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SUMMARY
Gene expression arrays typically have 50 to 100 samples and 1000 to 20 000 variables (genes). There
have been many attempts to adapt statistical models for regression and classification to these data, and in

many cases these attempts have challenged the computational resources. In this article we expose a class

of techniques based on quadratic regularization of linear models, including regularized (ridge) regression,
logistic and multinomial regression, linear and mixture discriminant analysis, the Cox model and neural
networks. For all of these models, we show that dramatic computational savings are possible over naive
implementations, using standard transformations in numerical linear algebra.
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1. INTRODUCTION

Suppose we have an expression aXayonsisting oh samples angh genes. In keeping with statistical
practice the dimension & is n rows by p columns; hence its transpoXé gives the traditional biologists’
view of the vertical skinny matrix where théh column is a microarray sampke. Expression arrays have
orders of magnitude more genes than samples, hpnge n. We often have accompanying data that
characterize the samples, such as cancer class, biological species, survival time, or other quantitative
measurements. We will denote Bysuch a description for sampleA common statistical task is to build
a prediction model that uses the vector of expression valuis a sample as the input to predict the
output valuey.

In this article we discuss the use of standard statistical models in this context, such as the linear
regression model, logistic regression and the Cox model, and linear discriminant analysis, to name a few.
These models cannot be used ‘out of the box’, since the standard fitting algorithms all reguine in
fact the usual rule of thumb is that there be five or ten times as many samples as variables. But here we
consider situations with around 50 or 100, whilg typically varies between 1000 and 20 000.

There are several ways to overcome this dilemma. These include

e dramatically reducing the number of genes to bring dgythis can be done by univariate screening
of the genes, using, for examptetests (Tusheet al., 2001, e.g.);

e use of a constrained method for fitting the model, such as naive Bayes, that does nptfdralineters
freely (Tibshiraniet al., 2003);
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330 T. HASTIE AND R. TIBSHIRANI

e use of a standard fitting method along with regularization.

In this article we focus on the third of these approaches, and in particular quadratic regularization,
which has already been proposed a number of times in this context (Eilats 2001; Ghosh, 2003;
West, 2003, for example). We show how all the computations, including cross-validation, can be simply
and dramatically reduced for a large class of quadratically regularized linear models.

2. LINEAR REGRESSION AND QUADRATIC REGULARIZATION

Consider the usual linear regression mogel= xiTﬁ + € and its associated least-squares fitting
criterion

n
n)gin Do = x> (2.1)
i—1

The textbook solutios = (XTX)~1XTy does not work whem > n, since in this case thp x p matrix
XTX has rank at most, and is hence singular and cannot be inverted. A more accurate description is that
the ‘normal equations’ that lead to this expressihXg = X'y, do not have a unique solution fgf,
and infinitely many solutions are possible. Moreover, they all lead to a perfect fit; perfect on the training
data, but unlikely to be of much use for future predictions.

The ‘ridge regression’ solution to this dilemma (Hoerl and Kennard, 1970) is to modify (2.1) by adding
aquadratic penalty

n
min} (i =X\ B)* + 267 (2.2)
i=1
for somexr > 0. This gives
B =XTX+2a)XTy, (2.3)

and the problem has been fixed since oW + 1l is invertible. The effect of this penalty is to constrain
the size of the coefficients by shrinking them toward zero. More subtle effects are that coefficients of
correlated variables (genes, of which there are many) are shrunk toward each other as well as toward zero.

Remarks:

e In (2.2) we have ignored the intercept for notational simplicity. Typically an intercept is included,
and hence the model i(x) = o + x' 8, but we do not penalizgo when doing the fitting. In this
particular case we can rather work with centered variables (from each of the genes subtract its mean),
which implies that the unpenalized estimatgis the mean of thg.

e Often in ridge regression, the predictor variables are measured in different units. To make the penalty
meaningful, it is typically recommended that the variables be standardized first to have unit sample
variance. In the case of expression arrays, the variables (genes) are all measured in the same units, so
this standardization is optional.

e The tuning parametex controls the amount of shrinkage, and has to be selected by some external
means. We demonstrate the uséefold cross-validation for this purpose in the examples later on.

