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SUMMARY
Gene expression arrays typically have 50 to 100 samples and 1000 to 20 000 variables (genes). There

have been many attempts to adapt statistical models for regression and classification to these data, and in
many cases these attempts have challenged the computational resources. In this article we expose a class
of techniques based on quadratic regularization of linear models, including regularized (ridge) regression,
logistic and multinomial regression, linear and mixture discriminant analysis, the Cox model and neural
networks. For all of these models, we show that dramatic computational savings are possible over naive
implementations, using standard transformations in numerical linear algebra.
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1. INTRODUCTION

Suppose we have an expression arrayX consisting ofn samples andp genes. In keeping with statistical
practice the dimension ofX is n rows byp columns; hence its transposeXT gives the traditional biologists’
view of the vertical skinny matrix where thei th column is a microarray samplexi . Expression arrays have
orders of magnitude more genes than samples, hencep � n. We often have accompanying data that
characterize the samples, such as cancer class, biological species, survival time, or other quantitative
measurements. We will denote byyi such a description for samplei . A common statistical task is to build
a prediction model that uses the vector of expression valuesx for a sample as the input to predict the
output valuey.

In this article we discuss the use of standard statistical models in this context, such as the linear
regression model, logistic regression and the Cox model, and linear discriminant analysis, to name a few.
These models cannot be used ‘out of the box’, since the standard fitting algorithms all requirep < n; in
fact the usual rule of thumb is that there be five or ten times as many samples as variables. But here we
consider situations withn around 50 or 100, whilep typically varies between 1000 and 20 000.

There are several ways to overcome this dilemma. These include

• dramatically reducing the number of genes to bring downp; this can be done by univariate screening
of the genes, using, for example,t-tests (Tusheret al., 2001, e.g.);

• use of a constrained method for fitting the model, such as naive Bayes, that does not fit allp parameters
freely (Tibshiraniet al., 2003);
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330 T. HASTIE AND R. TIBSHIRANI

• use of a standard fitting method along with regularization.

In this article we focus on the third of these approaches, and in particular quadratic regularization,
which has already been proposed a number of times in this context (Eilerset al., 2001; Ghosh, 2003;
West, 2003, for example). We show how all the computations, including cross-validation, can be simply
and dramatically reduced for a large class of quadratically regularized linear models.

2. LINEAR REGRESSION AND QUADRATIC REGULARIZATION

Consider the usual linear regression modelyi = xT
i β + εi and its associated least-squares fitting

criterion

min
β

n∑
i=1

(yi − xT
i β)2. (2.1)

The textbook solution̂β = (XTX)−1XTy does not work whenp > n, since in this case thep × p matrix
XTX has rank at mostn, and is hence singular and cannot be inverted. A more accurate description is that
the ‘normal equations’ that lead to this expression,XTXβ = XTy, do not have a unique solution forβ,
and infinitely many solutions are possible. Moreover, they all lead to a perfect fit; perfect on the training
data, but unlikely to be of much use for future predictions.

The ‘ridge regression’ solution to this dilemma (Hoerl and Kennard, 1970) is to modify (2.1) by adding
aquadratic penalty

min
β

n∑
i=1

(yi − xT
i β)2 + λβTβ (2.2)

for someλ > 0. This gives

β̂ = (XTX + λI)−1XTy, (2.3)

and the problem has been fixed since nowXTX +λI is invertible. The effect of this penalty is to constrain
the size of the coefficients by shrinking them toward zero. More subtle effects are that coefficients of
correlated variables (genes, of which there are many) are shrunk toward each other as well as toward zero.

Remarks:

• In (2.2) we have ignored the intercept for notational simplicity. Typically an intercept is included,
and hence the model isf (x) = β0 + xTβ, but we do not penalizeβ0 when doing the fitting. In this
particular case we can rather work with centered variables (from each of the genes subtract its mean),
which implies that the unpenalized estimateβ̂0 is the mean of theyi .

• Often in ridge regression, the predictor variables are measured in different units. To make the penalty
meaningful, it is typically recommended that the variables be standardized first to have unit sample
variance. In the case of expression arrays, the variables (genes) are all measured in the same units, so
this standardization is optional.

• The tuning parameterλ controls the amount of shrinkage, and has to be selected by some external
means. We demonstrate the use ofK -fold cross-validation for this purpose in the examples later on.

