.8 in Gentry et al. (2008)) Let Λ′ ⊆ Λ ⊆ Rm be two lattices with the same dimen-
sion. Let ε ∈ (0, 1/2). Then for any c ∈ Rm and any Σ such that sm(Σ) ≥ ηε(Λ′), the distribution DΛ,Σ,c mod Λ′

is within statistical distance 2ε from the uniform distribution over Λ/Λ′.

Lemma 2 (Lemma 1 in Katsumata and Yamada (2016)) Let r ≥ Ω(
√
λ) and q, `,m > 0 integers. Let

b ∈ Zmq be arbitrary and x chosen from DZm,r. Then for any V ∈ Z`×m and positive real r′ > s1(V), there

exists a probabilistic polynomial-time algorithm ReRand(V,b + x, r, r′) that outputs b′ = Vb + x′ ∈ Z`q where x′

is within statistical distance 2−Ω(λ) from DZ`,2rr′.

We use the following variant of the leftover hash lemma, adapted from Micciancio and Mol (2011) (see also
Lemma 11 in Agrawal et al. (2016)).
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Lemma 3 (Micciancio and Mol (2011)) Let m ≥ n ≥ 1 and q = pk for p prime and k ≥ 1. Take X a
distribution over Zm. Let D0 be a uniform distribution over Zn×mq ×Znq and D1 be the distribution of (A,A ·x),
where sampling A←↩ Zn×mq and x←↩ X . Then,

∆(D0, D1) ≤ 1

2

√√√√ k∑
i=1

pi·n · Pri.

where Pri is the collision probability of two independent samples from (X mod pi).

The above lemma implies that if the distribution (X mod p) is within statistical distance ε from the uniform
distribution over Zmp , then we have

∆(D0, D1) ≤ ε+
√
qn/pm.

This can be seen by considering a distribution X ′ such that (X mod p) is uniform distribution over Zmp and
∆(X ,X ′) ≤ ε.

Lemma 4 (Special case of Lemma 8 in Agrawal et al. (2016)) There exists a universal constant K > 1
such that for all m ≥ 2n, ε > 0 and σ ≥ Kηε(Z), the following holds for X←↩ Dn×m

Z,σ :

Pr
[
σ
√

2πm/K < sn(X) ≤ s1(X) < σK
√

2πm
]

> 1− 4mε+O(exp(−m/K)).

We will also require the following theorem, adapted from Theorem 17 in Ling et al. (2014).

Theorem 1 (Ling et al. (2014)) Let n, m1, m2, and λ be integers satisfying m2 ≥ m1 > 100 and σ1, σ2

be positive real numbers. Let n′ = max{λ, n} and assume that n′ > 100. We also assume that they satisfy

σ1 ≥ Ω(
√
m1n′ logm1), m1 ≥ Ω(n′ log (σ1n

′)), and σ2 ≥ Ω(n′5/2
√
m1σ

2
1 log3/2(m1σ1)).

Then, there exists a probabilistic polynomial-time algorithm that given n, m1, m2, λ (in unary), σ1, and σ2,
returns X1 ∈ Zn×m1, X2 ∈ Zn×m2, and U ∈ Zm×m with m = m1 +m2 such that:

• the distribution of (X1,X2) is within statistical distance 2−Ω(n′) of the distribution Dn×m1
Z,σ1 × (DZm2 ,σ2,δ1 ×

· · · × DZm2 ,σ2,δn)t, where δi denotes the ith canonical unit vector in Zm2 whose ith coordinate is 1 and
whose remaining coordinates are 0,

• we have |det U| = 1 and (X1|X2) ·U = (In|0),

• every column of U has norm ≤ O(
√
n′m1σ2) with probability ≥ 1− 2−Ω(n′).

Three remarks are in order regarding the theorem. First, we take the transpose of the theorem in Ling et al.
(2014). This is just for a notational convenience. Secondly, the distribution of X = (X1|X2) in Theorem 17
in Ling et al. (2014) is slightly different from the above in that all entries of the first column of X equal to 1.
As noted right after Lemma 7 in Ling et al. (2014), the theorem still holds even with the change. Finally, in the
above theorem, we introduce the statistical security parameter λ and differentiate it from the lattice dimension n,
while the theorem in Ling et al. (2014) assigns the same variable n for both. This change is introduced because
we will invoke the theorem for possibly small n for which 2−n is no longer negligible.

In our security analysis, we need a variant of the above theorem where X is chosen from a slightly different
distribution and U need not be efficiently samplable.

Lemma 5 Let n, m1, m2, m, λ, n′, σ1, σ2 be as in Theorem 1. Then, for all but 2−Ω(n′) probability over
(X1,X2) ∈ Zn×m1 × Zn×m2 chosen from Dn×m1

Z,σ1 × Dn×m2
Z,σ2 , there exists U ∈ Zm×m such that | det U| = 1,

(X1|X2) ·U = (In|0), and every column of U has norm ≤ O(
√
n′m1σ2).
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To prepare for the proof of Lemma 5, we define Rényi Divergence (RD) and review its properties following Bai
et al. (2015). For any two probability distributions P and Q such that the support of P is a subset of the
support of Q over a countable domain X, we define the RD (of order 2) by R(P‖Q) =

∑
x∈X P (x)2/Q(x), with

the convention that the fraction is zero when both the numerator and denominator are zero. We will use the
following property: if P (resp. Q) is a direct product of independent distributions P1 and P2 (resp. Q1 and Q2),
then we have RD(P‖Q) = RD(P1 × P2‖Q1 ×Q2) = RD(P1‖P2) ·RD(Q1‖Q2).

Lemma 6 (Lemma 2.9 in Bai et al. (2015)) Let P and Q denote distributions with Supp(P ) ⊆ Supp(Q)
and A ⊆ Supp(Q) be arbitrary set. Then, we have Q(A) ≥ P (A)2/R(P‖Q) where P (A) and Q(A) are measure
of A under the distribution P and Q respectively.

We also recall that the RD between two offset discrete Gaussians is bounded as follows.

Lemma 7 (Lemma 4.2 in Langlois et al. (2014)) For any n-dimensional lattice L ⊆ Rn and invertible ma-
trix Σ, set P = DΛ,Σ,w and Q = DΛ,Σ,z for some fixed w, z ∈ Λ. Then, R(P‖Q) ≤ exp(2π‖w − z‖2/sn(Σ)2).

Then, we proceed to the proof of Lemma 5.

Proof: [Proof of Lemma 5] Let A ⊆ Zn×m be the set of X = (X1|X2) such that U satisfying the properties
listed in the statement does not exist. Theorem 1 implies that when X is sampled from the distribution Q :=
Dm1×m2

Z,σ1 × (DZm2 ,σ2,δ1 × · · · ×DZm2 ,σ2,δn)t, we have Q(A) ≤ 2−Ω(n′). We want to prove that P (A) = 2−Ω(n′) for

the distribution P := Dn×m1
Z,σ1 ×D

n×m2
Z,σ2 . By Lemma 6, we have P (A) ≤

√
Q(A) ·R(P‖Q) ≤

√
R(P‖Q) · 2−Ω(n′).