It appears that the ridge solution (2.3) is very expensive to compute, since it requires the inversion of
ap x p matrix (which takes ©p®) operations). Here we demonstrate a computationally efficient solution
to this problem.
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Let

X =UDVT (2.4)
=RVT (2.5)

be the singular-value decomposition (Golub and Van Loan, 1983, SVB dfat is,V is p x n with
orthonormal columng) is h x n orthogonal, andd a diagonal matrix with element, > d> > d, > 0.
HenceR = UD is alson x n, the matrix of so-calle@igengenes (Alter et al., 2000). Plugging this into
(2.3), and after some careful linear algebra, we find that

B=VRR+ i) IRTy. (2.6)

Comparing with (2.3), we see that (2.6) is the ridge-regression coefficient using the much smaler
regression matribR, pre-multiplied byV. In other words, we can solve the ridge-regression problem
involving p variables, by

o reducing thep variables (genes) to < p variables (eigengenes) via the SVD irifih?) operations;
e solving then dimensional ridge regression problem inn®) operations;

e transforming the solution back to fwdimensions in @p) operations.

Thus the computational cost is reduced frorp® to O(pn?) when p > n. For our example in
Section 4.4 this amounts toDseconds rather than eight days!

3. LINEAR PREDICTORS AND QUADRATIC PENALTIES

There are many other models that involve the variables through a linear predictor. Examples include
logistic and multinomial regression, linear and mixture discriminant analysis, the Cox model, linear
support-vector machines, and neural networks. We discuss some of these in more detail later in the paper.
All these models produce a functioh(x) that involvesx via one or more linear functions. They are
typically used in situations whene < n, and are fit by minimizing some loss functidn’_; L (yi, f(xi))
over the data. Herd. can be squared error, negative log-likelihood, negative partial log-likelihood, etc.

All suffer in a similar fashion whem >> n, and all can bdixed by quadratic regularization:

n
min> " L(yi. Bo+ X B) + ABTB. (3.1)
Po.B i

For the case of more than one set of linear coefficients (multinomial regression, neural networks), we can
simply add more quadratic penalty terms.

We now show that the SVD trick used for ridge regression can be usexhatly the same way for
all these problems: replace the huge gene expression nXatith p columns (variables or genes) by
the much smaller matriR with n columns (eigengenes), and fit the same model in the smaller space. All
aspects of model evaluation, including cross-validation, can be performed in this reduced space.
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3.1 Reduced space computations

THEOREM1 LetX = RV as in (2.5), and denote by theith row of R, avector ofn predictor values
for theith observation. Consider the pair of optimization problems:

n
(Bo. B) = argmin " L(yi. fo+ X B) + 1B B: (3.2)
ﬂo,ﬁERp i=1
n
(0. 6) = argmin " L(yi. 60+ 1;0) + 2676. (3.3)
00,.0€R" 21

Thenfo = 6o, andp = V6.

The theorem says that we can simply replace gheectorsx; by then-vectorsri, and perform our
penalized fit as before, except with much fewer predictors. A-kiector solutior is then transformed
back to thep-vector solution via a simple matrix multiplication.

Proof. LetV, bep x (p— n) and span the complementary subspadgfrto V. ThenQ = (V : V) is
ap x porthonormal matrix. Lek* = QTx andg* = QT. Then

ox*Tp* =xTQQTS = x' 8, and
oB*Tp* = BTQQTS = BTB.