It appears that the ridge solution (2.3) is very expensive to compute, since it requires the inversion of
a p × p matrix (which takes O(p3) operations). Here we demonstrate a computationally efficient solution
to this problem.
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Let

X = UDVT (2.4)

= RVT (2.5)

be the singular-value decomposition (Golub and Van Loan, 1983, SVD) ofX; that is,V is p × n with
orthonormal columns,U is n × n orthogonal, andD a diagonal matrix with elementsd1 � d2 � dn � 0.
HenceR = UD is alson × n, the matrix of so-calledeigengenes (Alter et al., 2000). Plugging this into
(2.3), and after some careful linear algebra, we find that

β̂ = V(RTR + λI)−1RTy. (2.6)

Comparing with (2.3), we see that (2.6) is the ridge-regression coefficient using the much smallern × n
regression matrixR, pre-multiplied byV. In other words, we can solve the ridge-regression problem
involving p variables, by

• reducing thep variables (genes) ton � p variables (eigengenes) via the SVD in O(pn2) operations;

• solving then dimensional ridge regression problem in O(n3) operations;

• transforming the solution back to top dimensions in O(np) operations.

Thus the computational cost is reduced from O(p3) to O(pn2) when p > n. For our example in
Section 4.4 this amounts to 0.4 seconds rather than eight days!

3. LINEAR PREDICTORS AND QUADRATIC PENALTIES

There are many other models that involve the variables through a linear predictor. Examples include
logistic and multinomial regression, linear and mixture discriminant analysis, the Cox model, linear
support-vector machines, and neural networks. We discuss some of these in more detail later in the paper.
All these models produce a functionf (x) that involvesx via one or more linear functions. They are
typically used in situations wherep < n, and are fit by minimizing some loss function

∑n
i=1 L(yi , f (xi ))

over the data. HereL can be squared error, negative log-likelihood, negative partial log-likelihood, etc.
All suffer in a similar fashion whenp � n, and all can befixed by quadratic regularization:

min
β0,β

n∑
i=1

L(yi , β0 + xT
i β) + λβTβ. (3.1)

For the case of more than one set of linear coefficients (multinomial regression, neural networks), we can
simply add more quadratic penalty terms.

We now show that the SVD trick used for ridge regression can be used inexactly the same way for
all these problems: replace the huge gene expression matrixX with p columns (variables or genes) by
the much smaller matrixR with n columns (eigengenes), and fit the same model in the smaller space. All
aspects of model evaluation, including cross-validation, can be performed in this reduced space.
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3.1 Reduced space computations

THEOREM 1 Let X = RVT as in (2.5), and denote byri the i th row of R, avector ofn predictor values
for thei th observation. Consider the pair of optimization problems:

(β̂0, β̂) = argmin
β0,β∈R p

n∑
i=1

L(yi , β0 + xT
i β) + λβTβ; (3.2)

(θ̂0, θ̂ ) = argmin
θ0,θ∈Rn

n∑
i=1

L(yi , θ0 + rT
i θ) + λθTθ. (3.3)

Thenβ̂0 = θ̂0, andβ̂ = Vθ̂ .

The theorem says that we can simply replace thep-vectorsxi by then-vectorsri , and perform our
penalized fit as before, except with much fewer predictors. Then-vector solutionθ̂ is then transformed
back to thep-vector solution via a simple matrix multiplication.

Proof. Let V⊥ be p × (p − n) and span the complementary subspace inR
p to V. ThenQ = (V : V⊥) is

a p × p orthonormal matrix. Letx∗
i = QTxi andβ∗ = QTβ. Then

•x∗
i

Tβ∗ = xT
i QQTβ = xT

i β, and

•β∗Tβ∗ = βTQQTβ = βTβ.

