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Quantum entanglement is an indispensable resource for many significant quantum information processing

tasks. However, in practice, it is difficult to distribute quantum entanglement over a long distance, due to the

absorption and noise in quantum channels. A solution to this challenge is a quantum repeater, which can extend

the distance of entanglement distribution. In this scheme, the time consumption of classical communication

and local operations takes an important place with respect to time efficiency. Motivated by this observation, we

consider a basic quantum repeater scheme that focuses on not only the optimal rate of entanglement concentration

but also the complexity of local operations and classical communication. First, we consider the case where two

different two-qubit pure states are initially distributed in the scenario. We construct a protocol with the optimal

entanglement-concentration rate and less consumption of local operations and classical communication. We

also find a criterion for the projective measurements to achieve the optimal probability of creating a maximally

entangled state between the two ends. Second, we consider the case in which two general pure states are prepared

and general measurements are allowed. We get an upper bound on the probability for a successful measurement

operation to produce a maximally entangled state without any further local operations.

DOI: 10.1103/PhysRevA.97.012325

I. INTRODUCTION

In the last three decades, quantum computation and quan-
tum information have become one of the most active research
fields. Many significant quantum information processing pro-
tocols have been proposed [1,2]. Remarkable progress has
been achieved in both theoretical and experimental directions.
For example, this includes quantum teleportation for sending
an unknown quantum bit [3], quantum key distribution for
quantum cryptography [4], and quantum dense coding for
communicating two bits by sending only one qubit [5,6]. Note
that quantum dense coding is somewhat like the inverse of
quantum teleportation. As the most basic and counterintuitive
characteristic of quantum mechanics, quantum entanglement
plays an indispensable role in all the above applications.

The first step towards the implementation of these appli-
cations is to distribute quantum entanglement over remotely
located participants. However, there are two bottlenecks to
directly sending quantum states over a long distance [7]. On
one hand, the probability of absorption when transmitting a
photon increases exponentially with the distance. For example,
a 1-km-long fiber has a transmission of 95%, while the rate for
a 1000-km fiber is 10−10 Hz, which means that a photon will be

*zhaofeng.su@student.uts.edu.au
†lilvzh@mail.sysu.edu.cn

transmitted successfully every 300 years [8]. On the other hand,
even when a photon arrives at the destination, the fidelity of
the transmitted state decreases exponentially with the distance
because of the noise in quantum channels. Theoretical results
also indicate that it is impossible to find a revised protocol to
circumvent this rate-distance trade-off in the application of the
quantum key distribution [9–12].

An effective solution to overcome the rate-distance trade-off
is to use quantum repeaters to divide the long distance into
many shorter segments. Each of the segments has a tolerable
probability for absorption and noise. Since the first protocol
was proposed by Briegel in 1998 [7], many schemes for
realizing quantum repeaters have been developed [13–17].
Significant experimental progress has also been made in the last
two decades [18–23]. The performance of quantum repeaters
can be assessed by using bounds on the secret-key-agreement
capacity of quantum communication channels [11].

In the basic scenario of quantum repeaters, two copies of a
bipartite quantum state ρ are shared by three participants, say
Alice, Clare, and Bob. Alice and Clare share the copy ρAC , and
Clare and Bob share ρCB . By performing local operations and
classical communication (LOCC) between these three parties,
quantum entanglement can be created between Alice and Bob,
thereby extending the distance of the entanglement distribution
[8]. The basic scenario is depicted in Fig 1.

This basic scenario of quantum repeaters is also known as

quantum entanglement swapping [24]. When less entangled
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FIG. 1. Basic scenario of quantum repeaters.

pure states are initially distributed in the scenario, the process

of concentrating a maximally entangled state is termed en-

tanglement concentration [25,26]. A simpler scenario is one

with only two participants, which has been extensively studied

[6,27–29]. Many results have also been achieved for quantum

entanglement swapping [30–34]. Bose et al. considered the

case where the same two-qubit pure states were prepared in

each segment [30]. They found the optimal strategy of quantum

swapping with respect to concentrating the most entanglement

between Alice and Bob. Shi et al. considered the case where

different two-qubit pure states were prepared [31]. In their

strategy, Clare performs a projective measurement in the stan-

dard Bell basis. Then, Alice and Bob perform local operations

to create a maximally entangled state between them. Shi et al.