To complete the proof, it suffices to show R(P‖Q) = O(1). We have

R(P‖Q) = R
(
Dn×m1

Z,σ1 ×D
n×m2
Z,σ2 ‖D

m1×m2
Z,σ1

×(DZm2 ,σ2,δ1 × · · · ×DZm2 ,σ2,δn)
)

= R((DZ,σ2)n‖(DZ,σ2,1)n)

≤ exp(2πn/σ2
2),

where we use Lemma 7 in the last inequality. Since σ2 ≥ Ω(n1/2), we conclude that R(P‖Q) = O(1). This
completes the proof of Lemma 5. �

Next, we define the learning with errors (LWE) assumption. It was shown that the assumption holds as long
as certain lattice problems are hard in the worst case Regev (2005); Peikert (2009); Brakerski et al. (2013).

Definition 4 For an integers n = n(λ), m = m(λ), q = q(λ), a real number α(λ) ∈ (0, 1), and an algorithm A,
the advantage for the learning with errors problem LWEn,m,q,α of A is defined as follows:∣∣Pr[A(A,As + x)→ 1]− Pr[A(A,w + x)→ 1]

∣∣
where A ←↩ Zn×mq , s ←↩ Znq , w ←↩ Zmq , and x ←↩ Dm

Z,αq. We say that LWEn,m,q,α assumption holds if the
advantage is negligible for every probabilistic polynomial-time A.

3 Trace and Revoke from Inner-Product Functional Encryption

In this section, we provide a generic transformation from a bounded collusion, random keys inner-product func-
tional encryption scheme FE to a trace-and-revoke scheme T R. Since intuition was provided in Section 1, we
proceed directly to the formal construction.
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3.1 The Scheme

We construct a trace-and-revoke scheme T R following the specifications of Definition 1. Our scheme assumes the
existence of a public directory pd which contains the identities of the users that have been assigned keys in the
system. The public directory is initially empty. We assume that pd can only be modified by a central authority
(the key generator).

1. Setup(1λ, 1t, 1r). Upon input the security parameter λ, the bound t on the number of traitors and the
bound r on the number of revoked users, proceed as follows:

(a) Let (pk,msk)← FE .Setup(1λ, 1`), where ` = t+ r + 1.

(b) Output the public key pk and master secret key msk.

2. KeyGen(msk, id). Upon input the master secret key msk and a user identity id ∈ ID, proceed as follows:

(a) Sample xid ←↩ Z`p. The pair pid = (id,xid) is appended to the public directory pd.

(b) Let skid ← FE .KeyGen(msk,xid).

(c) Output skid.

3. Enc(pd, pk,R,m). Upon input the public key pk, a set of revoked users R of cardinality ≤ r and a plaintext
messages m ∈M = Zp, proceed as follows:

(a) Compute vR ∈ Z`p \ {~0} such that 〈xid,vR〉 = 0 for every id ∈ R.

(b) Compute yR = m · vR.

(c) Output C = (C1, C2) = (FE .Enc(pk,yR),R).

4. Dec(pd, skid, C). Upon input the secret key skid for user id and a ciphertext C = (C1, C2), proceed as
follows:

(a) Parse C2 as C2 = R. If id ∈ R, then abort.

(b) Compute vR ∈ Z`p \ {~0} such that 〈xid,vR〉 = 0 for every id ∈ R.

(c) Compute and output m = FE .Dec(skid, C1)/〈xid,vR〉.

5. Trace(pd,R,S,OD). Upon input the public directory pd, a revoked set of users R, a suspect set S of users
and given access to the oracle OD, first proceed as follows:

(a) Find m,m′ ∈M such that the following quantity is non-negligible:∣∣∣ Pr
C←↩Enc(pd,pk,R,m)

[
OD(C,m) = 1

]
− Pr
C′←↩Enc(pd,pk,R,m′)

[
OD(C ′,m) = 1

] ∣∣∣.
(b) Set S1 = {id1, id2, . . .} = S \ R.

(c) Compute vR ∈ Z`p \ {~0} such that 〈xid,vR〉 = 0 for every id ∈ R.

Then execute the following steps with i = 1, 2, . . .:

(d) If i = 1, set vSi = ~0. If Si = ∅, set vSi = (m′ −m) · vR. Else compute vSi ∈ Z`p such that:

i. 〈xid,vSi〉 = 0 for every id ∈ Si ∪R.
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ii. 〈xid,vSi〉 = (m′ −m) · 〈xid,vR〉 for every id ∈ S1 \ Si.
(e) Repeat the following steps sufficiently many times (as dictated by Hoeffding’s inequality) to compute

an approximation of the probability pi that the response from OD is bi = 1.

i. Construct y = vSi +m · vR ∈ Z`p;
ii. The probe ciphertext is CSi = (FE .Enc(pk,y),R);

iii. Provide the oracle OD with (CSi ,m) as input and get a binary value bi as output.

(f) If i > 1 and |pi − pi−1| is non-negligible, then output idi−1 and abort;

(g) If Si = ∅, then output ⊥ and abort; else, set Si+1 = Si \ {idi}.

For the correctness and the tracing security proof, we require that in Step (a) of Algorithm Enc, in Step (b)
of Algorithm Dec and in Step (c) of Algorithm Trace, the vector vR be uniquely determined by R, in the
same unique way across all algorithms. One way of achieving this property is to order the xid’s for id ∈ R
lexicographically, and run a deterministic linear system solver. We proceed in the same way (using always the
same deterministic algorithm) for vector vSi at Step (d) of Algorithm Trace.

We remark that one can send R instead of vR in the encryption algorithm. This will make the ciphertext
longer, but make the encryption and decryption algorithms slightly more efficient.

We first check the correctness of the scheme.

Theorem 2 Assume that p = λω(1). Let R be a set of revoked users of cardinality ≤ r. Then, for every id /∈ R
and every m ∈M = Zp, we have

Dec(pd, skid,Enc(pd, pk,R,m)) = m,

with probability ≥ 1− λ−ω(1).

Proof: As xid is uniform in Z`p, and thanks to the parameter choices of p = λω(1) and ` > r, we have
that 〈xid,vR〉 6= 0, with overwhelming probability. The execution of Dec(pd, skid, C), with C = (C1, C2) =
Enc(pd, pk,R,m), proceeds to Step (b) and computes (with overwhelming probability):

Dec(pd, skid, C) =
FE .Dec(skid, C1)

〈xid,vR〉
=
〈xid,m · vR〉
〈xid,vR〉

= m,

by correctness of FE . �

Now, we consider the implementation of Step (a) of Algorithm Trace. The aim is to find m,m′ ∈ Zp such
that an encryption of m has a non-negligible probability difference of decrypting to m and m′ via OD. These
plaintexts are used for tracing as follows: the first probe ciphertext distribution will be a genuine encryption of m,
while the last probe ciphertext distribution will be a genuine encryption of m′. (To see this, observe that for the
last probe ciphertext, we have Si = ∅ and vSi = (m′−m) ·vR. Consequently, we have CSi = (FE .Enc(pk,y),R)
where y = vSi + m · vR = m′ · vR.) The fact that OD behaves differently for these two distributions ensures
that there will be an i such that |pi − pi−1| is non-negligible. Now, if the oracle OD was perfect, i.e., a genuine
encryption of m always decrypts to m for all m, then the existence of a pair (m,m′) as in Step (a) would be
immediate. The difficulty is that the oracle OD only achieves correct decryption with non-negligible advantage.

Lemma 8 Let R be arbitrary and assume that Equation (1) holds for R. Then, with probability ≥ 1/(4λc) over
the choice of m,m′ ←↩M, we have: ∣∣∣ Pr

C←↩Enc(pk,R,m)

[
OD(C,m) = 1

]
− Pr
C′←↩Enc(pk,R,m′)

[
OD(C ′,m) = 1

] ∣∣∣ ≥ 1

2λc
.
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Based on Lemma 8, Step (a) of Algorithm Trace can be implemented by repeatedly sampling m,m′ ←↩M and
estimating the probabilities that OD(C,m) = 1 and OD(C ′,m) = 1 using Hoeffding’s bound, until the probability
difference is sufficiently large.