Hence the criterion (3.2) is equivariant under orthogonal transformations. There is a one–one mapping
between the location of their minima, so we can focus onβ∗ rather thanβ. But from the definition ofV in
(2.5),x∗

i
Tβ∗ = rT

i β∗
1, whereβ∗

1 consists of the firstn elements ofβ∗. Hence the loss part of the criterion
(3.2) involvesβ0 andβ∗

1. Wecan similarly factor the quadratic penalty into two termsλβ∗
1

Tβ∗
1 +λβ∗

2
Tβ∗

2,
and write (3.2) as

[
n∑

i=1

L(yi , β0 + rT
i β∗

1) + λβ∗
1

T
β∗

1

]
+

[
λβ∗

2
T
β∗

2

]
, (3.4)

which we can minimize separately. The second part is minimized atβ∗
2 = 0, and the result follows

by noting that the first part is identical to the criterion in (3.3) withθ0 = β0 and θ = β∗
1. From the

equivariance,

β̂ = Qβ̂∗ = (V : V⊥)

(
θ̂

0

)
= Vθ̂ (3.5)

�

3.2 Eigengene weighting

Although Theorem 1 appears to be only about computations, there is an interpretative aspect as well.
The columns ofR = UD are the principal components or eigengenes ofX (if the columns ofX are
centered), and as such they have decreasing variances (proportional to the diagonal elements ofD2).
Hence the quadratic penalty in (3.3) favors the larger-variance eigengenes. We formalize this in terms of
thestandardized eigengenes, the columns ofU.
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COROLLARY 2 Let ui be thei th row of U. The optimization problem

(ω̂0, ω̂) = argmin
ω0,ω∈Rn

n∑
i=1

L(yi , ω0 + uT
i ω) + λ

n∑
j=1

ω2
j

d2
j

(3.6)

is equivalent to (3.3).

This makes explicit the fact that the leading eigengenes are penalized less than the trailing ones. Ifλ is not
too small, and some of the trailingd j are very small, one could reduce the set of eigengenes even further
to some numberm < n without affecting the results much.

3.3 Cross-validation

No matter what the loss function, the models in (3.2) are defined up to the regularization parameterλ.
Often λ is selected byk-fold cross-validation. The training data are randomly divided intok groups of
roughly equal sizen/k. The model is fit tok−1

k and tested on1k of the data,k separate times, and the
results averaged. This is done for a series of values forλ (typically on the log scale), and a preferred value
is chosen.

COROLLARY 3 The entire model-selection process via cross-validation can be performed using a single
reduced data setR. Hence, when we perform cross-validation, we simply sample from the rows ofR.

Proof. Cross-validation relies on predictionsxTβ, which are equivariant under orthogonal rotations.�

Although for each training problem of sizen k−1
k , an even smaller version ofR could be constructed,

the computational benefit in model fitting would be far outweighed by the cost in constructing thesek
copiesRk .

3.4 Derivatives

In many situations, such as when the loss function is based on a log-likelihood, we use the criterion itself
and its derivatives as the basis for inference. Examples are profile likelihoods, score tests based on the
first derivatives, and (asymptotic) variances of the parameter estimates based on the information matrix
(second derivatives). We now see that we can obtain many of thesep-dimensional functions from the
correspondingn-dimensional versions.

COROLLARY 4 DefineL(β) = ∑n
i=1 L(yi , β0 + xT

i β), L(θ) = ∑n
i=1 L(yi , β0 + rT

i θ). Then withθ =
VTβ,

L(β) = L(θ). (3.7)

If L is differentiable, then

∂L(β)

∂β
= V

∂L(θ)

∂θ
; (3.8)

∂2L(β)

∂β∂βT = V
∂2L(θ)

∂θ∂θT VT, (3.9)

with the partial derivatives in the right-hand side evaluated atθ = VTβ.
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334 T. HASTIE AND R. TIBSHIRANI

Notes:

• These equations hold at all values of the parameters, not just at the solutions.

• Obvious (simple) modifications apply if we include the penalty in these derivatives.

Proof. Equation (3.7) follows immediately from the identityX = RVT, and the fact thatxT
i andrT

i are
thei th rows ofX andR. The derivatives (3.8) and (3.9) are simple applications of the chain rule to (3.7).

�

The SVD is a standard linear algebra tool, and requires O(pn2) computations withp > n. It amounts
to a rotation of the observed data inR p to a new coordinate system, in which the data have nonzero
coordinates on only the firstn dimensions. The Q-R decomposition (Golub and Van Loan, 1983) would
do a similar job.

4. EXAMPLES OF REGULARIZED LINEAR MODELS

In this section we briefly document and comment on a large class of linear models where quadratic
regularization can be used in a similar manner, and the same computational trick of usingri rather thanxi

can be used.