found out that the optimal entanglement-concentration rate was

exactly the same as the concentration rate in the scenario where

the less entangled single resource was directly distributed

between Alice and Bob. Hardy and Song considered the case

where general entangled pure states were distributed in a

chain scenario [32]. Perseguers et al. exploited the scenario

where general two-qubit pure states were distributed in a

quantum network [33]. The quantum entanglement swapping

configuration can also be used to activate nonlocality from

local resources [34]. We have considered a similar scenario

for generating tripartite genuine nonlocality from bipartite

nonlocal resources [35].

In the basic quantum repeater scheme, the protocol consists

of the preparation of quantum resources and LOCC. In practice,

quantum resources can be efficiently transmitted over a short

distance [8]. Once the quantum resources are prepared, entan-

glement can be concentrated from the scenario by applying

LOCC. Therefore, it is of practical significance to consider the

LOCC complexity in the protocol. However, LOCC is consid-

ered an unlimited resource in the aforementioned references.

In this work, we present some basic quantum re-

peater schemes while considering both the entanglement-

concentration rate and the LOCC complexity. First, we exploit

the scenario where two different two-qubit pure states are

prepared. We construct a protocol which can create maximal

entanglement between Alice and Bob at the optimal rate and

with less consumption of LOCC resources. We also find a crite-

ria for the projective measurements which are able to achieve

the optimal rate of entanglement concentration. Second, we

consider the case in which two general pure states are prepared

and general measurements are allowed. We get an upper bound

on the probability for a successful measurement operation to

produce a maximally entangled state between Alice and Bob

such that the rate of entanglement concentration is as high as

possible while the LOCC complexity is as low as possible.

II. TAKING DIFFERENT TWO-QUBIT

PURE STATES AS RESOURCES

In this section, we consider the case where two different pure

states of a two-qubit system are prepared in the basic quantum

FIG. 2. Quantum repeater scheme with different two-qubit pure

states.

repeater configuration. We construct a protocol to concentrate

the maximally entangled two-qubit state between Alice and

Bob at the optimal entanglement-concentration rate and with

less LOCC complexity.

Up to some local unitary operations, any pure state of

a two-qubit system can be written as |�θ 〉 ≡ cos θ |00〉 +
sin θ |11〉,θ ∈ [0,π

2
]. The state |�θ 〉 is said to be entangled

if θ ∈ (0,π
2

). Otherwise, it is separable. When θ = π
4

, the

state is known as the standard maximally entangled state of

a two-qubit system, denoted |�〉 = (|00〉 + |11〉)/
√

2. Note

that quantum entanglement is a kind of resource that cannot

be created or increased with LOCC. Particularly, local unitary

operations cannot affect the amount of entanglement that exists

within entangled quantum systems. Thus, we only need to

consider the case where the entangled states |�θ 〉 and |�η〉
with θ,η ∈ (0,π

2
) are initially distributed in the configuration.

A general two-qubit maximally entangled state is equivalent

to |�〉 up to a local unitary U , denoted as |�U 〉 ≡ (U ⊗ I )|�〉.
By applying LOCC to the configuration, we expect to obtain

a maximally entangled state |�U 〉 between Alice and Bob

such that the rate of entanglement concentration is as high

as possible while the LOCC complexity is as low as possible.

The configuration is depicted in Fig. 2. To achieve this goal,

we first need to present some lemmas.

Lemma 1. Suppose two parties share a two-qubit state

|�λ〉 = cos λ|00〉 + sin λ|11〉 with λ ∈ (0,π
2

). By perform-

ing LOCC, the state can be probabilistically transformed

into a maximally entangled state. The probability of a

successful transformation is upper bounded by PE(�λ) ≡
min{2 cos2 λ,2 sin2 λ}.