Proof: Form,m′ ∈M, let P (m′,m) denote the probability thatOD(C ′,m) = 1, where C ′ ←↩ Enc(pd, pk,R,m′).
Equation (1) states that

Pr
m←↩M

[P (m,m)] ≥ 1

|M|
+

1

λc
.

Let us assume by contradiction (of the statement to be proved), that

Pr
m,m′←↩M

[|P (m,m)− P (m′,m)| < 1

2λc
] > 1− 1

4λc
. (2)

We show that if (2) holds, then the following inequality holds as well.

Pr
m′←↩M

[ Pr
m←↩M

[|P (m,m)− P (m′,m)| < 1

2λc
] > 1− 1

2λc
] >

1

2
. (3)

By contradiction of (3) above, let us assume that

Pr
m′←↩M

[ Pr
m←↩M

[|P (m,m)− P (m′,m)| < 1

2λc
] > 1− 1

2λc
] ≤ 1

2
.

We consider two types of m′, depending whether Prm[|P (m,m) − P (m′,m)| < 1
2λc ] is greater than 1 − 1

2λc

(Type 1) or not (Type 2). Let x ≤ 1/2 be the proportion of m′’s of the first type. Then we would have

Pr
m,m′

[|P (m,m)− P (m′,m)| < 1

2λc
]

= Pr
m′

[Pr
m

[|P (m,m)− P (m′,m)| < 1

2λc
]]

=
1

|M|
∑
m′

of Type 1

Pr
m

[|P (m,m)− P (m′,m)| < 1

2λc
]

+
1

|M|
∑
m′

of Type 2

Pr
m

[|P (m,m)− P (m′,m)| < 1

2λc
]

≤ 1

|M|
∑
m′

of Type 1

1 +
1

|M|
∑
m′

of Type 2

(1− 1

2λc
)

= x+ (1− x)(1− 1

2λc
) ≤ 1− 1

4λc
,

which would contradict (2) above.
We consider an m′ of Type 1. Using the fact that∑
m P (m′,m) ≤ 1, we obtain:∑

m

P (m,m) <
|M|
2λc

+
∑
m

(
P (m′,m) +

1

2λc

)
≤ 1 +

|M|
λc

.

This contradicts Equation (1). �
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3.2 Semantic Security

We start by proving IND-CPA security of our scheme.

Theorem 3 If FE is r-IND-CPA secure, then T R is IND-CPA secure.

Proof: Let AT R be a probabilistic polynomial-time adversary that breaks semantic security of T R. We
construct a probabilistic polynomial-time adversary AFE that breaks semantic security of FE . Adversary AFE
proceeds as follows.

• It first obtains the public key pk output by the FE challenger (who runs the FE .Setup(1λ, 1`) algorithm)
and relays it to AT R.

• The adversary AT R adaptively chooses at most r identities id (that forms the revoked set R) and are
included in pd. The adversary AFE then queries the FE challenger for each xid for all id ∈ R and receives
the corresponding skid. Adversary AFE relays all skid for each id ∈ R to AT R.

• When AT R chooses two messages m0,m1 ∈ M and provides them to AFE , adversary AFE proceeds as
follows:

− It computes vR ∈ Z`p \ {~0} such that 〈xid,vR〉 = 0 for every id ∈ R.

− It sends yR,0 = m0 ·vR and yR,1 = m1 ·vR to the FE challenger who samples b←↩ {0, 1} and encrypts
yR,b as CyR,b

←↩ FE .Enc(pk,yR,b).
− Adversary AFE receives CyR,b

from the FE challenger and sends C = (CyR,b
,R) to AT R.

• Finally, adversary AT R outputs its guess b′ ∈ {0, 1} and AFE also outputs b′ as its own guess of b.

Note that adversary AFE behaves as an IND-CPA challenger in the view of AT R. Further, it is a valid adversary
against FE , as 〈yR,0,xid〉 = 〈yR,1,xid〉 for every vector xid queried to the FE challenger (i.e., each id ∈ R). The
advantage of AFE is exactly the same as the advantage of AT R. �

We may observe that for T R to be IND-CPA secure, an r-IND-CPA secure FE scheme is sufficient. However,
as we see below, for traceability with up to t colluding traitors along with r already revoked users, we need an FE
scheme that is (t+ r)-IND-CPA secure.

3.3 Traceability

Here, we prove the traceability of the scheme. To start with, we first prove the following lemma.

Lemma 9 Assume that a pirate decoder D satisfies Equation (1) for some R and S. Then, the execution of
Trace does not return ⊥ but returns some id ∈ S with overwhelming probability.

Proof: We consider a variant of Trace that continues its execution until it exhausts S \R, even if it has already
output an id. We consider the probabilities pi at the start and end of that modified execution.

1. At the beginning, algorithm Trace considers S1 = S \R and vS1 = 0. Hence, the genuine ciphertext output
by the Enc algorithm and the probe ciphertext created by the Trace algorithm for the suspect subset S1

are exactly the same.

2. When i = |S \ R| + 1, we have Si = ∅ and vSi = (m′ −m) · vR. In Step (a) of the Trace algorithm, the
messages m and m′ were chosen such that the difference in the probabilities p1 and p|S\R|+1 is ≥ 1/(2λc).
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Note that the two latter observations imply, via the triangle inequality, that there exists an i such that |pi−pi−1|
is non-negligible. By the Hoeffding bound, Trace algorithm outputs idi−1 with overwhelming probability. �

Then, we prove the following theorem.

Theorem 4 If FE is (t+ r)-IND-CPA secure, then T R satisfies public traceability.

Proof: Let us assume by contradiction that an adversary A can break the public traceability of T R with
non-negligible probability. We then construct a probabilistic polynomial-time adversary AFE that breaks the
semantic security of FE . Adversary AFE proceeds as follows.

• It first obtains the public key pk output by the FE challenger (who runs the FE .Setup(1λ, 1`) algorithm)
and relays it to the adversary A.

• When A asks AFE to create a pid for some id, adversary AFE in turn asks the FE challenger to do the
same. The FE challenger randomly chooses a vector xid ←↩ Z`p and sends it to AFE who further relays it
to A.

• When A makes a key query for an identity id, adversary AFE queries the FE challenger for a secret key.
Adversary AFE receives the corresponding skid from the FE challenger and relays it to A.

• WhenA chooses a setR of up to r revoked users, adversaryAFE makes |R| key queries to the FE challenger.
Adversary AFE is given the set skid’s of corresponding secret keys that is relayed to A. Recall that by the
definition of the public traceability game, these queries can be interleaved with extensions of the number
of users and user corruption queries, in an adaptive manner.

Note that since A makes at most t key queries and |R| ≤ r, adversary AFE makes at most t+ r key queries for
the FE challenger.

• Adversary A finally produces a pirate decoder D4 and chooses a suspect set S of cardinality ≤ t that
contains T . Then, the adversary AFE executes the Trace algorithm on OD to find i such that |pi− pi−1| is
non-negligible. If Trace outputs ⊥ or index i such that idi−1 ∈ T , then AFE outputs a random bit. We say
that the event Abort occurs in such a case. Otherwise, it sets y0 = vSi−1 +m · vR and y1 = vSi +m · vR,
and sends them as challenge messages to the FE challenger.5

• The FE challenger samples b ←↩ {0, 1} and then sends FE .Enc(pk,yb) to AFE . The adversary AFE runs
OD on input (Cb,m), where Cb = (FE .Enc(pk,yb),R). Then OD outputs the bit b′ ∈ {0, 1}.