4.1 Logistic regression

Logistic regression is the traditional linear model used when the response variable is binary. The class
conditional probability is represented by

Pr(y = 1|x) = eβ0+xTβ

1 + eβ0+xTβ
. (4.1)

The parameters are typically fit by maximizing the binomial log-likelihood
n∑

i=1

{yi log pi + (1 − yi ) log(1 − pi )} , (4.2)

where we have used the shorthand notationpi = Pr(y = 1|xi ).
If p > n − 1, maximum-likelihood estimation fails for similar reasons as in linear regression, and

several authors have proposed maximizing instead the penalized log-likelihood:
n∑

i=1

yi log pi + (1 − yi ) log(1 − pi ) − λβTβ (4.3)

(Ghosh, 2003; Eilerset al., 2001; Zhu and Hastie, 2004).

Remarks:

• Sometimes forp < n, and generally always whenp � n, the two classes can be separated by an affine
boundary. Maximum likelihood estimates for logistic regression are undefined (parameters march off
to infinity); the regularization fixes this, and provides a unique solution in either of the above cases.

• In the separable case above, asλ ↓ 0, the sequence of solutionŝβ(λ) (suitably normalized) converge
to the optimal separating hyperplane; i.e. the same solution as the support-vector machine (Rossetet
al., 2003); see below.

Theorem 1 tells us that we can fit instead a regularized logistic regression using the vector of
eigengenesri as observations, instead of thexi . Although Eilerset al. (2001) use a similar computational
device, they expose it only in terms of the specific ML score equations deriving from (4.3).
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4.2 Generalized linear models

Linear regression by least squares fitting and logistic regression are part of the class ofgeneralized linear
models. For this class we assume the regression function E(y|x) = µ(x), and thatµ(x) is related to
the inputs via the monotoniclink function g: g(µ(x)) = f (x) = β0 + xTβ. The log-linear model for
responsesyi that are counts is another important member of this class. These would all be fit by regularized
maximum likelihood ifp � n.

4.3 The Cox proportional hazards model

This model is used when the response is survival time (possibly censored). The hazard function is modeled
asλ(t |x) = λ0(t)exTβ . Here there is no intercept, since it is absorbed into the baseline hazardλ0(t). A
partial likelihood (Cox, 1972) is typically used for inference, regularized ifp � n.

4.4 Multiple logistic regression

This model generalizes the logistic regression model when there areK > 2 classes. It has the form

Pr(y = j |x) = eβ0 j +βT
j x∑K

�=1 eβ0�+βT
� x

. (4.4)

When p > n, this model would be fit by maximum penalized log-likelihood, based on the multinomial
distribution

max
{β0 j ,β j }K

j=1

n∑
i=1

log Pr(yi |xi ) − λ

K∑
j=1

βT
j β j . (4.5)

There is some redundancy in the representation (4.4), since we can add a constantcm to all the class
coefficients for any variablexm , and the probabilities do not change. Typically in logistic regression, this
redundancy is overcome by arbitrarily setting the coefficients for one class to zero (typically classK ). Here
this is not necessary, because of the regularization penalty; thecm are chosen automatically to minimize
the L2 norm of the set of coefficients. Since the constant termsβ0 j are not penalized, this redundancy
persists, but we still choose the minimum-norm solution. This model is discussed in more detail in Zhu
and Hastie (2004).

Even though there are multiple coefficient vectorsβ j , it is easy to see that we can once again fit the
multinomial model using the reduced set of eigengenesri .

Figure 1 shows the results of fitting (4.4) to a large cancer expression data set (Ramaswamyet al.,
2001). There are 144 training tumor samples and 54 test tumor samples, spanning 14 common tumor
classes that account for 80% of new cancer diagnoses in the U.S. There are 16 063 genes for each sample.
Hencep = 16 063 andn = 144, in our terminology.

The deviance plot (center panel) measures the fit of the model in terms of the fitted probabilities, and
is smoother than misclassification error rates. We see that a good choice ofλ is about 1 for these data;
larger than that and the error rates (CV and test) start to increase.

These error rates might seem fairly high (0.27 or 15 misclassified test observations at best). For these
data the null error rate is 0.89 (assign all test observations to the dominant class), which is indicative of the
difficulty of multi-class classification. When this model is combined with redundant feature elimination
(Zhu and Hastie, 2004), the test error rate drops to 0.18 (nine misclassifications).