Lemma 1, which is an implication of Vidal’s result [27],

gives the upper bound on the entanglement-concentration

rate in the scenario where an entangled two-qubit state

|�λ〉 is shared by two parties. Without loss of general-

ity, suppose cos λ � sin λ. The upper bound of the con-

centration rate can be obtained by performing a general

measurement {M0,M1}, where M0 = tan λ|0〉〈0| + |1〉〈1| and

M1 =
√

1 − tan2 λ|0〉〈0|, on either party. If the measurement

outcome 0 is observed, the maximally entangled state will

be created between them. The corresponding probability is

PE(�λ) = 2 sin2 λ.

Applying Lemma 1, we get the upper bound on the

entanglement-concentration rate for the simplest quantum

repeater scenario depicted in Fig. 2. The result is concluded

in the following lemma.

Lemma 2. Suppose the two-qubit states |�θ 〉 and |�η〉 are

initially distributed in the scenario depicted in Fig. 2. Let PMS

be the optimal probability that the maximally entangled state

can be created between Alice and Bob by applying LOCC.

Then PMS � min{PE(�θ ),PE(�η)}.
Proof. We prove this lemma via deducing contradictions.

Suppose PMS > PE(�θ ). Then consider a scenario where the
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resource |�θ 〉 is shared by Alice and Bob. Let Bob locally

prepare an ancilla state |�η〉. According to the definition,

the probability of creating a maximally entangled state be-

tween Alice and Bob by applying LOCC is PMS, which is

greater than PE(�θ ). This result contradicts Lemma 1. Thus,

the assumption is not true. It should have PMS � PE(�θ ).

Similarly, we can get PMS � PE(�η). Therefore, we have

PMS � min{PE(�θ ),PE(�η)} �.

In our protocol, we consider a projective measurement on

Clare’s joint system. A successful projection of Clare is one

where the maximally entangled state can be directly created

between Alice and Bob without any further local operations.

Our strategy is to construct a projective measurement such

that the sum of the probabilities of the successful projections

is as high as possible. For projections that result in Alice and

Bob sharing nonmaximally entangled states, we can apply the

probabilistic entanglement concentration by performing a local

measurement operation on Bob’s system. In general, we can

concentrate entanglement from the scenario at a high rate while

less of the LOCC resource is consumed.

In the following lemma, we work out the lower and upper

bounds on the probability of a successful projection.

Lemma 3. Assume that the two-qubit pure states |�θ 〉 and

|�η〉 are initially distributed in the scenario shown in Fig. 2.

Without loss of generality, suppose θ,η ∈ (0,π
4

]. A maximally

entangled state can be created between Alice and Bob by

projecting Clare’s joint system onto state |ϕ〉 without any

further local operations. The probability p(ϕ) of the successful

projection is bounded by

sin2 2θ sin2 2η

4(1 + cos 2θ cos 2η)
� p(ϕ) �

sin2 2θ sin2 2η

4(1 − cos 2θ cos 2η)
. (1)

Proof. The initial state of the three participants’ joint

quantum system can be written as

|φ0〉ABC =
3

∑

k=0

fk|k〉AB |k〉C, (2)

where f0 = cos θ cos η, f1 = cos θ sin η, f2 = sin θ cos η, and

f3 = sin θ sin η. Suppose |ϕ〉 =
∑3

k=0 μk|k〉 ∈ H⊗2
2 with the

constraint
∑3

k=0 |μk|2 = 1. Once the projection occurred, the

state of Alice and Bob’s joint system would be

|φ〉AB =
1

√
p(ϕ)

〈φC |φ0〉ABC =
1

√
p(ϕ)

3
∑

k=0

fkμ
∗
k |k〉AB .

As we expect that a maximally entangled state would be created

between Alice and Bob without any further local operations,

it should have

|φ〉AB = (U ⊗ I )|�〉, (3)

where U is a unitary operator on H2.