• Finally, adversary AFE outputs the same bit b′ ∈ {0, 1} if pi − pi−1 > 0 and 1− b′ otherwise.

We first argue that AFE is a valid adversary against the FE challenger. Recall that when Abort does not
occur, we have idi−1 /∈ T but idi−1 ∈ S. The keys queried by AFE are for id ∈ R ∪ T . This set R ∪ T can be
partitioned into R∪ (T ∩ Si−1) and T ∩ (S1 \ Si−1). Note that since idi−1 6∈ T , we have T ∩ Si−1 = T ∩ Si and
thus R∪ (T ∩ Si−1) = R∪ (T ∩ Si).

1. For id ∈ R, we have 〈xid,y0〉 = 〈xid,y1〉 = 0. For id ∈ Si−1 ∩ T = Si ∩ T , we have 〈xid,y0〉 = 〈xid,y1〉 =
m · 〈xid,vR〉. Hence for all id ∈ R ∪ (T ∩ Si−1) for which the skid was queried by AFE , the inner products
〈xid,y0〉 and 〈xid,y1〉 have the same value.

4Recall that we assume that D is stateless/resettable and replies independently to successive queries.
5Here, m and m′ are chosen as in Step (a), vR ∈ Z`

p is chosen as in Step (c), and vSi−1 ,vSi ∈ Z`
p are chosen as in Step (d) of

algorithm Trace.
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2. Similarly, for id ∈ T ∩ (S1 \ Si−1), we have 〈xid,y0〉 = 〈xid,y1〉 = m′ · 〈xid,vR〉.

Hence, AFE is a valid adversary against the FE challenger.

We recollect that in the AD-TT game, we say that A wins if the decryption box D output by it is such that
when Trace is executed on input OD, it fails to identify a traitor. In such a case, Trace either outputs ⊥ or
it outputs an idi−1 6∈ T with probability at least 1/λc. We next argue that if A outputs D that satisfies this
winning condition of the AD-TT game, then AFE has non-negligible advantage in the above game. To see this,
we first observe that when Abort occurs, AFE returns a random bit and it correctly guesses b with probability
1/2. Then, it suffices to show the following:

• In the above game, Abort does not occur with non-negligible probability.

• Conditioned on Abort not occurring, Trace outputs idi−1 such that |pi − pi−1| is non-negligible.

Indeed, the combination of them implies that the advantage of AFE is non-negligible, since |pi − pi−1| is the
advantage of AFE conditioned on Abort not occurring.

The second item follows because if |pi − pi−1| is not sufficiently large, Trace does not output idi−1 at Step
(f) of Trace except for a negligible probability (because of the Hoeffding bound). Next, we prove the first item.
Since we are assuming D satisfies the winning condition, when Trace is executed on input OD, it outputs ⊥ or
it outputs an idi−1 6∈ T with probability at least 1/λc. The claim now follows since the former event occurs only
with negligible probability by Lemma 9. �

4 Trace and Revoke from Learning with Errors

Recall that Agrawal et al. Agrawal et al. (2016) provided a construction for inner product functional encryption
from LWE. Instantiating our generic transformation of Section 3 with this scheme is possible, but leads to reliance
on LWE with subexponential error rates. In Subsection 4.2, we provide a new construction of an inner product
functional encryption scheme from LWE in a much weaker model than that considered in Agrawal et al. (2016).
We restrict to the setting of bounded collusions and also crucially exploit the fact that the adversary’s key
requests are random vectors for our application as described in Section 3. The performances of both resulting
trace-and-revoke systems are discussed in Subsection 4.1.

4.1 Two Trace-and-Revoke Constructions

Our IPFE to trace-and-revoke generic transformation cannot be directly instantiated with the LWE-based IPFE
over Zp from Agrawal et al. (2016), because the key generation algorithm of the latter is stateful: it keeps track
of all the secret keys it has generated. The statefulness necessity may be explained as follows. The master secret
key is an integer matrix with small entries. When the attacker makes a key query for a vector modulo p, it
learns the integer product between a conversion to the integers of that vector and the master secret key. If the
key generation algorithm does not maintain a state, then it does not seem possible to prevent an adversary from
making key queries for vectors that are linearly dependent modulo p but linearly independent over the integers:
the attacker could then make valid key queries but still learn the master secret key.

The Key Generation State is Unnecessary. In Agrawal et al. (2016), it was noted that if the vectors
queried by the adversary are guaranteed to be linearly independent modulo p, then there is no need for a stateful
key generation algorithm. In our case, there are as many vectors as users, each vector is uniformly sampled
from Z`p and the adversary has access to ≤ r + t < ` vectors. By setting p = 2Ω(λ), the probability that there
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exists a subset of t key vectors that are linearly independent is 2−Ω(λ). We can then remove the state in the
LWE-based IPFE over Z`p, and apply the transformation from the previous section.

The resulting trace-and-revoke scheme inherits the unsatisfactory performance of its underlying IPFE (see (Agrawal
et al., 2016, Section 4.2) for further details), stemming from the subexponential error rate in the LWE hardness
assumption.

Large LWE Errors are Unnecessary. In Subsection 4.2 below, we exploit the randomness of the key queries
further, as well as the bounded number of queries (as allowed by our trace-and-revoke application). We obtain
a random-key bounded-collusion FE for inner products from LWE with significantly better parameters. In
particular, we rely on slightly super-polynomial error rates for LWE, which allows to take smaller parameters.6

Both the public key and master secret key of the resulting trace-and-revoke scheme consist of Õ((t+ r+λ)λ)
bits. To every user id corresponds a secret key skid of bit-length Õ(t+ r+λ) and a vector pid of bit-length Õ(t+
r + λ). Algorithm Enc maps a plaintext in {0, 1} to a ciphertext of bit-length Õ(t+ r + λ).

4.2 Bounded Collusion FE for Inner Products from LWE

The construction we provide here relies on LWE with a small error rate and hence small modulus and dimension.
Our construction is quite close to Agrawal et al. (2016) except the key generation algorithm. In Agrawal et al.
(2016), the key generation algorithm is deterministic, whereas in our scheme it is randomized and involves certain
Gaussian distribution. This change allows us to prove the security of our scheme in the improved parameter
setting compared with Agrawal et al. (2016).

Construction. Let p be the modulus of the scheme, 2` be the dimension of the scheme, and L be the upper
bound on the size of the collusion.

• FE .Setup(1λ, 1L, 12`). Set integers n, m, q = pk for some integer k ≥ 2, and reals α ∈ (0, 1) and σ0, σ1, σ2 >
0, as explained below. Sample A←↩ Zm×nq and Z←↩ D2`×m

Z,σ0 . Compute U = Z ·A ∈ Z2`×n
q . Define

msk := Z and pk := (A,U).

• FE .KeyGen(msk,x). Given x = (x1, . . . , x2`)
t ∈ Z2`

p , sample x̄i ←↩ DpZ+xi,σ1 for i ∈ [`] and x̄i ←↩ DpZ+xi,σ2

for i ∈ [` + 1, 2`]. Set x̄ := (x̄1, . . . , x̄2`)
t ∈ Z2` and ztx = x̄t · Z ∈ Zm. Note that we have x̄ ≡ x mod p by

construction. Finally, return skx = (x̄, zx).