Hence the criterion (3.2) is equivariant under orthogonal transformations. There is a one—one mapping
between the location of their minima, so we can focugbmather tharg. But from the definition o/ in
(2.5),xi*Tﬁ* = riTﬂi‘, whereg; consists of the first elements off*. Hence the loss part of the criterion

(3.2) inyolvesﬂo andp;. We can similarly factor the quadratic penalty into two temﬁqT,BI + Aﬂ;Tﬂg‘,
and write (3.2) as

[Z L. fo+1iT A7) + kﬁi"Tﬁf} + 285783 (34)
i=1

which we can minimize separately. The second part is minimizegh at= 0, and the result follows
by noting that the first part is identical to the criterion in (3.3) with= go andé = ;. From the
equivariance,

f=Qf =(:Vy) (f)) —Vé (3.5)

O

3.2 Eigengene weighting

Although Theorem 1 appears to be only about computations, there is an interpretative aspect as well.

The columns ofR = UD are the principal components or eigengeneXdif the columns ofX are
centered), and as such they have decreasing variances (proportional to the diagonal eleénts of
Hence the quadratic penalty in (3.3) favors the larger-variance eigengenes. We formalize this in terms of
the standardized eigengenes, the columns df
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COROLLARY 2 Letu; be theith row of U. The optimization problem

n n :
(&0, &) = argminz L(Yi, wo + ul ) + A Z 5 (3.6)
=19

wo,weRM =1

|8
N[—N

is equivalent to (3.3).

This makes explicit the fact that the leading eigengenes are penalized less than the trailing\asest!f
too small, and some of the trailirdy are very small, one could reduce the set of eigengenes even further
to some numbem < n without affecting the results much.

3.3 Cross-validation

No matter what the loss function, the models in (3.2) are defined up to the regularization pavameter
Often 1 is selected byk-fold cross-validation. The training data are randomly divided ktgroups of
roughly equal sizen/k. The model is fit to% and tested or% of the datak separate times, and the
results averaged. This is done for a series of values foypically on the log scale), and a preferred value
is chosen.

COROLLARY 3 The entire model-selection process via cross-validation can be performed using a single
reduced data s&. Hence, when we perform cross-validation, we simply sample from the roRs of

Proof. Cross-validation relies on predictiorn$ 8, which are equivariant under orthogonal rotationsi

Although for each training problem of sizé‘;—l, an even gnaller version oR could be constructed,
the computational benefit in model fitting would be far outweighed by the cost in constructingkthese
copiesRy.

3.4 Derivatives

In many situations, such as when the loss function is based on a log-likelihood, we use the criterion itself
and its derivatives as the basis for inference. Examples are profile likelihoods, score tests based on the
first derivatives, and (asymptotic) variances of the parameter estimates based on the information matrix
(second derivatives). We now see that we can obtain many of theleensional functions from the
correspondingn-dimensional versions.

COROLLARY 4 DefineL(B) = Y/ ; L(¥i, Bo+ X' B), L(O) = >{_1 L(Vi, Bo+'6). Then withd =
VT8,

L(B) = L(O). 3.7)

If L is differentiable, then

oL(B) =V8L(9);
ap 90
32L(B) 32L(0)
=V
9BopT 30967

(3.8)

VT, (3.9)

with the partial derivatives in the right-hand side evaluateti atV' .
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Notes:
e These equations hold at all values of the parameters, not just at the solutions.
e Obvious (simple) modifications apply if we include the penalty in these derivatives.

Proof. Equation (3.7) follows immediately from the identdy = RV, and the fact thax andr,” are
theith rows ofX andR. The derivatives (3.8) and (3.9) are simple applications of the chain rule to (3.7).
|

The SVD is a standard linear algebra tool, and requirgs® computations withp > n. It amounts
to a rotation of the observed data RP to a new coordinate system, in which the data have nonzero
coordinates on only the first dimensions. The Q-R decomposition (Golub and Van Loan, 1983) would
do a similar job.

4. EXAMPLES OF REGULARIZED LINEAR MODELS

In this section we briefly document and comment on a large class of linear models where quadratic
regularization can be used in a similar manner, and the same computational trick af, usithgr tharx;
can be used.