Let 
k ≡ 〈k|(U ⊗ I )|�〉. Then the parameters of the pro-

jection state and the corresponding probability are related by

the formula as follows:

fkμ
∗
k =

√

p(ϕ)
k. (4)

By applying the unit constraint of the projection state |ϕ〉, we

get the probability of the successful projection as follows:

p(ϕ) =

(

3
∑

k=0

|
k|2

f 2
k

)−1

. (5)

Without loss of generality, let U = |0〉〈α0| + |1〉〈α1|, where

|α0〉 = eiτ0 (cos α|0〉 + eiγ sin α|1〉) and |α1〉 = eiτ1 (sin α|0〉 −
eiγ cos α|1〉) with α,τ0,τ1,γ ∈ [0,2π ). It is trivial to determine

that |
0|2 = |
3|2 = 1
2

cos2 α and |
1|2 = |
2|2 = 1
2

sin2 α.

Hence, any successful projection state |ϕ〉 should be equiva-

lently written as

|ϕ〉 =
√

p(ϕ)

2

[

cos α

(

1

f0

|00〉 + eiβ 1

f3

|11〉
)

+ eiβ
′
sin α

(

1

f1

|01〉 + eiβ
′′ 1

f2

|10〉
)]

, (6)

where α,β,β
′
,β

′′ ∈ [0,2π ). The inverse of the probability can

be rewritten as

p(ϕ)−1 =
1

2

(

1

f 2
1

+
1

f 2
2

)

+
1

2
cos2 α

(

1

f 2
0

+
1

f 2
3

−
1

f 2
1

−
1

f 2
2

)

.

As we have assumed that θ,η ∈ (0,π
4

], it follows that

1

f 2
0

+
1

f 2
3

−
1

f 2
1

−
1

f 2
2

=
16 cos 2θ cos 2η

sin2 2θ sin2 2η
� 0.

Hence, the inverse of the successful projection probability

p(ϕ)−1 reaches the maximum when cos2 α = 1 while it reaches

the minimum when cos2 α = 0. Namely,

p(ϕ)−1
�

1

2

(

1

f 2
0

+
1

f 2
3

)

=
4(1 + cos 2θ cos 2η)

sin2 2θ sin2 2η
(7)

and

p(ϕ)−1
�

1

2

(

1

f 2
1

+
1

f 2
2

)

=
4(1 − cos 2θ cos 2η)

sin2 2θ sin2 2η
. (8)

Then Eq. (1) follows Eqs. (7) and (8) immediately. Therefore,

we have proved the lemma. �

Suppose Clare performs a projective measurement in the

orthonormal basis {|ϕk〉}4
k=1, with p(ϕk) being the probability

of projecting the system into state |ϕk〉 and |φk〉AB being the

corresponding postmeasurement state of Alice and Bob’s joint

system.

First, let |ϕ1〉 be the successful projection such that p(ϕ1)

reaches the upper bound of the projection probability in Eq. (1).

The condition of achieving the upper bound probability is

cos α = 0 in Eq. (6). Thus, the projection state can be written

as

|ϕ1〉 = (f2|01〉 + eiβ1f1|10〉)/
√

f 2
1 + f 2

2 (9)

for an arbitrary phase β1 ∈ [0,2π ). The corresponding projec-

tion probability is p(ϕ1) = sin2 2θ sin2 2η

4(1−cos 2θ cos 2η)
.

Second, we try to construct another successful projection

state |ϕ2〉. State |ϕ2〉 should be of the form of Eq. (6). The
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orthogonality of the projection states |ϕ2〉 and |ϕ1〉 requires that

〈ϕ1|ϕ2〉 = 0, which is equivalent to the following constraint:

√

p(ϕ)

2
(

f 2
1 + f 2

2

)eiβ
′
sin α

(

f2

f1

+ ei(β
′′ −β1) f1

f2

)

= 0.

To let the above constraint hold for general resources |�θ 〉
and |�η〉, it should have sin α = 0. Thus, we get the second

projection state as

|ϕ2〉 = (f3|00〉 + eiβ2f0|11〉)/
√

f 2
0 + f 2

3 , (10)

where β2 ∈ [0,2π ) is an arbitrary phase. The correspond-

ing probability of the successful projection is p(ϕ2) =
sin2 2θ sin2 2η

4(1+cos 2θ cos 2η)
, which is exactly the lower bound of the suc-

cessful probability.