• FE .Enc(pk,y). To encrypt a vector y ∈ Z2`
p , sample s←↩ Znq , e0, e1 ←↩ Dm

Z,αq and compute

c0 = As + e0 ∈ Zmq , c1 = Us + e1 + pk−1 · y ∈ Z2`
q .

Then, return the ciphertext C = (c0, c1).

• FE .Dec(skid, C). Given C = (c0, c1) and a secret key (x̄, zx) for x ∈ Z2`
p , compute µ′ = 〈x̄, c1〉−〈zx, c0〉 mod

q and output the value µ ∈ Zp that minimizes |pk−1 · µ− µ′|.
6We observe that the scheme from Subsection 4.2 allows for polynomial error rates, but the correctness of our trace-and-revoke

construction requires p ≥ λω(1), which leads to a λω(1) LWE error rate in our IPFE.
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Setting the Parameters. We have to set the parameters so that the correctness requirement is satisfied and
the security reduction from LWEn,m,q,α′ works, for some non-trivial error rate α′. We require that

• pk−1/4 > σ0(σ1 + σ2)αq
√
`m · ω(log3/2 λ), to ensure that the error term in decryption has magnitude less

than pk−1/4 with probability 1− λ−ω(1),

• σ1, σ2 ≥ p · Ω(
√
λ), to be able to apply Lemma 1 in the security proof,

• α/α′ ≥ Ω(σ0
√
m) and σ0, α

′q ≥ Ω(
√
λ), to be able to apply Lemma 2 in the security proof,

• κ ≥ Ω(λ + L log λ), to ensure the (overwhelmingly likely) existence of a U as in Lemma 5 in the security
proof,

• σ1 ≥ Ω(
√
`κ log `), ` ≥ Ω(κ log(σ1κ)), and

σ2 ≥ Ω(κ5/2
√
`σ2

1 log3/2(`σ1)), to be able to apply Lemma 5 in the security proof with κ ≥ Ω(λ+ L log λ)
as above,

• σ0 ≥ Ω(pκ`σ2) and qn+1/pm ≤ 2−Ω(κ), to be able to apply Lemma 10 in the security proof.

To satisfy the above requirements and rely on LWE parameters for which all known attacks cost 2o(λ), we
may set the parameters as follows. We choose κ = Θ(λ+ L log λ), p = λω(1), and:7

` = Θ̃((λ+ L) log p)

σ0 = Θ̃((λ+ L)5(p log p)3λ) σ1 = Θ(p
√
λ)

σ2 = Θ̃((λ+ L)3(p log p)2λ)

1/α = Θ̃((λ+ L)9(p log p)6λ2)

1/α′ = Θ̃((λ+ L)14.5(p log p)9λ3) m = Θ̃(λ+ L)

q = Θ̃((λ+ L)15(p log p)9λ3) k = Θ(1)

n = Θ̃(λ)

Decryption Correctness. To show the correctness of the scheme, we first observe that, modulo q:

µ′ = 〈x̄, c1〉 − 〈zx, c0〉 = pk−1 · 〈x,y〉+ 〈x̄, e1〉 − 〈zx, e0〉.

Below, we show that the magnitude of the term 〈x̄, e1〉 − 〈zx, e0〉 is ≤ σ0(σ1 + σ2)αq
√
`m · ω(log3/2 λ) with

probability 1− λ−ω(1). Thanks to the parameter choices, the latter upper bound is smaller than pk−1/4, which
suffices to guarantee decryption correctness.

Note that x̄i ∈ Z2` is chosen from DpZ+xi,σ1 if i ∈ [`] and DpZ+xi,σ2 otherwise. We thus have ‖x̄‖ ≤
(σ1 + σ2)

√
` · ω(

√
log λ) with probability 1 − λ−ω(1). This, together with e1 ∼ D2`

Z,αq, implies that |〈x̄, e1〉| ≤
αq(σ1 + σ2)

√
` · ω(log λ) with probability 1 − λ−ω(1). Furthermore, since each column of Z is chosen from

D2`
Z,σ0 , we have ‖zx‖ ≤ σ0(σ1 + σ2)

√
`m · ω(log λ) with probability 1 − λ−ω(1). As a result, we have |〈zx, e0〉| ≤

σ0(σ1 + σ2)αq
√
`m · ω(log3/2 λ) with probability 1− λ−ω(1).

Security. We now show that the scheme above is secure, for our relaxed notion of L-IND-CPA security. The
proof is similar to Agrawal et al. (2016), but we exploits the weaker security model of bounded number of random
key queries. In particular, we perform a much more careful analysis on the conditional distribution of Z from
the view of the adversary.

Theorem 5 If the parameters are set as above, the above scheme is L-IND-CPA secure under the LWEn,m,q,α′

assumption.

7We note that it is possible to choose parameters that allow to take p as low as p = 2, but in our trace-and-revoke application we
use p = λω(1) to guarantee correctness.
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Proof: The proof proceeds with a sequence of games that starts with the real game and ends with a game in
which the adversary’s advantage is negligible. For each i, we call Si the event that the adversary wins in Game
i.

Game 0: This is the ordinary security game. Namely, at the outset of the game, the adversary A is given
the master public key pk. Then, it sees Q random vectors {xi}i∈[Q], where xi ←↩ Z2`

p and Q is an arbitrary
polynomial specified by A. Then, it makes secret key queries for these vectors. The number of the key queries
is bounded by L. Note that the adversary can only make key queries for random vectors chosen as x←↩ Z2`

p . In
the challenge phase, the adversary A comes up with two distinct vectors y0, y1 and receives an encryption C of
yβ for β ←↩ {0, 1} sampled by the challenger. The adversary is not allowed to make secret key queries after the
challenge phase. When A halts, it outputs β′ ∈ {0, 1} and S0 is the event that β′ = β. Note that for any vector x
for which A makes a secret key query, we must have 〈x,y0〉 ≡ 〈x,y1〉 mod p if A is a legitimate adversary.

Game 1: We modify the generation of x and x̄ for all secret key queries. Namely, instead of choosing x←↩ Z2`
p

and then sampling x̄, the challenger first chooses x̄ = (x̄1, . . . , x̄2`)
t as x̄i ←↩ DZ,σ1 for i ∈ [`] and x̄i ←↩ DZ,σ2

for i ∈ [` + 1, 2`] and then sets x := x̄ mod p. We claim that this changes the joint distribution of (x, x̄) only
negligibly. To see this, we observe that the distribution of x̄i conditioned on x̄i ≡ xi mod p is DpZ+xi,σ1 for i ∈ [`]
and DpZ+xi,σ2 for i ∈ [`+ 1, 2`]. Therefore, it suffices to show that x̄i mod p is statistically close to the uniform
distribution over Zp when x̄i is chosen from DZ,σ1 or DZ,σ2 . This follows from σ1, σ2 ≥ p ·Ω(

√
λ) and Lemma 1.

Therefore, we have that |Pr[S1]− Pr[S0]| ≤ 2−Ω(λ).