4.1 Logistic regression

Logistic regression is the traditional linear model used when the response variable is binary. The class
conditional probability is represented by

gbo+x'p
Priy = 1|x) = m. (4.1)
The parameters are typically fit by maximizing the binomial log-likelihood
n
{yi log pi + (1 —yi)log(1— p}. (4.2)

i=1

where we have used the shorthand notafipe= Pr(y = 1|x;).

If p > n— 1, maximum-likelihood estimation fails for similar reasons as in linear regression, and
several authors have proposed maximizing instead the penalized log-likelihood:

n
Y _vilogp + (1—y)log(l— pi) — 1878 (4.3)
i=1

(Ghosh, 2003; Eilerst al., 2001; Zhu and Hastie, 2004).
Remarks:

e Sometimesfop < n, and generally always whem > n, the two classes can be separated by an affine
boundary. Maximum likelihood estimates for logistic regression are undefined (parameters march off
to infinity); the regularization fixes this, and provides a unique solution in either of the above cases.

e In the separable case abovea$ 0, the sequence of solutiofgi) (suitably normalized) converge
to the optimal separating hyperplane; i.e. the same solution as the support-vector machineg{Rosset
al., 2003); see below.

Theorem 1 tells us that we can fit instead a regularized logistic regression using the vector of
eigengenes as observations, instead of the Although Eilerset al. (2001) use a similar computational
device, they expose it only in terms of the specific ML score equations deriving from (4.3).
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4.2 Generalized linear models

Linear regression by least squares fitting and logistic regression are part of the das= afized linear

models. For this class we assume the regression functioy>® = w(X), and thatu(x) is related to

the inputs via the monotoniénk functiong: g(u(x)) = f(x) = Bo + x'B. The log-linear model for
responsey; that are counts is another important member of this class. These would all be fit by regularized
maximum likelihood ifp > n.

4.3 The Cox proportional hazards model

This model is used when the response is survival time (possibly censored). The hazard function is modeled

asi(t|x) = Ao(t)eXTf’. Here there is no intercept, since it is absorbed into the baseline hagaydA
partial likelihood (Cox, 1972) is typically used for inference, regularizeg if> n.

4.4 Multiplelogistic regression

This model generalizes the logistic regression model when thei¢ are classes. It has the form
i +B]

RCLAL

When p > n, this model would be fit by maximum penalized log-likelihood, based on the multinomial
distribution

Pr(y=jlx = (4.9)

n K
max > logPryi|xi) — Y B Bj. (4.5)
1oj-Bi¥y i=1 =1

There is some redundancy in the representation (4.4), since we can add a ocgpstaall the class
coefficients for any variablgy,, and the probabilities do not change. Typically in logistic regression, this
redundancy is overcome by arbitrarily setting the coefficients for one class to zero (typicalll §latere
this is not necessary, because of the regularization penaltg;tlaee chosen automatically to minimize
the L, norm of the set of coefficients. Since the constant tefgysare not penalized, this redundancy
persists, but we still choose the minimum-norm solution. This model is discussed in more detail in Zhu
and Hastie (2004).

Even though there are multiple coefficient vectgysit is easy to see that we can once again fit the
multinomial model using the reduced set of eigengenes

Figure 1 shows the results of fitting (4.4) to a large cancer expression data set (Ramasvahmy
2001). There are 144 training tumor samples and 54 test tumor samples, spanning 14 common tumor

classes that account for 80% of new cancer diagnoses in the U.S. There are 16 063 genes for each sample.

Hencep = 16 063 anch = 144, in our terminology.

The deviance plot (center panel) measures the fit of the model in terms of the fitted probabilities, and
is smoother than misclassification error rates. We see that a good chdids about 1 for these data;
larger than that and the error rates (CV and test) start to increase.

These error rates might seem fairly highAD or 15 misclassified test observations at best). For these
data the null error rate is89 (assign all test observations to the dominant class), which is indicative of the
difficulty of multi-class classification. When this model is combined with redundant feature elimination
(Zhu and Hastie, 2004), the test error rate drops 18 @nine misclassifications).