A simple calculation shows that there is not a third projec-

tion state which is of the form of Eq. (6) and orthogonal to the

projection states |ϕ1〉 and |ϕ2〉. The other projection states can

be chosen as

|ϕ3〉 =(f1|01〉 − eiβ1f2|10〉)/
√

f 2
1 + f 2

2 , (11)

|ϕ4〉 =(f0|00〉 − eiβ2f3|11〉)/
√

f 2
0 + f 2

3 , (12)

with the projection probabilities being p(ϕ3) = f 4
1 +f 4

2

f 2
1 +f 2

2

and

p(ϕ4) = f 4
0 +f 4

3

f 2
0 +f 2

3

, respectively. The corresponding postmeasure-

ment states of Alice and Bob’s joint system are

|φ3〉AB =
(

f 2
1 |01〉 − e−iβ1f 2

2 |10〉
)/

√

f 4
1 + f 4

2 , (13)

|φ4〉AB =
(

f 2
0 |00〉 − e−iβ2f 2

3 |11〉
)/

√

f 4
0 + f 4

3 . (14)

We have figured out a projective measurement for Clare.

Two of the projections would directly leave Alice and Bob’s

joint system in maximally entangled states, while the others

would leave them in less entangled states. When the measure-

ment outcome |ϕ3〉 or |ϕ4〉 is observed, we can still concentrate

some entanglement from the less entangled state |φ3〉 or |φ4〉 by

performing local operations on either Alice’s or Bob’s system.

Let q and q ′ be the probabilities that we can concentrate

the maximally entangled state from |φ3〉 and |φ4〉 by perform-

ing the corresponding general measurement on Bob’s qubit,

respectively. As we have assumed that θ,η ∈ (0,π
4

], it follows

that f0 � f3. Without loss of generality, we suppose η � θ ,

which implies that f1 � f2. Applying Lemma 1, we get

q =
2f 4

2

f 4
1 + f 4

2

, q ′ =
2f 4

3

f 4
0 + f 4

3

.

In general, the maximally entangled resource can be created

between Alice and Bob with probability

PMS = p(ϕ1) + p(ϕ2) + p(ϕ3)q + p(ϕ4)q ′ = 2 sin2 θ.

Note that 2 sin2 θ also equals the optimal probability PE(�θ )

that the maximally entangled state can be concentrated in the

scenario where the resource |�θ 〉 is directly prepared between

Alice and Bob. Thus, we have PMS = PE(�θ ).

Similarly, we get PMS = PE(�η) for the case θ �

η. Thus, the maximally entangled resource can be con-

centrated from the scenario in Fig. 2 with probabil-

ity PMS = min{PE(�θ ),PE(�η)}. According to Lemma 2,

PMS � min{PE(�θ ),PE(�η)}. Therefore, the entanglement-

concentration rate obtained in our protocol is the optimal one

for the scenario.

Upon performing the projective measurement on Clare’s

joint system, no further local operation is needed when any

of the two successful projections is observed. Maximally

entangled resources will be directly created between Alice

and Bob with probability
sin2 2θ sin2 2η

2(1−cos2 2θ cos2 2η)
. Assume that the

classical communication channel is liable. It is possible to

establish an efficient classical communication agreement for

telling Bob to take the corresponding action.

Therefore, we have constructed a protocol for extending

the distance of the entanglement distribution, which is opti-

mal with respect to the entanglement-concentration rate and

efficient in perspective LOCC complexity. With this, we have

proved the following theorem, which is the main result of this

section.

Theorem 1. Suppose two different pure states |�θ 〉 and |�η〉
of a two-qubit system are initially distributed in the scenario

shown in Fig. 2. We construct a protocol as follows. First, apply

a projective measurement in the orthonormal basis {|ϕk}4
k=1,

which is defined in Eqs. (9)–(12), to Clare’s joint system.

Second, selectively perform a local operation on Bob’s system

according to Clare’s measurement outcome. Then a maximally

entangled resource could be created between Alice and Bob

with probability PMS = min{PE(�θ ),PE(�η)}. This protocol

is optimal for perspectives of entanglement-concentration rate

and efficient for perspectives of LOCC complexity.