Game 2: We modify the generation of C = (c0, c1) in the challenge phase. Namely at the outset of the game,
the challenger picks s ←↩ Znq , e ←↩ Dm

Z,α′q (which may be chosen ahead of time) as well as Z ←↩ D2`×m
Z,σ0 . Let

V ∈ Z(m+2`)×m be the matrix that is obtained by putting Im on top of Z, where Im is the unit matrix of size m.
We then set the ciphertext C = (c0, c1) ∈ Zmq × Z2`

q as

b = As + e

(c0‖c1) = ReRand(V,b, α′q, α/(2α′)) + pk−1 · yβ (4)

where ReRand is from Lemma 2. We claim that this change alters the view of the adversary only negligibly. To
show this, we first observe that s1(V) ≤

√
1 + s1(Z)2 ≤ O(σ0

√
m) holds with all but 2−Ω(m) ≤ 2−Ω(λ) probability

by Lemma 4. By Lemma 2 and our parameter choices, we have

c0 = Im ·As + e0 = As + e0,

c1 = Z ·As + e1 + pk−1 · yβ = Us + e1 + pk−1 · yβ,

where e0 and e1 are within statistical distance 2−Ω(λ) from Dm
Z,αq. Therefore,we have that |Pr[S2] − Pr[S1]| ≤

2−Ω(λ).

Game 3: We further modify the generation of C = (c0, c1) in the challenge phase. Instead of setting b = As+e,
we choose b = u+e, where u←↩ Zmq . Then, the ciphertext is set as in Equation (4). Under the LWE assumption,
we have that |Pr[S3]− Pr[S2]| is negligible.

Game 4: We modify the generation of C = (c0, c1) once more. Namely, the ciphertext is now set as

c0 = u + e0,

c1 = Z · u + e1 + pk−1 · yβ,

where u ←↩ Zmq and e0, e1 ←↩ Dm
Z,αq. Similarly to Game 2, this change does not alter the view of the adversary

much. By Lemma 2 and our parameter choices, we have that |Pr[S4]− Pr[S3]| ≤ 2−Ω(λ). Below, we prove that
Pr[S4] is exponentially close to 1/2, which will complete the proof.
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Define y = y1 − y0 ∈ Z2`
p . Let {xij ∈ Z2`

p }j∈[L′] be the vectors corresponding to the secret key queries made
by A, where L′ ≤ L. As A is a legitimate adversary, we have 〈xij ,y〉 = 0 mod p for each secret key query xij .
The view of the adversary contains L′ tuples {xij , x̄ij , zxij

}j∈[L′], where the vectors {xij}j∈[L′] form a Zp-basis of

a subspace of the (2`−1)-dimensional vector space y⊥ := {x ∈ Z2`
p : 〈x,y〉 = 0 mod p}. We define Xtop ∈ ZL′×2`

as the matrix whose j-th row is x̄tij for j ∈ [L′].

We say that Xtop ∈ ZL′×2` is good when we can choose U ∈ Z2`×2` such that | det U| = 1, Xtop ·U = (IL′ |0),
and every row of U has norm ≤ O(

√
κ`σ2) (see Lemma 5). For a good Xtop, we can define X ∈ Z2`×2` as

X := U−1. It can be seen that the upper L′ rows of X corresponds to Xtop. We denote the lower 2` − L′ rows
of the matrix as Xbot. We note that since X is invertible over Z, so is it modulo q. Without loss of generality,
we assume that U and Xbot are deterministically determined from Xtop. (If there are more than one matrix
satisfying the required properties, we sort them in the lexicographical order and pick the first one.) Note that it
might be infeasible to efficiently compute U and Xbot from Xtop. This does not cause any problem in our proof
because all the following arguments are information theoretic.

We state the following lemmas:

Lemma 10 Assume that σ0 ≥ Ω(pκ`σ2) and qn+1/pm ≤ 2−Ω(κ). Then the following distributions are within
2−Ω(κ) statistical distance:

(A,u,ZA,Xtop,XtopZ,XbotZu) ≈
(A,u,ZA,Xtop,XtopZ,v)

where A ←↩ Zm×nq , u ←↩ Zmq , Z ←↩ D2`×m
Z,σ0 , each row of Xtop ∈ ZL′×2`

q is chosen from D`
Z,σ1 × D`

Z,σ2, and

v ←↩ Z2`−L′
q . Note that if Xbot is not good, then Xbot is undefined. In such a case, the term XbotZu is replaced

with ⊥.

Lemma 11 If there exists an adversary A whose advantage in Game 4 is ε, then there exists another (un-
bounded) adversary B whose distinguishing advantage between the two distributions in Lemma 10 is ε/QL

′
.

Given these two lemmas, we can conclude the proof of Theorem 5 since these imply ε/QL
′
< 2−Ω(κ) and thus

ε < QL · 2−Ω(κ) = 2O(L log λ)−Ω(κ) ≤ 2−Ω(λ). �

It remains to prove Lemmas 10 and 11.

Proof: [Proof of Lemma 10] By Lemma 5, matrix Xtop is good with all but 2−Ω(κ) probability. In the following,
let us fix good Xtop and prove that the above two distributions are 2−Ω(κ)-close. We first consider the distribution
XbotZ conditioned on XtopZ. Note that in XtopZ and XbotZ, matrices Xtop and Xbot act in parallel on the columns
of Z. We can hence restrict ourselves to the distribution of Xbotzi conditioned on Xtopzi, with zi sampled from
DZ2`,σ0 . Let bi = Xtopzi ∈ ZL′ and fix z?i ∈ Z2` arbitrary such that bi = Xtopz

?
i . The distribution of zi given

(Xtop,Xtopzi) is DΛ+z?i ,σ0
, with Λ = {x ∈ Z2` : Xtopx = 0}. Therefore, we have that given Xtopzi, the vector

Xbotzi is distributed as Xbot ·DΛ+z?i ,σ0
.

Let Ulef (resp. Urig) denote the left L′ (resp. right 2`−L′) columns of U. We are to show that the distribution

Xbot ·DΛ+z?i ,σ0
is DZ2`−L′ ,σ0

√
Σ
−1
,w

, where Σ = Ut
rigUrig and w = −

√
Σ
−t

Ut
rigUlefbi. To see this, we first show

that the supports of both distributions are the same. More specifically, we prove Xbot · Λ = Z2`−L′ . To do so, it
suffices to show that for any a ∈ Z2`−L′ , we have a ∈ Xbot · Λ. By the construction of U, we have XtopUrig = 0
and XbotUrig = I2`−L′ . Now, a ∈ Xbot · Λ follows because we have a = Xbot · (Uriga) and Xtop · Uriga = 0.
We next evaluate the probability of a ∈ Z2`−L′ being output by Xbot ·DΛ+z?i ,σ0

. This probability equals to the

probability of a′ ∈ Z2` being output by DΛ+z?i ,σ0
for a′ that is the unique vector in Λ +z?i satisfying a = Xbot ·a′.
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Since a′ ∈ Λ + z?i , we have Xtop · a′ = Xtop(a
′ − z?i ) + Xtopz

?
i = 0 + bi = bi. Therefore, the vector a′ can be

written as a′ = X−1(bi‖a) = U(bi‖a) = Ulefbi + Uriga. The probability we consider is proportional to

exp
(
−π‖a′‖2/σ2

0

)
= exp

(
−π‖Ulefbi + Uriga‖2/σ2

0

)
= exp

(
−π‖
√

Σa +
√

Σ
−t

Ut
rigUlefbi‖2/σ2

0

)
· exp

(
−π(‖Ulefbi‖2 − ‖

√
Σ
−t

Ut
rigUlefbi‖2)/σ2

0

)
︸ ︷︷ ︸

does not depend on a

∝ exp
(
−π‖
√

Σ(a−w)‖2/σ2
0

)
.