The multinomial model not only learns the classification, but also provides estimates for the
probabilities for each class. These can be used to assign a strength to the classifications. For example,
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Fig. 1. Misclassification rates and deviance (Regative log-likelihood) for the 14-class cancer data (left and middle
panel). The labels indicate training data (tr), test data (te), and 8-fold cross-validation (cv). The minimum number of
test errors was 15. The right panel shows the same for RDA (Section 4.5); the minimum number of test errors for
RDA is 12.

one of the misclassified test observations had a probability estimatd@®ffd@ the incorrect class, and

0.40 for the correct class; such a close call with 14 classes competing might well be assigneshsaréhe
category. For six of the 15 misclassified test observations, the true class had the second highest probability
score.

4.5 Regularized linear discriminant analysis

The LDA model is based on an assumption that the input features have a multivariate Gaussian distribution
in each of the classes, with different mean vecjogsbut a common covariance matri. It isthen easy

to show that the log posterior probability for cladsgs given (up to a factor independent of class) by the
discriminant function

1
EMIE_luk + log i, (4.6)

wherery is theprior probability or background relative frequency of cldsdNote thatsy (x) is linear in
X. We then classify to the class with the largégtx). In practice, estimates

$k() =x"2 e —

. Nk . 1 A LS o AT
= —, = — Xi, Y= — Xi — Xi — 4.7
Ro= - ik nkin:k. n_kk;y;km A6 = k) 4.7)

are plugged into (4.6) giving the estimated discriminant functiiuis). However % is p x p and has
rank at mosh — K, and so its inverse in (4.6) is undefind®egularized discriminant analysis or RDA
(Friedman, 1989; Hastiet al., 2001) fixes this by replacing with (1) = £ + Al, which is nonsingular
if A > 0.

Now (4.6) and (4.7) do not appear to be covered by (3.1) and Theorem 1. In fact, one can view
RDA estimates as an instance of penalized optimal scoring (Hetstle 1995, 2001), for which there
is an optimization problem of the form (3.1). However, it is simple to show directly that (4.6) and its
regularized version are invariant under a coordinate rotation, and that appropriate terms can be dropped.
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Hence we can once again use the SVD construction and replace the teaibyngheir corresponding,
and fit the RDA model in the lower-dimensional space. Againtaiimensional linear coefficients

B =E*+ ) 1ax (4.8)

are mapped back tp-dimensions vigk = V ;.

In this case further simplification is possible by diagonaliziigusing the SVD. This allows one to
efficiently compute the solutions for a series of values wfithout inverting matrices each time; see Guo
et al. (2003) for more details.

RDA can also provide class probability estimates

(i)
e

From (4.9) it is clear that the models used by RDA and multinomial regression (4.4) are of the same
form; they both have linear discriminant functions, but the method for estimating these differ. This issue
is taken up in Hastiet al. (2001, Chapter 4). On these data RDA slightly outperformed multinomial
regression (see Figure 1; 12 vs 15 test errors).

Regularized mixture discriminant analysis (Hastie and Tibshirani, 1996; Hagtie 2001) extends
RDA in a flexible way, allowing several centers per class. The same computational tricks work there as
well.

Pr(y = k|x; ) = (4.9)

4.6 Neural networks

Single layer neural networks have hidden uajis= o (Bom +ﬁrTnx) that are linear functions of the inputs,

and then another linear/logistic/multilogit model that takeszheas inputs. Here there are two layers of
linear models, and both can benefit from regularization. Once again, quadratic penaltieggrattosv

us to re-parametrize the first layer in terms of theather than the;. The complicated neural-network

analysis in Kharet al. (2001) could have been dramatically simplified using this device.

4.7 Linear support vector machines

The support vector machine (SVM) (Vapnik, 1996) for two-class classification is a popular method for
classification. This model fits an optimal separating hyperplane between the data points in the two classes,
with built-in slack variables and regularization to handle the case when the data cannot be linearly
separated. The problem is usually posed as an application in convex optimizationy;Vibded as

{—1, +1}, it can be shown (Wahbsi al., 2000; Hastiegt al., 2001) that the problem

min (v — fo— X' B)+ + 18" B (4.10)
Bo.B i

is an equivalent formulation of this optimization problem, and is of the form (3.1). In (4.10) we have used
thehinge loss function for an SVM model, where the-" denotegositive part.