A. Criterion for optimal projective measurements with respect

to the entanglement-concentration rate

For the scenario depicted in Fig. 2, the projective mea-

surement in the standard Bell basis is also able to achieve

the optimal entanglement-concentration rate [31]. Thus, the

optimal projective measurement for Clare’s joint system is not

unique with respect to the entanglement-concentration rate.

However, not all projective measurements can achieve that

goal. For example, it is impossible to obtain entanglement

between Alice and Bob by projecting Clare’s system onto

separable states.

Hence, it is a practical problem to verify whether a projec-

tive measurement is able to concentrate entanglement from the

scenario with the optimal rate. The following theorem gives a

criterion for such measurements.

Theorem 2. We consider a scenario with states |�θ 〉 and

|�η〉, which is shown in Fig. 2. Without loss of generality,

suppose θ,η ∈ (0,π
4

] and θ � η. Suppose P ≡ {Pk}4
k=1 is a

projective measurement on H⊗2
2 where Pk are projectors.

With the assistance of LOCC, the projective measurement

P on Clare’s joint system is able to achieve the optimal

entanglement-concentration rate if and only if

4
∑

k=1

√

[tr(T1 ⊗ T2Pk)]2 + sin2 2θ |tr(|0〉〈1| ⊗ T2Pk)|2

= cos 2θ, (15)
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where the operators T1 = cos2 θ |0〉〈0| − sin2 θ |1〉〈1| and T2 =
cos2 η|0〉〈0| + sin2 η|1〉〈1|.

Proof. Suppose Pk = |ϕk〉〈ϕk|, where {|ϕk〉}4
k=1 is an

orthonormal basis of the space H⊗2
2 . Note that the initial

state of the configuration is |�θ ,�η〉 =
∑3

t=0 ft |t〉C |t〉AB . In

the case where the measurement outcome k is observed, the

postmeasurement state of Alice and Bob’s joint system will be

|φk〉AB =
1

√
pk

3
∑

t=0

ft 〈ϕk|t〉|t〉AB,

where pk is the probability of observing the measurement

result k. From Lemma 1, the probability PE(φk) is twice the

square of the state’s minimal Schmidt number. It is also equal to

twice the minimal eigenvalue of the density operator of either

Alice’s or Bob’s system. On the condition that Alice and Bob

share the state |φk〉AB , the density operator of Alice’s system is

ρk
A ≡ trB(|φk〉AB〈φk|) =

1

pk

1
∑

t1,t2=0

ak
t1t2

|t1〉〈t2|,

where ak
t1t2

= θt1θt2 tr((|t1〉〈t2| ⊗ T2)Pk). For the purpose of

convenience, we take the notation θ0 ≡ cos θ and θ1 ≡ sin θ .

The eigenvalues of ρk
A are

λk
± =

1

2pk

[(

ak
00 + ak

11

)

±
√

(

ak
00 − ak

11

)2 + 4ak
01a

k
10

]

.

As λk
+ � λk

−, we get PE(φk) = 2λk
−.

When all the measurement outcomes are considered, the

maximally entangled state can be concentrated from the sce-

nario at rate

ps ≡
4

∑

k=1

pkPE(φk)

=
4

∑

k=1

[(

ak
00 + ak

11

)

−
√

(

ak
00 − ak

11

)2 + 4ak
01a

k
10

]

.

Note that
∑4

k=1 ak
00 =

∑4
k=1 cos2 θ tr[(|0〉〈0| ⊗ T2)Pk] =

cos2 θ . Similarly, we get
∑4

k=1 ak
11 = sin2 θ . It is trivial

to see that ak
00 − ak

11 = tr[(T1 ⊗ T2)Pk] and 4ak
01a

k
10 =

sin2 2θ |tr((|0〉〈1| ⊗ T2)Pk)|2. Thus, the rate can be equivalently

written as

ps = 1

−
4

∑

k=1

√

{tr[(T1 ⊗ T2)Pk]}2+sin2 2θ |tr(|0〉〈1| ⊗ T2)Pk|2.