This implies this equals to the probability of a being output by DZ2`−L′ ,σ0
√

Σ
−1
,w

. To sum up, conditioned on

XtopZ, the matrix XbotZ is distributed as (DZ2`−L′ ,σ0
√

Σ
−1
,w

)m.

We then consider the joint distribution of (A,u,ZA,XbotZu) (conditioned on (Xtop,XtopZ)). In the following,
let us consider the distribution of XZA instead of ZA. We do not loose any information by doing this since
X is invertible modulo q and the latter distribution can be recovered from the former by just multiplying X−1

from the left. Furthermore, we observe that XZA is the vertical concatenation of XtopZA and XbotZA. Since
the former can be recovered from XtopZ and A, which are already included in the tuples, we ignore the former.

Let us denote Y := XbotZ ∼ (DZ2`−L′ ,σ0
√

Σ
−1
,w

)m. To complete the proof, we will show that the following

distributions are statistically close:
(A,u,YA,Yu) ≈ (A,u,B,v)

where B ←↩ Z(2`−L′)×n
q , and v ←↩ Z2`−L′

q . We first show that (Y mod p) is within 2Ω(−λ) statistical distance

from the uniform distribution over Z(2`−L′)×m
p . This follows by setting Λ = Z2`−L′ and Λ′ = p · Z2`−L′ and

applying Lemma 1 to Y in a column-wise manner. We check that the parameters satisfy the required condition
of Lemma 1. We have

s2`−L′(
√

Σ
−1

) = s1(Σ)−1/2 ≥ ((2`− L′)2 · ‖Σ‖∞)−1/2

≥ Ω((κ1/2`σ2)−1),

where the last inequality follows from the upper bound on the norms of the rows of U. We therefore have

σ0 ·s2`−L′(
√

Σ
−1

) ≥ p ·Ω(
√
κ) by our choice of σ0. We then finally apply Lemma 3 in a row-wise manner to obtain

that Y(A|u) is almost uniformly random. We note that the lemma can be applicable because qn+1/pm ≤ 2−Ω(κ).
This completes the proof of Lemma 10. �

Proof: [Proof of Lemma 11] The reduction works as follows. Given (A,u,ZA,Xtop,XtopZ, v), algorithm B
randomly guesses indices {ij}j∈L′ ∈ [Q]L

′
for which the adversary makes key queries. The public key pk =

(A,U = Z · A) and the master key msk = Z are determined by the given problem instance. (Note that Z
is not given to B, so it is implicitly chosen.) Then B chooses {x̄i}i∈[Q] as follows. When i ∈ {ij}j∈[L′], there
exists j such that i = ij . Then algorithm B sets x̄ti to be the j-th row of the given matrix Xtop. Otherwise, it
chooses x̄i as in Game 4. The key queries are handled as follows. Whenever A queries key for xi such that
i 6∈ {ij}j∈[L′], algorithm B aborts and outputs a random bit. Other queries can be handled using XtopZ in the
problem instance. To create the challenge ciphertext B sets

c0 = u, c1 = X−1 · (XtopZu‖v) + e1 + yβ.
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We can observe that when v = XbotZu, we have c1 = Zu+e1+yβ and the distribution of the challenge ciphertext
corresponds to that of Game 4.

We then consider the case of v is random. We will show that the distribution of X ·~c1 mod q is independent
of β. As the matrix X is independent of β ∈ {0, 1} and invertible over Zq, this implies that the distribution
of c1 is independent of β as well (recall that X is information theoretically known to A, which means that, if
c1 carries any information on β, so does X · c1 mod q). The first L′ entries of X · c1 (namely, Xtop · c1) do not
depend on β because we have the equality pk−1 ·Xtop · y0 = pk−1 ·Xtop · y1 mod q, by construction of Xtop. The
last 2`− L′ entries are uniformly random, since they are masked by the random vector v.

At the end of the game, algorithm B outputs the same bit as A.
It can be seen that B perfectly simulates Game 4 when v = XbotZu and a game that is independent of β

when v is random. Therefore, conditioned on B not aborting, the distinguishing advantage of B is the same as A.
Since B aborts and outputs a random bit with probability 1/QL

′
, the advantage of B is ε/QL

′
. This completes

the proof of Lemma 11. �

5 Trace and Revoke from DDH and Paillier

In this section, we describe two (near) instantiations of the generic construction presented in the last section. We
are not aware of existing IPFE schemes that meet the requirements for our generic Trace-and-Revoke construction,
but some existing ones can be made to fit the framework.

5.1 Trace and Revoke from DDH

Following the work of Abdalla et al. Abdalla et al. (2015), two DDH-based adaptively secure IPFEs modulo
the group size q have been proposed Agrawal et al. (2016); Benhamouda et al. (2017). However, these schemes
enjoy limited correctness: as decryption involves the computation of a discrete logarithm, one restricts the set of
exponents to be small. For instance, one may design the schemes so that inner products that are small compared
to q can be decrypted. This restriction seems incompatible with the requirements of our trace-and-revoke scheme,
as the inner product m · 〈xid,vR〉 occurring in the decryption algorithm has no reason to be small compared to p,
even if the plaintext m is small. In the DDH-based trace-and-revoke scheme below, we circumvent the issue for
the scheme from Agrawal et al. (2016) by removing the 〈xid,vR〉 component before taking the discrete logarithm.

• Setup(1λ, 1t, 1r, L). Choose a cyclic group G of prime order q along with two generators g, h ←↩ G. DDH
in G should be 2λ-hard, but taking base-g logarithms of elements gx with x ∈ {1, . . . , L} should be tractable.
Set ` = t+ r + 1. For each i ≤ `, sample si, ti ←↩ Zq and compute hi = gsi · hti . Define

msk := (s, t) and pk :=
(
G, g, h, {hi}i∈[`]

)
.

• KeyGen(msk, id). Sample xid ←↩ Z`q.
Set skid = (〈xid, s〉, 〈xid, t〉) ∈ Z2

q and pid = xid.

• Enc(pk,R,m) proceeds as follows to encrypt m ∈ {1, . . . , L}.

1. Compute vR ∈ Z`q \ {~0} such that 〈xid,vR〉 = 0 for every id ∈ R.

2. Set y = m · vR and sample r ←↩ Zq.
3. Compute D0 = gr, D1 = hr and Ei = gyi · hri for all i ≤ `.

The ciphertext C is (D0, D1, E1, . . . , E`,R).
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• Dec(skid, C). Write C = (D0, D1, E1, . . . , E`,R) and let xid denote the vector corresponding to skid =
(sx, tx). Compute:

Cxid
=
(∏̀
i=1

E
xid,i
i

)
/(Dsx

0 ·D
tx
1 ).

Then, recover vR from R and output the base-g logarithm of C
1/〈vR,xid〉
xid .

• Trace(pd,S,R,OD) proceeds as described in Section 3.

Correctness follows from elementary computations. The only difference with the direct instantiation of our
trace-and-revoke construction is that the division by 〈vR,xid〉 occurs before the computation of the discrete
logarithm, hence enabling efficient decryption.

Key and Ciphertext Sizes. Both the public key and master secret key consist of O((t + r) log q) bits. To
every user id corresponds a secret key skid of bit-length O(log q) and a vector pid of bit-length O((t + r) log q).
Algorithm Enc maps a plaintext in Zq \ {0} to a ciphertext of bit-length O((t+ r) log q). If we choose the DDH
group as an elliptic curve group (without pairings), we may set log q = O(λ).