The multinomial model not only learns the classification, but also provides estimates for the
probabilities for each class. These can be used to assign a strength to the classifications. For example,
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Fig. 1. Misclassification rates and deviance (2× negative log-likelihood) for the 14-class cancer data (left and middle
panel). The labels indicate training data (tr), test data (te), and 8-fold cross-validation (cv). The minimum number of
test errors was 15. The right panel shows the same for RDA (Section 4.5); the minimum number of test errors for
RDA is 12.

one of the misclassified test observations had a probability estimate of 0.46 for the incorrect class, and
0.40 for the correct class; such a close call with 14 classes competing might well be assigned to theunsure
category. For six of the 15 misclassified test observations, the true class had the second highest probability
score.

4.5 Regularized linear discriminant analysis

The LDA model is based on an assumption that the input features have a multivariate Gaussian distribution
in each of the classes, with different mean vectorsµk , but a common covariance matrix�. It is then easy
to show that the log posterior probability for classk is given (up to a factor independent of class) by the
discriminant function

δk(x) = xT�−1µk − 1

2
µT

k �−1µk + logπk, (4.6)

whereπk is theprior probability or background relative frequency of classk. Note thatδk(x) is linear in
x . We then classify to the class with the largestδk(x). In practice, estimates

π̂k = nk

n
, µ̂k = 1

nk

∑
yi =k

xi , �̂ = 1

n − k

K∑
k=1

∑
yi =k

(xi − µ̂k)(xi − µ̂k)
T (4.7)

are plugged into (4.6) giving the estimated discriminant functionsδ̂k(x). However, �̂ is p × p and has
rank at mostn − K , and so its inverse in (4.6) is undefined.Regularized discriminant analysis or RDA
(Friedman, 1989; Hastieet al., 2001) fixes this by replacinĝ� with �̂(λ) = �̂ +λI, which is nonsingular
if λ > 0.

Now (4.6) and (4.7) do not appear to be covered by (3.1) and Theorem 1. In fact, one can view
RDA estimates as an instance of penalized optimal scoring (Hastieet al., 1995, 2001), for which there
is an optimization problem of the form (3.1). However, it is simple to show directly that (4.6) and its
regularized version are invariant under a coordinate rotation, and that appropriate terms can be dropped.
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Hence we can once again use the SVD construction and replace the trainingxi by their correspondingri ,
and fit the RDA model in the lower-dimensional space. Again then-dimensional linear coefficients

β̂∗
k = (�̂∗ + λI)−1µ̂∗

k (4.8)

are mapped back top-dimensions viaβ̂k = Vβ̂∗
k .

In this case further simplification is possible by diagonalizing�̂∗ using the SVD. This allows one to
efficiently compute the solutions for a series of values ofλ without inverting matrices each time; see Guo
et al. (2003) for more details.

RDA can also provide class probability estimates

P̂r(y = k|x; λ) = eδk (x;λ)∑K
j=1 eδ j (x;λ)

. (4.9)

From (4.9) it is clear that the models used by RDA and multinomial regression (4.4) are of the same
form; they both have linear discriminant functions, but the method for estimating these differ. This issue
is taken up in Hastieet al. (2001, Chapter 4). On these data RDA slightly outperformed multinomial
regression (see Figure 1; 12 vs 15 test errors).

Regularized mixture discriminant analysis (Hastie and Tibshirani, 1996; Hastieet al., 2001) extends
RDA in a flexible way, allowing several centers per class. The same computational tricks work there as
well.

4.6 Neural networks

Single layer neural networks have hidden unitszm = σ(β0m +βT
m x) that are linear functions of the inputs,

and then another linear/logistic/multilogit model that takes thezm as inputs. Here there are two layers of
linear models, and both can benefit from regularization. Once again, quadratic penalties on theβm allow
us to re-parametrize the first layer in terms of theri rather than thexi . The complicated neural-network
analysis in Khanet al. (2001) could have been dramatically simplified using this device.