According to Theorem 1, the optimal entanglement-

concentration rate of the scenario shown in Fig. 2 is 2 sin2 θ .

Therefore, the projective measurement P is able to achieve

the optimal entanglement-concentration rate, which means

ps = 2 sin2 θ , if and only if

4
∑

k=1

√

[tr(T1 ⊗ T2Pk)]2 + sin2 2θ |tr(|0〉〈1| ⊗ T2Pk)|2

= cos 2θ.

�

FIG. 3. Quantum repeater scenario with two general pure states.

Simple calculations show that both the projective measure-

ment in the standard Bell basis and the one we proposed in this

section fulfill the criterion.

III. UPPER BOUND FOR THE SCENARIO WITH

DIFFERENT GENERAL PURE STATES

In this section, we consider a more general scenario in

which different general pure states are prepared and general

measurements are allowed. Suppose a general bipartite pure

state |ψAB〉 is shared by Alice and Clare, while |ψCB〉 is shared

by Clare and Bob. We analyze the measurement outcome which

leaves Alice and Bob in a maximally entangled state without

any further local operations. We refer to this measurement

outcome as a successful measurement outcome. The scenario is

depicted in Fig. 3. Note that an arbitrary maximally entangled

state can be written as |�U 〉 ≡ (U ⊗ I )|�〉, where U is a

local unitary on Hd and |�〉 = 1√
d

∑d
k=1 |k〉|k〉 is the standard

maximally entangled state.

The probability of observing a successful measurement

outcome varies for different U ’s. Theorem 3 gives an upper

bound on the probability, which is the main result in this

section. To prove Theorem 3, we need two lemmas. Lemma

4 is concluded from Wolf’s lecture notes [36]. Lemma 5 is

a generalization of a mathematical theorem which has been

proved by Lewis [37]. We denote λ↓(A) for the column vector

of operator A’s eigenvalues in nonincreasing order and λ↑(A)

for that in nondecreasing order.

Lemma 4. Suppose |ψ〉 is a bipartite pure state of the joint

quantum system A ⊗ B. Let ρA ≡ trB(|ψ〉〈ψ |) be the density

operator of subsystem A. Suppose ρA can be expressed as a

convex combination ρA =
∑

i λiρi , where λi > 0,
∑

i λi = 1

and ρi are density operators on HA. Then there is a quantum

measurement operation on system B, say T = {Ti : B(HB) →
B(HB)}, such that

λiρi = trB[(I ⊗ Ti)(|ψ〉〈ψ |)]. (16)

The parameter λi can be interpreted as the probability of

observing measurement outcome i. The upper bound of λi is

as follows:

λi �
∥

∥ρ− 1
2 ρiρ

− 1
2

∥

∥

−1

∞ . (17)

Lemma 5. For Hermitian operators A and B,

tr(AB) � λ↑(A)T λ↓(B) (18)

with equality if and only if there is a unitary operator U such

that U †AU = diag[λ↑(A)] and U †BU = diag[λ↓(B)].

Theorem 3. Suppose two general pure states |ψAC〉 =
∑dA

k=1

√
ak|k〉|k〉 and |ψCB〉 =

∑dB

k=1

√
bk|k〉|k〉 are prepared in

the scenario, which is shown in Fig. 3. Without loss of gener-

ality, suppose a1 � a2 � . . . adA
> 0, b1 � b2 � . . . bdB

> 0

and d ≡ dB � dA. Clare performs a general measurement

M ≡ {Mi} on his joint system, with pi being the probability

012325-5
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of observing measurement outcome i. Suppose Alice and Bob

will share a maximally entangled state |�U 〉 ∈ H⊗2
d when

the measurement outcome i is observed by Clare. Then the

corresponding probability pi has the following upper bound:

pi �
d

∑dA

k=1
1

akbdA+1−k

≡ pmax. (19)

The upper bound can be achieved by setting the mea-

surement operator Mi = √
pmax|�U 〉〈�U |ρ− 1

2

AB , where U =
∑dA

k=1 |dA + 1 − k〉〈k| +
∑d

k=dA+1 |k〉〈k| and ρAB is the initial

state of Alice and Bob’s joint system.