5.2 Trace and Revoke from Paillier

In Agrawal et al. (2016), Agrawal et al. described two IPFEs relying on the algebraic framework of Paillier’s
encryption scheme Paillier (1999). One scheme handles inner products of short integers vectors, while the other
handles inner products modulo a product N = p ·q of two safe primes. Both are proved secure under the Decision
Composite Residuosity (DCR) hardness assumption. We explain here how to instantiate our trace-and-revoke
construction using this IPFE over Z`N .

A first difficulty is the fact that the Key Generation algorithm is stateful. However, this issue can be handled
by noticing that for random queries, the key generation algorithm can be made stateless (see Agrawal et al. (2016)
and Subsection 4.1 for more details). A further difficulty is the non-primality of N : our transformation requires
the modulus to be prime. We may actually apply the transformation and “pretend” that N is prime, both in the
scheme and in its security proof. The non-primality of N can be noticed only when finding vectors orthogonal
modulo N to some specified vectors. When such a task is performed, either the linear algebra operations proceed
and find such a vector, or they fail. In the latter case, a non-trivial factor of N has been found, which leads
to an algorithm against DCR. Hence, under the DCR hardness assumption, such an event is unlikely. We now
describe the resulting DCR-based trace-and-revoke scheme.

• Setup(1λ, 1t, 1r). Choose safe prime numbers p = 2p′ + 1, q = 2q′ + 1 with sufficiently large primes p′, q′ >
2Poly(λ), and compute N = pq. Then, sample g′ ←↩ Z∗N2 and compute g = g′2N mod N2, which generates
the subgroup of (2N)-th residues in Z?N2 with overwhelming probability. Set ` = t+r+1 and sample s from

the integer Gaussian distribution DZ`,σ with standard deviation parameter σ satisfying σ ≥
√
`NPoly(λ).

Compute hi = gsi mod N2 for all i ≤ `. Define

msk := s and pk :=
(
N, g,G, {hi}i∈[`]

)
.

• KeyGen(msk, id). Sample xid ∈ Z` with coefficients i.i.d. uniform in {0, . . . , N − 1}. Set skid = 〈xid, s〉 ∈ Z
and pid = xid.

• Enc(pk,R,m) proceeds as follows to encrypt m ∈ ZN \ {0}.

1. Compute vR ∈ Z`p \ {~0} such that 〈xid,vR〉 = 0 for every id ∈ R.
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2. Set y = m · vR and sample r ←↩ {0, . . . , bN/4c}.
3. Compute C0 = gr mod N2 and Ci = (1 + yiN) · hri mod N2 for all i ≤ `.

The ciphertext C is (C0, C1, . . . , C`,R).

• Dec(skid, C). Write C = (C0, C1, . . . , C`,R) and let xid denote the vector corresponding to skid. Compute:

Cxid
= C−skid0 ·

(∏̀
i=1

C
xid,i
i

)
mod N2.

Then, recover vR from R and output(
Cxid
− 1 mod N2

N

)
/〈vR,xid〉.

• Trace(pd,S,R,OD) proceeds as described in Section 3.

We note that by exploiting the fact that the attacker makes random queries, we may improve the parameter
sizes provided by Agrawal et al. (2016) exactly as in Subsection 4.2. In more detail, the proof of Theorem 5
(Appendix F) in Agrawal et al. (2016) can be modified to show that the advantage of the adversary in Game 3
is negligible even when σ is chosen as above, exactly as described in Subsection 4.2.

Key and Ciphertext Sizes. The public key and master secret key respectively consist of O((t + r) logN)
and O((t+ r) logN) bits. Note that the master secret key bit-length can be shrunk to O(λ) by only storing the
seed of the pseudo-random generator used to create it. In that case, the master secret key may be recomputed
every time the KeyGen algorithm is called. Further, to every user id corresponds a secret key skid of bit-
length O((t + r) logN) and a vector pid of bit-length O((t + r) logN). Algorithm Enc maps a plaintext in
ZN \{0} to a ciphertext of bit-length O((t+ r) logN). To compensate for the number field sieve, we must choose
logN = Ω̃(λ3).
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6 Additional Relevant Work

There are multiple parameters in trace-and-revoke systems that one desires to optimize such as security definition,
hardness assumption, public traceability, collusion size, efficiency. The most general adaptive security definition
for trace and revoke was provided by Boneh and Waters Boneh and Waters (2006). Here, the adversary is
permitted to adaptively make key requests, and must finally submit a pirate decoder. For the adversary to win
the game, pirate decoder must be useful, i.e., the challenger must be allowed to test it with various “probe”
ciphertexts and these must be decrypted with non-negligible probability, and the tracing algorithm must be able
to output at least one user whose key was not requested by the adversary.

Strong Security for Trace and Revoke. The definition of usefulness of the pirate decoder involves a subtlety
– in the strongest definition, the pirate decoder may be queried with ciphertexts that may encode a set of
maliciously chosen revoked users Boneh and Waters (2006). Most constructions do not satisfy this strong notion
of security, indeed some schemes are actually insecure in this strong game.

For instance in the schemes Naor and Pinkas (2000); Dodis and Fazio (2003), a probe ciphertext may be
distinguished from a normal ciphertext using a revoked key. In the polynomial interpolation based method
in Naor and Pinkas (2000), in order to run tracing on a suspect set, the authority chooses a probe polynomial
which agrees with the original polynomial on all the points in the suspected set. Therefore, if the suspected
set contains all the traitor keys, then the pirate cannot detect this change from the original polynomial to
the probe polynomial and the tracing works well. However, if the pirate knows one key (an evaluation of the
original polynomial) in the revoked set, then it can detect this change. This means that a revoked key is useless
in decrypting ciphertexts but useful in detecting the presence of a tracing procedure. Therefore, the tracing
algorithm from Naor and Pinkas (2000) does not allow the adversary to choose and corrupt keys of the revoked
set in the tracing game.

Combinatorial Schemes We remark that another line of work constructs combinatorial schemes Chor et al.
(1994); Naor and Pinkas (2000); Stinson and Wei (1998a,b); Naor et al. (2001); Ngo et al. (2013), in contrast to
the algebraic ones we have discussed so far; however these are usually less efficient than the algebraic candidates
and the combination of trace and revoke is often studied in weaker security models.

Parameters Obtained with the NWZ Compiler. The NWZ compiler Nishimaki et al. (2016) may be
instantiated with the bounded collusion functional encryption scheme from Gorbunov et al. (2012). This results
in a scheme that has a ciphertext size that depends polynomially on the size of the circuit used by NWZ, as well
as quartically on the collusion bound r + t. Since the circuit used by NWZ has an input size of O(r + t), the
ciphertext size grows at least as O((r + t)5Poly(λ)).

If the compiler is instantiated with the bounded collusion scheme of Goldwasser et al. (2013) (compiled
with Gorbunov et al. (2012)), then the ciphertext size still grows as O((r + t)4Poly(λ)), and moreover relies on
the subexponential hardness of learning with errors in addition to heavy hammers such as fully homomorphic
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encryption and attribute based encryption. We note that the Poly(λ) factors above are unspecified, and possibly
large: for instance, the circuit in Gorbunov et al. (2012) is represented using randomizing polynomials which
adds a polynomial factor blow-up. Similarly, using the bounded collusion FE of Agrawal and Rosen (2016)
leads to better asymptotic bounds O(r + t)3Poly(λ)) but also suffers from large polynomial factors, since again
the circuit is represented using randomizing polynomials. Here, a quadratic factor (r + t)2 is incurred by the
query dependence of Agrawal and Rosen (2016) and an additional factor (r + t) is incurred due to circuit size
dependence.
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