Users of SVM technology will recognize that our computational device must amount to some version
of the ‘kernel’ trick, which has been applied in many of the situations listed above. For linear models,
the kernel trick amounts to a different re-parametrization of the data, alsogrdown ton dimensions.

Since the solution to (4.10) can be shown to be of the f8rea X&, the vector of fitted values (ignoring
the intercept) is represented as

f=xxTa = Ka. (4.11)
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Thegrammatrix K = XXT represents the x n inner-products between all pair input vectors in the data.
The new input variables are tinekernel basis function& (x, x;) = x'x;, i =1,...,n.

From (4.11) it is clear that the parametrization recognizesghatX T« is in the row space oX, just
adifferent parametrization of oyt = V6. However, with the parametrization (4.11), the general criterion
in (3.1) becomes

n
minY Ly, Bo+ k'a) + ra ' Ka, 4.12
ﬁw; (i o+ ke (4.12)

wherek; is theith row of K. Hence our re-parametrization includes in addition an orthogonalization
which diagonalizes the penalty in (4.12), leaving the problem in the same form as the original diagonal
penalty problem.

The kernel trick allows for more flexible modeling, and is usually approached in the reverse order.
A positive-definite kerneK (x, x") generates a set of basis functionK (x, x;), and hence a regression
model f (x) = Bo + Zi”:l K (X, xj)aj. A popular example of such a kernel is the radial basis function
(Gaussian bump function)

K(x, x') = e 7=, (4.13)

The optimization problem is exactly the same as in (4.12). What is often not appreciated is that the
roughness penalty on this space is induced by the kernel as well, as is evidenced in (4.12). Sext Hastie
al. (2004) for more details.

4.8 Euclidean distance methods

A number of multivariate methods rely on the Euclidean distances between pairs of obsent&tions.
means clustering and nearest-neighbor classification methods are two popular examples. It is easy to see
that for such methods, we can also work with theather than the originat;, snce such methods are
rotationally invariant.

e With K-means clustering, we would run the entire algorithm in the reduced space of eigengenes. The
subclass meang, could then be transformed back into the original spgge= Viy,. The cluster
assignments are unchanged.

e With k-nearest-neighbor classification we would drop the query peimto the n-dimensional
subspace, = VTx, and then classify according to the labels of the clo&est

The same is true for hierarchical clustering, even when the correlation ‘distance’ is used.

5. DISCUSSION

There is one undesirable aspect to quadratically regularized linear models, for example, in the gene
expression applications. The solutioi§\) involve all the genes—no selection is done. An alternative
is to use the so-called; penaltyi ZJP:l |8j| (Tibshirani, 1996), which causes many coefficients to be
exactly zero. In fact, ath. 1 penalty permits at most nonzero coefficients (Efroet al., 2002; Zhuet al.,
2003), which can be a problemrifis small. However, our computational trick to address the first issue
only works with a quadratic penalty. Practice has shown that quadratically regularized models can still
deliver good predictive performance. We have seen that SVMs are of this form, and they have become
quite popular as classifiers. There have been several (ad hoc) approaches in the literature to select genes
based on the size of their regularized coefficients (see Zhu and Hastie (2004) and references therein).
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The models discussed here are not new; they have been in the statistics folklore for a long time,
and many have already been used with expression arrays. The computational shortcuts possible with
quadratically regularized linear models have also been discovered many times, often recently under the
guise of ‘the kernel trick’ in the kernel learning literature (8kitopf and Smola, 2001). Here we have
shown that for all quadratically regularized models with linear predictors this device is totally transparent,
and with a small amount of preprocessing all the models described here are computationally manageable
with standard software.
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