Proof. Initially, Alice and Bob’s joint system is in

state ρAB = ρA ⊗ ρB , where ρA =
∑d

k=1 ak|k〉〈k| and ρB =
∑d

k=1 bk|k〉〈k|. Note that we extend ρA into the space Hd by

setting ak = 0 for k > dA. In the following discussion, we

denote a−1
k = 0 for k such that ak = 0.

According to Lemma 4, the probability pi is upper bounded

by

pi �
∥

∥ρ
− 1

2

AB ρUρ
− 1

2

AB

∥

∥

−1

∞ , (20)

where the inverse operator is defined on the corresponding

support space. The equality in Eq. (20) holds when MT
i =

√
piρ

− 1
2

AB ρU . A simple calculation shows that ρ
− 1

2

AB |�U 〉 =
1√
d

∑d
k,t=1 a

− 1
2

k b
− 1

2

t 〈k|U |t〉|k〉|t〉. Thus, we get

∥

∥ρ
− 1

2

AB ρUρ
− 1

2

AB

∥

∥

∞ =
∥

∥ρ
− 1

2

AB |�U 〉
∥

∥

2

=
1

d

d
∑

k,t=1

a−1
k b−1

t 〈k|U |t〉〈t |U †|k〉

=
1

d
tr
(

Uρ−1
B U †ρ−1

A

)

. (21)

The eigenvalues of ρ−1
A are a−1

dA
� · · · � a−1

1 > a−1
dA+1 = · · · =

a−1
d = 0. Those of Uρ−1

B U † are b−1
d � · · · � b−1

1 > 0. Apply-

ing Lemma 5, we get

tr
(

Uρ−1
B U †ρ−1

A

)

�

dA
∑

k=1

1

akbdA+1−k

,

where the equality holds when

U =

(

dA
∑

k=1

|dA + 1 − k〉〈k|

)

⊕ I, (22)

where the term in the direct sum acts in the kernel space of ρA.

Therefore, we get the upper bound of the probability pi as

pi �
d

∑dA

k=1
1

akbdA+1−k

, (23)

where the equality holds when the measurement operator is

Mi = √
pmax|�U 〉〈�U |ρ− 1

2

AB and U takes the form defined in

Eq. (22). �

IV. DISCUSSION AND CONCLUSION

In this paper, we have exploited the basic configuration of

quantum repeaters from the perspectives of both entanglement-

concentration rate and LOCC complexity. For the scenario

with two different two-qubit pure states, we have constructed

a protocol to concentrate entanglement. The protocol is opti-

mal for the perspective entanglement-concentration rate and

efficient for the perspective LOCC complexity. We also find a

criterion for the projective measurement to achieve the opti-

mal entanglement-concentration rate. For the scenario where

general pure states are prepared and general measurements

are allowed, we get the upper bound on the probability of a

successful measurement outcome which produces a maximally

entangled state between Alice and Bob without any further

local operations.

The protocol is composed of two steps. First, Clare performs

a measurement operation. Second, based on Clare’s mea-

surement outcome, Bob chooses the corresponding strategy;

namely, Bob does not do any further local operations or

performs the corresponding general measurements. In general,

the protocol can concentrate entanglement from the scenario

with the optimal rate. We reduced the LOCC complexity via

the strategy that no further local operation was needed if a

maximally entangled state could be created between Alice and

Bob when a measurement outcome was observed by Clare.

For the scenario with different two-qubit states |�θ 〉 and

|�η〉, we have constructed a projective measurement such that

the maximally entangled state could be created after two of

the four measurement outcomes. Such measurement outcomes

could be observed with probability
sin2 2θ sin2 2η

2(1−cos2 2θ cos2 2η)
. If the

states for the scenario are the same, say |�θ 〉, we can construct

a projective measurement with three successful projections to

produce maximally entangled states without any further local

operations. The corresponding probability is sin2 2θ (3+cos2 2θ )

4(1+cos2 2θ )
.
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