4.7 Linear support vector machines

The support vector machine (SVM) (Vapnik, 1996) for two-class classification is a popular method for
classification. This model fits an optimal separating hyperplane between the data points in the two classes,
with built-in slack variables and regularization to handle the case when the data cannot be linearly
separated. The problem is usually posed as an application in convex optimization. Withyi coded as
{−1, +1}, it can be shown (Wahbaet al., 2000; Hastieet al., 2001) that the problem

min
β0,β

n∑
i=1

(yi − β0 − xT
i β)+ + λβTβ (4.10)

is an equivalent formulation of this optimization problem, and is of the form (3.1). In (4.10) we have used
thehinge loss function for an SVM model, where the ‘+’ denotespositive part.

Users of SVM technology will recognize that our computational device must amount to some version
of the ‘kernel’ trick, which has been applied in many of the situations listed above. For linear models,
the kernel trick amounts to a different re-parametrization of the data, also fromp down ton dimensions.
Since the solution to (4.10) can be shown to be of the formβ̂ = Xα̂, the vector of fitted values (ignoring
the intercept) is represented as

f̂ = XXTα̂ = Kα̂. (4.11)
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Thegram matrixK = XXT represents then × n inner-products between all pair input vectors in the data.
The new input variables are then kernel basis functionsK (x, xi ) = xTxi , i = 1, . . . , n.

From (4.11) it is clear that the parametrization recognizes thatβ = XTα is in the row space ofX, just
adifferent parametrization of ourβ = Vθ . However, with the parametrization (4.11), the general criterion
in (3.1) becomes

min
β0,α

n∑
i=1

L(yi , β0 + kT
i α) + λαTKα, (4.12)

whereki is thei th row of K. Hence our re-parametrizationri includes in addition an orthogonalization
which diagonalizes the penalty in (4.12), leaving the problem in the same form as the original diagonal
penalty problem.

The kernel trick allows for more flexible modeling, and is usually approached in the reverse order.
A positive-definite kernelK (x, x ′) generates a set ofn basis functionsK (x, xi ), and hence a regression
model f (x) = β0 + ∑n

i=1 K (x, xi )αi . A popular example of such a kernel is the radial basis function
(Gaussian bump function)

K (x, x ′) = e−γ ||x−x ′||2. (4.13)

The optimization problem is exactly the same as in (4.12). What is often not appreciated is that the
roughness penalty on this space is induced by the kernel as well, as is evidenced in (4.12). See Hastieet
al. (2004) for more details.

4.8 Euclidean distance methods

A number of multivariate methods rely on the Euclidean distances between pairs of observations.K -
means clustering and nearest-neighbor classification methods are two popular examples. It is easy to see
that for such methods, we can also work with theri rather than the originalxi , since such methods are
rotationally invariant.

• With K -means clustering, we would run the entire algorithm in the reduced space of eigengenes. The
subclass means̄rm could then be transformed back into the original spacex̄m = Vr̄m . The cluster
assignments are unchanged.

• With k-nearest-neighbor classification we would drop the query pointx into the n-dimensional
subspace,r = VTx , and then classify according to the labels of the closestk ri .

The same is true for hierarchical clustering, even when the correlation ‘distance’ is used.

5. DISCUSSION

There is one undesirable aspect to quadratically regularized linear models, for example, in the gene
expression applications. The solutionsβ̂(λ) involve all the genes—no selection is done. An alternative
is to use the so-calledL1 penaltyλ

∑p
j=1 |β j | (Tibshirani, 1996), which causes many coefficients to be

exactly zero. In fact, anL1 penalty permits at mostn nonzero coefficients (Efronet al., 2002; Zhuet al.,
2003), which can be a problem ifn is small. However, our computational trick to address the first issue
only works with a quadratic penalty. Practice has shown that quadratically regularized models can still
deliver good predictive performance. We have seen that SVMs are of this form, and they have become
quite popular as classifiers. There have been several (ad hoc) approaches in the literature to select genes
based on the size of their regularized coefficients (see Zhu and Hastie (2004) and references therein).
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The models discussed here are not new; they have been in the statistics folklore for a long time,
and many have already been used with expression arrays. The computational shortcuts possible with
quadratically regularized linear models have also been discovered many times, often recently under the
guise of ‘the kernel trick’ in the kernel learning literature (Schölkopf and Smola, 2001). Here we have
shown that for all quadratically regularized models with linear predictors this device is totally transparent,
and with a small amount of preprocessing all the models described here are computationally manageable
with standard software.
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